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Learning in Games with Quantized Payoff Observations

Kyriakos Lotidis§, Panayotis Mertikopoulos⋄ and Nicholas Bambos†

Abstract— This paper investigates the impact of feedback
quantization on multi-agent learning. In particular, we analyze
the equilibrium convergence properties of the well-known “follow
the regularized leader” (FTRL) class of algorithms when players
can only observe a quantized (and possibly noisy) version of their
payoffs. In this information-constrained setting, we show that
coarser quantization triggers a qualitative shift in the convergence
behavior of FTRL schemes. Specifically, if the quantization
error lies below a threshold value (which depends only on the
underlying game and not on the level of uncertainty entering
the process or the specific FTRL variant under study), then
(i ) FTRL is attracted to the game’s strict Nash equilibria with
arbitrarily high probability; and (ii ) the algorithm’s asymptotic
rate of convergence remains the same as in the non-quantized
case. Otherwise, for larger quantization levels, these convergence
properties are lost altogether: players may fail to learn anything
beyond their initial state, even with full information on their
payoff vectors. This is in contrast to the impact of quantization
in continuous optimization problems, where the quality of the
obtained solution degrades smoothly with the quantization level.

I. Introduction

In the implementation of distributed learning and control
systems, observations and feedback often need to be quantized
down to the bit-resolution allowed by the sensing/sampling
and data communication rates. This is driven by various design
pressures, including sensing/sampling and communication
bandwidth constraints, as well as computation, memory, and
power limitations. In particular, such challenges are ubiquitous
in current and emerging distributed systems (like the Internet
of Things or edge/mobile computing), where edge devices
must often contend with granular, reduced-precision data and
measurements. For example, a mobile device may only be able
to measure the quality of its downlink channel up to a relatively
low precision and then request setting the downlink transmitter
power (which also affects other devices via interference) based
on low-rate feedback. Likewise, an edge computing node may
only be able to receive a low-bit representation of the data of a
control-plane application and must then process and resubmit
this data using some low-bit encoding.

Reduced-precision settings of this type can be modeled
efficiently by assuming that, in addition to any random factors
affecting the process, observable quantities are also quantized,
reflecting the granularity of the measurement / communication
process. With this in mind, our paper examines quantized multi-
agent learning processes that unfold as follows:
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1) At each stage n = 1, 2, . . . , every participating agent
selects an action from some finite set.

2) Each agent’s reward is determined by their chosen action
and that of all other participating agents.

3) Agents observe a noisy quantized version of their rewards,
they update their actions, and the process repeats.

In terms of the agents’ learning dynamics – i.e., the way that
they update their actions – we consider the widely studied

“follow the regularized leader” (FTRL) class of algorithms, as
introduced by [1] and containing as special cases the seminal
multiplicative/exponential weights algorithm of [2]–[4], as
well as the standard projection dynamics of [5], [6]. Within
this setting, we aim to address the following questions:

1) What is the impact of quantization on the learning process
relative to the non-quantized case?

2) Is there robust deterioration – i.e., graceful degradation,
as opposed to abrupt collapse – of the outcome of the
learning process as the coarseness of the quantization
increases?

Related work: The literature on learning in games has
traditionally focused on identifying when a learning process
converges to equilibrium – locally or globally. In this regard,
a widely known result is that the empirical frequency of
play under no-regret learning converges to the game’s set of
coarse correlated equilibria [7], [8]. However, since this set
may contain highly undesirable, dominated strategies [9], this
convergence result typically needs to be refined.

On that account, a very large body of work has focused on
the sharper question of convergence to a Nash equilibrium
(NE), i.e., a state from which no player has an incentive to de-
viate unilaterally. This question is much more difficult and only
partial results are known: as a representative (but otherwise
incomplete) list of relevant results, [10]–[13] established the
convergence of an “adjusted” variant of FTRL to approximate
Nash equilibria in potential, 2×m, and 2× · · · × 2 games. This
convergence was established under the assumption that players
receive perfect realizations of their in-game payoffs – i.e., there
are no observation or measurement errors, random or otherwise.
More recently, and under similar feedback assumptions, [14]
showed that, in any generic game, strict Nash equilibria – i.e.,
Nash equilibria where each player has a unique best response –
are precisely the states that are stable and attracting under the
(unadjusted) dynamics of FTRL in discrete time.

The algorithmic stability and convergence results discussed
above were achieved via the use of an importance-weighted
estimator (IWE) which provides a counterfactual surrogate for
the payoff that a player would have obtained from an action that
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they did not actually pick. The key property of this estimator
is that its bias can be balanced against its variance so as to
yield progressively more accurate payoff predictions with only
a mild deterioration in precision. In turn, this “asymptotic
unbiasedness” property plays a major role in the convergence
results discussed above because it allows players to eventually
gravitate towards actions that yield consistently better payoffs
against the “mean field” of the other players’ actions.

However, this crucial property is lost the moment quantiza-
tion enters the picture: the granularity of the players’ payoff
observations can never become finer than the quantization gap
of their feedback /measurement mechanism, so any learning
process would not be able to resolve this gap either. Indeed,
any payoff estimator must contend with a persistent bias
that disallows the resolution of payoffs corresponding to
nearby mixed strategies – e.g., playing (1/3, 1/3, 1/3) versus
(1/3, 1/3 − ε, 1/3 + ε) in Rock-Paper-Scissors for sufficiently
small ε. As a result, any learning process that relies on gradual
changes in the players’ mixed strategies – like FTRL and its
variants – would seem unable to make consistent progress
towards a Nash equilibrium, even if starting relatively close.

Our contributions: Our analysis paints a different account
of the above. First, if the quantization error does not exceed
a certain threshold value, we show that FTRL with quantized
feedback – dubbed “follow the quantized leader” (FTQL)
for short – continues to identify strict Nash equilibria with
perfect accuracy, despite the persistent bias induced by the
quantization process. More precisely, we show that strict Nash
equilibria are locally stable and attracting with arbitrarily high
probability under FTQL, just as in the case of FTRL with
perfect payoff-based feedback. Second, we derive a series of
sharp convergence rate estimates for FTQL which echo the
convergence speed of FTRL with non-quantized feedback as
derived recently in [15]. Specifically, despite the quantization,
the convergence rate of FTQL differs from its non-quantized
variant only by a multiplicative constant, showing that the
algorithm’s asymptotic rate of convergence remains otherwise
unimpeded by the coarseness of the quantization scheme (as
long as this coarseness does not exceed the critical level beyond
which learning is impossible).

Importantly, this quantization threshold depends only on the
underlying game and is otherwise independent of the level
of uncertainty involved and/or the specific FTQL variant in
play. Beyond this threshold, the learning landscape changes
abruptly and dramatically. In particular, for larger values of
the quantization gap, the convergence properties of FTQL are
lost altogether: players may fail to learn anything beyond their
initial state, even with full information on their mixed payoff
vectors (even in simple 2 × 2 common interest games that are
otherwise easy to learn).

This behavior comes in stark contrast to the impact of
quantization in continuous optimization where the quality of
the obtained solution degrades gracefully with the quantization
gap [16]–[18]. This suggests a fundamental shift in design
principles when dealing with game-theoretic problems as
above: the robust deterioration observed in the discretization
of continuous optimization problems is no longer present, and

the quantization granularity has to be tuned judiciously as a
function of the agents’ interactions.

II. Background and motivation

A. Games in normal form

Throughout this paper, we consider normal form games
with a finite number of players and a finite number of actions
per player. More precisely, we posit that each player, indexed
by i ∈ N = {1, . . . ,N}, has a finite set of actions – or pure
strategies – αi ∈ Ai and a payoff function ui : A→ �, where
A B

∏
i∈N Ai denotes the set of all possible action profiles

α = (α1, . . . , αN). Players can mix their strategies, i.e., play a
probability distribution xi ∈ Xi B ∆(Ai) over their pure strate-
gies, and we write x = (x1, . . . , xN) ∈ X B

∏
i∈N Xi for the

associated mixed strategy profile. For notational convenience,
we will also write Yi B �

Ai and Y B
∏

i∈N Yi, for the space
of payoff vectors of player i ∈ N and the ensemble thereof.

Given a mixed strategy profile x ∈ X , we will use the
standard shorthand x = (xi; x−i) to keep track of the mixed
strategy profile x−i of all players other than i, and we further
define

(i ) The expected payoff of player i under x:

ui(x) = ui(xi, x−i) (1)

(ii ) The mixed payoff vector of player i under x:

vi(x) = (ui(αi; x−i))αi∈Ai (2)

In words, vi(x) ∈ Yi simply collects the expected payoffs
viαi (x) B ui(αi; x−i), αi ∈ Ai, that player i ∈ N would have
obtained by playing αi ∈ Ai against the mixed strategy profile
x−i of all other players. Then, aggregating over all players
i ∈ N , we will also write v(x) = (v1(x), . . . , vN(x)) ∈ Y for the
ensemble of the players’ mixed payoff vectors.

In terms of solution concepts, we say that a strategy profile
x∗ is a Nash equilibrium (NE) if no player has an incentive to
unilaterally deviate from it, i.e.,

ui(x∗) ≥ ui(xi; x∗−i) ∀xi ∈ Xi,∀i ∈ N . (NE)

Finally, we say that x∗ is a strict Nash equilibrium if the
inequality in (NE) is strict for all xi , x∗i , i ∈ N , i.e., if
any deviation from x∗i results to a strictly worse payoff for
the deviating player i ∈ N . It is straightforward to verify
that a strict equilibrium x∗ ∈ X is also pure in the sense that
each player assigns positive probability only to a single pure
strategy.

B. Quantization: definitions and impact on learning

1) Basics of quantization: As we discussed in the intro-
duction, our paper concerns models of repeated play where
all observable quantities – the players’ payoffs, the associated
vectors, etc. – are subject to rounding and/or precision cutoffs.
To formalize this, let ℓ > 0 be the quantization error of the
players’ observation /measurement device, and let R : � →
ℓ� ≡ {. . . ,−2ℓ,−ℓ, 0, ℓ, 2ℓ, . . . } be the associated quantization
operator which reduces to the identity on ℓ�, and which maps
any real number x ∈ � to an integer multiple R(x) ∈ ℓ� of



ℓ such that |x −R(x)| ≤ ℓ/2 for all x ∈ �. For example, the
“floor” operation x 7→ ⌊x⌋ has quantization error ℓ = 2 (since
supx|x−⌊x⌋| = 1), whereas the “round half away from zero” (or
“commercial rounding”) operation R(x) = sgn(x)⌊|x| + 1/2⌋ in
Python and Java has a quantization error of ℓ = 1.

Vectorizing this construction in the obvious way, we will
write R(v) B (R(vk))k=1,...,d for an arbitrary vector v ∈ �d.
Then, by construction, R reduces to the identity on (ℓ�)d and
we have

∥R(v) − v∥∞ ≤ ℓ/2 for all v ∈ �d. (3)

Unless explicitly mentioned otherwise, we will not assume a
specific quantization operator in the sequel, and we will state
our results only as a function of the quantization error ℓ.

2) The impact on learning: To motivate the analysis to
come, we provide below two examples where the process of
quantization can lead to significant challenges in multi-agent
learning, even in the simplest case where players observe their
full (quantized) payoff vectors.

For concreteness, we will present our examples in the
context of the well-known exponential (or multiplicative)
weights (EW) algorithm [2]–[4] which, in our setting, can
be written as

Xiαi,n ∝ exp(Yiαi,n)
Yi,n+1 = Yi,n + γnVi,n

(EW)

where (i) Xi,n ∈ Xi is the mixed strategy of player i ∈ N at
the n-th stage of the process; (ii) Vi,n is an approximation of
the player’s mixed payoff vector vi(Xn) which we discuss in
detail below; (iii) Yi,n ∈ Yi is an auxiliary “score vector” that
aggregates payoff information (so Yiαi,n indicates the propensity
of player i to employ the pure strategy αi ∈ Ai); and (iv ) γn > 0
is a “learning rate” (or step-size) parameter that controls the
weight with which new information enters the algorithm.

With all this in hand, the examples that follow are intended
to highlight two critical issues: a) the evolution of (EW) when
Vi,n is obtained by rounding vi(Xn) at different precision cutoffs;
and b) the difference between learning in Γ with quantized
feedback versus learning with non-quantized feedback in a
quantized version R(Γ) of the original game.

Example 1 (The role of the quantization error). Consider a
two-player common-interest game with A1 = {a1, a2},A2 =

{b1, b2}, and rewards given by the following payoff matrix:

Player 1/2 b1 b2

a1 99.1 100.9
a2 100.9 99.1

Clearly, (a1, b2) is a strict Nash equilibrium of the game.
We now examine the case where, at each round n =

1, 2, . . . , both players observe their quantized mixed payoff
vectors Vi,n = R(v(Xn)), i = 1, 2, and subsequently update
their strategies according to (EW). The specific quantization
schemes we consider are as follows:

(i ) “Round to closest even away from zero” (ℓ = 2): this
scheme maps x to the closest even integer and resolves ties
by moving away from 0, i.e., R(x) = 2sgn(x)⌊|x|/2+1/2⌋.
Then, for any initial mixed strategy profile X1 ∈ X that

assigns positive probability to all actions, all coordinates
of v(1) will lie in the interval (99.1, 100.9), so every entry
of R(v(1)) will in turn be equal to 100. We thus conclude
that all coordinates of Yn will be increased by the same
amount in the iterative step Yn ← Yn+1. Since this constant
increase disappears under the normalization step in (EW),
we readily obtain Xn = X1 for all n = 1, 2, . . . , i.e., the
players’ strategy profile remains unchanged for all time
in this learning model.1

(ii ) “Round half away from zero” (ℓ = 1): as discussed above,
this scheme maps x to the closest integer and resolves ties
by moving away from 0, i.e., R(x) = sgn(x)⌊|x|+1/2⌋. For
simplicity, we assume that the learning rate is constant,
say γn = 1,∀n. Now, taking (Xa1,1, Xa2,1) = (0.8, 0.2) and
(Xb1,1, Xb2,1) = (0.2, 0.8), we readily obtain R(va1 (X1)) =
R(vb2 (X1)) = 101, and R(va2 (X1)) = R(vb1 (X1)) = 99.
As a result, the corresponding score differences for
n = 1 satisfy: Ya1,n+1 − Ya2,n+1 > Ya1,n − Ya2,n and
Yb2,n+1 − Yb1,n+1 > Yb2,n − Yb1,n from which we readily
get Xa1,n+1 > Xa1,n and Xb2,n+1 > Xb2,n Therefore,
inductively we have that va1 (Xn) and vb2 (Xn) increase as
n grows, while va2 (Xn) and vb1 (Xn) decrease. We thus
obtain R(va1 (Xn)) = R(vb2 (Xn)) = 101, and R(va2 (Xn)) =
R(vb1 (Xn)) = 99 for all n. Hence:

Ya1,n+1 − Ya2,n+1 = Ya1,n − Ya2,n + 2
= Ya1,1 − Ya2,1 + 2n

(4)

from which we readily get
exp(Ya1,n+1)
exp(Ya2,n+1)

=
exp(Ya1,1)
exp(Ya2,1)

exp(2n) (5)

Taking n→ ∞we obtain (Xa1,n, Xa2,n)→ (1, 0) as n→ ∞,
and, likewise: (Xb1,n, Xb2,n) → (0, 1) as n → ∞. We thus
conclude that Xn converges to a strict Nash equilibrium.

From the above, we see that for two different quantization
lengths, the learning process may exhibit a completely different
behavior: in (i) it remains static throughout the execution of
the algorithm, whereas in (ii) Xn converges to a strict Nash
equilibrium of the underlying game. As we will see later, there
is a threshold value ℓ associated with the minimum payoff
differences, where this transition is sharp. §

Example 2 (Learning with quantized feedback vs. learning in
the quantized game). This example is intended to highlight
the difference between learning in Γ with quantized feedback
versus learning with perfect feedback in a quantized version
R(Γ) of Γ. As before, suppose there are two players, 1 and 2,
with action spaces A1 = {a1, a2} and A2 = {b1, b2} respectively,
and let R(x) = sgn(x) · ⌊|x| + 1/2⌋. The payoff matrix of the
original game Γ, along with the quantized version of it, is
shown below:

Player 1\2 b1 b2

a1 0.04
R
−→ 0 0.8

R
−→ 1

a2 0.8
R
−→ 1 0.04

R
−→ 0

1Note here that the precise values of the game are not important: we would
obtain the same result if we replaced {99.1, 100.9} with {99 + ε, 101 − ε} for
any ε > 0 sufficiently small.



We denote by Xn,Yn and X̃n, Ỹn the sequences of states
generated by (EW) on Γ and R(Γ) respectively. Moreover,
we assume for concreteness that γn = 1 for all n, and X1 = X̃1
with (Xa1,1, Xa2,1) = (0.6, 0.4) and (Xb1,1, Xb2,1) = (0.4, 0.6). So,
the different procedures are as follows:

(i ) “Γ with quantized feedback”: In this setting, players
observe Vn = R(v(Xn)) at the n-th stage. By the initial
conditions, we obtain V1 = 0, which means that all
coordinates of the score vector remain unchanged, so,
inductively, we get Yn = Y1 and hence Xn = X1 for all
stages, i.e., the learning process does not evolve.

(ii ) “R(Γ) without quantization”: Unlike the previous setting,
the players observe the full payoff vector of R(Γ), i.e.,
Vn = �α̃n∼X̃n

[R(v(α̃n))]. By the initial conditions, we have
(Va1,1,Va2,1) = (0.6, 0.4) and (Vb1,1,Vb2,1) = (0.4, 0.6).
Therefore, the corresponding score differences for n = 1
satisfy: Ỹa1,n+1 − Ỹa2,n+1 > Ỹa1,n − Ỹa2,n and Ỹb2,n+1 −

Ỹb1,n+1 > Ỹb2,n − Ỹb1,n. With a similar reasoning as in
Example 1(ii), we have: Xa1,n+1 > Xa1,n and Xb2,n+1 >
Xb2,n. Iterating over n, we get: (Xa1,n, Xa2,n) → (1, 0)
and (Xb1,n, Xb2,n) → (0, 1) i.e., Xn converges to a strict
equilibrium of R(Γ).

The above shows a remarkable difference in behavior: in
the case of Γ with quantized feedback, players learn nothing
beyond their initial state; by contrast, learning with perfect
feedback in the quantized game R(Γ) converges to the strict
Nash equilibrium (a1, b2). This serves to highlight the fact
that learning with quantized feedback cannot be compared
to learning in a quantized game: the players’ end behavior is
drastically different in the two cases. §

III. The learning model

We now proceed to describe our general model for learning
with quantized feedback; for ease of reference, we will refer to
this scheme as follow the quantized leader (FTQL).

Viewed abstractly, our model is based on the standard FTRL
template [1] run with quantized (and possibly noisy) payoff
observations as follows:

Xi,n = Qi(Yi,n)
Yi,n+1 = Yi,n + γnVi,n

(FTQL)

In more detail, the defining elements of (FTQL) are (i) the
approximate payoff vectors Vi,n ∈ Yi which are reconstructed
from the players’ payoff observations; and (ii) the players’
“choice maps” Qi : Yi → Xi which determine each player’s
mixed strategy Xi,n ∈ Xi as a function of the “aggregate payoff”
variables Yi,n ∈ Yi. In the rest of this section, we describe both
of these elements in detail; for a pseudocode implementation
of the method, see also Algorithm 1 below.

1) The feedback process: The vanilla version of FTRL
assumes that each player i ∈ N observes the full (mixed)
payoff vector Vi,n ← vi(Xn) in order to update their individual
score vector Yi,n at each stage n. However, in our model, we
only assume that players observe a quantized – and possibly
noisy – version of their in-game, realized payoffs. Specifically,
if α̂i,n ∈ Ai denotes the action (pure strategy) chosen by the

i-th player at stage n, we assume that each player receives as
feedback the quantized reward

ûi,n = R[ui(α̂i,n; α̂−i,n) + ξi,n] (6)

where R is a quantization operator with gap ℓ (cf. Section II)
and ξi,n ∈ �, n = 1, 2, . . . , is a random, zero-mean error
capturing all sources of uncertainty in the process. Specifically,
letting Fn denote the history (natural filtration) of Xn, we will
make the following statistical assumptions for ξn:

Zero-mean: �[ξi,n |Fn] = 0 (7a)

Finite variance: �[|ξi,n|2 |Fn] ≤ σ2 (7b)

i.e., ξn is an L2-bounded martingale difference sequence
relative to the history of play up to stage n (inclusive).

To reconstruct their payoff vectors from the quantized
feedback model (6), we further assume that players employ the
importance-weighted estimator (IWE)

Viαi,n =
1{α̂i,n = αi}

X̂iαi,n
ûi,n (IWE)

where X̂iαi,n = (1 − εn)Xiαi,n + εn/|Ai| denotes the probability
with which player i selects action αi ∈ Ai at stage n given the
mixed strategy profile Xi,n ∈ Xi and an “explicit exploration”
parameter εn > 0. The role of this parameter will be discussed
in detail in the next section.

2) The players’ choice maps: As mentioned above, the
second defining element of (FTQL) is the players’ choice map
Qi : Yi → Xi whose role is to translate the “aggregate score”
vectors Yi,n ∈ Yi into mixed strategies Xi,n = Qi(Yi,n) ∈ Yi. This
choice map is in turn defined as a regularized best response of
the form

Qi(yi) = arg maxxi∈Xi
{⟨yi, xi⟩ − hi(xi)} (8)

where hi : Xi → � denotes the method’s namesake “regularizer
function”.

For concreteness, we will focus on a class of decomposable
regularizers of the form hi(xi) =

∑
αi∈Ai

θi(xiαi ) where the
“kernel function” θi : [0, 1] → � is (i) continuous on [0, 1];
(ii ) twice differentiable on (0, 1]; and (iii ) strongly convex, i.e.,
inft∈(0,1] θ

′′
i (z) > 0. Two standard examples of such functions

are:

1) The entropic regularizer θi(z) = z log z: a standard cal-
culation shows that the induced choice map is Qi(yi) =
(exp(yiαi ))αi∈Ai

/∑
αi∈Ai

exp(yiαi ) which leads to the expo-
nential (or multiplicative) weights update template (EW)
of Section II.

2) The Euclidean regularizer θi(z) = z2/2: trivially, the
induced choice map is the closest point projection Qi(yi) =
arg minxi∈Xi

∥yi − xi∥2, and the induced scheme is the
projection dynamics [5], [6].

An important distinction between these regularizers is that
θ′i (0

+) = −∞ for the entropic regularizer while θ′i (0
+) is

finite for the Euclidean one. Regularizers that have the former
behavior are called steep and have the property that the induced
mirror map is interior-valued; regularizers with the latter



Algorithm 1: Follow the quantized leader (FTQL)
1: Initialize: Y1
2: for n = 1, 2, . . . do
3: Xi,n ← Qi(Yi,n)
4: Update sampling strategy: X̂iαi,n ← (1−εn)Xiαi,n+

εn
|Ai |

5: Sample α̂n ∼ X̂n

6: Observe realized payoff: ûi,n ← R(ui(αi;α−i) + ξi,n)
7: Estimate payoff vector through (IWE):

Viαi,n ←
1{α̂i,n = αi}

X̂iαi,n
ûi,n

8: Update score vectors: Yi,n+1 ← Yi,n + γnVi,n

9: end for

behavior are called non-steep and have surjective mirror maps
[19]. This behavior is captured by the rate function

ϕi(y) =


0 if y ≤ θ′i (0

+)
1 if y ≥ θ′i (1

−)
(θ′i )

−1(y) otherwise
(9)

As we shall see below, this rate function plays a crucial role in
determining the rate of convergence of (FTQL).

IV. Analysis and results

We are now in a position to proceed with the convergence
analysis of the quantized learning scheme (FTQL). The first
thing to note is that a finite game may admit several Nash
equilibria – an odd number generically – so it is not reasonable
to expect a global convergence result that applies to all games.
For this reason, we will focus below on states that are locally
stable and attracting:

Definition 1. Let Xn, n = 1, 2, . . . , be the sequence of mixed
strategy profiles generated by (FTQL). We then say that x∗ ∈ X
is:

1) Stochastically stable if, for every confidence level δ >
0 and every neighborhood U of x∗ in X , there exists a
neighborhood U1 of x∗ in X such that

�(Xn ∈ U for all n | X1 ∈ U1) ≥ 1 − δ. (10)

2) Attracting if, for every confidence level δ > 0, there exists
a neighborhood U1 of x∗ in X such that

�(Xn → x∗ as n→ ∞ | X1 ∈ U1) ≥ 1 − δ. (11)

3) Stochastically asymptotically stable if it is stochastically
stable and attracting.

Informally, the above states that x∗ is stochastically stable if
every trajectory Xn of (FTQL) that starts sufficiently close
to x∗ remains nearby with arbitrarily high probability; in
addition, if Xn converges to x∗ as well, then x∗ is stochastically
asymptotically stable [20], [21]. On that account, states that
are (stochastically) asymptotically stable under (FTQL) are the
only states that can be considered as viable, stable outcomes
of the learning process.

In the context of FTRL with perfect, non-quantized payoff
observations, it is known that a state is stochastically asymptot-
ically stable if and only if it is a strict Nash equilibria of Γ [14].
With this in mind, and given that the advent of quantization
can only worsen the attraction properties of any given point (cf.
the relevant discussion in Section II), we will exclusively focus
below on the asymptotic stability and attraction properties of
strict Nash equilibria under (FTQL).

In this regard, our main result can be summarized along the
following two axes:

1) If the quantization error ℓ is smaller than a threshold value
ℓ∗ that depends only on the underlying game, every strict
Nash equilibrium of Γ is stochastically asymptotically
stable under (FTQL).

2) Conditioned on the above, convergence to a strict equi-
librium x∗ ∈ X occurs at a rate of ∥Xn − x∗∥1 ≤
ϕ
(
−Θ
(∑n

k=1 γk

))
, where ϕ is the rate function (9).

The idea of our proof is to find a set of suitable initial
conditions for the quantized version of v(Xn) to remain in the
interior of the normal cone NC(x∗) of X at x∗ throughout the
execution of the algorithm. For this, we need to delve into the
geometry of NC(x∗) and find the limitations in the quantization
legnth ℓ that guarantee that Xn will be contained in the desired
region.

We start with the following lemma that gives a specific
description of the normal cone at a vertex x∗ of the polytope
X .

Lemma 1. Let x∗ be of the form (e1α∗1 , . . . , eNα∗N ), where eiα∗i ∈

�|Ai | a standard basis vector. Then the normal cone of X at x∗

can be expressed as:

NC(x∗) = {w ∈ Y : wiαi − wiα∗i ≤ 0,∀i ∈ N , αi ∈ Ai} (12)

Proof. We have that X = {x ∈ �|A| :
∑
αi∈Ai

xiαi = 1, xiαi ≥

0,∀αi ∈ Ai, i ∈ N }, for |A| = |A1| + · · · + |AN |. We can
equivalently write it in standard form, as:

X = {x ∈ �|A| : Cx = e, xiαi ≥ 0,∀αi ∈ Ai, i ∈ N } (13)

where C is a N × |A| matrix whose i-th row of C is cT
i =

(0, . . . , 0, 1, . . . , 1, 0, . . . , 0), with ones in positions (|A1|+ · · ·+

|Ai−1| + 1), . . . , (|A1| + · · · + |Ai|). Then, every vertex x of X
is of the form: xiαi = 1 for some αi ∈ Ai and xiαi = 0,∀αi ,
αi ∈ Ai,∀i ∈ N . Hence, x∗ is an extreme point of the bounded
polytope X and the set of adjacent vertices of x∗ is the set
Z = {x∗ − eiα∗i + eiαi : αi ∈ Ai, i ∈ N }. Now, let C = {w :
⟨w, z − x∗⟩ ≤ 0,∀z ∈ Z}. The tangent cone of X at x∗ equals to
the closure of the cone of feasible directions at x∗, and since X
is a convex polytope, we get: TC(x∗) = cone({z − x∗ : z ∈ Z}).
Since NC(x∗) = (TC(x∗))◦ := {w : ⟨w, x⟩ ≤ 0,∀x ∈ TC(x∗)}, it
remains to show that C = NC(x∗). Clearly, NC(x∗) ⊂ C, since
z− x∗ ∈ TC(x∗),∀z ∈ Z . For the opposite direction, take w ∈ C.
Then, for x ∈ TC(x∗), i.e. x =

∑k
j=1 λ j(z j − x∗) for z j ∈ Z , λ j ≥

0, we have ⟨w, x⟩ ≤ 0, since ⟨w, z j − x∗⟩ ≤ 0,∀z j ∈ Z . This
shows that w ∈ NC(x∗) =⇒ C ⊂ NC(x∗), and our proof is
complete. ■



Given this representation of the normal cone at the vertices
of X , we can derive several geometric properties of strict Nash
equilibria. Informally, the next lemma states that the payoff
vector v(x∗) at a strict equilibrium x∗ belongs to the interior of
NC(x∗), and also gives the distance from the cone’s boundary.

Lemma 2. Let x∗ = (α∗1, . . . , α
∗
N) ∈ X be a strict Nash

equilibrium and let d∗ be defined as per (16).

(a) If ℓ ≤ d∗, then �(v(x∗), ℓ2 ) ⊆ NC(x∗), where � is with
respect to ∥·∥∞

(b) If ℓ ≤ d∗
m for m ∈ � and d = d∗ − mℓ, then for any

w ∈ �(v(x∗), d
2 ), we have: wiαi − wiα∗i + mℓ ≤ 0, for any

αi ∈ Ai, i ∈ N .

Proof. (a) Let w ∈ �(v(x∗), ℓ2 ). We have: |wiαi − viαi (x∗)| ≤
ℓ
2 ,∀αi ∈ Ai, i ∈ N Then, for any ziαi ∈ Z , we have:

wiαi − wiα∗i ≤ viαi (x∗) − viα∗i (x∗) + ℓ

= ui(αi;α∗−i) − ui(α∗i ;α∗−i) + ℓ ≤ 0

from which we conclude that w ∈ NC(x∗).

(b) Let w ∈ �(v(x∗), ℓ2 ) and w̃ defined as follows:

w̃iαi =

wiαi −
mℓ
2 if αi = α

∗
i

wiαi +
mℓ
2 otherwise

(14)

Then, ∥w̃ − w∥∞ ≤ mℓ
2 , and hence we have:

∥w̃ − v(x∗)∥∞ ≤ ∥w̃ − w∥∞ + ∥w − v(x∗)∥∞ ≤
d∗

2
(15)

from which we get that w̃ ∈ �(v(x∗), d∗
2 ), i.e., w̃ ∈ NC(x∗) due

to part (a). Therefore, we conclude that for any i ∈ N , αi ∈ Ai:
w̃iαi − w̃iα∗i ≤ 0 =⇒ wiαi − wiα∗i + mℓ ≤ 0 ■

Now, we are ready to state and prove our main theorem.

Theorem 1. Let x∗ = (α∗1, . . . , α
∗
N) be a strict Nash equilibrium

of Γ and let

d∗ = mini∈N minαi∈Ai\{α
∗
i }
{ui(α∗i ;α∗−i) − ui(αi;α∗−i)} (16)

denote the minimum payoff difference incurred by a unilateral
off-equilibrium deviation. Assume further that (FTQL) is run
with quantization error ℓ < d∗/3 and step-size and exploration
parameters such that

∞∑
n=1

γn = ∞,

∞∑
n=1

γnεn < ∞ and
∞∑

n=1

γ2
n

ε2
n
< ∞. (17)

Then x∗ is stochastically asymptotically stable and, for all
trajectories converging to x∗, we have

∥Xi,n − x∗i ∥1 ≤ 2
∑
αi,α

∗
i

ϕi(−cτn + o(τn)) (18)

where τn =
∑n

k=1 γk and c ∈ (0, d∗ − 3ℓ).

Proof. Since (FTQL) updates the score vector Yn at each stage
n, we need a connection between the variables in the dual
space, Y , and the ones in the primal, X . This connection is
conveniently expressed through the so-called score-dominant

sets [14]. Formally, [14] shows that for any ε > 0, there exist
Mi,ε for all i ∈ N so that∏

i∈N
Qi(Wi(Mi,ε)) ⊆ Uε (19)

where: Wi(Mi,ε) = {Yi : Yi,α∗i − Yi,αi > Mi,ε,∀αi , α
∗
i }, and

Uε = {x ∈ X : xiα∗i > 1 − ε,∀i ∈ N }. (20)

Therefore, our goal in the sequel will be to find a set of initial
conditions so that the corresponding score differences Yiα∗i ,n −

Yiαi,n, stay large enough throughout the stages of the algorithm
for all players i ∈ N .

Stochastic stability: To begin with, fix a confidence level
δ > 0, and let U be a neighborhood of x∗ in X . Invoking
Lemma 2 with m = 3, we see that any w ∈ �(v(x∗), d

2 )
satisfies wiαi − wiα∗i + 3ℓ < 0. By continuity of v, there exist
a neighborhood U of x∗ and c > 0 such that U ⊆ U and
viαi (x) − viα∗i (x) + 3ℓ ≤ −c, for x ∈ U . Then, by (19),(20), there
exist ε0 > 0,Mi,ε0 , for all i ∈ N such that:

(a) Uε0 ⊆ U ⊆ U
(b)
∏

i∈N Qi(Wi(Mi,ε0 )) ⊆ Uε0

For our analysis, we decompose the approximate payoff
vector Vn in components as follows

Viαi,n = �[R(viαi (αn) + ξi,n) |Fn] + Uiαi,n + biαi,n (21)

where viαi (αn) = ui(αi;α−i,n) and:

1) Uiαi,n B Viαi,n − �[R(viαi (α̂n) + ξi,n) |Fn] is a zero-mean
error process.

2) biαi,n B �[R(viαi (α̂n)+ ξi,n) |Fn]−�[R(viαi (αn)+ ξi,n) |Fn]
is a systematic (non-zero-mean) error process due to (a)
quantization; and (b) sampling from X̂n instead of Xn.

It is important to highlight that previous techniques of [15]
and references therein can no longer be applied to this setting,
because the bias term bi,n is not diminishing, but persistent
in all stages of the (FTQL) due to the quantization error. By
comparison, all previous analyses require that any bias entering
a learning algorithm vanish appropriately in the long run.

To proceed, we denote by Ṽi,n := �[R(vi(αn) + ξi,n · e) |Fn]
where e is a vector of ones of appropriate dimension, and by
b̃iαi,n := viαi (X̂n) − viαi (Xn).

Claim 1. The following inequalities hold: ∥Ṽi,n − vi(Xn)∥∞ ≤ ℓ2
and ∥bi,n − b̃i,n∥∞ ≤ ℓ

Claim 2. �[∥b̃n∥∗ |Fn] = O(εn) and �[∥Un∥
2
∗ |Fn] = O(1/ε2

n)

Claim 1 follows from (3) and some algebraic derivations,
while Claim 2 holds due to Lipschitz continuity of v(·),
compactness of X and L2-boundedness of ξ. The proofs are
omitted due to lack of space.

Then, dropping the index i for convenience, the general
score-difference relation at stage n, skipping some algebraic
manipulations due to lack of space, and using Claim 2 is

Yα,n+1 − Yα∗,n+1 = Yα,1 − Yα∗,1 +
n∑

k=1

γk(Ṽα,k − Ṽα∗,k)



+

n∑
k=1

γk(bα,n − bα∗,n) +
n∑

k=1

γk(Uα,n − Uα∗,n)

≤ Yα,1 − Yα∗,1 +
n∑

k=1

γk(vα(Xk) − vα∗ (Xk) + 3ℓ)

+

n∑
k=1

γk(b̃α,k − b̃α∗,k) +
n∑

k=1

γk(Uα,k − Uα∗,k)

(22)

We will first bound the term Rn :=
∑n

k=1 γk(Uα,k − Uα∗,k) for
all n ∈ �. Then, Rn is a martingale, as �[|Rn| |Fn] < ∞ and
�[Rn+1 |Fn] = Rn,∀n. Moreover, for K1 > 0, whose value
will be determined later, we define the sequence of events
Dn,K1 = {supk≤n|Uα,k − Uα∗,k | ≥ K1} and DK1 = {supk≥1|Uα,k −
Uα∗,k | ≥ K1}. By Doob’s maximal inequality (Theorem 2.4,
[22]), we have �(Dn,K1 ) ≤ �[R2

n]
K2

1
. Furthermore, we have that

�[R2
n] =

∑n
k=1 γ

2
k �[(Uα,k − Uα∗,k)2] since �[Uα1,kUα2,m] =

�[�[Uα1,kUα2,m |Fk]] = �[Uα1,k �[Uα2,m |Fk]] = 0 as Uα1,k is
Fk-measurable for k < m, α1, α2 ∈ {α, α

∗} and �[Uα2,m |Fk] =
0. Moreover, �[(Uα,k − Uα∗,k)2] ≤ 2�[∥Uk∥

2
∗] = O(1/ε2

k) by
Claim 2, and, therefore, there exists a constant C1 such that
�[R2

n] ≤ C1
∑n

k=0 γ
2
k/ε

2
k . By taking n → ∞ we get �(DK1 ) ≤

C1
∑∞

k=1 γ
2
k/ε

2
k

K2
1

< ∞ so, for K1 =

√
2C1
∑∞

k=1 γ
2
k/ε

2
kδ we get

�(DK1 ) ≤ δ/2 (23)

Now, for the term
∑n

k=0 γk(b̃α,k − b̃α∗,k), we have that:∣∣∣∑n
k=1 γk(b̃α,k − b̃α∗,k)

∣∣∣ ≤ ∑n
k=1 γk |b̃α,k − b̃α∗,k | ≤ 2

∑n
k=1 γk∥b̃k∥∗.

Defining S n := 2
∑n

k=1 γk∥b̃k∥∗ it is easy to see that S n is a
submartingale, as �[|S n|] < ∞ and �[S n+1 |Fn] ≥ S n,∀n.
With similar arguments as before, defining EK2 = {supk≥1 S k ≥

K2} and using Doob’s maximal inequality, we get that�(EK2 ) ≤
(C2/K2)

∑∞
k=0 γkεk < ∞. Setting K2 = 2(C2/δ)

∑∞
k=0 γkεk we

get
�(EK2 ) ≤ δ/2 (24)

Hence, by the union bound, we get: �(DK1 ∪ EK2 ) ≤ δ.
Setting M > Mε0 + K1 + K2, we get that if Y1 ∈ W(M), i.e.
Yα,1 − Yα∗,1 < −M then:

Yα,n+1 − Yα∗,n+1 ≤ −M + K1 + K2 < −Mε0 (25)

on the event (DK1 ∪ EK2 )c, from which we get that Xn+1 ∈ Uε0 ,
i.e. Xn+1 ∈ U with probability at least 1 − δ. Therefore, we
conclude that x∗ is stochastically stable.

Stochastic asymptotic stability: From the previous analysis,
on the event (DK1 ∪ EK2 )

c we have that: Yα,n+1 − Yα∗,n+1 <
−Mε0 − c

∑n
k=1 γk Sending n → ∞, we get that Yα,n+1 −

Yα∗,n+1 → −∞, from which we have that for all M̃ > 0,Yk ∈

W(M̃) eventually. Hence, for all ε̃ > 0, Xk ∈ Uε̃ eventually,
from which we get that Xk → x∗ as k → ∞.

Rates of convergence: Finally, to establish the rate of
convergence of (FTQL), let τn :=

∑n
k=1 γk for all n. Since

Rn =
∑n

k=1 γk(Uα,k−Uα∗,k) is a martingale, limn→∞ τn = ∞ and∑∞
k=1 τ

−2
k �[|γk(Uα,k − Uα∗,k)|2 |Fk] ≤ C1

∑∞
k=1 τ

−2
k γ

2
k/ε

2
k < ∞,

we have, by Strong law of large numbers for martingales
(Theorem 2.18, [22]), that Rn

τn
→ 0 a.s. as n→ ∞.

Moreover, since S n is a nonnegative submartingale with
�[S n] bounded for all n, by Doob’s submartingale convergence
theorem (Theorem 2.5, [22]), we obtain that there exist a
random variable S∞ with �[|S∞|] < ∞ and S n → S∞ a.s.
as n → ∞. Since S∞ ∈ L1, we get that S∞ < ∞ a.s., and, so,
S n
τn
→ 0 as n→ ∞.

Since Xn → x∗ as n → ∞, we have that Xn ∈ U eventually,
i.e. there exists n0 ∈ � such that Xn ∈ U for all n ≥ n0, from
which we get viαi (x) − viα∗i (x) + 3ℓ ≤ −c. Hence, for n ≥ n0,
after some calculations omitted due to lack of space, we obtain
Yα,n+1 − Yα∗,n+1 ≤ −cτn + o(τn). Therefore, we have:

θ′(Xα,n+1) ≤ θ′(Xα∗,n+1)−cτn+o(τn) ≤ θ′(1)−cτn+o(τn) (26)

from which we conclude that: Xα,n+1 ≤ ϕ(−cτn + o(τn)).
Aggregating over all strategies α ∈ A, α , α∗ we have:

∥x∗ − Xn+1∥1 ≤ 2
∑
α,α∗

ϕ(−cτn + o(τn)) (27)

■

The qualitative behavior of the dynamics as a function of
the quantization length is shown in Fig. 1. Some corollaries
and remarks are in order. We begin by discussing the possible
schedules for the algorithm’s step-size and exploration parame-
ters: here, a standard choice is to take γn ∝ 1/np and εn ∝ 1/nq,
with p, q ≥ 0 chosen so as to satisfy (17). A straightforward
verification gives the conditions

p ≤ 1, p + q > 1 and 2p − 2q > 1 (28)

which, in turn, provide the following explicit guarantee:

Corollary 1. Suppose that (FTQL) is run with assumptions as
in Theorem 1 and with step-size and exploration parameters
satisfying (28). Then, for all p > 3/4, (FTQL) achieves

∥Xi,n − x∗i ∥1 ≤ 2
∑
αi,α

∗
i

ϕi

(
−Θ(n1−p)

)
. (29)

Proof. From (28) it is easy to see that p ∈ (3/4, 1]. For p = 1,
τn = Θ(log n), so (FTQL) achieves faster convergence if p < 1.
Since for p ∈ (3/4, 1) we have that τn = Θ(n1−p), the result is
immediate from (27). ■

Remark. In the absence of quantization, FTRL achieves a
convergence rate of ϕ(−

∑n
k=1 γk) [15] with p ∈ [0, 1]. In our

case, if the assumption for ξ is strengthened to almost sure
boundedness (or sub-Gaussian increments), we can likewise
relax the step-size requirements and achieve the rate (29) for
any p ∈ [0, 1]. §

Our next result concerns the rate of convergence of (FTQL)
for different choices of the mirror map Q as defined in (8):

Corollary 2. Suppose that (FTQL) is run with assumptions as
in Corollary 1. Then:

1) The exponential (or multiplicative) weights variant of
the algorithm (θ(z) = z log z) achieves convergence
to strict Nash equilibria at a rate of: ∥Xi,n − x∗i ∥1 ≤
2
∑
αi,α

∗
i

exp
(
−Θ(n1−p)

)
.



(a) ℓ = 0

(b) ℓ = 1.5

(c) ℓ = 4

Fig. 1: Density ‘heat-maps’ of the temporal evolution of (FTQL) at
times 0 (left), 50 (middle), 2000 (right) in 500 instances (sampled as
Y1 ∼ U[0, 1]4) on a 2×2 symmetric game with u(a1, b1) = u(a2, b2) =
5.1, u(a1, b2) = u(a2, b1) = 2.4, p = 0.75, q = 0.25, and ξn ∼
U[−0.1, 0.1] for three quantization errors: ℓ = 0, 1.5, 4. Both (a1, b1)
and (a2, b2) are pure Nash equilibria. In each plot, the horizontal
axis corresponds to x1a1 and the vertical one to x2b1 . We observe that
for small quantization errors (ℓ = 0, 1.5), the instances converge to
the Nash equilibria (a1, b1) and (a2, b2); however, for ℓ = 1.5, the
convergence is slower. On the contrary, for large quantization length
(ℓ = 4), the behavior of the system is unpredictable and all the pure
strategy profiles become attractors. Note the gradual “disintegration”
of convergence with larger quantization error.

2) The Euclidean variant of the algorithm (θ(z) = z2/2)
achieves convergence to strict Nash equilibria at a finite
number of iterations.

Proof. 1) Since θ(x) = x log x, we have ϕ(x) = exp(x − 1). So,
we obtain ϕi(−Θ(n1−p)) = exp(−Θ(n1−p)). Then, the result is
immediate.

2) Since Xi,n ≥ 0, θ′ increasing, (26) becomes

θ′(0) ≤ θ′(Xα,n+1) ≤ θ′(1) − cτn + o(τn) (30)

and, since limn τn = ∞, we obtain τn ≥
1
c (θ′(1)− θ′(0)+ o(τn))

for large n. Combining the above inequalities, we get θ′(0) ≤
θ′(Xα,n+1) ≤ θ′(0), from which we conclude that Xα,n+1 = 0 for
sufficiently large n, as per our claim. ■

V. Concluding remarks

Our results show that the impact of quantization on
learning in games is somewhat different than what one would
perhaps expect: instead of a gradual deterioration of the
quality of learning as the quantization error increases, we

see that (FTQL) continues to identify strict Nash equilibria
perfectly if the quantization is not too coarse, and the rate
of convergence is as in the non-quantized case. We find
this property particularly appealing, as it shows that, if the
feedback process is quantized judiciously, we can achieve
significant gains in terms of memory storage and bandwidth
expenditures without compromising the quality of learning.
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