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ON THE CONVERGENCE OF POLICY GRADIENT METHODS
TO NASH EQUILIBRIA IN GENERAL STOCHASTIC GAMES

ANGELIKI GIANNOU∗, KYRIAKOS LOTIDIS‡, PANAYOTIS MERTIKOPOULOS⋄,⋆,
AND EMMANOUIL V. VLATAKIS-GKARAGKOUNIS§

Abstract. Learning in stochastic games is a notoriously difficult problem because, in
addition to each other’s strategic decisions, the players must also contend with the fact
that the game itself evolves over time, possibly in a very complicated manner. Because
of this, the convergence properties of popular learning algorithms – like policy gradient
and its variants – are poorly understood, except in specific classes of games (such as
potential or two-player, zero-sum games). In view of this, we examine the long-run
behavior of policy gradient methods with respect to Nash equilibrium policies that are
second-order stationary (SOS) in a sense similar to the type of sufficiency conditions
used in optimization. Our first result is that SOS policies are locally attracting with
high probability, and we show that policy gradient trajectories with gradient estimates
provided by the Reinforce algorithm achieve an O(1/

√
n) distance-squared convergence

rate if the method’s step-size is chosen appropriately. Subsequently, specializing to the
class of deterministic Nash policies, we show that this rate can be improved dramatically
and, in fact, policy gradient methods converge within a finite number of iterations in
that case.

1. Introduction

Ever since they were introduced by Shapley [50] in the 1950’s, stochastic games have been
one of the staples of non-cooperative game theory, with a range of pioneering applications
to multi-agent reinforcement learning [51], unmanned vehicles [49], general game-playing
[37, 52, 57], etc. Informally, a stochastic game unfolds in discrete time as follows: At each
point in time, the players are at a given state which determines the rules of the game for that
stage. The actions of the players in this state determine not only their instantaneous payoffs
(as defined by the stage game), but also the transition probabilities towards the next state of
the process. In this way, each player has to balance two distinct – and often competing –
objectives: optimizing the payoffs of today versus picking a possibly suboptimal action which
could yield significant benefits tomorrow (i.e., by influencing the transitions of the process
towards a more favorable state for the player).

Since all players in the game are involved in a similar dilemma, the decision-making
problem for each player is a very complicated affair. In particular, in addition to their
changing strategic decisions, the players of the game must also contend with the fact that the
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stage game itself evolves over time. Because of this, even the existence of a Nash equilibrium
policy – viz. a stationary Markovian policy that is stable to unilateral deviations [16] –
is far more difficult to prove compared to standard, stateless normal form games; for a
comprehensive survey, cf. [41, 53] and references therein.

The question we seek to address in this paper is whether an ensemble of boundedly
rational players can reach an equilibrium policy in a stochastic game. Specifically, if players
do not have sufficient information – or the computational resources required – to solve a
high-dimensional Bellman equation [15, 54], it is not at all clear if they would somehow end
up playing a Nash policy in the long run. After all, the complexity of most games increases
exponentially with the number of players, so the identification of a game’s equilibria quickly
becomes prohibitively difficult [27].

Our contributions in the context of related work. This issue has sparked a vigorous literature
with important ramifications for the range of applications mentioned above. Nevertheless,
these efforts must grapple with a series of strong lower bounds for computing even weaker
solution concepts like coarse correlated equilibria in turn-based stochastic games [12, 27].
On that account, a recent line of work has focused on establishing convergence in specific
subclasses of stochastic games, such as min-max [7, 11, 32, 47, 48, 58] and common interest
potential games [13, 31, 61]. However, despite these encouraging results, the general case
remains particularly elusive.

Our paper takes a complementary approach to the above and seeks to study the convergence
landscape of a class of equilibrium policies – not games. For concreteness, we focus on the
general class of policy gradient methods as pioneered by [28, 29, 55, 59], and we examine the
methods’ convergence properties in general random stopping games – as opposed to ergodic
stochastic games with an infinite horizon [32, 42]. Concretely, this means that the sequence
of play evolves episode-by-episode: within each episode, the players commit a policy and play
the game, and from one episode to the next, they use an iterative gradient step to update
their policy and continue playing.

Our main contributions in this general context may be summarized as follows:
(1) We introduce a flexible algorithmic template for the analysis of policy gradient methods

which accounts for different information and update frameworks – from perfect policy
gradients to value-based estimates obtained on a per-episode basis, e.g., via the
Reinforce algorithm [4, 55, 59].

(2) Within this framework, we show that Nash policies that satisfy a certain strategic
stability condition are locally attracting with arbitrarily high probability. Moreover,
to estimate the method’s rate of convergence, we focus on Nash policies that satisfy a
second-order sufficiency condition similar to the type of sufficiency conditions used
in optimization, and we show that such policies enjoy an O(1/

√
n) squared distance

convergence rate.
(3) Finally, we also consider the method’s convergence to deterministic Nash policies – a

special case of second-order stationary (SOS) policies – and we show that, generically,
the above rate can be improved dramatically. In particular, by a simple tweak to the
method’s projection step, the induced sequence of play converges to equilibrium in a
finite number of iterations, despite all the noise and uncertainty.

It is also worth noting that our analysis focuses squarely on the actual, episode-by-episode
trajectory of play, not any “best-iterate” or time-averaged variant thereof. In regards to the
latter class of guarantees, the recent work of Jin et al. [26] proposed an algorithm (called
V-learning) which updates the policy πn of the n-th episode based on the observed rewards so
far. Thanks to the algorithm’s regret guarantees, Jin et al. [26] showed that (a) in min-max
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games, the time-averaged policy π̄n = (1/n)
∑n

k=1 πk converges to equilibrium at a rate of
O(1/

√
n); whereas (b) in general stochastic games, the empirical frequency of play converges

to the game’s set of coarse correlated equilibria (a substantial relaxation of the notion of
Nash equilibrium) at a rate of O(1/

√
n).

By contrast, as we mentioned above, our paper focuses on the actual sequence of play,
i.e., the policy πn employed at each episode of the game. Moreover, the rates that we
obtain all concern the convergence of the players’ policies to a Nash equilibrium – not a
correlated equilibrium or other relaxation thereof. In this regard, the best-iterate / ergodic
convergence rates are incomparable to our own as they concern a weaker type of convergence
(time-averaged instead of the actual sequence), and to a weaker solution concept (correlated
equilibria instead of Nash equilibria). This aspect of our results is especially relevant for
multi-agent reinforcement learning scenarios where agents learn “on the fly”, and it has
important ramifications for many of the practical applications of stochastic games.

From a technical standpoint, our analysis is based on mapping the problem of multi-
agent policy learning to the problem of equilibrium learning in a class of continuous games
characterized by the fact that first-order stationary points are necessarily Nash (itself a
consequence of the so-called “gradient dominance” property of stochastic games). By means
of this reframing, we are able to leverage a series of recent techniques for establishing local
convergence in (non-monotone) continuous games and variational inequalities [3, 8, 23, 24,
33, 45], which ultimately also yield convergence in our setting. As a result, even though the
unbounded variance of the Reinforce estimator is a source of considerable complications,
the resulting link between stochastic and continuous games is of particular technical interest
because it opens up a wide array of stochastic approximation tools and techniques that can
be used for the analysis of multi-agent learning in stochastic games.

2. Preliminaries

2.1. Setup of the game. Throughout this work we consider N -player generic stochastic games
where players repeatedly select actions in a shared Markov decision process (MDP) with
the goal of maximizing their individual value functions. Formally, we study the tabular
version with random stopping of general stochastic games, which is specified by a tuple
G = (S,N , {Ai, Ri}i∈N , P, ζ, ρ) with the following primitives:
• A finite set of agents i ∈ N = {1, 2, . . . , N} and a finite set of states S = {1, . . . , S}.
• For each i ∈ N , a finite space of actions (or pure strategies) Ai indexed by αi =
1, . . . , Ai = |Ai|. We will write A =

∏
i∈N Ai and A−i =

∏
j ̸=iAj for the action space

of all agents and that of all agents other than i respectively. In a similar vein, we will
also write α = (αi, α−i) when we want to highlight the action αi of player i against the
action profile α−i of i’s opponents.

• For each i ∈ N , we will write Ri : S × A → [−1, 1] for the reward function of agent
i ∈ N , i.e., Ri(s, αi, α−i) will denote the value of the reward of agent i when the game
is at state s ∈ S, the focal agent i ∈ N plays αi ∈ Ai, and all other agents take actions
α−i ∈ A−i.

• The game transits from one state to another according to a Markov transition process,
so that P (s′ | s, α) denotes the probability of transitioning from s to s′ when α ∈ A is
the action profile chosen by the agents.

• Given an action profile α at state s, the process terminates with probability ζs,α > 0,
i.e., ζs,α = 1−

∑
s′∈S P (s

′ | s, α); for convenience, we will write ζ := mins,α{ζs,α}.
• ρ ∈ ∆(S) is the distribution for the initial state of the game.
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Episodic Setting. We consider an episodic setting, where in each episode a realization of
the game is completed. At every time step t ≥ 0 of each episode, all agents observe the
common state st ∈ S, select actions αt and receive rewards {Ri(st, αt)}i∈N . Then, with
probability ζst,αt

the game terminates, and with probability 1− ζst,αt
, it moves to the state

st+1, which is drawn according to P (·|st, αt). Denoting the realized reward of player i at
time t as ri,t := Ri(st, αt), we will write τ = (st, αt, rt)t≤T (τ) to denote the trajectory of the
episode, where rt := (ri,t)i∈N , and T (τ) the time the episode terminates.

Policies and value functions. We consider stationary Markovian policies, i.e., policies that
do not depend on the time-step and the history, given the current state of the game. More
specifically, for each agent i ∈ N , a policy πi : S → ∆(Ai) specifies a probability distribution
over the actions of agent i in state s ∈ S, i.e., αi ∼ πi(·|s) denotes the (random) action drawn
by agent i at state s ∈ S according to πi, viewed here as an element of Πi := ∆(Ai)

S . In
addition, we will also write π = (πi)i∈N ∈ Π :=

∏
i Πi and π−i = (πj)j ̸=i ∈ Π−i :=

∏
j ̸=i Πj

for the policy profile of all agents and all agents other than i, respectively.
The expected reward of agent i ∈ N if agents follow policy π, starting from initial state

s ∈ S, defines the value function of agent i, denoted as Vi,s(π), and is equal to

Vi,s(π) := Eτ∼MDP

[∑T (τ)

t=0
Ri(st, αt)

∣∣∣s0 = s

]
(1)

where τ ∼ MDP denotes the randomness induced by the policy profile π, and the state-
transition probabilities of the MDP. Overloading the notation, we set Vi,ρ(π) := Es∼ρ[Vi,s(π)].
Although value functions are, in general, non-convex, they share similar smoothness properties
with the payoff functions of normal form games, namely bounded and Lipschitz gradients.
For precise statements, we defer to the paper’s supplement.

Visitation distribution and the mismatch coefficient. For a policy profile π ∈ Π and an
arbitrary initial state distribution s0 ∼ ρ, we define the discounted state visitation mea-
sure/distribution as

d̃πρ (s) = Eτ∼MDP

[∑T (τ)

t=0
1{st = s}

∣∣∣s0 ∼ ρ], dπρ (s) := d̃πρ (s)/Z
π
ρ

In the appendix, we prove formally that the above definition is well-posed for the random
stopping episodic framework described above, i.e., d̃πρ (s) < ∞, so Zπ

ρ :=
∑

s∈S d̃
π
ρ (s) is

well-defined. In our proofs, we will leverage a standard property of visitation distributions,
namely the equivalence of the expected value of state-action function and the expected
cumulative value over a random trajectory. More precisely, we have:

Lemma 1. [Conversion Lemma] For an arbitrary state-action function f : S × A → R, a
policy profile π and an initial state distribution s0 ∼ ρ, we have

Eτ∼MDP

[∑T (τ)

t=0
f(st, αt)

]
= Zπ

ρ Es∼dπ
ρ
Eα∼π(·|s)[f(s, α)] (2)

Finally, to quantify the difficulty of hard-to-reach states via a policy gradient method,
we will follow the standard approach of [9, 14, 38, 39, 61] and use an appropriately-defined
distribution “mismatch coefficient”, generalizing the single-agent counterpart of Agarwal
et al. [1]. More precisely, for a stochastic game G, we define the mismatch coefficient as
CG := maxπ,π′∈Π

{
∥d̃πρ/d̃π

′

ρ ∥∞
}

or, more simply, as CG := maxπ,∈Π

{
1
ζ ∥d

π
ρ/ρ∥∞

}
. Similar to

prior work in this direction [1, 5, 11], we will assume CG is finite, which, equivalently, means
that dπρ (s) > 0 for any policy π and state s.
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2.2. Solution concepts. The most widely used solution concept in game theory is that of
a Nash equilibrium i.e., a strategy profile π∗ ∈ Π that discourages unilateral deviations.
However, in stochastic games, the definition of a Nash policy is much more involved because
of the existence of multiple states and steps, cf. [16, 50, 53, 56] and references therein.
Formally, we have:

Definition 1 (Nash policies). A policy π∗ = (π∗
i )i∈N ∈ Π is said to be a Nash policy for a

given distribution of initial states ρ ∈ ∆(S) if, for every player i ∈ N , we have

Vi,ρ(π
∗
i ;π

∗
−i) ≥ Vi,ρ(πi;π∗

−i) for all i ∈ N and all πi ∈ ∆(Ai)
S . (NE)

In contrast to general non-convex continuous games, stochastic games satsify a version
of the well-known Polyak-Łojasiewicz condition [43] but with linear gradient growth, also
known as a gradient dominance property (GDP) [1, 5]. For the multi-agent case, Zhang et al.
[61] and Daskalakis et al. [11] showed that a similar property holds even in the episodic
setting:

Lemma 2 (Gradient dominance property). For any policy profile π = (πi)i∈N ∈ Π, we have
that

Vi,ρ(π
′
i;π−i)− Vi,ρ(πi;π−i) ≤ CG max

π̄i∈Πi

⟨∇iVi,ρ(π), π̄i − πi⟩ (GDP)

for any unilateral deviation π′
i ∈ Πi of player i ∈ N .

Remark. In the above and throughout our paper, we will write ∇i to denote the gradient of
the quantity in question with respect to πi, i.e., when π−i is kept fixed and only πi is varied.
For concision, we will write vi(π) = ∇iVi,ρ(π) for the individual gradient of player i’s value
function, and v(π) = (vi(π))i∈N for the ensemble thereof. ¶

Thanks to (GDP), it is straightforward to check that first-order stationary (FOS) points
of V are Nash. Formally, as in [11, 31, 61], we have the following characterization:

Lemma 3 (First-order stationary policies are Nash). A policy π∗ = (π∗
i )i∈N ∈ Π is Nash if

and only if it satisfies the first-order stationary condition

⟨v(π∗), π − π∗⟩ ≤ 0 for all π ∈ Π. (FOS)

Leonardos et al. [31] and Zhang et al. [61] proved a relaxation of the above lemma to the
effect that policies that satisfy (FOS) up to ε (i.e., in lieu of 0 in the RHS) are O(ε)-Nash.
Going in the other direction, we will consider the following series of refinements of Nash
policies which are particularly important from a learning standpoint [30, 53]:

Definition 2. Let π∗ = (π∗
i )i∈N ∈ Π be a Nash policy. We then say that:

• π∗ is stable if ⟨v(π), π − π∗⟩ < 0 for all π ̸= π∗ sufficiently close to π∗.
• π∗ is second-order stationary if it satisfies the sufficiency condition

(π − π∗)⊤ Jacv(π
∗)(π − π∗) < 0 for al π ∈ Π\{π∗}, (SOS)

where Jacv(π
∗) = (∇jvi(π

∗))i,j∈N = (∇j∇iVi(π
∗))i,j∈N denotes the Jacobian of v at

π∗.
• π∗ is deterministic if it induces a deterministic selection rule π∗

i : S → Ai for all i ∈ N .
• π∗ is strict if it is deterministic and (FOS) holds as a strict inequality whenever π ̸= π∗.

Remark 1. In the above and what follows, “sufficiently close” means that there exists a
neighborhood U of π∗ in Π such that the stated inequality holds for all π ∈ U . Unless
mentioned otherwise, we will measure distances on Π relative to the Euclidean norm, but
this choice does not impact our results.



6 A. GIANNOU, K. LOTIDIS, P. MERTIKOPOULOS, AND E. V. VLATAKIS-GKARAGKOUNIS

Intuitively, the condition for equilibrium stability is a game-theoretic analogue of first-order
KKT sufficiency condition, while the condition for second-order stationarity is the second-
order version thereof. In this regard, the distinction between first-order stationary, stable
and second-order stationary points is formally analogous to the distinction between critical
points, minimizers, and second-order minimum points in optimization. As for deterministic
policies, we should mention that, generically, deterministic policies are also strict, so we will
use the two terms interchangeably.1

Importantly, as we show in Appendix F, these refinements admit the following characteri-
zations:

Proposition 1. Let π∗ = (π∗
i )i∈N ∈ Π be a Nash policy. Then:

a) If π∗ is second-order stationary, there exists some µ > 0 such that

⟨v(π), π − π∗⟩ ≤ −µ ∥π − π∗∥2 for all π sufficiently close to π∗. (3a)

b) If π∗ is strict, there exists some µ > 0 such that
⟨v(π), π − π∗⟩ ≤ −µ ∥π − π∗∥ for all π sufficiently close to π∗. (3b)

In view of all the above, we get the following string of implications for equilibria in generic
games:

strict/deterministic =⇒ SOS =⇒ stable =⇒ FOS = Nash (4)
For posterity, we should clarify here that, due to the highly complicated structure of the
game’s value functions, it is not trivial to construct a concrete example where (3a) holds
but (3b) does not. Examples of strict Nash policies abound in the literature [30, 53], but
we are not otherwise aware of an argument that could be used to close the gap between
(3a) and (3b). In view of this, our analysis will treat both cases concurrently (with the
obvious anticipation that more refined solution concepts should enjoy stronger convergence
guarantees).

3. Policy gradient methods

We now proceed to describe our general model for episodic learning in stochastic games.
To that end, we will consider a framework where agents follow a specific policy πn within
each episode, and update it from one episode to the next with the objective of increasing
their individual rewards. Formally, our approach will adhere to the following inter-episode
sequence of events:

(1) At the beginning of each episode n = 1, 2, . . . , every agent i ∈ N chooses a policy
πi,n ∈ Πi.

(2) Within the n-th episode, each player executes their chosen policy πi,n, inducing in
this way an intra-episode trajectory of play τn = (s

(n)
t , α

(n)
t , r

(n)
t )t≤T (τn).

(3) Once the episode terminates, agents update their policies and the process repeats.
In terms of feedback, we will treat several models, depending on what type of information

is available to the agents during play. More precisely, we will focus on the generic policy
gradient (PG) template

πn+1 = projΠ(πn + γnv̂n) (PG)
where:

(1) πn = (πi,n)i∈N ∈ Π denotes the player’s policy profile at each episode n = 1, 2, . . .

(2) v̂n = (v̂i,n)i∈N ∈
∏

i RAi×S is an estimate for the agents’ inidividual policy gradients.

1The notion of genericity is stated here in the sense of Baire, i.e., the stated property holds for all but a
“meager” set of games (i.e., a countable union of nowhere dense sets in the space of all games).
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(3) projΠ :
∏

i RAi×S → Π denotes the Euclidean projection to the agents’ policy space
Π.

(4) γn > 0 is the method’s step-size, for which we will assume throughout that
∑

n γn =∞;
typically, (PG) is run with a step-size of the form γn = γ/(n+m)p for some γ > 0,
m ≥ 0 and p ≥ 0.

Regarding the gradient signal v̂n, we will decompose it as

v̂n = v(πn) + Un + bn (5)

where
Un = v̂n − E[v̂n | Fn] and bn = E[v̂n | Fn]− v(πn). (6)

In the above, we treat πn, n = 1, 2, . . . , as a stochastic process on some complete probability
space (Ω,F ,P), and we write Fn := F(π1, . . . , πn) ⊆ F for the history (adapted filtration) of
πn up to – and including – stage n. By definition, E[Un | Fn] = 0 and bn is Fn-measurable,
so Un can be intepreted as a random, zero-mean error relative to v(πn), whereas bn captures
all systematic (non-zero-mean) errors. To make this precise, we will further assume that bn
and Un are bounded as

E[∥bn∥ |Fn] ≤ Bn and E[∥Un∥2 | Fn] ≤ σ2
n (7)

where the sequences Bn and σn , n = 1, 2, . . . , are to be construed as deterministic upper
bounds on the bias, fluctuations, and magnitude of the gradient signal v̂n.

Depending on these bounds, a gradient signal with Bn = 0 will be called unbiased, and an
unbiased signal with σn = 0 will be called perfect. More generally, we will assume that the
above statistics are bounded as

Bn = O(1/nℓb) and σn = O(nℓσ ) (8)

for some ℓb, ℓσ > 0 which depend on the specific model under consideration. For concreteness,
we describe below three basic models that adhere to the above template for v̂n in order of
decreasing information requirements:

Model 1 (Full gradient information). The first model we will consider assumes that agents
observe their full policy gradients, i.e.,

v̂n = v(πn) (9)

implying in particular that Un = bn = 0. This model is fully deterministic across episodes
(though intra-episode play remains stochastic). In particular, it tacitly assumes that agents
know the game (and can observe their opponents’ policies) so as to calculate the full gradients
of their individual value functions Vi,ρ, cf. [2, 31, 61] and references therein. ¶

Model 2 (Learning with stochastic gradients). A relaxation of the above model which is
particularly relevant for applications to deep reinforcement learning concerns the case where
the player have access to stochastic policy gradients [60], i.e., unbiased gradient estimates of
the form

v̂n = v(πn) + Un (10)
with E[Un | Fn] = 0 (so we can formally take ℓb =∞ and ℓσ = 0 in Eq. (8) above). ¶

Model 3 (Value-based learning). The last model we will consider concerns the case where
agents only have access to their instantaneous rewards and need to reconstruct their individual
gradients based on this information. A widely used method to achieve this is via the
Reinforce subroutine, which we describe in pseudocode form in Algorithm 1. In words,
when employing Reinforce, each agent i ∈ i commits to a sampling policy π̂i ∈ Πi and
executes it in an episode of the stochastic game in play. Then, at the end of the episode,
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Algorithm 1: Reinforce

1: Input: π̂ ∈ Π, τ = (st, αt, rt)t≤T (τ) ∈ T
2: for i = 1, . . . , N do

3: Ri(τ)←
∑T (τ)

t=0 ri,t

4: Λi(τ)←
∑T (τ)

t=0 ∇i(log π̂i(αi,t|st))
5: v̂i ← Ri(τ) · Λi(τ)

6: end for
7: return {v̂i}i∈N

Algorithm 2: ε-Greedy Policy Gradient

1: Input: π1, {γn}n∈N, {εn}n∈N

2: for n = 1, 2, . . . do
3: π̂n ← (1− εn)πn + εn

|A|

4: Sample τn ∼MDP(π̂n|s0)
5: v̂n ← Reinforce(π̂n, τn)

6: πn+1 ← projΠ(πn + γnv̂n)

7: end for

players gather the total reward Ri(τ)←
∑T (τ)

t=0 ri,t associated to the intra-episode trajectory
of play τ , and they estimate their policy gradients via the so-called “log-trick” [59] as

v̂i = Ri(τ) ·
∑T (τ)

t=0
∇i(log π̂i(αi,t|st)). (11)

Lemma 4 below provides the vital statistics of the Reinforce estimator:

Lemma 4. Suppose that each agent i ∈ N follows a stationary policy πi ∈ Πi. Then:

a) Eτ∼MDP[Reinforce(π)] = v(π) (12a)

b) Eτ∼MDP
[
∥Reinforcei(π)− vi(π)∥2

]
≤ 24Ai

κiζ4
(12b)

where κi = mins∈S,αi∈Ai
πi(αi|s).

Therefore, if Reinforce is executed at π̂ ← πn at each episode n = 1, 2, . . . , we will have

E[v̂i,n] = vi(πn) and E[∥Ui,n∥2 | Fn] ≤
24Ai

ζ4 mins∈S,αi∈Ai
πi,n(αi|s)

. (13)

In particular, this means that we will always have Bn = 0 for the bias of the estimator,
but its variance could be unbounded if πn gets close to the boundary of Π. To avoid this,
Reinforce can be paired with an explicit exploration step that modifies the sampling policy
of the n-th episode to

π̂i,n = (1− εn)πi,n + εn UnifAi for all s ∈ S (14)

i.e., π̂i,n is the mixture between πi,n and the uniform distribution UnifAi
over Ai. The result-

ing algorithm is known as ε-Greedy Policy Gradient; for a pseudocode representation,
see Algorithm 2.

Importantly, by calling Reinforce at π̂n instead of πn, v̂n becomes biased (because of
the difference between π̂n and πn), but its variance is bounded; in particular, by invoking
Lemma 4, we have

E[∥bi,n∥ |Fn] ≤ Gεn and E[∥Ui,n∥2 | Fn] ≤
24A2

i

εnζ4
(15)

where G is a constant that depends on the smoothness of V and the cardinalities of A and
S.2 In this way, Algorithm 2 can be seen as a special case of (PG) with Bn = O(εn) and
σ2
n = O(1/εn). ¶

2Specifically, from Lemma D.7 we know that ∥vi(π̂n) − vi(πn)∥ ≤ 3
√
A/ζ3 ·

∑
j

√
Aj · ∥π̂j,n − πj,n∥.

Moreover, |πi,n(α | s)− π̂i,n(α | s)| ≤ εn for all s ∈ S, α ∈ Ai, so ∥πi,n − π̂i,n∥ ≤
√
SAiεn. Combining the

above, it follows that we can take G = 3NA3/2
√
S
/
ζ3.
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4. Convergence analysis and results

We are now in a position to state and discuss our main results. For convenience, we will
present our results in order of increasing structure, starting with stable policies, and then
moving on to second-order stationary and deterministic Nash policies. All proofs are deferred
to the appendix.

4.1. Asymptotic convergence to stable Nash policies. Our first convergence result concerns
Nash policies that satisfy the stability requirement ⟨v(π), π− π∗⟩ < 0 of Definition 2. In this
case, we have the following guarantee:

Theorem 1. Let π∗ be a stable Nash policy, and let πn be the sequence of play generated by
(PG) with step-size γn = γ/(n+m)p, p ∈ (1/2, 1], and policy gradient estimates such that
p+ ℓb > 1 and p− ℓσ > 1/2 as per (8). Then there exists a neighborhood U of π∗ in Π such
that, for any given δ > 0, we have

P(πn converges to π∗ | π1 ∈ U) ≥ 1− δ (16)

provided that γ is small enough (or m large enough) relative to δ.

Corollary 1. Suppose that Models 1–3 are run with a step-size of the form γn = γ/(n+m)p,
p > 1/2, and if applicable, an exploration parameter εn = ε/(n+m)r such that 1− p < r <
2p− 1. Then:
• For Models 1 and 2: the conclusions of Theorem 1 hold as stated.
• For Model 3: the conclusions of Theorem 1 hold as long as p > 2/3.

We note here that Theorem 1 provides a trajectory convergence guarantee which is
otherwise quite difficult to obtain even in structured stochastic games. For example, if we
zoom in on the class of stochastic potential (or min-max) games, the existing guarantees in
the literature concern the “best iterate” of the algorithm, cf. [31, 61] and references therein.
Because of this, said guarantees do not apply to the actual trajectory of play generated by
(PG); this makes them less suitable for agent-based learning where the players involved are
learning “as they go”, as opposed to simulating the game in order to approximately compute
an equilibrium policy offline.

We should also note that the convergence guarantees of Theorem 1 hold locally with
arbitrarily high probability. Without further assumptions, it is not possible to obtain global
trajectory convergence guarantees that hold with probability 1, even in single-state games
– that is, the case of learning in finite normal form games. The reason for this locality is
twofold: First, equilibrium policies are not unique in general, and gradient-based dynamics
may also admit non-equilibrium attractors, such as limit cycles and the like [25, 34–36]. As
a result, in the presence of multiple equilibria/attractors, the best one can hope for is a local
equilibrium convergence result, conditioned on the basin of attraction of said equilibrium (as
per Theorem 1).

The second obstruction to a global, unconditional convergence result is probabilistic in
nature, and has to do with the randomness that enters the learning process (e.g., in the
estimation of policy gradients via the Reinforce). In this case, no matter how close one
starts to an equilibrium policy, there is always a finite, non-zero probability that an unlucky
realization of the noise can drive the process away from its basin, possibly never to return.
This issue can only be overcome in games where Π is partitioned (up to a set of measure zero)
into basins of attraction of equilibrium policies. However, this can only occur in games with
a sufficiently strong global structure, like potential stochastic games, two-player zero-sum
games and the like; in complete generality, locality cannot be lifted, even in single-state
problems [17, 19].
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4.2. Convergence to second-order stationary policies. Albeit valuable as an asymptotic
convergence guarantee, Theorem 1 does not provide an indication of how long it will take
players to actually converge to a Nash policy. Of course, in full generality, it is not plausible
to expect to be able to derive such a convergence rate because the stability requirement
provides no indication on how fast the players’ policy gradients stabilize near a solution. This
kind of estimate is provided by the second-order sufficient condition (SOS), which allows us
to establish sufficient control over the sequence of play as indicated by the following theorem.

Theorem 2. Let π∗ be a second-order stationary policy, let B be a neighborhood of π∗ such
that (3a) holds on B, and let πn be the sequence of play generated by (PG) with step-size
γn = γ/(n + m)p, p ∈ (1/2, 1], and policy gradient estimates such that p + ℓb > 1 and
p− ℓσ > 1/2 as per (8). Then:

(1) There exists a neighborhood U of π∗ in Π such that, for any confidence level δ > 0,
the event

E = {πn ∈ B for all n = 1, 2, . . . } (17)
occurs with probability P(E | π1 ∈ U) ≥ 1− δ if m is large enough relative to δ.

(2) The sequence πn converges to π∗ with probability 1 on E; in particular, we have

P(πn converges to π∗ | π1 ∈ U) ≥ 1− δ (18)

if m is large relative to δ. Moreover, conditioned on E and taking q = min{ℓb, p−2ℓσ},
we have

E[∥πn − π∗∥2 | E ] =

{
O(1/n2µγ) if p = 1 and 2µγ < q,

O(1/nq) otherwise.
(19)

Corollary 2. Suppose that Models 1–3 are run with a step-size of the form γn = γ/(n+m)p,
p > 1/2, and if applicable, an exploration parameter εn = ε/(n+m)p/2. Then:
• For Models 1 and 2: the conclusions of Theorem 2 hold with q = p; in particular, (19)

gives an O(1/n) rate of convergence if p = 1 and 2µγ > q.
• For Model 3: the conclusions of Theorem 2 hold for p > 2/3 with q = p/2; in particular,

(19) gives an O(1/
√
n) rate of convergence if p = 1 and 2µγ > q.

Remark 2. Getting an explicit estimate for the constant in the O(·) guarantee of Theorem 2
is quite involved but, up to logarithmic and subleading factors, Chung’s lemma [10, 44] can be
used to show that a) if 2µγ > q, it scales as (Cb+Cσ)/[(2µγ−q)(1−δ)] where Cb = supn γnBn

and Cσ = supn γ
2
nσ

2
n; b) if 2µγ = q, it scales as (Cb + Cσ)(1 + max{(2µγ)2, 4µγ})/(1− δ);

and c) if 2µγ < q as (Cb + Cσ)(1 + max{(2µγ)2, 4µγ})/[(q − 2µγ)(1− δ)].

Besides providing a general framework for achieving trajectory convergence, Theorem 2
gives the rates of convergence of the sequence of play to the Nash policy in question. In
particular, with this result in hand, one can confidently argue about the distance of the
iterates of (PG) from equilibrium in a series of different environments. More to the point,
this convergence guarantee allows the algorithm designer to adapt the parameters of the
learning process according to the complexity and limitations of the environment, a feature
which further highlights the significance of this result.

We should also note the delicate interplay between the method’s step-size and the
achieved convergence rate. In the case of Model 1, Corollary 2 suggests a step-size of the
form γn = Θ(1/n), leading to a O(1/n) convergence rate. As we show in the appendix,
this rate can be improved: in the deterministic case with perfect gradient information,
(PG) with a suitably chosen constant step-size achieves a geometric convergence rate, i.e.,
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∥πn − π∗∥ = O(exp(−ρn)) for some ρ > 0 (cf. Proposition B.1 in Appendix B). By contrast,
in the case of Model 2, the O(1/n) rate we provide cannot be improved, even if the quadratic
minorant (3a) that characterizes SOS policies holds globally – and this because the learning
process is running against standard lower bounds from convex optimization [6, 40].

Perhaps the most significant guarantee from a practical point of view is the O(1/
√
n)

convergence rate attained in Model 3 (cf. Algorithms 1 and 2). This guarantee amounts
to a O(1/n1/4) convergence rate in terms of the (non-squared) distance to equilibrium
which, mutatis mutandis, represents a notable improvement over the O(1/n1/6) guarantee of
Leonardos et al. [31] (expressed in norm values). Of course, the latter guarantee is global –
because the focus of [31] is stochastic potential games – but it also concerns the “best iterate”
of the process (not its “last iterate”), so the two results are not immediately comparable.
However, a useful “best-of-both-worlds” heuristic that can be inferred by the combination
of these works is that, given a budget of training episodes, Algorithm 2 can be run with a
constant step-size as per [31] for a sufficient fraction of this budget, and then with a O(1/n)
“cooldown” schedule for the rest. In this way, after an aggressive “exploration” phase, the
algorithm’s O(1/n1/4) rate would kick in and supply faster stabilization to an SOS policy.

4.3. Convergence to deterministic Nash policies. Our last series of results concerns the rate
of convergence to deterministic Nash policies in generic stochastic games. As we discussed in
Section 2, deterministic Nash policies also satisfy (SOS), so the rate of convergence of (PG)
to such policies can be harvested directly from Theorem 2. However, as we show below, a
simple projection tweak in (SOS) can improve this rate dramatically.

The tweak in question is inspired by the geometry of Π around a deterministic policy: by
definition, such policies are corner points of Π, so any consistent drift towards them will cause
πn to hit the boundary of Π in finite time. Of course, under (PG), the process may rebound
from the boundary and return to the interior of Π if the policy gradient estimate is not
particularly good at a given iteration of the algorithm. However, if we replace the projection
step of (PG) with a “lazy projection” in the spirit of Zinkevich [62], the aggregation of
gradient steps will eventually push the process far inside the normal cone of Π at π∗, so
rebounds of this type can no longer occur.

Formally, we will consider the following lazy policy gradient (LPG) scheme:

yn+1 = yn + γnv̂n πn+1 = projΠ(yn+1) (LPG)

where yn = (yi,n)i∈N ∈
∏

i RAi×S is an auxiliary variable that maintains an aggregate of
gradient steps before projecting them back to Π. We then have the following convergence
result:

Theorem 3. Let πn be the sequence of play under (LPG) with step-size and policy gradient
estimates such that p+ ℓb > 1 and p− ℓσ > 1/2 as per (8). If π∗ is a deterministic Nash
policy, there exists an unbounded open set W ⊆

∏
i RAi×S of initializations such that, for

any δ > 0, we have
P(πn converges to π∗ | y1 ∈ W) ≥ 1− δ, (20)

provided that γ > 0 is small enough. Moreover, conditioned on this event, πn converges to π∗

at a finite number of iterations, i.e., there exists some n0 such that πn = π∗ for all n ≥ n0.

Corollary 3. Suppose that Models 1–3 are run with parameters γn = γ/np, p ∈ (1/2, 1], and
if applicable, εn = ε/nr with 1− p < r < 2p− 1. Then the conclusions of Theorem 3 hold.

Remark 3. Getting an explicit bound for n0 is quite complicated, but the last part of the
proof of Theorem 3 shows that n0 scales in terms of the parameters of the game and the
algorithm as n0 = O

((
MSA
cγ

)1/(1−p)
)

where c > 0 measures the minimum payoff difference
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between equilibrium and non-equilibrium strategies at π∗, M is a measure of the initial
distance from π∗, and S and A is the number of states and pure strategies respectively.

Theorem 3 – and, by extension, Corollary 3 – are fairly unique because they provide a
guarantee for convergence to an exact Nash equilibrium in a finite number of iterations.
To the best of our knowledge, the only comparable result in the literature is that of [61],
where the authors provide a finite-time convergence guarantee to strict equilibria with perfect
policy gradients (as per Model 1). The result of Zhang et al. [61] echoes the convergence
properties of deterministic first-order algorithms around sharp minima of convex functions
[44], but the fact that Theorem 3 applies to models with stochastic gradient feedback of
unbounded variance (Models 2 and 3 respectively) is a major difference. As far as we are
aware, this is the first guarantee of its kind in the literature on learning in stochastic games.

5. Concluding remarks

A key roadblock encountered by practical applications of multi-agent reinforcement
learning is the lack of universal equilibrium convergence guarantees. While the impossibility
results of [21, 22] imply that unconditional convergence is not a reasonable aspiration without
further assumptions on the game, the existence of local convergence results mitigates this
deficiency as it provides a range of theoretically grounded stability and runtime guarantees.
In this regard, deterministic policies acquire particular importance, as the convergence of
policy gradient methods is especially rapid and robust and this case. Of course, this leaves
open the question of non-tabular settings and parametrically encoded policies, e.g., as in the
case of deep reinforcement learning; we defer these investigations to future work.

Another open issue of high practical relevance concerns policy gradient methods that do
not rely on Euclidean projections to Π. In the single-state case (i.e., learning in finite normal
form games), the use of methods relying on softmax choice / exponential weights is very
widely used because of its regret guarantees. Whether the use of similar softmax techniques
can lead to finer convergence guarantees in the context of general stochastic games is an
important and intriguing question for future research.

Appendix A. Asymptotic convergence to stable Nash policies

Our goal in this appendix is to prove Theorem 1 and Corollary 1, which we restate below
for convenience:

Theorem 1. Let π∗ be a stable Nash policy, and let πn be the sequence of play generated by
(PG) with step-size γn = γ/(n+m)p, p ∈ (1/2, 1], and policy gradient estimates such that
p+ ℓb > 1 and p− ℓσ > 1/2 as per (8). Then there exists a neighborhood U of π∗ in Π such
that, for any given δ > 0, we have

P(πn converges to π∗ | π1 ∈ U) ≥ 1− δ (16)

provided that γ is small enough (or m large enough) relative to δ.

Corollary 1. Suppose that Models 1–3 are run with a step-size of the form γn = γ/(n+m)p,
p > 1/2, and if applicable, an exploration parameter εn = ε/(n+m)r such that 1− p < r <
2p− 1. Then:
• For Models 1 and 2: the conclusions of Theorem 1 hold as stated.
• For Model 3: the conclusions of Theorem 1 hold as long as p > 2/3.

Our proof strategy will comprise the following basic steps:
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(1) To begin with, we will show that the squared distance

D(π) =
1

2
∥π − π∗∥2 (A.1)

can be seen as a “local Lyapunov function” for (PG) in the sense that it is locally
decreasing near π∗, up to a series of error terms – both zero-mean and non-zero-mean.

(2) Due to these errors, the evolution of the iterates Dn := D(πn) of D over time may
exhibit significant jumps: in particular, a single “bad” realization of the noise could
carry πn out of the basin of attraction of π∗, possibly never to return. To exclude
this event, our second step will be to show that the aggregation of these errors can be
controlled with probability at least 1− δ.

(3) Conditioned on the above, we will show that, with probability at least 1 − δ, the
iterates Dn cannot grow more than a token value. As a result, if (PG) is initialized
close to π∗, it will remain in a neighborhood thereof for all n (again, with probability
at least 1− δ).

(4) Thanks to this “stochastic Lyapunov stability” result, we employ a series of martingale
limit theory arguments to extract a subsequence converging to π∗.

(5) Finally, we show that the increments of Dn are summable; hence, by invoking the
Gladyshev’s lemma [44, p. 49], we conclude that Dn converges to some (finite) random
variable D∞. Combining this fact with the existence of a convergent subsequence, we
obtain the desired conclusion that πn converges to π∗ with probability at least 1− δ.

In the sequel, we make the above precise in a series of intermediate results.

A.1. Energy inequality. We begin by establishing a “quasi-Lyapunov” inequality for the
iterates Dn = ∥πn − π∗∥2/2 of (A.1).

Lemma A.1. Let Dn := D(πn). Then, for all n = 1, 2, . . . , we have

Dn+1 ≤ Dn + γn⟨v(πn), πn − π∗⟩+ γnξn + γnχn + γ2nψ
2
n, (A.2)

where the error terms ξn, χn, and ψn are given by

ξn = ⟨Un, πn − π∗⟩, χn = ∥Π∥Bn and ψ2
n = 1

2∥v̂n∥
2. (A.3)

with ∥Π∥ := maxπ,π′∈Π∥π − π′∥.

Proof. By the definition of the iterates of (PG), we have

Dn+1 =
1

2
∥πn+1 − π∗∥2 =

1

2
∥projΠ(πn + γnv̂n)− projΠ(π

∗)∥2

≤ 1

2
∥πn + γnv̂n − π∗∥2

=
1

2
∥πn − π∗∥2 + γn⟨v̂n, πn − π∗⟩+ 1

2
γ2n∥v̂n∥2

= Dn + γn⟨v(πn) + Un + bn, πn − π∗⟩+ 1

2
γ2n∥v̂n∥2

≤ Dn + γn⟨v(πn), πn − π∗⟩+ γnξn + γnχn + γ2nψ
2
n (A.4)

where we used the Cauchy-Schwarz inequality to bound the bias term as ⟨bn, πn − π∗⟩ ≤
∥bn∥ · ∥πn − π∗∥ ≤ ∥Π∥Bn = χn. ■
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A.2. Error control and stability. The second major step in our proof (and the most chal-
lenging one from a technical standpoint) is to establish a suitable measure of control over
the error increments in (A.1), with the aim of showing that the process πn never leaves a
neighborhood of π∗.

To make this idea precise, let B = {π ∈ Π : ∥π − π∗∥ ≤ ϱ} be a ball of radius ϱ based
on π∗ in Π so that ⟨v(π), π − π∗⟩ < 0 for all π ∈ B\{π∗} (without loss of generality, we
can assume that B is maximal in that regard). We will then examine the event that the
aggregation of the error terms in (A.1) is not sufficient to drive πn to escape from B.

To that end, we will begin by aggregating the errors in (A.1) as

Mn =

n∑
k=1

γkξk and Sn =

n∑
k=1

[γkχk + γ2kψ
2
k]. (A.5)

Since E[ξn | Fn] = 0, we have E[Mn | Fn] = Mn−1, so Mn is a martingale; likewise,
E[Sn | Fn] ≥ Sn−1, so Sn is a submartingale. Then, using a technique of Hsieh et al.
[23] that builds on an earlier idea by Mertikopoulos & Zhou [33], we will also consider the
“mean square” error process

Wn =M2
n + Sn, (A.6)

and the associated indicator events

En = {πk ∈ B for all k = 1, 2, . . . , n} and Hn = {Wk ≤ a for all k = 1, 2, . . . , n}, (A.7a)

where, with a fair amount of hindsight, the error tolerance level a > 0 is such that 2a+
√
a < ϱ,

and we are employing the convention E0 = H0 = Ω (since every statement is true for the
elements of the empty set). We will then assume that π1 is initialized in a ball of radius√
2a centered at π∗, viz.

U = {π ∈ Π : D(π) ≤ a} = {π ∈ Π : ∥π − π∗∥2/2 ≤ a}. (A.8)

With all this in hand, the key to showing that πn remains close to π∗ with high probability
is the following conditional estimate:

Lemma A.2. Let πn be the sequence of play generated by (PG) initialized at π1 ∈ U . We
then have:

(1) En+1 ⊆ En and Hn+1 ⊆ Hn for all n = 1, 2, . . .

(2) Hn−1 ⊆ En for all n = 1, 2, . . .

(3) Consider the “bad realization” event

H̃n := Hn−1 \Hn = {Wk ≤ a for k = 1, 2, . . . , n− 1 and Wn > a}, (A.9)

and let W̃n = Wn 1Hn−1
be the cumulative error subject to the noise being “small”.

Then we have:

E[W̃n] ≤ E[W̃n−1] + γn∥Π∥Bn + γ2n∥Π∥2σ2
n + 3

2γ
2
n(G

2 +B2
n + σ2

n)− aP(H̃n−1), (A.10)

where, by convention, H̃0 = ∅ and W̃0 = 0.

Remark. In the above (and what follows), the notation 1A is used to indicate the logical
indicator of an event A ⊆ Ω, i.e., 1A(ω) = 1 if ω ∈ A and 1A(ω) = 0 otherwise.

The proof of Lemma A.2 is quite technical, so we first proceed to derive an important
stability result based on this estimate.
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Proposition A.1. Fix some confidence threshold δ > 0 and let πn be the sequence of play
generated by (PG) with step-size and policy gradient estimates as per Theorem 1. We then
have:

P(Hn | π1 ∈ U) ≥ 1− δ for all n = 1, 2, . . . (A.11)
provided that γ is small enough (or m large enough) relative to δ.

Proof. We begin by bounding the probability of the “bad realization” event H̃n = Hn−1 \Hn.
Indeed, if π1 ∈ U , we have:

P(H̃n) = P(Hn−1 \Hn) = E[1Hn−1
×1{Wn > a}] ≤ E[1Hn−1

×(Wn/a)] = E[W̃n]/a (A.12)

where, in the penultimate step, we used the fact that Wn ≥ 0 (so 1{Wn > a} ≤ Wn/a).
Telescoping (A.10) then yields

E[W̃n] ≤ E[W̃0] + ∥Π∥
n∑

k=1

γkBk +

n∑
k=1

γ2kϱ
2
k − a

n∑
k=1

P(H̃k−1) (A.13)

where we set
ϱ2n = ∥Π∥2σ2

n + 3
2 (G

2 +B2
n + σ2

n). (A.14)
Hence, combining (A.12) and (A.13) and invoking our stated assumptions for γn, Bn and
σn, we get

n∑
k=1

P(H̃k) ≤
1

a

n∑
k=1

[γkBk∥Π∥+ γ2kϱ
2
k] ≤

C

a
(A.15)

for some C ≡ C(γ,m) > 0 with limγ→0+ C(γ,m) = limm→∞ C(γ,m) = 0 (since γn =
γ/(n+m)p and p > 0).

Now, by choosing γ sufficiently small (or m sufficiently large), we can ensure that C/a < δ;
thus, given that the events H̃k are disjoint for all k = 1, 2, . . . , we get P

(⋃n
k=1 H̃k

)
=∑n

k=1 P(H̃k) ≤ δ. In turn, this implies that P(Hn) = P
(
H̃c

1 ∩· · · ∩ H̃c
n

)
≥ 1 − δ, and our

assertion follows. ■

We conclude this appendix with the proof of our technical result on the events En and Hn:

Proof of Lemma A.2. The first claim of the lemma is obvious. For the second, we proceed
inductively:

(1) For the base case n = 1, we have E1 = {π1 ∈ B} ⊇ {π1 ∈ U} = Ω (recall that π1 is
initialized in U ⊆ B). Since H0 = Ω, our claim follows.

(2) Inductively, assume that Hn−1 ⊆ En for some n ≥ 1. To show that Hn ⊆ En+1, suppose
that Wk ≤ a for all k = 1, 2, . . . , n. Since Hn ⊆ Hn−1, this implies that En also occurs,
i.e., πk ∈ B for all k = 1, 2, . . . , n; as such, it suffices to show that πn+1 ∈ B. To do so,
given that πk ∈ U ⊆ B for all k = 1, 2, . . . n, we readily obtain

Dk+1 ≤ Dk + γkξk + γkχk + γ2kψ
2
k, for all k = 1, 2, . . . n, (A.16)

and hence, after telescoping over k = 1, 2, . . . , n, we get

Dn+1 ≤ D1 +Mn + Sn ≤ D1 +
√
Wn +Wn ≤ a+

√
a+ a = 2a+

√
a. (A.17)

We conclude that D(πn+1) ≤ 2a+
√
a, i.e., πn+1 ∈ B, as required for the induction.

For our third claim, note first that

Wn = (Mn−1 + γnξn)
2 + Sn−1 + γnχn + γ2nψ

2
n

=Wn−1 + 2γnξnMn−1 + γ2nξ
2
n + γnχn + γ2nψ

2
n, (A.18)
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so, after taking expectations, we get

E[Wn | Fn] =Wn−1 + 2Mn−1γn E[ξn | Fn] + E[γ2nξ2n + γnχn + γ2nψ
2
n | Fn] ≥Wn−1, (A.19)

i.e., Wn is a submartingale. To proceed, let W̃n =Wn 1Hn−1 so

W̃n =Wn 1Hn−1 =Wn−1 1Hn−1 +(Wn −Wn−1)1Hn−1

=Wn−1 1Hn−2 −Wn−1 1H̃n−1
+(Wn −Wn−1)1Hn−1 ,

= W̃n−1 + (Wn −Wn−1)1Hn−1
−Wn−1 1H̃n−1

, (A.20)

where we used the fact that Hn−1 = Hn−2 \ H̃n−1 so 1Hn−1 = 1Hn−2 −1H̃n−1
(since

Hn−1 ⊆ Hn−2). Then, (A.18) yields

Wn −Wn−1 = 2Mn−1γnξn + γ2nξ
2
n + γnχn + γ2nψ

2
n (A.21)

and hence, given that Hn−1 is Fn-measurable, we get:

E[(Wn −Wn−1)1Hn−1
] = 2E[γnMn−1ξn 1Hn−1

] (A.22a)

+ E[γ2nξ2n 1Hn−1 ] (A.22b)

+ E[(γnχn + γ2nψ
2
n)1Hn−1

]. (A.22c)

However, since Hn−1 and Mn−1 are both Fn-measurable, we have the following estimates:
(1) For the noise term in (A.22a), we have:

E[Mn−1ξn 1Hn−1
] = E[Mn−1 1Hn−1

E[ξn | Fn]] = 0. (A.23)

(2) The term (A.22b) is where the reduction to Hn−1 kicks in; indeed, we have:

E[ξ2n 1Hn−1 ] = E[1Hn−1 E[|⟨πn − π∗, Un⟩|2 | Fn]]

≤ E[1Hn−1
∥πn − π∗∥2 E[∥Un∥2 | Fn]] # by Cauchy–Schwarz

≤ ∥Π∥2σ2
n. (A.24)

(3) Finally, for the term (A.22c), we have:

E[ψ2
n 1Hn−1 ] ≤ 3

2 [G
2 +B2

n + σ2
n] (A.25)

where we used the bound ∥v(π)∥ ≤ G. Likewise, χn 1Hn−1 ≤ ∥Π∥Bn, so

(A.22c) ≤ γn∥Π∥Bn + 3
2γ

2
n(G

2 +B2
n + σ2

n) (A.26)

Thus, putting together all of the above, we obtain:

E[(Wn −Wn−1)1Hn−1 ] ≤ γn∥Π∥Bn + γ2n∥Π∥2σ2
n + 3

2γ
2
n(G

2 +B2
n + σ2

n) (A.27)

Going back to (A.20), we have Wn−1 > a if H̃n−1 occurs, so the last term becomes

E[Wn−1 1H̃n−1
] ≥ aE[1H̃n−1

] = aP(H̃n−1). (A.28)

Our claim then follows by combining Eqs. (A.20), (A.25), (A.26) and (A.28). ■

A.3. Extraction of a convergent subsequence. Our next step is to show that any realization
πn of (PG) that is contained in B admits a subsequence πnk

converging to π∗.

Proposition A.2. Let π∗ be a stable Nash policy, and let πn be the sequence of play generated
by (PG) with step-size and policy gradient estimates such that p+ ℓb > 1 and p− ℓσ > 1/2
as per (8). Then πn admits a subsequence πnk

that converges to π∗ with probability 1 on the
event E =

⋂
n En = {πn ∈ B for all n = 1, 2, . . . }.
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Proof. Let Q = {πn ∈ B for all n} ∩ {lim infn∥πn − π∗∥ > 0} denote the event that πn is
contained in B but the sequence πn does not admit a subsequence converging to π∗. We will
show that P(Q) = 0.

Indeed, assume ad absurdum that P(Q) > 0. Hence, with probability 1 on Q, there exists
some positive constant c > 0 (again, possibly random) such that ⟨v(πn), πn − π∗⟩ ≤ −c < 0
for all n. Thus, going back to (A.1), we get

Dn+1 ≤ Dn − γnc+ γnξn + γnχn + γ2nψ
2
n, (A.29)

so if we let τn =
∑n

k=1 γk and telescope the above, we obtain the bound

Dn+1 ≤ D1 − τn
[
c− Mn

τn
− Sn

τn

]
(A.30)

with ξn, χn and ψn given by (A.3), and Mn =
∑n

k=1 γkξk, Sn =
∑n

k=1[γkχk + γ2kψ
2
k] defined

as in (C.9). Also, (7) readily gives
∞∑

n=1

E[γ2nξ2n | Fn] ≤
∞∑

n=1

γ2n E[∥πn − π∗∥2∥Un∥2 | Fn] ≤ ∥Π∥2
∞∑

n=1

γ2nσ
2
n <∞ (A.31)

so, by the strong law of large numbers for martingale difference sequences [20, Theorem
2.18], we conclude that Mn/τn converges to 0 with probability 1. In a similar vein, for the
submartingale Sn we have

E[Sn] =

n∑
k=1

γkχk +

n∑
k=1

γ2k E[ψ2
k] ≤ ∥Π∥

n∑
k=1

γkBk +
3

2

n∑
k=1

γ2k[G
2 +B2

k + σ2
k], (A.32)

so, by (7) and the stated conditions for the method’s step-size and bias/noise parameters, it
follows that Sn is bounded in L1. Therefore, by Doob’s submartingale convergence theorem
[20, Theorem 2.5], we further deduce that Sn converges with probability 1 to some (finite)
random variable S∞.

Going back to (A.30) and letting n→∞, the above shows that Dn → −∞ with probability
1 on Q. Since D is nonnegative by construction and P(Q) > 0 by assumption, we obtain a
contradiction and our proof is complete. ■

A.4. Convergence of the energy values. Our last auxiliary result concerns the convergence
of the values of the dual energy function D. We encode this as follows.

Proposition A.3. If (PG) is run with assumptions as in Proposition A.1, there exists a finite
random variable D∞ such that

P(Dn → D∞ as n→∞ | πn ∈ B for all n) = 1. (A.33)

Proof. Let En = {πk ∈ B for all k = 1, 2, . . . , n} be defined as in (A.7), and let D̃n = 1En
Dn.

Then, by the energy inequality (A.2) and the fact that En+1 ⊆ En, we get

D̃n+1 = 1En+1
Dn+1 ≤ 1En

Dn+1

≤ 1En Dn + 1En γn⟨v(πn), πn − π∗⟩+
(
γnξn + γnχn + γ2nψ

2
n

)
1En

≤ D̃n + γn 1En
ξn +

(
γnχn + γ2nψ

2
n

)
1En

, (A.34)

where we used the fact that that ⟨v(πk), πk − π∗⟩ ≤ 0 for all k = 1, 2, . . . , n if En occurs.
Since En is Fn-measurable, conditioning on Fn and taking expectations yields

E[D̃n+1 | Fn] ≤ D̃n + γn 1En E[ξn | Fn] + 1En γnχn + 1En E[γ2nψ2
n | Fn]

≤ D̃n + γn∥Π∥Bn + γnχn + E[γ2nψ2
n | Fn]
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≤ D̃n + γn∥Π∥Bn +
3

2

[
G2 +B2

n + σ2
n

]
. (A.35)

By our step-size assumptions, we have
∑

n γ
2
n(1 +B2

n + σ2
n) <∞ and

∑
n γnBn <∞, which

means that D̃n is an almost supermartingale with almost surely summable increments, i.e.,
∞∑

n=1

[
E[D̃n+1 | Fn]− D̃n

]
<∞ with probability 1 (A.36)

Therefore, by Gladyshev’s lemma [44, p. 49], we conclude that D̃n converges almost surely
to some (finite) random variable D∞. Since 1En

= 1 for all n if and only if πn ∈ B for all n,
we conclude that P(Dn converges | πn ∈ B for all n) = P(D̃n converges) = 1, and our claim
follows. ■

A.5. Putting everything together. We are now in a position to prove Theorem 1 and Corol-
lary 1.

Proof of Theorem 1. Let E =
⋂

n En = {πn ∈ B for all n} denote the event that πn lies in
B for all n. By Proposition A.1, if π1 is initialized within the neighborhood U defined in
(A.8), we have P(E | π1 ∈ U) ≥ 1− a, noting also that the neighborhood U is independent
of the required confidence level a. Then, by Propositions A.2 and A.3, it follows that
a) lim infn∥πn − π∗∥ = 0; and b) Dn converges, both events occurring with probability 1 on
the set E ∩ {π1 ∈ U}. We thus conclude that limn→∞Dn = 0 and hence

P(πn → π∗ | π1 ∈ U) ≥ P(E ∩ {πn → π∗} | π1 ∈ U)
= P(πn → π∗ | π1 ∈ U , E)× P(E | π1 ∈ U) ≥ 1− δ,

and our proof is complete. ■

Proof of Corollary 1. For Models 1 and 2, taking ℓb =∞, ℓσ = 0, we obtain p > 1/2. Since
we have that

∑∞
n=1 γn =∞, we get that p ≤ 1, i.e., p ∈ (1/2, 1].

For Model 3, we have that Bn = O(εn) and σn = O(1/√εn), i.e., ℓb = r and ℓσ = r/2.
Now, since p ≤ 1, p+ ℓb > 1 and p− ℓσ > 1/2, we obtain that p ∈ (2/3, 1] and (1− p)/2 <
r/2 < p− 1/2. ■

Appendix B. Rate of convergence to second-order stationary policies

We now proceed with the proof of Theorem 2, which we again restate below for convenience:

Theorem 2. Let π∗ be a second-order stationary policy, let B be a neighborhood of π∗ such
that (3a) holds on B, and let πn be the sequence of play generated by (PG) with step-size
γn = γ/(n + m)p, p ∈ (1/2, 1], and policy gradient estimates such that p + ℓb > 1 and
p− ℓσ > 1/2 as per (8). Then:

(1) There exists a neighborhood U of π∗ in Π such that, for any confidence level δ > 0,
the event

E = {πn ∈ B for all n = 1, 2, . . . } (17)
occurs with probability P(E | π1 ∈ U) ≥ 1− δ if m is large enough relative to δ.

(2) The sequence πn converges to π∗ with probability 1 on E; in particular, we have

P(πn converges to π∗ | π1 ∈ U) ≥ 1− δ (18)

if m is large relative to δ. Moreover, conditioned on E and taking q = min{ℓb, p−2ℓσ},
we have

E[∥πn − π∗∥2 | E ] =

{
O(1/n2µγ) if p = 1 and 2µγ < q,

O(1/nq) otherwise.
(19)
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Proof. We will follow an approach similar to Theorem 1 for the first part of the theorem. More
precisely, let B = {π ∈ Π : ∥π − π∗∥ ≤ ϱ} be a ball of radius ϱ centered at π∗ in Π such that
(SOS) holds for all π ∈ B. Then, for all π ∈ B\{π∗}, we have ⟨v(π), π−π∗⟩ ≤ −µ∥π−π∗∥ < 0
by Proposition 1. Hence, defining the events En and Hn as in Eq. (A.7), and assuming that
π1 is initialized in a ball of radius

√
2a centered at π∗, viz.

U = {π ∈ Π : D(π) ≤ a} = {π ∈ Π : ∥π − π∗∥2/2 ≤ a}. (B.1)

then, by Lemma A.2 and Proposition A.1, we readily obtain that

P(Hn | π1 ∈ U) ≥ 1− δ for all n = 1, 2, . . . (B.2)

which implies that
P(E | π1 ∈ U) ≥ 1− δ (B.3)

if m is large enough relative to δ.
For the second part, constraining Eq. (A.2) on the event En, we get:

Dn+1 1En
≤ Dn 1En

+γn⟨v(πn), πn − π∗⟩1En
+1En

(
γnξn + γnχn + γ2nψ

2
n

)
≤ (1− 2µγn)Dn 1En +1En

(
γnξn + γnχn + γ2nψ

2
n

)
(B.4)

where the last inequality comes from (SOS). Therefore, taking expectations, we obtain:

E[Dn+1 1En
] ≤ (1− 2µγn)E[Dn 1En

] + E
[
1En

(
γnξn + γnχn + γ2nψ

2
n

)]
≤ (1− 2µγn)E[Dn 1En

] + γn E[1En
ξn] + γn E[1En

χn] + γ2n E[1En
ψ2
n]

= (1− 2µγn)E[Dn 1En ] + γn E[1En χn] + γ2n E[1En ψ
2
n]

≤ (1− 2µγn)E[Dn 1En
] + ∥Π∥P(En)γnBn + P(En)

(
Gγ2n + 3γ2nσ

2
n + 3γ2nB

2
n

)
(B.5)

where the equality in the third line comes from the fact that

E[1En
ξn] = E[E[ξn 1En

| Fn]] = E[1En
E[ξn | Fn]] = 0. (B.6)

Now, since 1En+1 ≤ 1En , we further have

E
[
Dn+1 1En+1

]
≤ E[Dn+1 1En

] (B.7)

and hence, setting D̄n := E[Dn 1En ], we get

D̄n+1 ≤ (1− 2µγn)D̄n + ∥Π∥P(En)γnBn + P(En)
(
Gγ2n + 3γ2nσ

2
n + 3γ2nB

2
n

)
≤ (1− 2µγn)D̄n + ∥Π∥γnBn +Gγ2n + 3γ2nσ

2
n + 3γ2nB

2
n. (B.8)

Therefore, taking γn, Bn, σn as per the statement of the theorem and noting that the terms
γ2n and γ2nB2

n are respectively dominated by the terms γ2nσ2
n and γnBn, we obtain

D̄n+1 ≤
(
1− 2µγ

(n+m)p

)
D̄n +

C1

(n+m)p+ℓb
+

C2

(n+m)2p−2ℓσ

≤
(
1− 2µγ

(n+m)p

)
D̄n +

C1 + C2

(n+m)p+q
(B.9)

for some C1, C2 > 0, where q = min{ℓb, p− 2ℓσ}, as per the theorem’s statement. Therefore,
by a straightforward modification of Chung’s lemma [10, Lemmas 2&3], [44, p. 45], we get

D̄n =

{
O(1/n2µγ) if p = 1 and 2µγ < q,

O(1/nq) otherwise.
(B.10)

Accordingly, letting n→∞ and recalling that E[Dn 1E ] ≤ E[Dn 1En ] = D̄n

lim
n→∞

E[Dn 1E ] = 0. (B.11)
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Then, by Fatou’s lemma [18], we obtain

0 ≤ E[lim inf
n→∞

Dn 1E ] ≤ lim inf
n→∞

E[Dn 1E ] = 0, (B.12)

which readily shows that E[lim infn→∞Dn 1E ] = 0. Finally, since lim infn→∞Dn 1E ≥ 0
(a.s.) and E[lim infn→∞Dn 1E ] = 0, we get that

lim inf
n→∞

Dn 1E = 0 with probability 1. (B.13)

Therefore, there exists a subsequence Dnk
that converges to 0 with probability 1 on the

event E , i.e., πnk
converges to π∗. Hence, invoking Proposition A.3, we further deduce that

Dn converges to some D∞ with probability 1 on E , and thus, we obtain that limn→∞Dn = 0
on E . We thus get

P(πn → π∗ | π1 ∈ U) ≥ P(E ∩ {πn → π∗} | π1 ∈ U)
= P(πn → π∗ | π1 ∈ U , E)× P(E | π1 ∈ U) ≥ 1− δ, (B.14)

as claimed.
For the last part of the theorem, note that

D̄n = E[Dn 1En
] ≥ E[Dn 1E ] = E[E[Dn |σ(E)]1E ]

= E[E[Dn | E ]1E ]

= E[Dn | E ]E[1E ]

= E[Dn | E ]P(E) (B.15)

where we used the fact that E[Dn |σ(E)]1E = E[Dn | E ]1E . We thus conclude that

E
[
∥πn − π∗∥2

∣∣ E] = 2E[Dn | E ] ≤
2

P(E)
D̄n ≤

2

1− δ
D̄n

(B.16)

and hence

E
[
∥πn − π∗∥2

∣∣ E] = {O(1/n2µγ) if p = 1 and 2µγ < q,

O(1/nq) otherwise.
■

Proof of Corollary 2. For Models 1 and 2, taking ℓb =∞, ℓσ = 0 we readily get that q = p
and p > 1/2. Since we require that

∑∞
n=1 γn =∞, we obtain that p ∈ (1/2, 1]. Hence, for

p = 1 and 2µγ > 1 we obtain O(1/n) rate of convergence.
For Model 3, we have that Bn = O(εn) and σn = O(1/√εn), i.e., ℓb = p/2 and ℓσ = p/4,

and, hence, we readily get that q = p/2. Now, since p ≤ 1, p + ℓb > 1 and p − ℓσ > 1/2,
we obtain that p ∈ (2/3, 1]. Hence, for p = 1 and µγ > 1, we obtain O(1/

√
n) rate of

convergence. ■

We conclude this appendix with a detailed statement and proof of the fact that, when
run with perfect policy gradients (i.e., as per Model 1), the sequence of play generated by
(PG) achieves a geometric convergence rate to Nash policies satisfying (SOS). The precise
result is as follows:

Proposition B.1. Let π∗ be a second-order stationary policy, let B be a neighborhood of π∗

such that (3a) holds on B, and let πn be the sequence of play generated by (PG) with a
sufficiently small constant step-size γ > 0 and perfect policy gradients as per Model 1. Then,
there exists a neighborhood U of π∗ in Π and some ρ > 0 such that

∥πn − π∗∥ = O(exp(−ρn)) whenever π1 ∈ U . (B.17)
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Proof. The crucial part of the proof is the observation that, in the case of Model 1, the
energy inequality (A.1) of Lemma A.1 may be written in the sharper form:

Dn+1 ≤ Dn + γ⟨v(πn)− v(π∗), πn − π∗⟩+ 1
2γ

2∥v(πn)− v(π∗)∥2. (B.18)

To see this, consider the development

∥πn+1 − π∗∥2 = ∥πn+1 − πn + πn − π∗∥2

= ∥πn − π∗∥2 + 2⟨πn+1 − πn, πn − π∗⟩+ ∥πn+1 − πn∥2

= ∥πn − π∗∥2 + 2⟨πn+1 − πn, πn+1 − π∗⟩ − ∥πn+1 − πn∥2

≤ ∥πn − π∗∥2 + 2γ⟨v(πn), πn+1 − π∗⟩ − ∥πn+1 − πn∥2,
≤ ∥πn − π∗∥2 + 2γ⟨v(πn)− v(π∗), πn+1 − π∗⟩ − ∥πn+1 − πn∥2, (B.19)

where the last line follows from (FOS) and, in the penultimate step, we used the fact that
π∗ ∈ Π so ⟨πn+1 − (πn + γv(πn)), πn+1 − π∗⟩ ≤ 0. In addition, by Young’s inequality, we
have

⟨v(πn)− v(π∗), πn+1 − π∗⟩ = ⟨v(πn)− v(π∗), πn − π∗⟩+ ⟨v(πn)− v(π∗), πn+1 − πn⟩

≤ ⟨v(πn)− v(π∗), πn − π∗⟩+ γ

2
∥v(πn)− v(π∗)∥2 + 1

2γ
∥πn+1 − πn∥2

(B.20)

so (B.18) follows by substituting (B.20) in (B.19) and simplifying.
Now, since v is G-Lipschitz (cf. Lemma D.7 in Appendix D), we have ∥v(πn)− v(π∗)∥ ≤

G∥πn − π∗∥, so the energy inequality (B.18) becomes

Dn+1 ≤ Dn + γ⟨v(πn)− v(π∗), πn − π∗⟩+ γ2G2Dn. (B.21)

However, if πn ∈ B, Proposition 1 further yields

⟨v(πn)− v(π∗), πn − π∗⟩ ≤ −µ∥πn − π∗∥2 (B.22)

so
Dn+1 ≤ Dn − µγ∥πn − π∗∥2 + γ2G2Dn = (1− 2µγ + γ2G2)Dn. (B.23)

Thus, if γ < 2µ/G2 and π1 is initialized in a ball centered at π∗ and contained within B, our
assertion follows from a straightforward induction argument. ■

Appendix C. Rate of convergence to strict Nash policies

C.1. Structural preliminaries. To prove Theorem 3, we will first require some notions
describing the geometry of Π near π∗. Referring to [46] for a full treatment, we have:

Definition 3. Let C be a convex set and let x ∈ C. Then the tangent cone TCC(x) is defined
as the set of all rays emanating from x and intersecting C to at least one other point different
from x. The polar cone PCC(x) to C at x is then defined PCC(x) = {y : ⟨y, z⟩ ≤ 0 for all z ∈
TCC(x)}, where y belong in the dual space of the vector space in which C is defined.

With these general definitions in hand, we proceed to characterize some further projections
of Euclidean projections on Π that will play an important role in the sequel. For notational
simplicity, we suppress the player and state indices in the statement and proof of the next
lemma.

Lemma C.1. x = proj(y) if and only if there exist µ ∈ R and να ∈ R+ such that, for all
α ∈ A, we have yα = xα + µ− να with να ≥ 0 and xανα = 0.
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Proof. Recall that proj(y) = argminx∈∆(A)∥y − x∥2. Our result then follows by applying
the KKT conditions to this optimization problem and noting that, since the constraints are
affine, the KKT conditions are sufficient for optimality. Our Langragian is

L(x, µ, ν) =
∑
α∈A

1

2
(yα − xα)2 − µ(

∑
α∈A

xα − 1) +
∑
α∈A

ναxα (C.1)

where the set of constraints (i) of the statement of the lemma are the stationarity constraints,
which in our case are ∇L(x, µ, ν) = 0 ⇔ ∇(

∑
α∈A

1
2 (yα − xα)

2) = µ∇(
∑

α∈A xα − 1) −∑
α∈A να∇xα , while the set of constraints (ii) of the statement of the lemmas are the

complementary slackness constraints. Note that complementary slackness implies να > 0
whenever α /∈ supp(x), so our proof is complete. ■

Our next result is a concrete consequence of Proposition 1 which will be very useful in
establishing the stability estimates required for the proof of Theorem 3.

Lemma C.2. Let π∗ = (α∗
i,s)i∈N ,s∈S be a strict Nash policy. Then there exists a neighborhood

U of π∗ and constants ci,s such that for each player i ∈ N and state s ∈ S, we have:

viα∗
i,s
(π)− viαi,s(π) ≥ ci,s for all π ∈ U and αi ̸= α∗

i , αi ∈ Ai. (C.2)

Proof. Our claim is a consequence of the definition of strict Nash policies. Specifically, from
Proposition 1 we have

⟨v(π∗), z⟩ < 0 for all z ∈ TC(π∗), z ̸= 0 (C.3)

Let z = ei,αi,s
− ei,α∗

i,s
, then we get that

viα∗
i,s
(π∗)− viαi,s(π

∗) > 0 (C.4)

where ei,αi,s
is the vector that has one only in the index and zero anywhere else. By continuity

there exists a neighborhood U ⊆ X and ci,s > 0 for each player i ∈ N such that

viα∗
i,s
(π)− viαi,s

(π) ≥ ci,s for all π ∈ U ■

Our final result is intimately tied to the lazy projection step in (LPG), and quantifies the
relation between initializations in

∏
i RAi×S and Π.

Lemma C.3. Let π∗ = (α∗
i,s)i∈N ,s∈S , be a deterministic policy. For each agent i ∈ N and

each state s ∈ S, let yi,αi,s
− yi,α∗

i,s
be the difference of the aggregated gradients between

the strategy of the equilibrium and any other strategy α∗
i ̸= αi ∈ Ai. Then for any ε > 0

such that Uε = {π : πi,α∗
i,s
≥ 1− ε for all i ∈ N and s ∈ S}, there exist Mi,ε,s such that if

Wi,s = {y ∈ RAi : yi,αi,s
− yi,α∗

i,s
< −Mi,ε,s} then

∏
i∈N ,s∈S projΠi

(Wi,s) ⊆ Uε.

Proof. Consider an arbitrary player i ∈ N , a state s ∈ S, and let Wi(Mi,ε,s) be an open set
as defined in the statement of the lemma. For notational simplicity, we will drop the index s.
We will show that any Mi,ε > 1− ε

|Ai| > 0 satisfies our claim. By using Lemma C.1 for a
yi ∈ Wi(Mi,ε) with πi = proj(yi) we have that

yiα∗
i
− yiαi

> Mi,ε

πiα∗
i
− πiαi − (να∗

i
− ναi) > Mi,ε

(C.5)

with ναi ≥ 0 and πiαi = 0 whenever ναi > 0. Notice that since Mi,ε > 1− ε
Ai

we have that
πiα∗

i
> πiαi

+ 1− ε
Ai

+ (να∗
i
− ναi

) or

πiαi
< πiα∗

i
− 1 +

ε

Ai
− (να∗

i
− ναi

) <
ε

Ai
(C.6)

Hence, by summing over all strategies of player i we get the desired result. ■
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C.2. Proof of the main theorem. We are now in a position to prove our main result on the
rate of convergence towards strict Nash policies. For ease of reference, we restate Theorem 3
below.

Theorem 3. Let πn be the sequence of play under (LPG) with step-size and policy gradient
estimates such that p+ ℓb > 1 and p− ℓσ > 1/2 as per (8). If π∗ is a deterministic Nash
policy, there exists an unbounded open set W ⊆

∏
i RAi×S of initializations such that, for

any δ > 0, we have
P(πn converges to π∗ | y1 ∈ W) ≥ 1− δ, (20)

provided that γ > 0 is small enough. Moreover, conditioned on this event, πn converges to π∗

at a finite number of iterations, i.e., there exists some n0 such that πn = π∗ for all n ≥ n0.

Proof of Theorem 3. We start by fixing a confidence level δ > 0 and all the parameters of
the algorithm, such that all the assumptions stated in the theorem are satisfied and. We
will prove that for each agent i ∈ N , s ∈ S there exist M1,i,s > 0, W1,i,s = {y ∈ RAi :
yi,αi

− yi,α∗
i
< −M1,i,s for all αi ∈ Ai, αi ̸= α∗

i }, such that if y1 ∈ W1 :=
∏

i∈N ,s∈SW1,i,s

then the agents’ sequence of play, converge to the deterministic Nash policy, in finite number
of iterations.

To simplify the notation, we will drop the indices s and i referring to the states and agents,
accordingly, and we will focus on a specific agent and a specific state. From Lemma C.3,
Lemma C.2 we have that there exist constants c,M , neighborhood Uc = {π ∈ Π : ∥π−π∗∥ ≤
β} and open set WM such that

vα∗(π)− vα(π) ≥ c for all α ̸= α∗, α ∈ A and π ∈ Uc
yα∗ − yα > Mc for all α ̸= α∗, α ∈ A and π = proj(y) ∈ Uc

(C.7)

The first step is to prove that for an appropriate initialization for y1, we have yn ∈ W(Mc) for
all n = 1, 2, . . . , with probability at least 1−δ. Assume that yk ∈ W(Mc) for all k = 1, . . . , n;
then for the differences of the scores at a round n+1 between any α ∈ A and the equilibrium
strategy α∗, we have

yα,n+1 − yα∗,n+1 = yα,n − yα∗,n + (v̂α,n − v̂α∗,n)

= yα,1 − yα∗,1 +

n∑
k=1

γk[(vα,k − vα∗,k) + (Uα,k − Uα∗,k) + (bα,k − bα∗,k)]

≤ −M1 +

n∑
k=1

γk[(vα,k − vα∗,k) + (Uα,k − Uα∗,k) + (bα,k − bα∗,k)]

≤ −M1 − c
n∑

k=1

γk +

n∑
k=1

γk[(Uα,k − Uα∗,k) + (bα,k − bα∗,k)]

≤ −M1 − c
n∑

k=1

γk +

n∑
k=1

γk[ξk + χk] (C.8)

where ξk = (Uα,k−Uα∗,k) and χk = 2∥bk∥. Now, similarly to the proofs of Theorems 1 and 2
we will proceed to control the aggregate error terms

Rn =

n∑
k=1

γkξk and Sn =

n∑
k=1

γkχk. (C.9)

Since E[ξn | Fn] = 0, we have E[Rn | Fn] = Rn−1, so Rn is a martingale; likewise, E[Sn | Fn] ≥
Sn−1, so Sn is a sub-martingale. Furthermore from (7) we have:

I. E[ξ2n] ≤ E[∥Un∥2] ≤ E[E[∥Un∥2 | Fn]] ≤ σ2
n
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II. E[χn] = 2E[∥bn∥] ≤ E[E[∥bn∥ |Fn]] ≤ Bn

Moreover, for any η1 > 0, we get by Doob’s Maximal Inequality:

P
(

sup
1≤k≤n

Rk ≥ η1
)
≤ E[R2

n]

η21

(a)
=

∑n
k=1 γ

2
k E[ξ2k]

η21

(I.)

≤
∑n

k=1 γ
2
kσ

2
k

η21
(C.10)

where (a) comes from the fact that E[ξiξj ] = 0 for i ̸= j. Since γn = γ/np, σn = O(nℓσ ) and
p− ℓσ > 1/2, there exists γ1 sufficiently small such that if γ ≤ γ1 then

∞∑
k=1

γ2kσ
2
k <

δη21
2

(C.11)

and so we automatically get that

P
(

sup
1≤k≤n

Rk ≥ η1
)
≤ δ

2
(C.12)

Furthermore, notice that the term {Sn}n∈N is a sub-martingale, since E[|Sn| | Fn] <∞
and E[Sn+1 | Fn] > Sn, for all n. As before, using Doob’s Maximal Inequality, we get for any
η2 > 0:

P
(

sup
1≤k≤n

Sk ≥ η2
)
≤ E[Sn]

η2
=

∑n
k=1 γk E[χk]

η2
≤
2
∑n

k=1 γkBk

η2
(C.13)

So, since p+ℓb > 1 there exists γ2 sufficiently small such that if γ ≤ γ2 then
∑n

k=1 γkBk ≤ η2δ
4

which immediately implies that

P
(

sup
1≤k≤n

Sk ≥ η2
)
≤ δ

2
(C.14)

By choosing γ ≤ min{γ1, γ2} we get that

P
(

sup
1≤k≤n

Rn + Sn ≤Mc

)
≥ 1− δ. (C.15)

Notice now that by choosing M1 > Mc + η1 + η2, from (C.8) we have that with probability
at least 1− δ, yα,n+1 − yα∗,n+1 < −Mc, which implies that πn+1 ∈ Uc.

Defining the sequences of “good” events {En}n∈N and {E ′n}n∈N as En := {πk ∈ Uc for all k =
1, 2, . . . , n} and E ′n :=

{
sup1≤k≤nRk + Sk ≤ η1 + η2

}
, accordingly, we get that E ′n ⊆ En for

all n. Because P(E ′n) ≥ 1− δ, we get that P(En) ≥ 1− δ and since {En}n∈N is a decreasing
sequence converging to E := {πn ∈ Uc,∀n ∈ N}, we obtain P(E) ≥ 1− δ. i.e.,

P(πn ∈ Uc, ∀n | y1 ∈ W1) ≥ 1− δ (C.16)

Notice that the above conclusions immediately imply convergence in finite time. More
specifically, constrained to the event E with probability at least 1− δ, from Eq. (C.8) we have

yα,n+1 − yα∗,n+1 ≤ −Mc − c
n∑

k=1

γk (C.17)

for all n = 1, 2, . . . . Assume ad absurdum that there exists at least one strategy α ≠ α∗, α ∈ A
such that lim supn→∞ πα,n ≥ ε > 0. for all sufficiently large n. Recall also that for π ∈ Uc,
it holds that πα∗ > 0 by construction. Using Lemma C.1 we get

yα,n+1 − yα∗,n+1 = πα,n+1 − πα∗,n+1 ≤ −Mc − c
n∑

k=1

γk (C.18)
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Notice that the LHS of this inequality is bounded, while the RHS goes to −∞, which is a
contradiction. Thus, with probability at least 1− δ, πn → π∗ as n→∞.

We can rewrite the previous inequality as

πα,n+1 ≤ 1−Mc − c
n∑

k=1

γk for all α∗ ̸= α ∈ A (C.19)

Now aggregating over all strategies, on the previous inequality, we get that

∥πn+1 − π∗∥1 = 2(1− πα∗,n+1) ≤ 2
∑

α∗ ̸=α∈A

(1−Mc − c
n∑

k=1

γk) (C.20)

Thus, once
∑n

k=1 γk becomes at least (1−Mc)/c, which occurs in finite time, the convergence
is implied. ■

Proof of Corollary 3. For Models 1 and 2, taking ℓb =∞, ℓσ = 0 we readily get that p > 1/2.
Since we require that

∑∞
n=1 γn =∞, we obtain that p ∈ (1/2, 1].

For Model 3, we have that Bn = O(εn) and σn = O(1/√εn), i.e., ℓb = r and ℓσ = r/2.
Now, since p ≤ 1, p+ ℓb > 1 and p− ℓσ > 1/2, we obtain that p ∈ (2/3, 1]. ■

Appendix D. Structural properties of policy gradient methods

In this appendix we will establish the required properties for the gradient of the players’
value function. More precisely, we prove the following intermediate results:
• In Lemma D.1 we prove that in the random stopping episodic framework visitation the

notion of discounted state visitation distribution is well-defined.
• In Lemma 1, we prove the conversion lemma, a standard lemma that connects a sample by

visitation distribution and a random trajectory.
• In Lemma D.4, we establish different versions of Policy Gradient theorem via Q-value

function for the random stopping episodic framework.
• In Lemmas D.5 and D.7, we establish the boundedness and the Lipschitz smoothness of

policy gradient vector field, i.e., v(π) = (vi(π))i∈N where vi(π) = ∇πi
Vi,s(π)

For a policy profile π ∈ Π and an arbitrary initial state distribution s0 ∼ ρ, let’s recall
the definition of discounted state visitation measure/distribution as

d̃πρ (s) = Eτ∼MDP

[∑T (τ)

t=0
1{st = s}

∣∣∣s0 ∼ ρ], dπρ (s) := d̃πρ (s)/Z
π
ρ

To begin with, we prove formally that the above definition is well-posed for the random
stopping episodic framework described above, i.e., d̃πρ (s) < ∞, so Zπ

ρ :=
∑

s∈S d̃
π
ρ (s) is

well-defined.

Lemma D.1. For any s ∈ S, d̃πρ (s) <∞ and Zπ
ρ ≤ 1

ζ .

Proof. For the sake of the proof, we define a new state sf , indicating that the game has
stopped. In other words, we have that P(sf | s, α) = ζs,α ≥ ζ > 0 for all α ∈ A, s ∈ S. Hence,
for s ∈ S we obtain:

d̃πρ (s) = Eτ∼MDP

[∑T (τ)

t=0
1{st = s}

∣∣∣s0 ∼ ρ]
= Eτ∼MDP

[ ∞∑
t=0

1{st = s, si ̸= sf , 1 ≤ i ≤ t}|s0 ∼ ρ

]
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≤
∑
s∈S

d̃πρ (s) = Eτ∼MDP

[ ∞∑
t=0

1{si ̸= sf , 1 ≤ i ≤ t}|s0 ∼ ρ

]

=

∞∑
t=0

P(si ̸= sf , 1 ≤ i ≤ t | s0 ∼ ρ)

=

∞∑
t=0

t∏
i=1

P(si ̸= sf | s0 ∼ ρ, sj ̸= sf , 1 ≤ j ≤ i− 1)

≤
∞∑
t=0

(1− ζ)t ≤ 1

ζ
<∞. ■

Lemma 1. [Conversion Lemma] For an arbitrary state-action function f : S × A → R, a
policy profile π and an initial state distribution s0 ∼ ρ, we have

Eτ∼MDP

[∑T (τ)

t=0
f(st, αt)

]
= Zπ

ρ Es∼dπ
ρ
Eα∼π(·|s)[f(s, α)] (2)

Proof.

Eτ∼MDP

[∑T (τ)

t=0
f(st, αt)

]
=

∞∑
t=0

∑
s∈S

∑
α∈A

Eτ∼MDP [1{t ≤ T (τ), st = s, αt = α}f(s, α)]

=
∑
s∈S

∞∑
t=0

∑
α∈A

Pπ(s = st|s0 ∼ ρ)π(α|s)f(s, α)

=
∑
s∈S

∞∑
t=0

Pπ(s = st|s0 ∼ ρ)
∑
α∈A

π(α|s)f(s, α)

=
∑
s∈S

d̃πρ (s)Eα∼π(·|s) [f(s, α)]

= Zπ
ρ Es∼dπ

ρ
Eα∼π(·|s)[f(s, α)] (D.1)

where Zπ
ρ := Es∼Unif(S)

[
d̃πρ (s)

]
· |S| is well-defined by Lemma D.1. ■

A compact reformulation the aforementioned lemma is via the matrix representation of
the discounted visitation distribution:

Lemma D.2 (Conversion Lemma (Matrix form)). For an arbitrary state-action function
f : S ×A → R and a policy profile π, we have

Eτ∼MDP

[∑T (τ)

t=0
f(st, αt)|α0 = α, s0 = s

]
= e⊤s,αT (π)f (D.2)

where T is a discounted visitation distribution (action-state)-matrix under poliy profile π i.e.,
[T (π)] (α, s)︸ ︷︷ ︸

Row Index

→ (α′, s′)︸ ︷︷ ︸
Column Index

=
∑∞

t=0 P
π(st = s′, αt = α′|s0 = s, α0 = α)

Proof. By definition we have

e⊤s,αT (π)f = ⟨e⊤s,αT (π), f⟩

=
∑
s′∈S

∑
α′∈A

(
e⊤s,αT (π)

)
(s′,α′)

· f(s′, α′)

=
∑
s′∈S

∑
α′∈A

e⊤s,αT (π)es′,α′ · f(s′, α′)
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=
∑
s′∈S

∑
α′∈A

∞∑
t=0

Pπ(st = s′, αt = α′|s0 = s, α0 = α) · f(s′, α′)

=

∞∑
t=0

∑
s′∈S

∑
α′∈A

Eτ∼MDP [1{t ≤ T (τ), s′t = s, α′
t = α, }f(s, α)|s0 = s, α0 = α]

= Eτ∼MDP

[∑T (τ)

t=0
f(st, αt)|α0 = α, s0 = s

]
. ■

Remark 4. Notice that T is a well-defined matrix. Indeed, let’s us define P(π) as the
state-action one step transition matrix:

[P(π)] (α, s)︸ ︷︷ ︸
Row Index

→ (α′, s′)︸ ︷︷ ︸
Column Index

= Pπ(s1 = s′, α1 = α′|s0 = s, α0 = α) = π(α′|s′)P (s′|s, α). (D.3)

Notice that P(π) is a substochastic matrix and therefore spectral(P(π)) < 1 or equivalently
(I − P(π))−1 is invertible. Thus using Neumann series we have that (I − P(π))−1 =∑∞

t=0 P(π)t. By induction, a folklore probabilistic-graph theoretic fact, we can show that∑∞
t=0 P(π)t = T (π).

In order to analyze the gradient of MARL policy gradient methods, we will introduce the
notions Q,A and their per-player averages that are useful in the MDP analysis.

Definition 4. For a state s ∈ S, a policy π and α = (α1, . . . , αN ) ∈ A, we define:
(i) The Q-value function of player i as:

Qπ
i (s, α) := Eτ∼MDP(π|s)

T (τ)∑
t=0

Ri(st(τ), αt(τ))|s0 = s, α0 = α

 (D.4)

(ii) The advantage function of player i as:

advπi (s, α) := Qπ
i (s, α)− Vi,s(π) (D.5)

We also define Q̄π
i , adv

π
i to be the averaged for i-th player single MDP Q-value and advantage

functions:
(i) The averaged Q̄π

i -value function of player i as:

Q̄π
i (s, αi) := Eα−i∼π−i(·|s) [Q

π
i (s, (αi;α−i))] (D.6)

(ii) The averaged advantage function advπi of player i as:

advπi (s, αi) := Eα−i∼π−i(·|s) [adv
π
i (s, (αi;α−i))] , (D.7)

By Remark 4, we can rewrite the above notations using T ,P.

Lemma D.3. For a policy profile π, we have:
(1) Qπ

i (s, α) = e⊤s,αT (π)ri

(2) d̃πρ (s) =
[∑

s′∈S ρ(s
′)
∑

α′∈A π(α
′|s′)es′,α′

]⊤T (π)∑α∈A es,α

Proof. We separately have using Lemma D.3 and Remark 4.
(1) For our first claim, a straightforward calculation gives:

Qπ
i (s, α) = Eτ∼MDP(π|s)

T (τ)∑
t=0

Ri(st(τ), αt(τ))|s0 = s, α0 = α

 = e⊤s,αT (π)Ri (D.8)
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(2) As for the second part of the lemma, we have:

d̃πρ (s) = Eτ∼MDP

[∑T (τ)

t=0
1{st = s}

∣∣∣s0 ∼ ρ]

= Es′∼ρ Eτ∼MDP

T (τ)∑
t=0

∑
α∈A

1{st = s, αt = α}
∣∣∣s0 = s′


= Es′∼ρ Eα′∼π(·|s) Eτ∼MDP

T (τ)∑
t=0

∑
α∈A

1{st = s, αt = α}
∣∣∣s0 = s′, α0 = α′


= Es′∼ρ Eα′∼π(·|s)

[
e⊤s′,α′T (π)

∑
α∈A

es,α

]

=

[∑
s′∈S

ρ(s′)
∑
α′∈A

π(α′|s′)es′,α′

]⊤
T (π)

∑
α∈A

es,α. ■

Having defined the above notions, we are ready to provide equivalent forms of v(π) that
will permit us to prove its boundedness and smoothness. We start with the following versions
of the policy gradient theorem for random stopping setting:

Lemma D.4. For the independent gradient operator v(π) per player the following expressions
are equal to vi(π):

(1) vi(π) = Eτ∼MDP

[∑T (τ)
t=0 ∇i (log πi(αi,t(τ)|st(τ))) Q̄π

i (st(τ), αi,t(τ))
]

(2) vi(π) = Zπ
ρ Es∼dπ

ρ
Eαi∼πi(·|s)

[
∇i (log πi(αi|s)) Q̄π

i (s, αi)
]

(3) (vi(π))α◦
i ,s

◦ =
∂Vi,ρ(π)

∂πi(α◦
i |s◦)

= d̃πρ (s
◦)Q̄π

i (s
◦, α◦

i ) = Zπ
ρ d

π
ρ (s

◦)Q̄π
i (s

◦, α◦
i )

Proof. Recall first that the independent gradient operator v(π) is given by vi(π) = ∇iVi,ρ(π)
Accordingly, we will begin by showing that:

∇i (Vi,ρ(π)) = Eτ∼MDP

T (τ)∑
t=0

∇i (log πi(αi,t(τ)|st(τ))) Q̄π
i (st(τ), αi,t(τ))

 (D.9)

To that end, we will start with an arbitrary s0, and by linearity of ∇πi
(·) and Es0∼ρ[·], we

will obtain the result. Indeed, we have:

∇i (Vi,s0(π)) = ∇i (Eτ [Ri(τ)])

= ∇i

(
Eαi∼πi(·|s0)

[
Q̄π

i (s0, αi)
])

= ∇i

( ∑
αi∈Ai

πi(αi|s0)Q̄π
i (s0, αi)

)
=
∑

αi∈Ai

∇i (πi(αi|s0)) Q̄π
i (s0, αi) + πi(αi|s0)∇i

(
Q̄π

i (s0, αi)
)

=
∑

αi∈Ai

∇i (log πi(αi|s0))πi(αi|s0)Q̄π
i (s0, αi) + πi(αi|s0)∇i

(
Q̄π

i (s0, αi)
)

= Eαi∼πi(·|s0)
[
∇i (log πi(αi|s0)) Q̄π

i (s0, αi)
]

+
∑

αi∈Ai

πi(αi|s0)∇i

(
Eα−i∼π−i(·|s0)

[
Ri(s0, α) +

∑
s1∈S

P (s1|s0, α)Vi,s1(π)

])
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= Eαi∼πi(·|s0)
[
∇i (log πi(αi|s0)) Q̄π

i (s0, αi)
]

+
∑

αi∈Ai

πi(αi|s0)Eα−i∼π−i(·|s0)

[∑
s1∈S

P (s1|s0, α)∇i (Vi,s1(π))

]
= Eαi∼πi(·|s0)

[
∇i (log πi(αi|s0)) Q̄π

i (s0, αi)
]

+ Eα∼π(·|s0)

[∑
s1∈S

P (s1|s0, α)∇i (Vi,s1(π))

]
(D.10)

Thus, we can rewrite it as:

∇i (Vi,s0(π)) = Eαi∼πi(·|s0)
[
∇i (log πi(αi|s0)) Q̄π

i (s0, αi)
]

+ Eα∼π(·|s0)

[∑
s1∈S

P (s1|s0, α)∇i (Vi,s1(π))

]
= Eτ∼MDP(π|s0)

[
∇i (log πi(αi,0(τ)|s0)) Q̄π

i (s0, αi,0(τ))
]

+ Eτ∼MDP(π|s0)
[
1 {T (τ) ≥ 1}∇i

(
Vi,s1(τ)(π)

)]
=

∞∑
t=0

Eτ∼MDP(π|s0)
[
1{t ≤ T (τ)}∇i (log πi(αi,t(τ)|st(τ))) Q̄π

i (st(τ), αi,t(τ))
]

+ Eτ∼MDP(π|s0) [1{T (τ) =∞}A∞]

(a)
= Eτ∼MDP(π|s0)

T (τ)∑
t=0

∇i (log πi(αi,t(τ)|st(τ))) Q̄π
i (st(τ), αi,t(τ))

 (D.11)

where (a) holds because P(T (τ) =∞) = 0, and A∞ is some limiting quantity.
Hence,we readily obtain:

∇i (Vi,ρ(π)) = Es0∼ρ [∇i (Vi,s0(π))] (D.12)

Now by Lemma 1, we further have

∇i (Vi,ρ(π)) = Zπ
ρ Es∼dπ

ρ
Eα∼π(·|s)

[
∇i (log πi(αi|s)) Q̄π

i (s, αi)
]

= Zπ
ρ Es∼dπ

ρ
Eαi∼πi(·|s)

[
∇i (log πi(αi|s)) Q̄π

i (s, αi)
]

(D.13)

Decoupling ∇i per a state s◦ and action α◦
i , we get

∂Vi,ρ(π)

∂πi(α◦
i |s◦)

= Zπ
ρ Es∼dπ

ρ
Eαi∼πi(·|s)

[
∂ (log πi(αi|s))
∂πi(α◦

i |s◦)
Q̄π

i (s, αi)

]
= Zπ

ρ Es∼dπ
ρ
Eαi∼πi(·|s)

[
1{α◦

i = αi, s
◦ = s} 1

πi(α◦
i |s◦)

Q̄π
i (s

◦, α◦
i )

]
=
∑
s∈S

d̃πρ (s)
∑

αi∈Ai

πi(αi|s)1{α◦
i = αi, s

◦ = s} 1

πi(α◦
i |s◦)

Q̄π
i (s

◦, α◦
i )

= d̃πρ (s
◦)Q̄π

i (s
◦, α◦

i ) = Zπ
ρ d

π
ρ (s

◦)Q̄π
i (s

◦, α◦
i ). ■

We are ready to bound the amplitude of the independent player gradient operator:

Lemma D.5. For a given initial state distribution ρ, the independent player policy gradient
operator v(π) is bounded. More precisely,

∥vi(π)∥ ≤
√
Ai

ζ2
& ∥v(π)∥ ≤

∑
i∈N
√
Ai

ζ2
(D.14)
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Proof. We start by analyzing ∥vi(π)∥2 using Lemma D.4. Specifically, we have:

∥vi(π)∥2 =
∑

α◦
i ,s

◦,∈Ai,S

(vi(π)α◦
i ,s

◦)2 =
∑
s◦∈S

∑
α◦

i ∈Ai

(
∂Vi,ρ(π)

∂πi(α◦
i |s◦)

)2

=
∑
s◦∈S

∑
α◦

i ∈Ai

(Zπ
ρ d

π
ρ (s

◦)Q̄π
i (s

◦, α◦
i ))

2

≤ (Zπ
ρ )

2 max
α◦

i ,s
◦,∈Ai,S

(Q̄π
i (s

◦, α◦
i ))

2
∑
s◦∈S

∑
α◦

i ∈Ai

dπρ (s
◦)2

≤ 1

ζ2
max

α◦
i ,s

◦,∈Ai,S
(Eα−i∼π−i(·|s) [Q

π
i (s

◦, (α◦
i ;α−i))])

2
∑
s◦∈S

∑
α◦

i ∈Ai

dπρ (s
◦)

≤ 1

ζ2
max

α◦,s◦,∈A,S
(Qπ

i (s
◦, α◦))2

∑
α◦

i ∈Ai

∑
s◦∈S

dπρ (s
◦)

≤ 1

ζ2
max

α◦,s◦,∈A,S

Eτ∼MDP(π|s)

T (τ)∑
t=0

Ri(st(τ), αt(τ))|s0 = s◦, α0 = α◦

2

|Ai|

≤ Ai

ζ2

Eτ∼MDP(π|s)

T (τ)∑
t=0

1|s0 = s◦, α0 = α◦

2

≤ Ai

ζ4
(D.15)

We thus conclude that

∥vi(π)∥ ≤
√
Ai

ζ2
and ∥v(π)∥ ≤

∑
i∈N
√
Ai

ζ2
. ■

To prove the smoothness of the policy gradient operator, we have first to establish the
performance lemma for our setting. Respectively, we get

Lemma D.6 (Performance lemma). For any pair of policy profiles π = (πi, π−i), π
′ = (π′

i, π
′
−i),

it holds

Vi,ρ(πi, π−i)− Vi,ρ(π′
i, π

′
−i) = Eτ∼MDP(π|ρ)

T (τ)∑
t=0

adv
π′
i,π

′
−i

i (st, αt)

 (D.16)

where MDP(π|ρ) signifies that players follow π as policy profile with ρ as the initial state
distribution.

Proof. We will initial prove the aforementioned result for an arbitrary deterministic initial
state s0 = s:

Vi,s(π)− Vi,s(π′) = Eτ∼MDP(π|ρ)

T (τ)∑
t=0

Ri(st, αt)

− Vi,s(π′)

= Eτ∼MDP(π|s)

T (τ)∑
t=0

(Ri(st, αt) + Vi,st(π
′)− Vi,st(π′))

− Vi,s(π′)

= Eτ∼MDP(π|s)

T (τ)∑
t=0

Ri(st, αt) +

T (τ)∑
t=0

(Vi,st(π
′)− Vi,s(π′)− Vi,st(π′))





ON THE CONVERGENCE OF POLICY GRADIENT METHODS 31

= Eτ∼MDP(π|s)

T (τ)∑
t=0

(
Ri(st, αt) + 1{T (τ) ≥ t+ 1}Vi,st+1(π

′)
)
− Vi,st(π′)


= Eτ∼MDP(π|s)

T (τ)∑
t=0

(
Qπ′

i (st, αt)− Vi,st(π′)
)

= Eτ∼MDP(π|s)

T (τ)∑
t=0

advπ
′

i (st, αt)

 (D.17)

where in the last equation we recall the definition of the Advantage function and in the
pre-last the equivalent definitions of Qπ

i (s, α)

Qπ
i (s, α) = Eτ∼MDP(π|s)

T (τ)∑
t=0

Ri(st(τ), αt(τ))|s0 = s, α0 = α


= Ri(s, α) + Eτ∼MDP(π|s) [1{T (τ) ≥ 1}Vi,s1(π)|s0 = s, α0 = α] (D.18)

Applying the linearity of Es∼ρ[·], we get the desired result:

Vi,ρ(π)− Vi,ρ(π′) = Eτ∼MDP(π|ρ)

T (τ)∑
t=0

advπ
′

i (st, αt)

 = Zπ
ρ Es∼dπ

ρ
Eα∼π(·|s)

[
advπ

′

i (s, α)
]

(D.19)
where the last expression comes from Lemma 1. ■

Before closing this section by proving the Lipschitz-smoothness of our operator, we describe
a useful observation that will be helpful in the smoothness bounds.

Proposition D.1. For any pair of policy profiles π = (πi, π−i), π
′ = (π′

i, π
′
−i) and an arbitrary

initial state distribution ρ and a subset M⊆ N , it holds that:∑
s

dπρ (s)
∑
αM

|(πM − π
′

M)(αM|s)| ≤
∑
i∈M

√
Ai∥πi − π′

i∥ (D.20)

where πM = (πi)i∈M and αM = (αi)i∈M, correspondingly.

Proof. A series of direct calculations gives:∑
s

dπρ (s)
∑
αM

|(πM − π
′

M)(αM|s)| = 2
∑
s

dπρ (s)
1

2
∥(πM − π

′

M)∥1

= 2
∑
s

dπρ (s)
1

2
dTV(πM(·|s), π

′

M(·|s))

≤ 2
∑
s

dπρ (s)
∑
i∈M

1

2
dTV(πi(·|s), π

′

i(·|s))

=
∑
s

dπρ (s)
∑
i∈M
∥(πi(·|s)− π

′

i(·|s))∥1

=
∑
s

dπρ (s)
∑
i∈M

√
Ai∥πi − π′

i∥2

=
∑
i∈M

√
Ai∥πi − π′

i∥2(
∑
s

dπρ (s))
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=
∑
i∈M

√
Ai∥πi − π′

i∥2 (D.21)

where dTV corresponds to the total variation distance, and the first inequality is a consequence
of the triangle inequality for dTV. ■

Lemma D.7. For a given initial state distribution ρ, the independent player policy gradient
operator v(π) is Lipschitz continuous. More precisely, for any pair of policy profiles π =
(πi, π−i), π

′ = (π′
i, π

′
−i), it holds

∥vi(π)− vi(π′)∥ = ∥∇i(Vi,ρ(π)−∇i(Vi,ρ(π
′
)∥ ≤ 3

√
Ai

ζ3

N∑
j=1

√
Aj∥πj − π′

j∥ ∀i ∈ N (D.22)

and consequently,

∥v(π)− v(π′)∥ ≤ 3A

ζ3
∥π − π′∥ (D.23)

Proof. For the proof, we will follow the approach of Zhang et al. [61] and Agarwal et al. [1].
Our first task is to bound the directional derivative of the i-th player’s value function. To
that end, let π, π′ ∈ Π and pert ∈ S × A such that ∥pert∥ = 1, and consider λ-perturbed
policies

πA
λ (α|s) = (πi + λpert, π−i)

πB
λ(α|s) = (π′

i + λpert, π′
−i)

(D.24)

We then have:∣∣∣∣∂Vi,ρ(πA
λ )

∂λ
− ∂Vi,ρ(π

B
λ)

∂λ

∣∣∣∣ = ∣∣∣∣∂Vi,ρ(πA
λ )− Vi,ρ(πB

λ)

∂λ

∣∣∣∣ =
∣∣∣∣∣∂
(
Vi,ρ(π

A
λ )− Vi,ρ(πB

λ)
)

∂λ

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∂

(
Z

πA
λ

ρ E
s∼d

πA
λ

ρ

Eα∼πA
λ(·|s)

[
adv

πB
λ

i (s, α)
])

∂λ

∣∣∣∣∣∣∣∣ (D.25a)

=

∣∣∣∣∣∣
∂
(
Z

πA
λ

ρ
∑

s,α d
πA
λ

ρ (s)(πA
λ − πB

λ)(α|s)adv
πB
λ

i (s, α)
)

∂λ

∣∣∣∣∣∣ (D.25b)

=

∣∣∣∣∣∣
∂
(
Z

πA
λ

ρ
∑

s,α d
πA
λ

ρ (s)(πA
λ − πB

λ)(α|s)Q
πB
λ

i (s, α)
)

∂λ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∂
(∑

s,α d̃
πA
λ

ρ (s)(πA
λ − πB

λ)(α|s)Q
πB
λ

i (s, α)
)

∂λ

∣∣∣∣∣∣ (D.25c)

where (D.25a) follows from Lemma D.6 and (D.25b) uses the fact that
∑

α∈A π(α|s)adv
π
i (s, α) =,

for all s ∈ S and the last one is derived by the definition dπρ (s) := d̃πρ (s)/Z
π
ρ .

By triangular inequality, the linearity of ∂ operator and Lemma D.1, we have:∣∣∣∣∂(Vi,ρ(πA
λ )− Vi,ρ(πB

λ))

∂λ

∣∣∣
λ=0

∣∣∣∣ ≤
∣∣∣∣∣∑
s,α

∂d̃
πA
λ

ρ (s)

∂λ

∣∣∣
λ=0

(π − π
′
)(α|s)Qπ

′

i (s, α)

∣∣∣∣∣
+ Z

πA

ρ

∣∣∣∣∣∑
s,α

dπρ (s)
∂(πA

λ − πB
λ)(α|s)

∂λ

∣∣∣
λ=0

Q
π
′

i (s, α)

∣∣∣∣∣
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+ Z
πA

ρ

∣∣∣∣∣∑
s,α

dπρ (s)(π − π
′
)(α|s)∂Q

πB
λ

i (s, α)

∂λ

∣∣∣
λ=0

∣∣∣∣∣ (D.26)

We will bound the following three terms separately:

TermA =

∣∣∣∣∣∑
s,α

∂d̃
πA
λ

ρ (s)

∂λ

∣∣∣
λ=0

(π − π
′
)(α|s)Qπ

′

i (s, α)

∣∣∣∣∣
TermB =

∣∣∣∣∣∑
s,α

dπρ (s)
∂(πA

λ − πB
λ)(α|s)

∂λ

∣∣∣
λ=0

Q
π
′

i (s, α)

∣∣∣∣∣
TermC =

∣∣∣∣∣∑
s,α

dπρ (s)(π − π
′
)(α|s)∂Q

πB
λ

i (s, α)

∂λ

∣∣∣
λ=0

∣∣∣∣∣
(D.27)

For TermA, we will use Lemma D.3 in order to compute compactly the derivative:

∂d̃
πA
λ

ρ (s)

∂λ
=
∂
([∑

s′∈S ρ(s
′)
∑

α′∈A π
A
λ (α

′|s′)es′,α′
]⊤T (πA

λ )
∑

α∈A es,α

)
∂λ

=

 [∑
s′∈S

ρ(s′)
∑
α′∈A

∂πA
λ (α

′|s′)
∂λ

es′,α′

]⊤
T (πA

λ )
∑
α∈A

es,α


+

 [∑
s′∈S

ρ(s′)
∑
α′∈A

πA
λ (α

′|s′)es′,α′

]⊤
∂T (πA

λ )

∂λ

∑
α∈A

es,α


=

 [∑
s′∈S

ρ(s′)
∑
α′∈A

pert(α′
i|s′) · π−i(α

′
−i|s′)es′,α′

]⊤
T (πA

λ )
∑
α∈A

es,α


+

 [∑
s′∈S

ρ(s′)
∑
α′∈A

πA
λ (α

′|s′)es′,α′

]⊤
∂(I − P(πA

λ ))
−1

∂λ

∑
α∈A

es,α


=

 [∑
s′∈S

ρ(s′)
∑
α′∈A

pert(α′
i|s′) · π−i(α

′
−i|s′)es′,α′

]⊤
T (πA

λ )
∑
α∈A

es,α


+

 [∑
s′∈S

ρ(s′)
∑
α′∈A

πA
λ (α

′|s′)es′,α′

]⊤(
T (πA

λ )
∂P(πA

λ )

∂λ
T (πA

λ )
) ∑
α∈A

es,α


(D.28)

Thus for λ = 0, we get

∂d̃
πA
λ

ρ (s)

∂λ

∣∣∣
λ=0

=

 [∑
s′∈S

ρ(s′)
∑
α′∈A

pert(α′
i|s′) · π−i(α

′
−i|s′)es′,α′

]⊤
T (π)

∑
α∈A

es,α


+

 [∑
s′∈S

ρ(s′)
∑
α′∈A

π(α′|s′)es′,α′

]⊤(
T (π)∂P(π

A
λ )

∂λ

∣∣∣
λ=0
T (π)

) ∑
α∈A

es,α


(D.29)

Notice that
[
∂P(πA

λ)
∂λ

∣∣∣
λ=0

]
(s◦,α◦)→(s⋆,α⋆)

= pert(α⋆
i |s⋆) · π−i(α

⋆
−i|s⋆)P (s⋆|s◦, α◦).
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To simplify notation let us call auxA :=
[∑

s′∈S ρ(s
′)
∑

α′∈A pert(α′
i|s′) · π−i(α

′
−i|s′)es′,α′

]
,

auxB :=
[∑

s′∈S ρ(s
′)
∑

α′∈A π(α
′|s′)es′,α′

]
and auxC(s) :=

∑
α∈A es,α.

We thus get:

TermA =

∣∣∣∣∣∑
s,α

∂d̃
πA
λ

ρ (s)

∂λ

∣∣∣
λ=0

(π′ − π
′
)(α|s)Qπ

′
s′

i (s, α)

∣∣∣∣∣
=

∣∣∣∣∣∑
s,α

(
aux⊤AT (π)auxC(s) + aux⊤B

(
T (π)∂P(π

A
λ )

∂λ

∣∣∣
λ=0
T (π)

)
auxC(s)

)
(π − π

′
)(α|s)Qπ

′

i (s, α)

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
(
aux⊤AT (π) + aux⊤B

(
T (π)∂P(π

A
λ )

∂λ

∣∣∣
λ=0
T (π)

))∑
s,α

(π − π
′
)(α|s)Qπ

′

i (s, α)auxC(s)︸ ︷︷ ︸
auxD

∣∣∣∣∣∣∣∣∣∣
≤ ∥auxA∥1∥T (π)auxD∥∞ + ∥auxB∥1∥

(
T (π)∂P(π

A
λ )

∂λ

∣∣∣
λ=0
T (π)

)
auxD∥∞ (D.30)

It is easy to see that ∥auxA∥1 ≤
√
Ai, ∥auxB∥1 = 1. Indeed,

∥auxA∥1 =
∑
s′∈S

ρ(s′)
∑
α′∈A

|pert(α′
i|s′)| · π−i(α

′
−i|s′) =

∑
s′∈S

ρ(s′)
∑

α′
i∈Ai

|pert(α′
i|s′)|

=
∑
s′∈S

ρ(s′)∥perti|s′∥1 ≤
∑
s′∈S

ρ(s′)
√
Ai∥perti|s′∥2 ≤

√
Ai

∥auxB∥1 =
∑
s′∈S

ρ(s′)
∑
α′∈A

π(α′|s′) = 1 (D.31)

Additionally by Conversion Lemma in Matrix form (See Lemma D.2), we have that:

∥T (π)x∥∞ = max
s,α
|e⊤s,αT (π)x| = max

s,α
|Eτ∼MDP

[∑T (τ)

t=0
x(st, αt)|α0 = α, s0 = s

]
| ≤ 1

ζ
∥x∥∞

(D.32)
Similarly, for the matrix ∂P(πA

λ)
∂λ

∣∣∣
λ=0

, we have that

∥∂P(π
A
λ )

∂λ

∣∣∣
λ=0

x∥∞ = max
s,α

∣∣∣∣e⊤s,α ∂P(πA
λ )

∂λ

∣∣∣
λ=0

x

∣∣∣∣
= max

s,α
|
∑
s′,α′

pert(α′
i|s′) · π−i(α

′
−i|s′)P (s′|s, α)xs′,α′ |

≤
∑
s′,α′

|pert(α′
i|s′)| · π−i(α

′
−i|s′)P (s′|s, α)

≤
√
Ai∥perti|s′∥2∥x∥∞ ≤

√
Ai∥x∥∞ (D.33)

since ∥pert∥2 = 1. Then, using (D.33) and (D.32) in (D.30) we get that :

TermA ≤
√
Ai

ζ
∥auxD∥∞ +

√
Ai

ζ2
∥auxD∥∞

≤
√
Ai

ζ
(1 +

1

ζ
)

∥∥∥∥∥∑
s,α

(π − π
′
)(α|s)Qπ

′

i (s, α)auxC(s)

∥∥∥∥∥
∞

≤
√
Ai

ζ2
(1 +

1

ζ
)max

s

∣∣∣∣∣∑
α

(π − π
′
)(α|s)

∣∣∣∣∣∥auxC(s)∥∞
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≤
√
Ai

ζ2
(1 +

1

ζ
)

N∑
j=1

√
Ai∥πj − π′

j∥

≤
√
Ai

ζ3

N∑
j=1

√
Ai · ∥πj − π′

j∥ (D.34)

where we used above the fact that Q function is bounded by 1/ζ, ∥pert∥ = 1 and Proposi-
tion D.1 to bound the difference of the policy profiles.

Moving forward, for TermB , we have:

TermB =

∣∣∣∣∣∑
s,α

dπρ (s)
∂(πA

λ − πB
λ)(α|s)

∂λ

∣∣∣
λ=0

Q
π
′

i (s, α)

∣∣∣∣∣
=

∣∣∣∣∣∑
s,α

dπρ (s)pert(αi|s)(π−i − π
′

−i)(α|s)Q
π
′

i (s, α)

∣∣∣∣∣
≤ 1

ζ

∣∣∣∣∣∣
∑
s

dπρ (s)
∑
αi

pert(αi|s)
∑
α−i

(π−i − π
′

−i)(α|s)

∣∣∣∣∣∣
≤ 1

ζ

∑
s

∣∣∣∣∣∣dπρ (s)max
s

∑
αi

|pert(αi|s)|
∑
α−i

(π−i − π
′

−i)(α|s)

∣∣∣∣∣∣
≤ 1

ζ
max

s
∥perti|s∥1

∑
s

dπρ (s)
∑
α−i

|(π−i − π
′

−i)(α|s)|

≤
√
Ai

ζ
max

s
∥perti|s∥2

(∑
s

dπρ (s)
∑
α−i

|(π−i − π
′

−i)(α|s)|
)

≤
√
Ai

ζ

∑
j∈N\{i}

√
Ai∥πj − π′

j∥ ≤
√
Ai

ζ

N∑
j=1

√
Ai∥πj − π′

j∥ (D.35)

where we used again the fact that Q function is bounded by 1/ζ and Proposition D.1 to
bound the difference of the policy profiles.

Finally, for TermC , we have:

TermC =

∣∣∣∣∣∑
s,α

dπρ (s)(π − π
′
)(α|s)∂Q

πB
λ

i (s, α)

∂λ

∣∣∣
λ=0

∣∣∣∣∣
≤ max

s,α

∣∣∣∣∣∂Q
πB
λ

i (s, α)

∂λ

∣∣∣
λ=0

∣∣∣∣∣∑
s,α

dπρ (s)
∣∣∣(π − π′

)(α|s)
∣∣∣

≤ max
s,α

∣∣∣∣∣∂Q
πB
λ

i (s, α)

∂λ

∣∣∣
λ=0

∣∣∣∣∣
N∑
j=1

√
Aj∥πj − π′

j∥

≤ max
s,α

∣∣∣∣e⊤s,α ∂T (πB
λ)

∂λ

∣∣∣
λ=0

ri

∣∣∣∣ N∑
j=1

√
Aj∥πj − π′

j∥

≤ max
s,α

∣∣∣∣e⊤s,α ∂(I − P(πA
λ ))

−1

∂λ

∣∣∣
λ=0

ri

∣∣∣∣ N∑
j=1

√
Aj∥πj − π′

j∥
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≤ max
s,α

∣∣∣∣e⊤s,α(T (π)∂P(πA
λ )

∂λ

∣∣∣
λ=0
T (π)

)
ri

∣∣∣∣ N∑
j=1

√
Aj∥πj − π′

j∥

≤
√
Aj

ζ2

N∑
j=1

√
Aj∥πj − π′

j∥ (D.36)

using again (D.33) and (D.32) and Proposition D.1. Thus, we are ready now to bound the
gradient per player:∣∣∣∣∂(Vi,ρ(πA

λ )− Vi,ρ(πB
λ))

∂λ

∣∣∣
λ=0

∣∣∣∣ ≤ TermA + Z
πA

ρ (TermB +TermC) ≤
3
√
Ai

ζ3

N∑
j=1

√
Aj∥πj − π′

j∥

(D.37)
where we recall that ZπA

ρ ≤ 1
ζ Since we prove it for an arbitrary perturbation vector pert for

the directional derivative, for the independent player’s policy gradient it holds also that:

∥vi(π)− vi(π′)∥ = ∥∇i(Vi,ρ(π)−∇i(Vi,ρ(π
′
)∥ ≤ 3

√
Ai

ζ3

N∑
j=1

√
Aj∥πj − π′

j∥ ∀i ∈ N (D.38)

Finally for the concatenated gradient operator we get:

∥v(π)− v(π′)∥ =
√∑

i∈N
∥vi(π)− vi(π′)∥2 =

√∑
i∈N
∥∇i(Vi,ρ(π)−∇i(Vi,ρ(π

′)∥2

≤
√∑

i∈N

9Ai

ζ6
(∑
j∈N

√
Aj∥πj − π′

j∥
)2 ≤√∑

i∈N

9Ai

ζ6

∑
j∈N

Aj

∑
j∈N
∥πj − π′

j∥2

≤ 3

ζ3

√
(
∑
i∈N

Ai)2∥π − π′∥2 ≤ 3A

ζ3
∥π − π′∥ (D.39)

which completes our proof. ■

Remark 5. In the proof above, we considered perturbations that may formally lie outside
the game’s policy space. However, it is not difficult to see that for sufficiently small λ both
Vi(π(λ)),∇Vi(π(λ)), Zπ(λ)

ρ are well-defined and bounded, for πA
λ (α|s) = (πi+λpert, π−i, π−i).

In view of this, we may harmlessly assume that all functions considered above are defined in
an open neighborhood of the players’ policy space.

Appendix E. Statistics of Reinforce

In this appendix, we prove the two fundamental properties of the Reinforce Policy
Gradient estimator that we stated in Lemma 4, namely:

a) Reinforce is an unbiased estimator of v(π).
b) The variance of Reinforce is bounded from above by O(1/mins∈S,αi∈Ai

πi(αi|s))
for each i ∈ N .

We recall here that ∇i denotes the gradient of the quantity in question with respect to πi,
i.e., when π−i is kept fixed and only πi is varied. For concision, we will write vi(π) = ∇iVi,ρ(π)
for the individual gradient of player i’s value function, and v(π) = (vi(π))i∈N for the ensemble
thereof.

With all this said and done, we begin by restating Lemma 4 for convenience:
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Lemma 4. Suppose that each agent i ∈ N follows a stationary policy πi ∈ Πi. Then:

a) Eτ∼MDP[Reinforce(π)] = v(π) (12a)

b) Eτ∼MDP
[
∥Reinforcei(π)− vi(π)∥2

]
≤ 24Ai

κiζ4
(12b)

where κi = mins∈S,αi∈Ai πi(αi|s).

Proof. Without loss of generality let’s assume that MDP ≡ MDP(π | ρ) for some initial
state distribution ρ. Additionally, we denote Pπ(τ) the induced probability of a random
trajectory τ = (st, αt, rt)t≤T (τ).

Eτ∼MDP[v̂i] = Eτ∼MDP[Ri(τ) · Λi(τ)] =
∑
τ∈T

Pπ(τ)Ri(τ) · Λi(τ)

=
∑
τ∈T

Pπ(τ)Ri(τ) · [
T (τ)∑
t=0

∇i(log πi(αi,t|st))]

=
∑
τ∈T

Pπ(τ)Ri(τ) · ∇i

T (τ)∑
t=0

log πi(αi,t|st)


=
∑
τ∈T

Pπ(τ)Ri(τ)∇i

T (τ)∑
t=0

log πi(αi,t|st)

+
∑
τ∈T

Pπ(τ)Ri(τ)

∇i

∑
j ̸=i

T (τ)∑
t=0

log πj(αj,t|st) +∇i

T (τ)∑
t=0

logP(st | st−1, αt−1)


+
∑
τ∈T

Pπ(τ)Ri(τ)∇i log ρ(s0)

=
∑
τ∈T

Pπ(τ)Ri(τ)∇i(logPπ(τ))

=
∑
τ∈T

(∇i Pπ(τ))Ri(τ) = ∇i(
∑
τ∈T

Pπ(τ)Ri(τ)) = ∇iVi,ρ(π) (E.1)

where in the penultimate inequality we used the definition for the derivative of the logarithm.
We also note here that

Eτ∼MDP[v̂i] = Eτ∼MDP[Ri(τ)∇i(logPπ(τ))] (E.2)

For the variance of Reinforce estimator we have that

Eτ∼MDP
[
∥Reinforcei(π)− vi(π)∥2

]
=Eτ∼MDP

[
∥Reinforcei(π)∥2

]
− 2Eτ∼MDP[⟨Reinforcei(π), vi(π)⟩]
+ Eτ∼MDP

[
∥vi(π)∥2

]
or equivalently Eτ∼MDP

[
∥Reinforcei(π)− vi(π)∥2

]
= Eτ∼MDP

[
∥Reinforcei(π)∥2

]
−

Eτ∼MDP
[
∥vi(π)∥2

]
. Therefore, we have that

Eτ∼MDP
[
∥Reinforcei(π)− vi(π)∥2

]
≤ Eτ∼MDP

[
∥Reinforcei(π)∥2

]
= E[∥v̂i∥2] (E.3)

and, after a series of – tedious but otherwise straightforward – calculations, we get:

E[∥v̂i∥2] = Eτ∼MDP[∥Ri(τ)Λi(τ)∥2] ≤ Eτ∼MDP[∥Ri(τ)∥2∥Λi(τ)∥2]
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≤ Eτ∼MDP[(T (τ) + 1)2∥
T (τ)∑
t=0

∇i log πi(αi,t, st)∥2]

≤ Eτ∼MDP[(T (τ) + 1)3
∞∑
t=0

∑
s,α∈S×Ai

1{t ≤ T}1{st = s, αi,t = α}∥∇i log πi(α, s)∥2]

=

∞∑
t=0

∑
s,α∈S×Ai

Eτ∼MDP[(T (τ) + 1)31{t ≤ T}1{st = s, αi,t = α} 1

(πi(α, s))2
]

≤
∞∑
t=0

∑
s,α∈S×Ai

1

(πi(α, s))2
Eτ∼MDP[(T (τ) + 1)31{t ≤ T}1{st = s, αi,t = α}]

≤
∞∑
t=0

∑
s,α∈S×Ai

1

πi(α, s)
Eτ∼MDP[(T (τ) + 1)31{t ≤ T}1{st = s}]

≤
∞∑
t=0

∑
s,α∈S×Ai

1

κi
{(T (τ) + 1)31{t ≤ T}1{st = s}}

=

∞∑
t=0

∑
s∈S

|Ai|
κi

Eτ∼MDP[(T (τ) + 1)31{t ≤ T}1{st = s}]

=
|Ai|
κi

Eτ∼MDP[(T (τ) + 1)3
T∑

t=0

1{t ≤ T}]

≤ |Ai|
κi

Eτ∼MDP[(T (τ) + 1)4]

≤ |Ai|
κi

∞∑
t=0

(1− ζ)tζ(t+ 1)4 ≤ 24

ζ4
|Ai|
κi

(E.4)

where, to go from the first to the second inequality we used the boundeness by one of the
rewards, while from the second to the third, we used Jensen’s inequality. ■

Appendix F. Solution concepts

In this last appendix, we proceed to establish three important facts regarding the gradient
characterization of stationary Nash policies. More precisely, we prove the following:

• In Lemma 2, we prove the crucial property of Gradient Dominance for the multi-agent
random stopping setting.

• In Lemma 3, we establish that any stationary point corresponds to Nash Equilibria.

• In Proposition 1, we prove the “drift” inequalities for all the different types of stationary
points.

We begin with the gradient dominance property of the game, which we restate below for
convenience:

Lemma 2 (Gradient dominance property). For any policy profile π = (πi)i∈N ∈ Π, we have
that

Vi,ρ(π
′
i;π−i)− Vi,ρ(πi;π−i) ≤ CG max

π̄i∈Πi

⟨∇iVi,ρ(π), π̄i − πi⟩ (GDP)

for any unilateral deviation π′
i ∈ Πi of player i ∈ N .
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Proof. We start by rewriting the LHS of (GDP) using Lemmas 1 and D.6 for πA = (π′
i;π−i)

and πB = (πi;π−i):

Vi,ρ(π
A)− Vi,ρ(πB) =

∑
s∈S

d̃π
A

ρ (s)Eα∼πA(·|s)

[
A

πB
i

i (s, α)
]

=
∑
s∈S

d̃π
A

ρ (s)
∑

αi∈Ai

π′
i(αi|s)

∑
α−i∈A−i

π−i(α−i|s)AπB

i (s, α)

=
∑
s∈S

d̃π
A

ρ (s)
∑

αi∈Ai

π′
i(αi|s)A

πB

i (s, αi)

≤
∑
s∈S

d̃π
A

ρ (s)
∑

αi∈Ai

π′
i(αi|s) max

αi∈Ai

A
πB

i (s, αi) (F.1)

Thus, by a series of direct calculations, we obtain:

Vi,ρ(π
A)− Vi,ρ(πB) ≤ max

π̃i∈∆(A)S

∑
s∈S

d̃π
A

ρ (s)
∑

αi∈Ai

π̃i(αi|s)A
πB

i (s, αi)

≤ max
π̃i∈∆(A)S

∑
s∈S

d̃π
A

ρ (s)
∑

αi∈Ai

(π̃i(αi|s)− πi(αi|s))A
πB

i (s, αi)

≤ max
π̃i∈∆(A)S

∑
s∈S

d̃π
A

ρ (s)

d̃πB
ρ (s)

d̃π
B

ρ (s)
∑

αi∈Ai

(π̃i(αi|s)− πi(αi|s))A
πB

i (s, αi)

≤

∥∥∥∥∥ d̃π
A

ρ (s)

d̃πB
ρ (s)

∥∥∥∥∥
∞

max
π̃i∈∆(A)S

∑
s∈S

∑
αi∈Ai

d̃π
B

ρ (s)(π̃i(αi|s)− πi(αi|s))Q
πB

i (s, αi)

≤

∥∥∥∥∥ d̃π
A

ρ (s)

d̃πB
ρ (s)

∥∥∥∥∥
∞

max
π̃i∈∆(A)S

∑
s∈S,αi∈Ai

(π̃i(αi|s)− πi(αi|s))d̃π
B

ρ (s)Q
πB

i (s, αi)

≤

∥∥∥∥∥ d̃π
A

ρ (s)

d̃πB
ρ (s)

∥∥∥∥∥
∞

max
π̃i∈∆(A)S

∑
s∈S,αi∈Ai

(π̃i(αi|s)− πi(αi|s))
∂Vi,ρ(π)

∂πi(αi | s)
(F.2)

so

Vi,ρ(π
′
i;π−i)− Vi,ρ(πi;π−i) ≤ CG max

π̄i∈Πi

⟨∇iVi,ρ(π), π̄i − πi⟩ (F.3)

and our proof is complete. ■

Remark. Notice that we have assumed that d̃π
B

ρ > 0. If this wasn’t the case we could take a
trivial bound of ∞.

We now proceed to establish the link between (FOS) and (NE):

Lemma 3 (First-order stationary policies are Nash). A policy π∗ = (π∗
i )i∈N ∈ Π is Nash if

and only if it satisfies the first-order stationary condition

⟨v(π∗), π − π∗⟩ ≤ 0 for all π ∈ Π. (FOS)

Proof. By the definition of first-order stationarity applied to the policies π∗ and π, it is
straightforward to check that ⟨v(π∗), π∗−π⟩ ≥ 0 if and only if maxπ̄i∈Πi

⟨∇iVi,ρ(π
∗), πi−π̄∗

i ⟩ ≤
0. However, by the gradient dominance property established in Lemma 2, we readily get

Vi,ρ(πi;π
∗
−i)− Vi,ρ(π∗

i ;π
∗
−i) ≤ CG max

π̄i∈Πi

⟨∇iVi,ρ(π
∗), π̄i − π∗

i ⟩ ≤ 0 (F.4)
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and hence
Vi,ρ(πi;π

∗
−i) ≤ Vi,ρ(π∗

i ;π
∗
−i) for all πi ∈ Πi (F.5)

and our claim follows. ■

With all this in place, we are finally in a position to prove the characterization of second-
order stationary and strict Nash policies that of Proposition 1. For ease of reference, we
restate the relevant claims below.

Proposition 1. Let π∗ = (π∗
i )i∈N ∈ Π be a Nash policy. Then:

a) If π∗ is second-order stationary, there exists some µ > 0 such that

⟨v(π), π − π∗⟩ ≤ −µ ∥π − π∗∥2 for all π sufficiently close to π∗. (3a)

b) If π∗ is strict, there exists some µ > 0 such that
⟨v(π), π − π∗⟩ ≤ −µ ∥π − π∗∥ for all π sufficiently close to π∗. (3b)

Proof. We begin with the characterization of second-order stationary policies. To that end,
let d = |S|

∑
i|Ai| denote the ambient dimension of

∏
i RAi×S and consider the mapping

φ : Rd×d → R mapping H 7→ max{z⊤Hz : z ∈ TC(π∗), ∥z∥ = 1}. Clearly, φ is convex as the
pointwise maximum of a set of linear – and hence convex – functions. This in turn implies
the continuity of φ as every convex function is continuous on the interior of its effective
domain. Since π∗ satisfies (SOS) by assumption, we have φ(Jacv(π∗)) < 0, so, by continuity
and the convexity of Π, there exists some µ > 0 and a convex neighborhood U of π∗ in Π
such that φ(Jacv(π)) ≤ −µ for all π ∈ U .

With this in mind, letting z = π − π∗ ∈ TC(π∗) for some π ∈ U , a straightforward Taylor
expansion with integral remainder yields

v(π)− v(π∗) =

∫ 1

0

Jacv(π
∗ + τz)z dτ (F.6)

and hence, setting πτ = π∗ + τz, we get

⟨v(π)− v(π∗), π − π∗⟩ =
∫ 1

0

z⊤ Jacv(πτ )z dτ

≤ ∥z∥2
∫ 1

0

φ(Jacv(πτ )) dτ ≤ −µ∥z∥2 = −µ∥π − π∗∥2 (F.7)

However, by (FOS), we have ⟨v(π∗), π − π∗⟩ ≤ 0 which, combined with the above, yields
⟨v(π), π − π∗⟩ ≤ −µ∥π − π∗∥2, as claimed.

For the second part of our lemma, pick some π ̸= π∗ and let z = (π − π∗)/∥π − π∗∥, so
z ∈ TC(π∗) and ∥z∥ = 1. Then, given that (FOS) is satisfied as a strict inequality for all
π ̸= π∗, we readily get ⟨v(π∗), z⟩ < 0 for all z ∈ TC(π∗) with ∥z∥ = 1. Thus, by the joint
continuity of the function ⟨v(π), z⟩ in π and z, there exists a compact convex neighborhood
K of π∗ in Π such that µ := min{⟨v(π), z⟩ : π ∈ K, z ∈ TC(π∗), ∥z∥ = 1} < 0. Thus,
letting z = (π − π∗)/∥π − π∗∥ as above, we conclude that ⟨v(π), π − π∗⟩ ≤ −µ∥π − π∗∥, as
claimed. ■
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