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LEARNING IN GAMES FROM A STOCHASTIC APPROXIMATION VIEWPOINT

PANAYOTIS MERTIKOPOULOS∗,⋆, YA-PING HSIEH§, AND VOLKAN CEVHER♯

Abstract. We develop a unified stochastic approximation framework for analyzing the
long-run behavior of multi-agent online learning in games. Our framework is based on
a “primal-dual”, mirrored Robbins–Monro (MRM) template which encompasses a wide
array of popular game-theoretic learning algorithms (gradient methods, their optimistic
variants, the EXP3 algorithm for learning with payoff-based feedback in finite games,
etc.). In addition to providing an integrated view of these algorithms, the proposed MRM
blueprint allows us to obtain a broad range of new convergence results, both asymptotic
and in finite time, in both continuous and finite games.

1. Introduction

The prototypical setting of online learning in games can be summarized as follows:
(1) At each stage of the decision-making process, every player selects an action.
(2) The players receive a reward determined by their chosen actions and their individual

payoff functions – assumed a priori unknown.
(3) Based on these payoffs and any other observed information, the players update their

actions and the process repeats.
A key question that arises in this general setting is whether the players eventually settle
down to a stable profile from which no player has an incentive to deviate. Put differently:

Does the players’ learning process converge to a Nash equilibrium?
This question has occupied the forefront of game-theoretic research ever since the field’s

earliest steps in the 1950’s. On the positive side, fictitious play [12, 57] and its variants
[29, 40] provided the first equilibrium convergence results for certain classes of finite games –
zero-sum, potential and 2 × 2 games. On the negative side, the well-known impossibility
results of Hart and Mas-Colell [26, 27] showed that an unconditional positive answer to this
question is out of reach: it is not possible to devise an uncoupled learning rule – deterministic
or stochastic – that converges to Nash equilibrium in all games. As a result, contemporary
research on learning in games has focused on extending the classes of games in which positive
results can be obtained, relaxing the feedback requirements of the players’ learning process,
and understanding the convergence failures of popular learning algorithms.
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In turn, this has led to a vast, interdisciplinary corpus of literature that is impossible to
survey here. Historically, much of this literature has focused on games with a finite number
of actions, which are prevalent in economic models of rationality. More recently however,
the surge of breakthroughs in data science and machine learning (robust reinforcement
learning, generative adversarial networks, etc.), has generated an intense interest in games
with continuous action spaces. These two threads of the literature have evolved essentially
in isolation, with little communication between them, and sometimes with overlooked
connections.

Our contributions. Our paper aims to partially bridge this disconnect by providing a unified
framework for the analysis of a wide range of game-theoretic learning algorithms, for both
continuous and finite games. The basic ingredients of our approach are twofold: First, we
introduce an abstract mirrored Robbins–Monro (MRM) “parent scheme” which includes as
special cases many popular methods for learning in games (gradient schemes, their optimistic
variants, the exponential weights and EXP3 algorithms for finite games, etc.). We then
couple the proposed template with a suitable “primal-dual” dynamical system in continuous
time which is sufficiently flexible to accommodate different types of feedback and update
structures, and whose asymptotic behavior reflects that of the algorithms under study.

In this general context, the principal axes of our analysis can be summarized as follows:
(1) First, regarding solutions and behaviors contained in the interior of the game’s action

space, we introduce the notion of subcoercivity, a structural condition which ensures
that all MRM algorithms converge to the internally chain transitive (ICT) sets of the
underlying continuous-time dynamics (more specifically, that the algorithm’s limit sets
are internally chain transitive). This allows us to deduce a wide range of almost sure
equilibrium convergence results for min-max and potential games, both constrained
and unconstrained.

(2) To deal with outcomes at the boundary of the game’s action space, we introduce
the concept of a primal attractor, and we show that the induced trajectory of play
converges locally to such sets with arbitrarily high probability (or globally with
probability 1, depending on the attractor). As an immediate corollary of this result,
our analysis directly implies convergence to Nash equilibrium in all strictly monotone
games, and we are likewise able to infer a series of local convergence results to equilibria
that satisfy a variational stability or a second-order sufficient condition in continuous
games – and this, even with bandit, payoff-based feedback.

(3) We further introduce the notion of coherence (which covers strict Nash equilibria in
finite games, sharp equilibria in continuous games, linear programs, etc.), and we
show that MRM methods converge to such sets under significantly weaker conditions
for their runtime parameters (step-size, sampling radius, etc.). In addition, we are
also able to show in this case that the induced trajectory of play achieves convergence
in a finite number of iterations if the players’ mirror map is surjective (e.g., as in
projection-based schemes).

An appealing feature of our analysis is that it applies to both first-order (“oracle-based”)
and zeroth-order (“payoff-based”) methods. In this regard, our results provide an integrated
proof technique that can be easily adapted to many other learning algorithms in the literature,
reducing in this way the number of ad hoc elements required to analyze a given method.

A note on related work. The set of example algorithms that we use to illustrate our analysis
includes (stochastic) gradient methods in the spirit of [1], extra-gradient [34, 37, 50] and
optimistic gradient schemes [53, 54], the Hedge and EXP3 algorithms for learning in finite
games [3, 42, 67], as well as the single-point stochastic approximation (SPSA) [11, 63] and
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dampened gradient approximation (DGA) [9] methods for payoff-based learning in continuous
games. Of course, given the breadth and depth of the relevant literature, it is impossible to
survey here all methods covered by the proposed MRM template – or that could be covered
modulo minor modifications. Our selection is only meant to highlight different trends in the
literature, and to show how some algorithms that initially seem unrelated – like DGA – can
be included in our framework.

Paper outline. In Section 2, we introduce the game-theoretic background of our work,
including the various solution concepts that we use throughout our paper (critical points,
Nash equilibria, variationally stable states, etc.). Subsequently, in Sections 3 and 4, we
introduce a range of well-known algorithms for learning in games, and we show how they can
be seen as special instances of the MRM blueprint. Our analysis proper begins in Section 5,
where we introduce the notion of subcoercivity and present our ICT convergence results.
Subsequently, in Sections 6 and 7, we state and prove our main convergence results for primal
attractors and coherent sets respectively.

2. Preliminaries

Notation. In what follows, V will denote a d-dimensional real space with norm ∥·∥. We will
also write Y := V∗ for the dual space of V , ⟨y, x⟩ for the canonical pairing between y ∈ Y and
x ∈ V , and ∥y∥∗ := max{⟨y, x⟩ : ∥x∥ ≤ 1} for the induced dual norm on Y . As is customary,
if V is Euclidean, we will not distinguish between primal and dual vectors.

2.1. Games in normal form. Throughout the sequel, we will focus on games with a finite
number of players i ∈ N = {1, . . . , N}, each selecting an action xi from some closed convex
subset Xi of a di-dimensional normed space Vi. Gathering all players together, we will write
X =

∏
i Xi for the space of all action profiles x = (xi)i∈N and d =

∑
i di for the dimension

of the ambient space V =
∏

i Vi. Finally, when we want to distinguish between the action of
the i-th player and that of all other players, we will employ the shorthand (xi;x−i).

Given an action profile x ∈ X , each player i ∈ N is assumed to receive a reward
ui(x) ≡ ui(xi;x−i) based on an associated payoff function ui : X → R. In terms of regularity,
we will tacitly assume that ui is differentiable and we will write

vi(x) = ∇xiui(xi;x−i) and v(x) = (vi(x))i∈N (1)

for the players’ individual payoff gradients and the ensemble thereof. Finally, unless explicitly
mentioned otherwise, we will treat each vi(x) as an element of the corresponding dual space
Yi = V∗

i of Vi, and we will make the following blanket assumption throughout the rest of
our paper:

Assumption 1. The players’ payoff functions are Lipschitz continuous and smooth, i.e., there
exist constants Gi, Li ≥ 0, i ∈ N , such that

|ui(x′)− ui(x)| ≤ Gi∥x′ − x∥ and ∥∇ui(x′)−∇ui(x)∥∗ ≤ Li∥x′ − x∥. (2)

for all x, x′ ∈ X , i ∈ N . For concision, we will also write G := maxiGi and L := maxi Li.

With all this in hand, a continuous game in normal form is a tuple G ≡ G(N ,X , u) with
players, actions and payoff functions as above. For concreteness, we provide some examples
below:

Example 2.1 (Min-max games). Consider two players i ∈ {1, 2} with action spaces X1 and
X2, and payoff functions u1 = −ℓ = −u2 for some smooth function ℓ : X1 ×X2 → R. Player
1 (the “min” player) seeks to minimize ℓ = −u1 whereas Player 2 (the “max” player) seeks
to maximize ℓ = u2. In many applications, ℓ is (strictly) convex-concave, in which case
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von Neumann’s theorem asserts that the game minx1∈X1 maxx2∈X2 ℓ(x1, x2) always admits a
solution if X1 ×X2 is compact. ¶

Example 2.2 (Cournot oligopolies). Consider N firms supplying the market with a quantity
xi ∈ [0, Ci] of some good up to each firm’s capacity Ci. The good is priced as a function
P (x) = a− b

∑N
i=1 xi of the total quantity of the good in the market, so the net utility of

the i-th firm is ui(x) = xiP (x)− cixi where a, b and ci are market-related positive constants.
The resulting game G(N ,X , u) is known as a Cournot competition game and it plays a
central role in economic theory. ¶

Example 2.3 (Power control). As another example, consider N users transmitting a stream
of packets to a common receiver over K shared wireless channels [66]. If the channel gain
for the i-th user over the k-th channel is gik and each user transmits with total power Pmax

split over each channel as pik,
∑

k pik = Pmax, the user’s transmission rate will be given by
the Shannon formula

Ri(pi; p−i) =

K∑
k=1

log

(
1 +

gikpik
σ +

∑
j ̸=i gjkpjk

)
, pi ∈ Pi := Pmax ∆(K), (3)

where σ > 0 denotes the ambient noise in the channel. The resulting game G ≡ G(N ,P, r) is
known as the power control problem and it is a core aspect of wireless network design [66]. ¶

Example 2.4 (Finite games). In a finite game Γ ≡ Γ(N ,A, u), each player i ∈ N chooses an
action αi from some finite set Ai; the players’ payoffs are then determined by the action profile
α = (α1, . . . , αN ) ∈ A :=

∏
iAi and an ensemble of payoff functions ui : A → R, i = 1, . . . , N .

In the mixed extension of Γ, a player may pick an action according to a probability distribution
xi ∈ ∆(Ai): this is known as a mixed strategy, and the corresponding mixed payoff to the
i-th player is ui(x) =

∑
α∈A xαui(α) where xα =

∏
i xiαi

is the probability of the action
profile α = (α1, . . . , αN ).

Letting Xi = ∆(Ai), the mixed extension of Γ is defined as the continuous game ∆(Γ) =
G(N ,X , u). For posterity, we note here that the “payoff gradient” of each player i ∈ N is
simply their mixed payoff vector, i.e., vi(x) = ∇xi

ui(x) = (ui(αi;x−i))αi∈Ai
. ¶

2.2. Solution concepts. The standard solution concept in game theory is that of a Nash
equilibrium, i.e., an action profile that is resilient to unilateral deviations. Formally, we say
that x∗ ∈ X is a Nash equilibrium of the game G ≡ G(N ,X , u) if

ui(x
∗) ≥ ui(xi;x∗−i) for all xi ∈ Xi, i ∈ N . (NE)

Nash equilibria always exist if X is compact and each ui is individually concave in xi [19].
Otherwise, Nash equilibria may fail to exist, in which case we will consider the following
relaxations:

(1) Local Nash equilibria, i.e., profiles x∗ ∈ X for which (NE) holds locally:

ui(x
∗) ≥ ui(xi;x∗−i) for all x in a neighborhood U of x∗ in X . (LNE)

(2) Critical points, i.e., profiles x∗ ∈ X that satisfy the first-order stationarity condition:
d
dt

∣∣
t=0+

ui(x
∗
i + t(xi − x∗i );x∗−i) ≤ 0 for all xi ∈ Xi, i ∈ N . (FOS)

Equivalently, (FOS) can be reformulated as a Stampacchia variational inequality of the form

⟨v(x∗), x− x∗⟩ ≤ 0 for all x ∈ X . (SVI)

The solutions of (SVI) are precisely the fixed points of the “linearized” best-response cor-
respondence x 7→ argmaxx′∈X ⟨v(x), x′⟩ so, by standard fixed point arguments, the set of
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critical points of G is always nonempty if X is compact (independently of concavity or other
considerations).

Remark. In operator theory and optimization, the direction of (SVI) is reversed because
optimization problems are typically formulated as cost minimization problems. The utility
maximization viewpoint is more common in game theory, so we will maintain the above sign
convention throughout. ¶

Dually to the above, the Minty variational inequality associated to G is

⟨v(x), x− x∗⟩ ≤ 0 for all x ∈ X . (MVI)

It is straightforward to verify that the solutions of (MVI) comprise a convex set of Nash
equilibria of G, so (MVI) can be seen as an equilibrium refinement criterion for G. Taking
this a step further, a state x∗ ∈ X is said to be variationally stable if

⟨v(x), x− x∗⟩ < 0 for all x ̸= x∗ in a neighborhood U of x∗ in X (VS)

and x∗ is called neutrally stable if the strict inequality “<” in (VS) is relaxed to “≤”, i.e., if

⟨v(x), x− x∗⟩ ≤ 0 for all x in a neighborhood U of x∗ in X . (NS)

Finally, we say that x∗ is globally variationally stable [resp. globally neutrally stable] if (VS)
[resp. (NS)] holds with U = X (i.e., for all x ∈ X ).

In general, the solution concepts discussed above are related as follows:

GVS GNS ≡ MVI NE

VS NS LNE FOS ≡ SVI

=⇒=⇒

=⇒=⇒ =⇒

=⇒ =⇒ =⇒
(4)

Without further assumptions, the implications in (4) are all one-way; in the next paragraph,
we discuss a number of cases where some (or all) of these implications become equivalences.

Remark. The definition of variational stability echoes the seminal notion of evolutionary
stability as introduced by Maynard Smith and Price [43] in the context of population
games. To make this connection precise, consider a unit mass population of players with
a finite set of pure strategies A, and let vα(x) denote the payoff to α-strategists when the
state of the population is x ∈ ∆(A). Then a state x∗ ∈ ∆(A) is evolutionarily stable if
⟨v(δx+ (1− δ)x∗), x− x∗⟩ < 0 for all sufficiently small δ > 0 and all x ̸= x∗. As was shown
by Taylor [65] and Hofbauer et al [31], a state x∗ is evolutionarily stable if and only if it
satisfies (VS), an equivalence which justifies our choice of terminology. ¶

2.3. Special cases and classes of games. We close this section with a discussion of some
special cases of the above definitions that will play a major role in the sequel.

Monotone games. A game is said to be monotone if it satisfies the monotonicity condition

⟨v(x′)− v(x), x′ − x⟩ ≤ 0 for all x, x′ ∈ X . (Mon)

The strict version of this requirement (i.e., that equality holds if and only if x = x′) is
sometimes referred to as diagonal strict concavity (DSC), a terminology due to Rosen [58].
In monotone games, the solutions of (MVI) and (SVI) coincide, leading to the string of
equivalences MVI ⇐⇒ NE ⇐⇒ LNE ⇐⇒ FOS ⇐⇒ SVI. By comparison, if a game is
strictly monotone, every implication in (4) becomes an equivalence, so the game admits a
unique, globally variationally stable Nash equilibrium.

Examples 2.1–2.3 are all strictly monotone (assuming ℓ is strictly convex-concave in
Example 2.1); other examples include Kelly auctions [36], Fisher markets [51], resource
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allocation problems in communication networks [62], and many other classes of problems in
economics and control. ¶

Potential games. First formalized by Monderer and Shapley [49], potential games are games
that admit a potential function Φ: X → R such that

ui(xi;x−i)−ui(x′i;x−i) = Φ(xi;x−i)−Φ(x′i;x−i) for all x, x′ ∈ X and all i ∈ N . (Pot)

If G is a potential game, we have v(x) = ∇Φ(x) so any local maximum of Φ is a local Nash
equilibrium of G and any strict local maximum of Φ is variationally stable.

In terms of examples, all finite congestion games are potential games [59]; Example 2.3
likewise admits the potential R(p) =

∑K
k=1 log(1 +

∑
j gjkpjk) [47]. ¶

Finite games. Let G = ∆(Γ) be the mixed extension of a finite game Γ ≡ Γ(N ,A, u).
Since each player’s payoff function ui(xi;x−i) is linear in xi, we immediately get the equiv-
alences NE ⇐⇒ LNE ⇐⇒ FOS ⇐⇒ SVI. In addition, we have the following important
characterization of variationally stable states in finite games:

Proposition 1. A mixed strategy profile x∗ is variationally stable if and only if it is a strict
Nash equilibrium of Γ, i.e., if and only if (NE) holds as a strict inequality for all x ̸= x∗.

The analogue of Proposition 1 for evolutionary stability is a folk result in evolutionary
game theory, cf. Sandholm [61, Chap. 8]; the two notions coincide for finite games, so we
omit the proof. ¶

Second-order stationarity. Our last example concerns critical points that satisfy a condition
similar to second-order sufficient conditions in optimization:

Proposition 2. Let x∗ be a critical point of G satisfying the second-order stationarity condition

z⊤ Jacv(x
∗)z < 0 for all nonzero tangent vectors z to X at x∗, (SOS)

where Jacv(x
∗) denotes the Jacobian of v at x∗. Then x∗ is variationally stable.

For the proof of Proposition 2, see Hsieh et al [32, Lemma A.4]. In the context of
saddle-point problems and continuous games, the second-order condition (SOS) has been
widely studied in the machine learning and control literatures, cf. [4, 5, 32, 41, 46, 55, 56]
and references therein. ¶

3. Online learning policies and algorithms

We now proceed to describe a representative range of methods for learning in games.
Depending on the information available to the players, we classify the algorithms under
study as oracle-based or payoff-based ; our presentation scheme in the rest of this section
reflects this taxonomy.

3.1. Oracle-based methods. The commmon denominator of the algorithms we discuss below
is that players have access to a “black-box” feedback mechanism – a stochastic first-order
oracle (SFO) – that returns an estimate of their individual payoff gradients at their chosen
action profile.1 Formally, when queried at x ∈ X , an SFO outputs a random vector of the
form

V (x; θ) = v(x) + Err(x; θ), (SFO)

where θ is a random variable taking values in some measurable space Θ and Err(x; θ) is an
umbrella error term capturing all sources of uncertainty in the model.

1Methods that require full, “white-box” knowledge of the game’s payoff functions are not treated here.
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In practice, (SFO) is queried repeatedly at a sequence of action profiles Xn ∈ X , n =
1, 2, . . . , possibly with a different random seed θn at each time.2 To keep track of this
sequence of events, we will view Xn as a stochastic process on some complete probability
space (Ω,F ,P), and we will write Fn := F(X1, . . . , Xn) ⊆ F for the history of play up
to – and including – stage n. Accordingly, since the randomness entering the oracle is
triggered only after each player has selected an action, we will posit throughout that θn is
Fn+1-measurable – though not necessarily Fn-measurable. For concreteness, we will also
assume that the noise in (SFO) is zero-mean and bounded in Lq for some q ≥ 2, i.e.,

E[Err(x; θn) | Fn] = 0 and E[∥Err(x; θn)∥q∗ | Fn] ≤ σq (5)

for some σ ≥ 0 and all x ∈ X . In particular (and in a slight abuse of notation), the case
q =∞ above refers to the case when the noise is bounded w.p.1, that is, ∥Err(x; θn)∥∗ ≤ σ
(a.s.).

We are now in a position to introduce the array of oracle-based methods under study. For
simplicity, we present some of these policies in an unconstrained setting; this is only done to
lighten the notation.

Algorithm 1 (Stochastic gradient ascent). Perhaps the most basic iterative policy for multi-
agent online learning is the standard (individual) gradient ascent method

Xi,n+1 = Xi,n + γnVi(Xn; θn). (SGA)

Informally, (SGA) implies that all players are simultaneously taking a stochastic gradient
step with step-size γn > 0. From a loss minimization viewpoint, (SGA) is a multi-agent
analogue of the standard stochastic gradient descent algorithm; analogously, in min-max
games, (SGA) boils down to the Arrow–Hurwicz method [1]. ¶

Algorithm 2 (Sequential gradient ascent). A common variant of (SGA) is when players
update their actions turn-by-turn instead of simultaneously. This results in the sequential
gradient ascent policy

Xi,n+1 = Xi,n + γnVi(. . . , Xi−1,n+1, Xi,n, Xi+1,n, . . . ; θn). (seqGA)

Formally, the only difference between (SGA) and (seqGA) lies in the oracle query at the
update step: instead of computing all gradients at Xn, each individual gradient in (seqGA)
is computed sequentially after each player has locked in an action. This variant is widely
used in generative adversarial networks (GANs) [18, 24, 33]. ¶

Algorithm 3 (Extra-gradient). Going a step further from (SGA), the extra-gradient (EG)
algorithm of Korpelevich [37] is based on the following principle: starting at some “base” state
Xn, the players first take a gradient step to an interim, “leading” state Xn+1/2; subsequently,
to anticipate their payoff landscape, they update the base state Xn with gradient information
from Xn+1/2 instead of Xn. Formally, this leads to the policy

Xi,n+1/2 = Xi,n + γnVi(Xn; θn),

Xi,n+1 = Xi,n + γnVi(Xn+1/2; θn+1/2).
(EG)

For applications of this method to GANs and robust reinforcement learning, see [35, 48]. ¶

Algorithm 4 (Optimistic gradient). A computational drawback of (EG) is that it requires two
oracle queries per update – and hence, more overhead per iteration. One way to overcome

2In some cases, the index set may be enlarged to include all positive half-integers (n = 1/2, 1, 3/2, . . . ).
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this hurdle is to reuse past gradient information in the hope that it provides a good enough
approximation of the present; this leads to the optimistic gradient policy

Xi,n+1/2 = Xi,n + γnVi(Xn−1/2; θn−1),

Xi,n+1 = Xi,n + γnVi(Xn+1/2; θn).
(OG)

The “gradient reuse” idea in (OG) dates back at least to Popov [53], and it has resurfaced
several times in the literature since then, cf. [18, 32, 54] and references therein. To simplify
our presentation, we will assume in the sequel that the method is run with an SFO satisfying
(5) with q =∞. ¶

The next method concerns learning in mixed extensions of finite games.

Algorithm 5 (Exponential weights). Let G = ∆(Γ) be the mixed extension of a finite game
Γ(N ,A, u) as per Example 2.4. In this setting, the players’ learning process typically unfolds
as follows: at each stage n = 1, 2, . . . , every player selects a mixed strategy Xi,n ∈ ∆(Ai)
and draws a pure strategy αi,n ∈ Ai according to Xi,n. Then, depending on the amount of
information available to the players, we have the following oracle models:

(1) Full information feedback: in this case, players observe their mixed payoff vectors, i.e.,

Vi(Xn;αn) = vi(Xi,n;X−i,n). (6a)

(2) Realization-based feedback: here, players instead observe their pure payoff vectors, i.e.,

Vi(Xn;αn) = vi(αi,n;α−i,n). (6b)

In both models, the seed of the oracle is the action profile αn chosen by the players at stage
n: the oracle (6a) is deterministic, while the oracle (6b) is stochastic and satisfies (5) with
q =∞.

In this context, one of the most widely used methods is the exponential weights algorithm
Yi,n+1 = Yi,n + γnVi(Xn;αn)

Xi,n+1 = Λi(Yi,n+1)
(EW)

where Λi denotes the “logit choice” map

Λi(yi) =
(exp(yiαi

))αi∈Ai∑
αi∈Ai

exp(yiαi
)

(7)

and Vi is given by (6a) or (6b) depending on the information available to the players. This
method has a very long history in online learning and game theory; for an appetizer, see
Littlestone and Warmuth [42], Vovk [67] and Auer et al [3]. ¶

The last oracle-based method we present concerns games with general action spaces.

Algorithm 6 (Mirror-prox). An important generalization of the extra-gradient method
(Algorithm 3) is the mirror-prox algorithm [34, 50], which we define here as follows:

Yn+1/2 = Yn + γnV (Xn; θn) Yn+1 = Yn + γnV (Xn+1/2; θn+1/2)

Xn+1/2 = Q(Yn+1/2) Xn+1 = Q(Yn+1).
(MP)

In the above, Q : Y → X denotes the namesake mirror map of the method, as it is used
to “mirror” the extra-gradient chain Yn → Yn+1/2 → Yn+1 ∈ Y into feasible action profiles
Xn → Xn+1/2 → Xn+1 ∈ X . As an example, in the Euclidean unconstrained case (X = V),
the identity map Q(y) = y yields the extra-gradient algorithm (Algorithm 3); as another
example, in finite games, letting Q = Λ gives the so-called “simplex setup” of (MP). We
provide more details on this construction in Section 4 below. ¶
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3.2. Payoff-based methods. In many applications to machine learning and data science,
unbiased gradient estimates can be obtained by making a partial pass over the problem’s
training data; in such cases, players can query (SFO) directly. By contrast, in applications
to auctions, online advertising and networks, players may only be able to observe their
realized payoffs. In this case, gradients must be somehow reconstructed from payoff-based
observations, as players cannot perform direct queries to (SFO). In view of this distinction,
we describe below a range of payoff-based policies where players do not have access to an
oracle, but must infer gradient information indirectly.

Algorithm 7 (Single-point stochastic approximation). A straightforward way of reconstruct-
ing gradients from zeroth-order feedback is via the single-point stochastic approximation
framework of Spall [63]. In the unconstrained case (X = V), the relevant update step is:

X̂i,n = Xi,n + δnWi,n,

Xi,n+1 = Xi,n + γn(ui(X̂n)/δn)Wi,n.
(SPSA)

In (SPSA), each player’s “query state” X̂i,n, i = 1, . . . , N , is a perturbation of the “base
state” Xi,n by a step of magnitude δn > 0 along a random direction Wi,n drawn from the
ensemble of signed basis vectors Ei := {(±e1, . . . ,±edi

)}. Importantly, (SPSA) can be seen
as a special case of (SGA) with the “virtual” oracle Vi(x;w) = (di/δ)ui(x+ δw)wi where
each wi is drawn uniformly at random from Ei. As we discuss in Section 4.3, this estimator
is biased, so it does not satisfy (5); see also Table 1.

We should stress here that the above formulation of (SPSA) is tailored to unconstrained
problems. In this case, to ensure that the resulting gradient estimator remains bounded, it
is customary to include an indicator of the form 1(∥X̂n∥ ≤ Rn) for some suitably chosen
sequence Rn → ∞ [63]. This would lead to the same analysis but at the cost of heavier
notation; thus, to avoid overloading the presentation, we will assume instead that the players’
payoff functions are bounded when discussing (SPSA).

Of course, in games with compact action spaces (as per Section 2) this last point is moot.
In that case however, certain book-keeping adjustments are required to ensure that X̂n ∈ X
for all n. For a detailed discussion of how to adapt (SPSA) in the presence of constraints,
we refer the reader to Bravo et al [11] who show that the relevant entries of Table 1 apply
verbatim when X is compact. ¶

Algorithm 8 (Dampened gradient approximation). An alternative approach to (SPSA) is
the “explore-then-update”, two-point sampling approach of Bervoets et al [9]. Specifically,
Bervoets et al [9] focused on games with Xi = [0,∞) for all i ∈ N and introduced the
dampened gradient approximation policy

Xi,n+1/2 = Xi,n + (1/n)Wi,n,

Xi,n+1 = Xi,n[1 + (ui(Xn+1/2)− ui(Xn))Wi,n],
(DGA)

where, at each n = 1, 2, . . . , the “exploration direction” Wi,n is sampled uniformly at random
from {±1}. In words, (DGA) is a two-stage process in which players first “explore” their
individual payoff functions at a nearby state, and then use this information to estimate their
individual payoff gradients and update their base state. ¶

Algorithm 9 (The EXP3 algorithm). In our final example, we return to finite games, and we
focus on the “bandit” case where players can only observe the payoffs of the pure strategies
that they actually played. In this setting, it is common to employ the importance-weighted
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estimator

Viαi
(X̂n; α̂n) =

1(α̂i,n = αi)

X̂iαi,n

ui(α̂i,n; α̂−i,n) for all αi ∈ Ai, i ∈ N , (IWE)

where each player i ∈ N draws an action α̂i,n from Ai according to a mixed strategy
X̂i,n ∈ ∆(Ai), cf. [15, 23, 39] and references therein. Then, plugging (IWE) into (EW), we
obtain the method known as exponential weights for exploration and exploitation (EXP3),
viz.

Yi,n+1 = Yi,n + γnVi(X̂n; α̂n),

Xi,n+1 = Λi(Yi,n+1),
(EXP3)

where the sampling strategy of the i-th player at stage n is given by

X̂i,n = (1− δn)Xi,n + δn unif(Ai). (8)

In the above, δn ≥ 0 is an “explicit exploration” parameter that determines the mixing
between Xi,n and the uniform distribution unif(Ai) on Ai. ¶

In closing this section, we note that we can also “mix’n’match” the above algorithms to
form new ones: for instance, incorporating the gradient reuse step of (OG) in the simplex
setup for (MP) yields the optimistic multiplicative weights (OMW) method of Daskalakis
and Panageas [17]. In the sections to come, we provide a synthetic view and analysis of all
these policies.

4. Stochastic approximation framework

4.1. Algorithmic template. The basic blueprint that we will use to analyze the algorithms
encountered so far (and more), will be based on the mirrored Robbins–Monro template

Yn+1 = Yn + γnv̂n Xn+1 = Q(Yn+1), (MRM)

where:
(1) Xn = (Xi,n)i∈N ∈ X denotes the algorithm’s state at each stage n = 1, 2, . . .

(2) v̂n = (v̂i,n)i∈N ∈ Y is a “gradient signal” related to the players’ inidividual payoffs.
(3) Yn = (Yi,n)i∈N ∈ Y is an auxiliary state that aggregates individual gradient steps.
(4) γn > 0 is the method’s step-size, for which we will assume throughout that

∑
n γn =∞

(typically the method is run with γn ∝ 1/np for some p ≥ 0).
(5) Q : Y → X is the players’ so-called “mirror map” (and namesake of the method).

We detail each of these elements below; to streamline our presentation, we also defer to
Section 4.3 a systematic account of how Algorithms 1–9 can be recast in the framework of
(MRM).
▶ The gradient signal. In the spirit of standard Robbins–Monro schemes, we will decompose
the gradient signal v̂n in (MRM) as

v̂n = v(Xn) + Un + bn (9)

where
Un = v̂n − E[v̂n | Fn] and bn = E[v̂n | Fn]− v(Xn). (10)

By definition, E[Un | Fn] = 0 and bn is Fn-measurable, so Un can be intepreted as a random,
zero-mean error relative to v(Xn), whereas bn captures all systematic (non-zero-mean) errors.
To make this precise, we will further assume that bn, Un and v̂n are bounded for some q ≥ 2
as

E[∥bn∥∗ | Fn] ≤ Bn E[∥Un∥q∗ | Fn] ≤ σq
n and E[∥v̂n∥q∗ | Fn] ≤Mq

n (11)
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where the sequences Bn, σn and Mn, n = 1, 2, . . . , are to be construed as deterministic
upper bounds on the bias, fluctuations, and magnitude of the gradient signal v̂n (with q =∞
interpreted as in (5) by convention). Depending on these bounds, a gradient signal with
Bn = 0 will be called unbiased, and an unbiased signal with σn = 0 will be called perfect.

We should stress here that the gradient signal v̂n does not play the same role as the
gradient oracle (SFO). To see this, consider the unconstrained setting X = V with the
identity map Q(y) = y. In this case, (SGA) can be encoded as an instance of (MRM) by
taking v̂n = V (Xn; θn). Likewise, despite its different update structure, (EG) can also be
cast as an instance of (MRM) by letting v̂n = V (Xn+1/2; θn+1/2). In both cases, the oracle
V is unbiased as per the discussion surrounding (5) in the previous section; however, even
though the gradient signal v̂n is unbiased in (SGA), it has a non-zero bias in (EG), namely
bn = E[v(Xn+1/2) | Fn]− v(Xn).

In view of the above, v̂n should not be interpreted as an oracle query, but as a “model-
agnostic” proxy for v(Xn). In Section 4.3, we show how the methods discussed in Section 3
(including payoff-based ones) can be covered by (MRM) and we record the relevant values of
Bn and σn in Table 1.

Remark. By Assumption 1 and the inequality (
∑m

i=1 ai)
q ≤ mq−1

∑m
i=1 a

q
i , the decomposition

(9) of v̂n shows that we can always pick Mq
n = 3q−1(Gq +Bq

n + σq
n) in (11). This makes the

last part of (11) redundant, but we will maintain the explicit bound for Mn to simplify the
presentation. ¶

▶ The players’ mirror map. The second defining element of (MRM) is the “mirror map”
Qi : Yi → Xi of each player – or, in aggregate form, the product map Q = (Qi)i∈N : Y → X .
This is defined by means of a “regularizer ” on X as follows:3

Definition 1. We say that hi : Vi → R ∪ {∞} is a regularizer on Xi if:
(1) hi is supported on Xi, i.e., domhi = {xi ∈ Vi : hi(xi) <∞} = Xi.
(2) hi is continuous and strongly convex on Xi, i.e., there exists a constant Ki > 0 such

that

hi(λxi + (1− λ)x′i) ≤ λhi(xi) + (1− λ)hi(x′i)− 1
2Kiλ(1− λ)∥x′i − xi∥2 (12)

for all xi, x′i ∈ Xi and all λ ∈ [0, 1].
The mirror map associated to hi is defined for all yi ∈ Yi as

Qi(yi) = argmaxxi∈Xi
{⟨yi, xi⟩ − hi(xi)} (13)

and the image Xhi
= imQi of Qi is called the prox-domain of hi.

For concision, we will also write h(x) =
∑

i hi(xi) for the players’ aggregate regularizer and
Q = (Qi)i∈N for the induced mirror map. We provide three examples of this construction
below:

Example 4.1 (Euclidean projection). Consider the quadratic regularizer h(x) = ∥x∥22/2,
x ∈ X . Then the induced mirror map is the Euclidean projector Q(y) = argminx∈X ∥y−x∥2;
as a special case, in unconstrained settings (X = V), we have Q(y) = y as per Algorithms 1–4
and 7.

Example 4.2 (Entropic regularization and exponential weights). Let Xi = ∆(Ai) for an
ensemble of pure strategies Ai, i ∈ N , and let hi(xi) =

∑
αi∈Ai

xiαi
log xiαi

be the (negative)
Gibbs–Shannon entropy on Xi. By standard arguments, the associated mirror map is the
logit choice map (7), as per Algorithms 5 and 9 in the previous section.

3The authors thank S. Sorin for proposing this definition.
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Algorithm Actions (Xi) Mirror Map (Q) Feedback Bias (Bn) Magnitude (Mn)

(SGA) Rdi y oracle 0 O(1)

(seqGA) Rdi y oracle O(1/np) O(1)

(EG) / (OG) Rdi y oracle O(1/np) O(1)

(EW) ∆(Ai) Λ(y) oracle 0 O(1)

(MP) general general oracle O(1/np) O(1)

(SPSA) Rdi y payoff O(1/nr) O(nr)

(DGA) [0,∞) exp(y) payoff O(1/n) O(1)

(EXP3) ∆(Ai) Λ(y) payoff O(1/nr) O(nr)

Table 1: The algorithms of Section 3 as instances of (MRM). Where applicable,
the methods’ step-size and sampling parameters are assumed to be of the form
γn = γ/np and δn ∝ 1/nr for some p ∈ [0, 1] and r ∈ (0, 1/2) respectively. All
oracle-based methods are further assumed to employ an SFO satisfying (5) (with
q = ∞ for Algorithms 4 and 5).

Example 4.3 (Regularization on the orthant). Let Xi = [0,∞) and set hi(xi) = xi log xi − xi
for all xi ∈ Xi, i ∈ N . By a straightforward calculation, the induced mirror map is
Qi(yi) = exp(yi). As we discuss in Section 4.3, this provides the setup for the DGA method
of [9] (Algorithm 8).4

For convenience, we collect the relevant regularizer setups for Algorithms 1–9 in Table 1.

4.2. Mean dynamics and stochastic approximation. A key feature of (MRM) is that it can
be seen as a “noisy” discretization of the mean dynamics

ẏ = v(x) x = Q(y). (MD)

In this interpretation, ẏ represents the continuous-time limit of the finite difference quotient
(Yn+1 − Yn)/γn. In particular, if γn is “sufficiently small” and the gradient signal v̂n is a
“good enough” approximation of v(Xn), it is plausible to expect that the iterates of (MRM)
and the solutions of (MD) will eventually come together.

Following [7, 8], this heuristic can be made precise as follows: First, we define the
(semi)flow associated to (MD) as the map Ψ: R× Y → Y which sends an initial condition
y ∈ Y to the point Ψt(y) ∈ Y obtained by following the orbit of (MD) starting at y for
time t ∈ R. Then, to compare the sequence of iterates Yn generated by (MRM) with the
solution orbits of (MD), we introduce the effective time τn =

∑n
k=1 γk and we define the

continuous-time affine interpolation Y(t) of Yn as

Y(t) = Yn +
t− τn

τn+1 − τn
(Yn+1 − Yn) for all t ∈ [τn, τn+1], n = 1, 2, . . . (14)

We then have the following notion of “asymptotic closeness” between (MRM) and (MD):

Definition 2 (Benaïm, 1999). The sequence Yn is an asymptotic pseudotrajectory (APT) of
(MD) if

limt→∞ sup0≤s≤T ∥Y(t+ s)−Ψs(Y(t))∥ = 0 for all T > 0. (APT)
In a slight abuse of terminology, we will also say that the sequence Xn = Q(Yn) is an APT
of (MD).

4Strictly speaking, the regularizer x log x−x is not strongly convex over R+ but it is strongly convex over
any bounded subset of R+ – and it can be made strongly convex over all of R+ by adding a small quadratic
penalty of the form εx2/2. This issue does not change the essence of our results, so we sidestep the details.
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In words, Definition 2 posits that Xn asymptotically tracks the orbits x(t) = Q(y(t)) of
(MD) with arbitrary precision over windows of arbitrary length. Of course, this property is
quite difficult to verify in general, but the following proposition can be used as an explicit
criterion to that effect:

Proposition 3. Suppose that (MRM) is run with a step-size sequence γn such that
a) limn→∞ γn = 0. (15a)

b) limn→∞Bn = 0 and
∑

n γ
1+q/2
n Mq

n <∞. (15b)
Then the sequence Xn = Q(Yn) is an APT of (MD) with probability 1.

Proposition 3 is a variant of a basic result by Benaïm [7, Props. 4.1 and 4.2] for processes
with supnMn <∞. The proof proceeds as in Benaïm [7, cf. Eq. (13) and onwards] so we
omit it.

4.3. Examples and applications. We now return to the online policies presented in Section 3
and illustrate how they can be recast in the framework of (MRM). We begin by presenting
the continuous-time dynamics associated to Examples 4.1–4.3:

Example 4.4. Take X = V and Q(y) = y as in Example 4.1. Then (MD) gives rise to the
(Euclidean) gradient dynamics

ẋ = v(x) (GD)

Example 4.5. Let Xi = ∆(Ai) and take Qi = Λi as in Example 4.2. Then, by a standard
calculation, (MD) boils down to the replicator dynamics [61]

ẋiαi
= xiαi

[ui(αi;x−i)− ui(xi;x−i)]. (RD)

Example 4.6. Let Xi = [0,∞) and take Qi(yi) = exp(yi) as in Example 4.3. In this way, by
differentiating xi = eyi we obtain the dampened gradient dynamics [9]

ẋi = xivi(x). (DGD)

We now proceed to illustrate how Algorithms 1–9 can be viewed as instances of (MRM).

▶ Algorithm 1: Stochastic gradient ascent. To recover (SGA), it suffices to take Q(y) = y
(cf. Example 4.1) and run (MRM) with gradient signals v̂n = V (Xn; θn).

▶ Algorithm 2: Sequential gradient ascent. As per Algorithm 1, but with player-specific
gradient signals v̂i,n = Vi(. . . , Xi−1,n+1, Xi,n, Xi+1,n, . . . ; θn).

▶ Algorithm 3: Extra-gradient. As per Algorithm 1, but with v̂n = V (Xn+1/2; θn+1/2).

▶ Algorithm 4: Optimistic gradient. As per Algorithm 1, but with v̂n = V (Xn+1/2; θn).

▶ Algorithm 5: Exponential weights. Here, the relevant mirror map is the logit choice map
of Example 4.2. The corresponding sequence of oracle signals is then given by (6a) or (6b),
depending on the information available to the players.

▶ Algorithm 6: Mirror-prox. The mirror map here is general but, otherwise, the gradient
signal is as in Algorithm 3, i.e., v̂n = V (Xn+1/2; θn+1/2).

▶ Algorithm 7: Single-point stochastic approximation. As per Algorithm 1, but with
gradient signals v̂i,n = (ui(X̂n)/δn)Wi,n.
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▶ Algorithm 8: Dampened gradient approximation. To include (DGA) in the framework of
(MRM), take Qi(yi) = exp(yi) as in Example 4.3. Then, letting Yn = logXn, we get

Yn+1 = Yn + log(1 + (ui(Xn+1/2)− ui(Xn))Wi,n). (16)

We may therefore view (DGA) as an instance of (MRM) with γn = 1/n and gradient signals
v̂i,n = n · log(1 + (ui(Xn+1/2)− ui(Xn))Wi,n).

▶ Algorithm 9: Exponential weights for exploration and exploitation. As per Algorithm 5,
but with v̂n given by (IWE) and pure strategies α̂n chosen according to X̂n.

The above justifies the characterization of (MRM) as a common ancestor of the policies
discussed in Section 3. On the other hand, it is not clear if the sequence of play generated by
each of these methods is, indeed, an APT of the associated dynamics (MD). In this regard,
the following proposition provides a range of easily verifiable requirements for Algorithms 1–9:

Proposition 4. Suppose that Algorithms 1–9 are run with step-size γn ∝ 1/np, p ∈ [0, 1], and
if applicable, a sampling parameter δn ∝ 1/nr, r ∈ (0, 1/2). Then the corresponding sequence
of gradient signals v̂n in (MRM) enjoys the bounds:
• For Algorithms 1 and 5: Bn = 0 and Mn = O(1).
• For Algorithms 2–4 and 6: Bn = O(1/np) and Mn = O(1).
• For Algorithms 7 and 9: Bn = O(1/nr) and Mn = O(nr).
• For Algorithm 8: Bn = O(1/n) and Mn = O(1).

Thus, combining Propositions 3 and 4, we obtain the following APT criterion for Algo-
rithms 1–9:

Corollary 1. Suppose that Algorithms 1–9 are run with parameters as in Proposition 4. Then
the sequence Xn = Q(Yn) comprises an APT of the corresponding instance of (MD) provided
that:
• For Algorithms 1–4 and 6: p > 2/(2 + q).
• For Algorithm 5: p > 0.
• For Algorithms 7 and 9: p > 2r > 0.

Corollary 1 provides a minimal set of hypotheses under which (MD) is a faithful repre-
sentation of Algorithms 1–9. For some of the algorithms discussed above, this property is
already known in the literature, cf. [7] for (SGA), [46] for (EW), and [9] for (DGA). For
others however, the link with (MD) seems to be new: especially in the case of (EG) / (OG),
Corollary 1 settles a standing question in the online learning literature concerning the mean
dynamics of optimistic gradient methods.

The key element in the proof of Proposition 4 is to bound the bias and moments of the
corresponding gradient signal sequence. To streamline the flow of our paper, we defer the
relevant calculations to Appendix B and we present an overview of these bounds in Table 1.

5. General convergence analysis

5.1. The primal-dual interplay. In this section, we proceed to derive a series of general
convergence results for (MRM) by linking the algorithm’s long-run behavior to that of (MD).
However, before digging into this analysis, it is important to highlight an important subtlety
concerning the interface between the dynamics’ driving, dual state y(t) ∈ Y , and the players’
primal, action profile x(t) = Q(y(t)) ∈ X .

To explain the issue, take a single player with payoff function u(x) = 1− x for x ∈ X =
[0,∞), and consider two different instances of (MD):
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(1) The Euclidean projection dynamics: This case corresponds to the Euclidean projector
Q(y) = [y]+ on [0,∞), as induced by the quadratic regularizer h(x) = x2/2 (cf.
Example 4.1). Since v(x) = u′(x) = −1, (MD) gives ẏ = −1, i.e., y(t) = y(0)− t and
x(t) = [y(0) − t]+ for all t ≥ 0. In particular, this means that x(t) reaches 0 after
time τ = y(0), and subsequently remains there for all time. Since different primal
trajectories coalesce at 0 in finite time, the dynamics on x(t) cannot be described by
a system of ordinary differential equations on X .

(2) The dampened gradient dynamics: This case corresponds to the setup of Algorithm 8,
namely the mirror map Q(y) = exp(y) induced by the entropic regularizer h(x) =
x log x− x. As above, the dynamics on Y are given by ẏ = −1, so y(t) = y(0)− t for
all t ≥ 0. However, we now have x(t) = exp(y(0)− t), i.e., x(t) only converges to 0
asymptotically as t→∞.

This qualitative difference in behavior (asymptotic vs. finite-time convergence) is deeply
rooted in the boundary behavior of the chosen regularizer. Relegating the detailed statements
(and proofs) to Appendix A, we can sum up this dichotomy along the following principal
axes:

(1) Surjective mirror maps: in this case, Xh = imQ = X , cf. Example 4.1. The dynamics’
primal orbits x(t) = Q(y(t)) may split or coalesce in finite time, so they do not fully
capture the state of the system. In particular, the moments at which x(t) enters or
exits the boundary of X cannot always be anticipated by a dynamical system on X .

(2) Interior-valued mirror maps: in this case, Xh = imQ = riX , so Q is not surjective,
cf. Examples 4.2 and 4.3. The dynamics’ primal orbits remain in riX for all time,
and they can be fully described by a well-posed dynamical system on X .

What makes this duality important is that game-theoretic solution concepts reside by
necessity in the primal space X ⊆ V; however, the dynamics (MD) actually evolve on the
dual space Y. This creates a relatively awkward situation in which dynamical notions of
equilibrium and stability must be defined on Y, whereas the corresponding game-theoretic
notions are defined on X ⊆ V. This difficulty permeates our analysis, and we will return to
it several times below.

5.2. Convergence to internally chain transitive sets. To analyze the convergence properties
of (MD), we will first require some basic definitions from the theory of dynamical systems.

Definition 3. Let D be a nonempty compact subset of Y , and let Ψ: R× Y → Y denote the
flow map of (MD). Then:

(1) D is invariant under (MD) if Ψt(D) = D for all t ∈ R.

(2) D is an attractor for (MD) if it admits a neighborhoodD ⊆ Y such that dist(Ψt(y),D)→
0 uniformly in y ∈ D as t→∞.

(3) D is internally chain transitive (ICT) if it is invariant and Ψ|D has no attractors other
than D.

The general theory of Benaïm and Hirsch [8] then yields the following convergence result:

Theorem 1 (Benaïm and Hirsch, 1996). Let Yn, n = 1, 2, . . . , be an APT of (MD) with
supn∥Yn∥∗ <∞. Then Yn converges to an ICT set of (MD).

Proof. Lemma A.1 in Appendix A shows that Q is Lipschitz continuous. Since v is also
Lipschitz continuous by Assumption 1, our assertion follows from Benaïm and Hirsch [8,
Theorem 0.1]. ■
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Taken together, Corollary 1 and Theorem 1 assert that the behavior of the various
algorithms presented in Section 3 (and many more) can be understood by looking at the ICT
sets of the same mean dynamics. However, from a practical point of view, this comes with
two important caveats: First, the boundedness assumption for Yn cannot be easily validated
from the game’s primitives, so it is not clear when Theorem 1 applies – and, in much of the
literature, this assumption has persisted as a condition that needs to be enforced “by hand”
[7, 38]. Second, in certain cases, it is actually desirable to have Yn escape to infinity. As an
example, consider the toy problem u(x) = 1− x with x ∈ [0, 1] and entropic regularization,
i.e., Q(y) = 1/(1 + e−y): in this case, the only way that Xn = Q(Yn) can converge to the
unique solution at 0 is if limn Yn = −∞, i.e., if Yn is unbounded.

Because of the above, Theorem 1 and the relevant boundedness requirement for Yn are
more relevant for games whose solutions are contained in the interior of X . To account for
this, we will employ the following “subcoercivity” requirement:

Definition 4. We say that G is subcoercive if there exists a compact set K ∈ riX and a
reference point p ∈ K such that

⟨v(x), x− p⟩ ≤ 0 for all x ∈ X \ K. (SC)

Remark. The term “subcoercivity” alludes to the standard notion of coercivity as defined
in convex analysis, viz. lim∥x∥→∞⟨v(x), x⟩/∥x∥ =∞. That said, we should stress that (SC)
does not impose a superlinear growth requirement for v (hence the “sub”), and also applies
to bounded spaces. ¶

Geometrically, subcoercivity simply posits that the Nash field v(x) of the game points
weakly towards p outside K, so any “attracting” behavior in G must be contained in K: for
example, it is straightforward to verify that any variationally stable state of G must lie within
K if (SC) holds. Beyond this, it is important to note that K can be arbitrarily large (relative
to X ) and there are no limitations on what type of solutions – or behaviors – may occur
within K. For concreteness, we provide some important examples of classes of games that
satisfy (SC) below.

Example 5.1 (Potential games). Suppose that G admits a quasiconcave potential function Φ
with argmaxΦ ⊆ riX . If we fix a maximizer p of Φ, we have ⟨v(x), x−p⟩ = ⟨∇Φ(x), x−p⟩ ≤ 0
for all x ∈ X , so G is subcoercive. More generally, G is subcoercive if Φ is “eventually
quasiconcave”, i.e., the upper level sets L+

c (Φ) = {x ∈ X : Φ(x) ≥ c} of Φ are convex for
sufficiently small c > inf Φ and at least one such set is contained in riX .5 ¶

Example 5.2 (Min-max games). Consider the toy game minx1∈[−1,1] maxx2∈[−1,1] x1x2. Since
⟨v(x), x⟩ = −x2x1 + x1x2 = 0 for all x ∈ [−1, 1]× [−1, 1], the game is trivially subcoercive.
More generally, it is easy to check that any two-player, quasi-convex / quasi-concave game
with an interior equilibrium is subcoercive. ¶

By itself, subcoercivity ensures that there is no consistent drift pointing away from K, so
it is reasonable to expect that Yn is not repelled to infinity either. To control the inherent
stochasticity in Yn and make this intuition precise, we will require the following summability
conditions regarding the bias, variance, and magnitude of the gradient signal process v̂n:∑

n γnBn <∞
∑

n γ
2
nσ

2
n <∞ and

∑
n γ

2
nM

2
n <∞. (Sum)

Under these conditions, we have the following stability result:

5To see this, let K = L+
c0(Φ) be a convex upper level set of Φ in riX . Then, for all c ≤ c0 and all

x with Φ(x) = c, the segment x + τ(p − x), τ ∈ [0, 1], is contained in L+
c (Φ) ⊇ L+

c0(Φ), so the function
ϕ(τ) = Φ(x+ τ(p− x)) cannot have ϕ′(0) < 0. This implies that 0 ≤ ⟨∇Φ(x), p− x⟩ = ⟨v(x), p− x⟩ for all
x ∈ X \ K, i.e., G is subcoercive.
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Proposition 5. Suppose that (MRM) is run with step-size and gradient signal sequences
satisfying (Sum). If G is subcoercive, the sequence of iterates Yn generated by (MRM) is
bounded w.p.1.

Before proving Proposition 5, some remarks and corollaries are in order. First, it is
important to note that subcoercivity only concerns the primitives of the game under study,
and it is otherwise “algorithm-agnostic”. In this regard, given the primal-dual nature of the
underlying dynamics (MD), Proposition 5 plays a major role in enabling the use of stochastic
approximation tools and techniques (otherwise, the boundedness of X by itself does not
suffice).

Second, under Proposition 4, the verification of (Sum) becomes a trivial affair for the ex-
ample algorithms under study. In particular, a joint application of Corollary 1, Propositions 4
and 5, and Theorem 1 readily yields the general convergence result below:

Theorem 2. Suppose that Algorithms 1–9 are run with step-size γn ∝ 1/np, p ∈ (1/2, 1], and
where applicable, a sampling parameter δn ∝ 1/nr such that 1 − p < r < p − 1/2. If G is
subcoercive, the sequence of play Xn = Q(Yn) converges to an ICT set of (MD) w.p.1.

Corollary 2. If G admits a subcoercive potential, Xn converges to a component of critical
points of G w.p.1. In particular, if the potential is concave, Xn converges to the set of Nash
equilibria of G.

Corollary 3. Suppose that G is a strictly convex-concave min-max game with an interior
equilibrium x∗ ∈ riX . Then Xn converges to x∗ w.p.1.

Corollaries 2 and 3 follow respectively from the fact that the only ICT sets of potential
games and strictly convex-concave games are their sets of critical points, see e.g., [7, 46]
and references therein. On the other hand, this is not the end of the story, and one should
not presume that Theorem 2 can only be used to derive equilibrium convergence results. In
Fig. 1, we present an example of an “almost bilinear” 2-player game whose only ICT sets are
an unstable critical point at the origin and a “spurious” (but otherwise stable) limit cycle
that contains no critical points. In this example, Theorem 2 shows that the range of more
sophisticated algorithms (extra-gradient, optimistic gradient, etc.) that have been proposed
to overcome the convergence deficiencies of (SGA) in the class of convex-concave games all
fail to converge as soon as a modicum of non-convexity is present in the game. By this
token, Theorem 2 should not be viewed as a narrow equilibrium convergence criterion, but
as a characterization of what types of behaviors may arise in the limit of a game-theoretic
learning process – equilibrium and non-equilibrium alike.

We conclude this section with the proof of our iterate boundedness result.
Proof of Proposition 5. Our proof hinges on the construction of a suitable “energy function”
E : Y → R+ for (MRM). To define it, we will assume for simplicity – and without loss
of generality – that X has nonempty topological interior in V (which can be achieved by
redefining V to be the affine hull of X ), that the reference point p in Definition 4 is the origin
0 ∈ V, and that h(p) = 0 (which can be achieved by a simple translation).

With this in mind, let h∗(y) = maxx∈X {⟨y, x⟩ − h(x)} denote the convex conjugate of h.
Then, by Lemma A.2 in Appendix A, we have

(K/2)∥Q(y)∥2 ≤ h∗(y) ≤ −minh+ ⟨y,Q(y)⟩+ (2/K)∥y∥2∗ for all y ∈ Y (17)

where we note that minh ≤ h(p) = 0 by assumption. Since h is lower-semicontinuous, we
have h = h∗∗ by the Fenchel–Moreau theorem. In addition, the Moreau–Rockafellar theorem
[6, Theorem 4.17] implies that h∗ is coercive because it can be written as h∗(y) = h∗(y)−⟨y, p⟩
and 0 = p ∈ riX = ri domh∗∗ by subcoercivity. Finally, since X has nonempty interior, it
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Figure 1: Non-equilibrium behavior in an “almost bilinear” min-max game. The
plots show the trajectory of play under (SGA), (EG) and (OG) in a min-max
game with loss function ℓ(x1, x2) = x1x2+ε[ϕ(x2)−ϕ(x1)] where ϕ(z) = 2z2−4z4,
ε = 2−6 and x1, x2 ∈ [−1, 1]. All methods converge to a spurious limit cycle that
contains no critical points. A direct check gives ⟨v(x), x⟩ ≤ 0 outside the quartic
4x4

1 + 4x4
2 = x2

1 + x2
2 so ℓ is subcoercive and Theorem 2 applies.

follows that the polar cone PC(x) is trivially 0 for all x ∈ riX , so the subdifferential ∂h of h
is compact-valued on K ⊆ riX . Thus, by the upper hemicontinuity of the subdifferential
and the compactness of K, we deduce that the image D = ∂h(K) of K under ∂h is compact,
cf. [28, p. 201]. Hence, by the coercivity of h∗ and the fact that Q(y) = x if and only if
∂h(x) ∋ y (cf. Lemma A.1 in Appendix A), there exists some c > 0 such that h∗(y) ≤ c
whenever Q(y) ∈ K, i.e., Q−1(K) is contained in the c-sublevel set L−

c (h
∗) of h∗.

With all this said and done, fix some c′ > c and let

E(y) = φ(h∗(y)) for all y ∈ Y (18)

where φ : R+ → R+ is a C2-smooth “gauge function” with the following properties: i) φ(u) = 0
for u ≤ c; ii) φ(u) =

√
u for u ≥ c′; iii) φ′(u) ≥ 0 and φ′′(u) ≤ 1 for all u ∈ R+.6 Then,

setting x = Q(y) and differentiating, we readily obtain

∇E(y) = φ′(h∗(y)) · ∇h∗(y) = φ′(h∗(y)) · x for all y ∈ Y (19)

and hence, by the smoothness properties of φ and h∗, there exists some constant C2 ≥ 0
such that

E(y + w) = E(y) + φ′(h∗(y)) · ⟨w, x⟩+ C2∥w∥2∗ for all y, w ∈ Y. (20)

Therefore, combining Eqs. (19) and (20) and letting En = E(Yn), we obtain

En+1 ≤ En + φ′(h∗(Yn)) · ⟨v̂n, Xn⟩+ C2∥v̂n∥2∗ ≤ En + φn⟨bn + Un, Xn⟩+ C2∥v̂n∥2∗ (21)

where we set φn = φ′(h∗(Yn)) and we used the fact that φ(h∗(y)) · ⟨v(x), x⟩ ≤ 0 for all
y ∈ Y (the latter being a consequence of subcoercivity and the defining properties of φ).
Accordingly, conditioning on Fn and taking expectations, we finally get

E[En+1 | Fn] ≤ En + γnφnBn∥Xn∥+ γ2nM
2
n, (22)

where we used the Cauchy-Schwarz inequality to bound ⟨bn, Xn⟩ from above by Bn∥Xn∥
(recall also that E[Un | Fn] = 0 by definition).

Now, let εn = γnφnBn∥Xn∥+M2
n denote the “residual” term in (22), and consider the

auxiliary process En = En+1 +
∑∞

k=n+1 εk. By (22), we have E[En | Fn] ≤ En +
∑∞

k=n εn =

6That such a function exists is a straightforward exercise in the construction of aproximate identities,
which we omit.
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En−1, i.e., En is a supermartingale relative to Fn. Moreover, by (17) and the definition of
φ, we further have

φn =
1

2
√
h∗(Yn)

≤ 1√
2K∥Xn∥

whenever h∗(Yn) ≥ c′ (23)

so there exists some (deterministic) positive constant C1 such that supn φn∥Xn∥ ≤ C1. We
thus get

∞∑
n=1

εn ≤ C1

∞∑
n=1

γnBn + C2

∞∑
n=1

γ2nM
2
n <∞ (24)

by the summability condition (Sum). This shows that E[
∑

n εn] < ∞ and, in turn, that
E[En] ≤ E[E1] <∞, i.e., En is uniformly bounded in L1. Accordingly, by Doob’s submartin-
gale convergence theorem [25, Theorem 2.5], it follows that En converges with probability 1
to some finite random limit E∞. Since

∑
n εn <∞, this implies that En = En−1−

∑∞
k=n εn

also converges to some (random) finite limit (a.s.). Thus, by the coercivity of E, we deduce
that lim supn∥Xn∥ <∞ w.p.1, as claimed. ■

6. Convergence to primal attractors

Theorems 1 and 2 provide a generalist view of the convergence properties of the class of
algorithms under study. At the same time however, they do not suffice to answer sharper
convergence questions such as what type of sets could be attracting under (MRM) and/or
how to reconcile the fact that a boundary equilibrium of a game could attract all primal
orbits x(t) = Q(y(t)) of (MD) even when the actual solution orbit y(t) of (MD) escapes to
infinity. A crucial tool to address these questions will be the notion of a primal attractor,
which we present and discuss below.

6.1. Primal attractors. By Conley’s theorem [16], attractors are characterized by the existence
of a local Lyapunov function, i.e., a smooth function Φ which is (i) zero on the attractor;
(ii) positive everywhere else; and (iii) strictly decreasing along every nearby trajectory
that does not belong to the attractor (Φ̇ < 0). In our case however, the situation is more
complicated because of the primal-dual interplay that we highlighted in Section 5.1: we
are interested in the attracting properties of subsets of the primal space X ⊆ V, but the
dynamics evolve in the dual space Y = V∗ of V – and as we already noted, convergence in X
may require escape to infinity in Y.

In view of all this, we introduce the following notions:

Definition 5. A Lipschitz continuous and smooth function E : Y → R is a local energy function
for (MD) if sup{Ė(y) : E− < E(y) < E+} < 0 for all sufficiently small E+ > E− > inf E.
Accordingly, a nonempty compact subset S of X is said to be a primal attractor of (MD)
if it admits an energy function E with inf E > −∞ and such that Q(y) → S whenever
E(y)→ inf E. In particular, if the above requirements hold for all E+ ≤ supE, we will refer
to E and S as global.

Informally, Definition 5 simply posits that E is a “primal-dual” Lyapunov function for
S: it is smooth, positive-definite, and strictly decreasing along any nearby primal orbit
x(t) = Q(y(t)) that does not lie in S. In this regard, a natural question that arises is
whether a primal attractor could be defined instead as the mirror image Q(D) of an ordinary
attractor D ⊆ Y of (MD). Indeed, if D is an attractor for (MD), then Q(D) is trivially a
primal attractor for (MD); in the converse direction however, primal orbits could converge
to a point x∗ outside the prox-domain Xh of Q, in which case Q−1(x∗) could be empty – so
it wouldn’t make sense to talk about the attracting properties of Q−1(x∗) under (MD). To
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see this, consider again the toy problem u(x) = 1 − x with x ∈ [0, 1] and the mirror map
Q(y) = 1/(1 + e−y). In this instance, all primal orbits x(t) = Q(y(t)) of (MD) converge to
0, but Q−1(0) is empty so 0 cannot be the mirror image of any attractor of (MD).

This simple example highlights several interesting aspects of the problem. First, as we
already saw before, having trajectories that escape to infinity may be a desirable property
as long as the orbits escape to infinity along the “right” direction. The second is that the
notion of an ICT set may not suffice to capture the long-run behavior of (MD) in constrained
problems: in the above example, (MD) has no ICT sets but, nonetheless, all primal orbits
converge to the game’s unique Nash equilibrium. Because of this, stochastic approximation
results based on ICT sets become more difficult to apply in games with constrained action
spaces (such as mixed extensions of finite games).

6.2. First steps. Our convergence analysis will hinge on deriving a suitable “energy inequality”
for (MRM). To that end, note first that if E is an energy function for (MD), there exists some
E∗ > inf E (possibly equal to ∞) such that the sublevel set W = {y ∈ Y : E(y) ≤ E∗} is
forward invariant under (MD) and sup{Ė(y) : E∗ ≥ E(y) > E−} < 0 for all E− ∈ (inf E,E∗).
Then, if S is a primal attractor with energy function E, we will refer to B = Q(W) as a
fundamental neighborhood of S. Finally, we note that there exist positive constants β,H > 0
such that ∥∇E(y)∥ ≤ H and

E(y′) ≤ E(y) + ⟨∇E(y), y′ − y⟩+ 1
2β∥y

′ − y∥2∗ (25)

for all y, y′ ∈ Y. We then have the following template inequality:

Lemma 1. Let En := E(Yn). Then, for all n = 1, 2, . . . , we have

En+1 ≤ En + γn⟨v(Xn),∇E(Yn)⟩+ γnξn + γnχn + γ2nψ
2
n, (26)

where the error terms ξn, χn, and ψn are given by

ξn = ⟨Un,∇E(Yn)⟩, χn = HBn and ψ2
n = 1

2β∥v̂n∥
2
∗. (27)

Proof. Simply unroll (25) after substituting y ← Yn and y′ ← Yn+1 = Yn + γnv̂n with v̂n as
in (9). ■

Now, by the definition of E, we have Ė(y) = ⟨v(Q(y)),∇E(y)⟩ < 0 whenever y ∈
W \Q−1(S). Hence, for Xn ∈ B, (26) becomes

En+1 ≤ En + γnξn + γnχn + γ2nψ
2
n. (28)

Of course, each of these error terms can be positive, so En may fail to be decreasing, even
when Xn ∈ B. On that account, it will be convenient to introduce the error processes

In =
∑n

k=1 γkξk IIn =
∑n

k=1 γkχk and IIIn =
∑n

k=1 γ
2
kψ

2
k (29)

which measure directly the aggregate effect of each error term in (26). As it turns out, under
(Sum), these errors can all be compensated by the negative drift of (26), leading to the
following global convergence result:

Proposition 6. Let S be a global attractor of (MD), and let Xn = Q(Yn) be the sequence of
play generated by (MRM). If (Sum) holds, then Xn converges to S with probability 1.

To streamline our discussion, we defer the proof of Proposition 6 to the end of this section,
and we focus instead on deriving a similar convergence result for non-global attractors. In
this case, even if the algorithm begins play very close to S, a single “bad” realization of the
noise could force the process to exit the basin of attraction of S, possibly never to return.
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Thus, to control the probability with which this event occurs, we will introduce the random
variables

I∞ = supn In II∞ = supn IIn and III∞ = supn IIIn (30)

which can be seen as a “worst-case” measure of the aggregate error entering (26). Then,
given an error tolerance ε > 0 and a confidence level ρ > 0, we will consider the stability
requirement

P(I∞ > ε) ≤ ρ (Stb.I) P(II∞ > ε) ≤ ρ (Stb.II) P(III∞ > ε) ≤ ρ (Stb.III)

which, in turn, leads to the following local analogue of Proposition 6:

Proposition 7. Let S be a primal attractor of (MD), fix some confidence index ρ > 0, and let
Xn = Q(Yn) be the sequence of play generated by (MRM). Assume further that the algorithm
begins play at a neighborhood U of S such that E(Y1) ≤ E∗/4 =: ε. If (Sum) and (Stb) hold,
then

P(Xn converges to S |X1 ∈ U) ≥ 1− 3ρ. (32)

As with its global counterpart, we defer the proof of Proposition 7 to the end of this
section. For now, we simply note that Propositions 6 and 7 can be difficult to employ in
practice because of their reliance on the conditions (Sum) and (Stb). In the next section,
we provide a range of explicit parameter schedules that can be used to verify these implicit
requirements directly.

6.3. Main results, implications, and applications. To obtain an explicit version of Proposi-
tions 6 and 7, we will assume in the sequel that (MRM) is run with step-size and gradient
signal sequences such that

γn = γ/np Bn = O(1/nb) and Mn = O(ns) (33)

for some p ∈ [0, 1], b > 0 and s < 1/2. Since the schedule (33) involves Bn and Mn (which,
depending on the algorithm, may be beyond the players’ control), this requirement may also
seem unverifiable at first glance. However, in view of Proposition 4, the exponents b and s
can be directly expressed in terms of the parameters of the specific algorithm under study,
so this is not an issue.

With all this in mind, our main result in this section is as follows:

Theorem 3. Let S be a primal attractor of (MD), and let Xn be the sequence of play of
(MRM) with step-size and gradient signal sequences such that p+ b > 1 and p− s > 1/2 in
(33). Then:

Case 1: If S is global, Xn converges to S with probability 1.
Case 2: If S is local, there exists a neighborhood U of S such that, for any given ρ > 0,

we have
P(Xn converges to S |X1 ∈ U) ≥ 1− ρ (34)

provided that γ > 0 is small enough relative to ρ.

Corollary 4. Suppose that Algorithms 1–9 are run with step-size γn = γ/np, p ∈ (1/2, 1],
and where applicable, a sampling parameter δn = δ/nr such that 1− p < r < p− 1/2. Then
the conclusions of Theorem 3 hold.

Theorem 3 and Corollary 4 are our primary results concerning primal attractors so, before
proving them, we proceed to show how they apply to the range of solution concepts – and
classes of games – discussed in Section 2.
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▶ Variational stability, global. A key property of globally variationally stable states is that
they are global attractors of (MD). To state this fact formally, we will need an additional
regularity assumption for h, namely that

h(xn) + ⟨yn, x− xn⟩ → h(x) whenever xn → x (R)

for all x ∈ X and every sequence of subgradients yn ∈ ∂h(xn). This condition simply posits
that the first-order approximation of h(x) from h(xn) is always accurate in the limit xn → x,
a property which is satisfied by all examples of regularizers that we have considered so far; for
a more detailed discussion, cf. Censor and Lent [13], Chen and Teboulle [14] and references
therein.

With this caveat in mind, we have:

Proposition 8. Suppose that x∗ ∈ X is globally variationally stable. If the players’ regularizers
satisfy (R), x∗ is a global attractor.

Proof. Let F (y) = h(x∗) + h∗(y) − ⟨y, x∗⟩ where h∗(y) = maxx∈X {⟨y, x⟩ − h(x)} denotes
the convex conjugate of h. By the Fenchel–Young inequality, we have F (y) ≥ 0 for all
y ∈ Y. Moreover, by the definition (13) of Q, we have F (yn) = h(x∗) + h∗(yn)− ⟨yn, x∗⟩ =
h(x∗) − h(xn) + ⟨yn, xn − x∗⟩ for every sequence yn ∈ Y, xn = Q(yn), so (R) yields
F (yn)→ 0 if and only if xn = Q(yn)→ x∗. Finally, by Lemma A.1 in Appendix A, we have
∇h∗(y) = Q(y) so (MD) gives

Ḟ (y) = ⟨ẏ,∇F (y)⟩ = ⟨v(Q(y)),∇h∗(y)− x∗⟩ = ⟨v(x), x− x∗⟩ < 0 (35)

whenever x = Q(y) ̸= x∗. Thus, putting everything together, we conclude that Ḟ (y)→ 0 if
and only if F (y)→ 0, which implies in turn that sup{Ḟ (y) : F (y) > F−} < 0 for all F− > 0.

Consider now the gauge function φ : R+ → R+ with φ(u) = u if u ∈ [0, 1] and φ(u) =
2
√
u− 1 for u ≥ 1, so φ′(u) ≤ 1/

√
u for all u > 0. Then, setting E(y) = φ(F (y)), we readily

get ∇E(y) = φ′(F (y))∇F (y) so (35) yields Ė(y) = ⟨ẏ,∇E(y)⟩ = φ′(F (y))⟨v(x), x− x∗⟩ < 0
whenever x = Q(y) ̸= x∗. Furthermore, by Lemma A.2 we have F (y) ≥ (K/2)∥Q(y)− x∗∥2,
and hence

∥∇E(y)∥∗ = φ′(F (y))∥∇F (y)∥ ≤ ∥∇F (y)∥√
F (y)

≤
√
2/K∥Q(y)− x∗∥√
∥Q(y)− x∗∥2

≤
√
2/K (36)

so we can take H =
√
2/K. Finally, again by Lemma A.2 in Appendix A, F (y) is (1/K)-

Lipschitz smooth, so Eq. (25) follows immediately from the concavity of φ. This shows that
E is a global energy function for x∗, i.e., x∗ is a global attractor of (MD). ■

Armed with this observation, we immediately obtain the following corollaries of Theorem 3:

Corollary 5. Suppose that Algorithms 1–9 are run with parameters as in Corollary 4 – or,
more generally, that (MRM) is run with parameters as in Theorem 3. If x∗ is globally
variationally stable, then Xn converges to x∗ with probability 1.

Corollary 6. Suppose that Algorithms 1–9 are run with parameters as in Corollary 4 –
or, more generally, that (MRM) is run with parameters as in Theorem 3. If G is strictly
monotone, then Xn converges to the game’s unique Nash equilibrium with probability 1.

We should stress here that neither of the above results can be inferred by the ICT
convergence results of Section 5. In particular, if x∗ lies at the boundary of X , it might fail
to be accessible unless the dual process Yn escapes to infinity, in which case Theorems 1
and 2 no longer apply. This illustrates the flexibility of the concept of a primal attractor, as
it allows us to tackle at the same time both boundary and interior solutions.
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To the best of our knowledge, the only comparable result in the literature for oracle-
based methods concerns the convergence of the standard mirror descent algorithm (Bn = 0,
supn σ

2
n < ∞) in strictly monotone games with compact domains [46]. For payoff-based

learning, the closest results we are aware of are by Bravo et al [11] and Tatarenko and
Kamgarpour [64] for a constrained variant of (SPSA) in strictly monotone games with
compact domains (the latter actually showing convergence in probability, but without
requiring strict monotonicity).
▶ Variational stability, local. Now, if x∗ ∈ X is variationally stable but not globally so, we
have the following local analogue of Proposition 8:

Proposition 9. Suppose that x∗ ∈ X is variationally stable. If the players’ regularizers satisfy
(R), x∗ is a primal attractor of (MD).

Proof. Let F (y) and E(y) be defined as in the proof of Proposition 8, and let K be a compact
neighborhood of x∗ in X such that ⟨v(x), x − x∗⟩ < 0 for all x ∈ K. Then, under (R),
Lemma A.2 in Appendix A shows that there exists some E∗ > 0 = inf E such that Q(y) ∈ K
whenever E(y) ≤ E∗. In turn, this shows that E is a local energy function for x∗, so our
assertion follows. ■

As a consequence of the above, Theorem 3 readily yields the following local convergence
results (which, again, cannot be inferred by the ICT convergence analysis of Section 5):

Corollary 7. Suppose that Algorithms 1–9 are initialized and run as per Corollary 4 – or,
more generally, that (MRM) is initialized and run as per Theorem 3. If x∗ satisfies the
second-order sufficient condition (SOS), then Xn converges locally to x∗ with arbitrarily high
probability.

Corollary 8. Let x∗ be a strict Nash equilibrium of a finite game. If Algorithms 5 and 9
are initialized and run as per Corollary 4, Xn converges locally to x∗ with arbitrarily high
probability.

In a certain precise sense, local Nash equilibria satisfying (SOS) are the game-theoretic
analogue of minimizers with a positive-definite Hessian in non-convex minimization problems
[55, 56]. In this regard, Corollary 7 is particularly important as it shows that such equilibria
are stable and attracting under the entire class of algorithms under study. Likewise, Corol-
lary 8 is a key special case of this implication because, generically – i.e., except on a set of
games which is meager in the sense of the Baire category theorem – pure Nash equilibria in
finite games are always strict. Thus, coupled with the inherent instability of mixed equilibria
in finite games [21], Corollary 8 goes a long way towards establishing a learning analogue
of the “folk theorem” of evolutionary game theory [30] which states that a mixed strategy
profile is stable and attracting if and only if it is a strict Nash equilibrium.
▶ Discoordination games. As a last example, consider a two-player discoordination game
with payoff functions u1(x1, x2) = (x1 − x2)2/2 and u2(x1, x2) = (x1 + x2)

2/2 for x1, x2 ∈
[−1, 1]. This game admits five critical points, the origin (0, 0) and the four vertices {±1,±1}
of X = [−1, 1]2. None of these critical points is an equilibrium: the origin is unstable to
deviations by both players, whereas the vertices are unstable to deviations by one of the
players (but not the other). Given the lack of an equilibrium in pure strategies (a standard
feature of discoordination games), the players’ limiting behavior is quite difficult to predict;
however, since the critical point at (0, 0) is unstable for both players, it is reasonable to
expect that it should be selected against.

To examine this issue in the context of (MRM), consider for concreteness the mir-
ror map Qi(yi) = tanh(yi/2) that is induced by the entropic regularizer hi(xi) = (1 −
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Figure 2: Learning in a 2-player discoordination game. All algorithms under study
converge to the boundary of the game’s domain, which contains all critical points
that are resilient to deviations by one of the players (but not the other). The
interior critical point at (0, 0) is unstable to deviations by both players, and no
trajectories converge there, even though it is the only ICT of (MD).

xi) log xi + (1 + xi) log(1 + xi). In this case, it is straightforward to check that E(y1, y2) =
2 sech(y1/2) sech(y2/2) is an (almost global) energy function for the boundary S = bd(X )
of the game’s domain; hence, by Theorem 3, the induced sequence of play will converge
to S (cf. Fig. 2). On the other hand, since all solution orbits y(t) of (MD) escape to
infinity unless they start at the origin, the only ICT set of (MD) is the origin itself. On that
account, a casual reading of the ICT convergence results of Section 5 (viz. one that ignores
the boundedness caveat) would lead to a prediction that is diametrically opposed to what
actually happens in the long run – i.e., that Xn converges to the boundary of X and not to
(0, 0).

6.4. Technical proofs. We conclude this section with the proofs of Propositions 6 and 7
and Theorem 3. We begin with a technical lemma showing that the aggregate error processes
In, IIn and IIIn of (29) are subleading relative to the long-run drift of (26).

Lemma 2. Under (Sum), the aggregate error processes of (29) are sublinear in τn, i.e.,

In/τn → 0 (Sub.I) IIn/τn → 0 (Sub.II) IIIn/τn → 0 (Sub.III)

with all limits interpreted in the almost sure sense.

Proof. We treat each term separately. For (Sub.I), we have
∞∑

n=1

E[γ2nξ2n | Fn] ≤
∞∑

n=1

γ2n E[∥∇E(Yn)∥2∥Un∥2∗ | Fn] ≤ H2
∞∑

n=1

γ2nσ
2
n <∞ (38)

by (Sum). Thus, by the strong law of large numbers for martingale difference sequences
[25, Theorem 2.18], we conclude that In/τn converges to 0 with probability 1. For (Sub.II),
the conclusion is immediate by the fact that

∑
n γnBn <∞ under (Sum). Finally, for the

submartingale term of (Sub.III), we have

E[IIIn] =
n∑

k=1

γ2k E[ψ2
k] ≤ 1

2β

n∑
k=1

γ2k E[∥v̂k∥2∗],≤ 1
2β

n∑
k=1

γ2kM
2
k , (39)

so, by (Sum), it follows that IIIn is bounded in L1. Therefore, by Doob’s submartingale
convergence theorem [25, Theorem 2.5], we further deduce that IIIn converges (a.s.) to some
(finite) random variable III∞, implying in turn that IIIn/τn → 0 with probability 1. ■
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Moving forward, we present two lemmas that will allow us to deduce the convergence of
the energy iterates En := E(Yn) if a certain favorable event occurs. To state them, recall
by the discussion in the beginning of Section 6.2 that there exists some E∗ > inf E such
that the sublevel set W = {y ∈ Y : E(y) ≤ E∗} is forward invariant under (MD) and
sup{Ė(y) : E∗ ≥ E(y) > E−} < 0 for all E− ∈ (inf E,E∗). Then, letting

E = {Yn ∈ W for all n} (40)

denote the favorable event in question, we have the following series of implications.

Lemma 3. Suppose that P(E) > 0. If (Sub) holds, then P(lim infn→∞En = inf E | E) = 1.

Lemma 4. Suppose that P(E) > 0. If (Sum) holds and inf E > −∞, there exists some finite
random variable E∞ such that P(limn→∞En = E∞ | E) = 1.

Proposition 10. Let S be a primal attractor of (MD) with energy function E. If P(E) > 0
and (Sum) holds, then P(Xn converges to S | E) = 1.

Proof of Lemma 3. Since P(E) > 0, it suffices to show that the hitting time Na = inf{n ∈
N : En ≤ a} is finite with probability 1 on E for all sufficiently small a > inf E. More
precisely, building on a technique of Duvocelle et al [20], we will show that the event
Na = E ∩ {Na =∞} has P(Na) = 0 whenever inf E < a ≤ E∗: indeed, if this is the case and
ak ∈ (inf E,E∗), k = 1, 2, . . . , is a sequence converging monotonically to inf E, we will have
P(Nak

) = 0 for all k ∈ N. Thus, with only a countable number of Nak
in play, we will have

P(lim infn→∞En = inf E | E) = P(Nak
<∞ for all k | E)

= P(
⋂∞

k=1{Nak
<∞} | E) = 1− P(

⋃∞
k=1{Nak

<∞} | E)

= 1−
P(E ∩ (

⋃∞
k=1{Nak

<∞}))
P(E)

= 1−
P(
⋃∞

k=1Nak
)

P(E)
= 1,

(41)

as per our original assertion.
Now, to establish our claim for Na, assume to the contrary that P(Na) > 0 for some

sufficiently small a > inf E, and let ca = − sup{Ė(y) : a ≤ E(y) ≤ E∗}, so ca > 0 by
Definition 5. Then, by telescoping (26), we get

En+1 ≤ E1 +

n∑
k=1

γkĖ(Yk) +

n∑
k=1

γkξk +

n∑
k=1

γkχk +

n∑
k=1

γkψ
2
k

≤ E1 −
[
ca −

In + IIn + IIIn
τn

]
· τn for all n = 1, 2, . . . (42)

with probability 1 on Na. Since P(Na) > 0 by assumption and (In + IIn + IIIn)
/
τn → 0

with probability 1 by (Sub), the above gives P(limn→∞En = −∞ | Na) = 1. However,
with infnEn ≥ a > −∞ on Na by construction, we get a contradiction, and our proof is
complete. ■

Proof of Lemma 4. Consider the nested sequence of events

En = {Ė(Yk) ≤ 0 for all k = 1, 2, . . . , n} (43)

so E =
⋂∞

n=1 En. Then, letting Ẽn = 1En
(En − inf E), Eq. (26) readily gives

Ẽn+1 = 1En+1(En+1 − inf E) ≤ 1En(En+1 − inf E)

≤ 1En(En − inf E) +
(
γnĖ(Yn) + γnξn + γnχn + γ2nψ

2
n

)
1En

≤ Ẽn + γn 1En
ξn +

(
γnχn + γ2nψ

2
n

)
1En

, (44)
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where we used the fact that Ė(Yk) = ⟨v(Xk),∇E(Yk)⟩ ≤ 0 for all k = 1, 2, . . . , n if En occurs.
Since En is Fn-measurable, conditioning on Fn and taking expectations then yields

E[Ẽn+1 | Fn] ≤ Ẽn + γn 1En E[ξn | Fn] + 1En E[γnχn + γ2nψ
2
n | Fn]

≤ Ẽn + E[γnχn + γ2nψ
2
n | Fn]

≤ Ẽn + γnHBn + 1
2βγ

2
nM

2
n. (45)

Now, given that
∑

n γnBn and
∑

n γ
2
nM

2
n are both finite by (Sum), Ẽn is an almost super-

martingale with summable increments, i.e.,
∑

n

[
E[Ẽn+1 | Fn]− Ẽn

]
<∞ w.p.1. Therefore,

by Gladyshev’s lemma [52, p. 49], we conclude that Ẽn converges almost surely to some
(finite) random variable. Since P(E) > 0 and 1En

= 1 for all n if and only if E occurs, we
further deduce that P(En converges |E) = P(Ẽn converges |E) = 1, and our claim follows. ■

Proof of Proposition 10. By Lemma 2, (Sub) is satisfied whenever (Sum) is. Thus, by a
tandem application of Lemmas 3 and 4, we conclude that limn→∞En = inf E with probability
1 on E . Since Q(y)→ S whenever E(y)→ inf E, our claim follows. ■

We are now in a position to prove our main results, beginning with Propositions 6 and 7.

Proof of Proposition 6. By the definition of a global attractor, we have E∗ = supE, so
P(E) = 1. Our claim is then an immediate consequence of Proposition 10. ■

Proof of Proposition 7. Suppose that E(Y1) ≤ E∗/4. We then claim that the event E always
occurs on the intersection of the events EI, EII, and EIII, where EZ = {Zn ≤ E∗/4 for all n}.
Indeed, this being trivially the case for n = 1, assume that Yk ∈ W for all k = 1, 2, . . . , n for
some n ≥ 1. Then, telescoping (26) yields

En+1 ≤ E1 +

n∑
k=1

γkĖ(Yk) + In + IIn + IIIn ≤ E∗/4 + 0 + E∗/4 + E∗/4 + E∗/4 = E∗ (46)

by the inductive hypothesis and our other assumptions. This shows that En+1 ∈ W, so the
induction argument is complete, and we conclude that E ⊇ EI ∩ EII ∩ EIII. Now, by (Stb), we
have P(EI) ≤ ρ and likewise for the rest, so we get

P(E) ≥ P(EI ∩EII ∩EIII) = 1−P(EI ∪EII ∪EIII) ≥ 1−P(EI)−P(EII)−P(EIII) ≥ 1− 3ρ. (47)

Our claim then follows directly from Proposition 10. ■

With all this in hand, the proof of Theorem 3 proceeds as follows.

Proof of Theorem 3. We begin by noting that (Sum) holds trivially under the stated con-
ditions for γn ∝ 1/np, Bn = O(1/nb) and Mn = O(ns). As a result, the first part of the
theorem follows immediately from Proposition 6.

Likewise, for the second part, it will suffice to establish the stability condition (Stb). To
that end, consider the “maximal” processes

I∗n = max
1≤k≤n

Ik II∗n = max
1≤k≤n

IIk and III∗n = max
1≤k≤n

IIIk, (48)

so I∞ = limn→∞ I∗ (and likewise for the rest). Then, proceeding term-by-term, we have:
(1) Since In is a martingale, Kolmogorov’s inequality [25, Corollary 2.1] gives

P(I∗n ≥ ε) ≤ P
(

max
1≤k≤n

|Ik| ≥ ε
)
≤ E[I2n]

ε2
=

E
[(∑n

k=1 γkξk
)2]

ε2
≤
H2
∑n

k=1 γ
2
kσ

2
k

ε2
(49)
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where we used the variance bound

E[ξ2k] = E[E[|⟨Uk,∇E(Yk)⟩|2 | Fk]] ≤ H2σ2
k (50)

and the fact that E[ξkξm] = E[ξkξm | Fk∨m] = 0 whenever k ̸= m. Since {I∞ ≥ ε} =⋃
n{I∗n ≥ ε} is a union of nested events, we conclude that (Stb.I) holds whenever

ρ ≥ CI := (H/ε)2
∑

n γ
2
nσ

2
n.

(2) For the second term, we have II∞ ≤
∑

n γnBn, so (Stb.II) holds for all ρ ≥ 0 provided
that CII :=

∑
n γnBn/ε ≤ 1.

(3) Finally, for the last term, Kolmogorov’s inequality again yields

P(III∗n ≥ ε) ≤
E[III∗n]
ε

=
β
∑n

k=1 γ
2
kM

2
k

2ε
. (51)

Consequently, the event {III∞ ≥ ε} =
⋃

n{III
∗
n ≥ ε} occurs with probability no more

than CIII := (β/2ε)
∑

n γ
2
nM

2
n, i.e., (Stb.III) holds whenever ρ ≥ CIII.

Assume now that ρ has been fixed. Since γn = γ/np for some γ > 0 and p ∈ (0, 1], we can
choose γ sufficiently small so that CI ≤ ρ/3, CII ≤ 1 and CIII ≤ ρ/3. In this case, (Stb)
holds for ρ← ρ/3, and our claim follows from Proposition 7. ■

7. Sharper convergence guarantees: the role of coherence

7.1. Coherence: definition and examples. In this section, we will show that our results on
primal attractors can be strengthened considerably under the notion of coherence:

Definition 6. A nonempty compact subset S of X will be called coherent if it admits a (finite)
set of deviation directions Z = {z1, . . . , zm} ⊆ V such that
a) ⟨v(x), z⟩ < 0 for all x ∈ S and all z ∈ Z. (52a)
b) Q(y)→ S whenever maxz∈Z⟨y, z⟩ → −∞. (52b)

In particular, if (52a) holds for all x ∈ X , we will say that S is globally coherent ; and if we
want to stress that S is coherent but not globally so, we will say that S is locally coherent.

The motivation behind Definition 6 is as follows. First, condition (52a) posits that any
deviation from S along a vector z ∈ Z is actively disincentivized by the players’ individual
gradient field v so, in a certain sense, v points locally “towards” S. The second condition is
game-independent and asks that the elements of Z are sufficient to identify S by acting as
primal-dual “support vectors” for S under Q. The terminology “coherence” has been chosen
precisely to indicate that these two properties dovetail to create a favorable convergence
landscape under (MRM).

To illustrate the notion of coherence, we proceed below with a diverse range of examples.
The first two concern finite games; the last two concern continuous ones.

Example 7.1 (Strict equilibria in finite games). Recall that a strict Nash equilibrium of a
finite game Γ = Γ(N ,A, u) is a strategy profile x∗ such that (NE) holds as a strict inequality
for all x ̸= x∗. An immediate consequence of this definition is that a) x∗ is pure, i.e., it is
supported on a single pure strategy profile α∗ ∈ A; and that b) unilateral deviations from α∗

lead to strictly inferior payoffs, i.e., uα(α∗
i ;α

∗
−i) > ui(αi;α

∗
−i) for all αi ∈ Ai\{α∗

i }, i ∈ N .
With this in mind, consider the set of unilateral deviations

Z = {eiαi
− eiα∗

i
: αi ∈ Ai\{α∗

i }, i ∈ N}. (53)

Since ⟨v(x∗), eiαi − eiα∗
i
⟩ = ui(αi;α

∗
−i) − ui(α

∗
i ;α

∗
−i) < 0 for all αi ∈ Ai\{α∗

i }, i ∈ N ,
condition (52a) is satisfied. Lemma A.3 further shows that Qiαi

(y) → 0 whenever yiαi
−
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yiα∗
i
→ −∞, so the requirement Q(y)→ x∗ of (52b) is also satisfied. In other words, strict

equilibria are coherent. ¶

Example 7.2 (Extinction of dominated strategies). Recall that a pure strategy αi ∈ Ai is
dominated by βi ∈ Ai if ui(αi;x−i) < ui(βi;x−i) for all x ∈ X . We then say that αi is
eliminated in a mixed strategy profile x ∈ X if αi is not supported in xi, i.e., if xiαi = 0. A
fundamental requirement for game-theoretic learning is that dominated strategies become
extinct over time, i.e., that the trajectory of play converges to the set X ∗ of action profiles
that eliminate all dominated strategies.7

This set is globally coherent. To see this, consider the set of dominant deviations

Z = {eiαi − eiβi : αi is dominated by βi}. (54)

By definition, ⟨v(x), eiαi
− eiβi

⟩ = ui(αi;x−i)− ui(βi;x−i) < 0 for all x ∈ X , so (52a) holds
globally. Moreover, for any finite game, X ∗ is a face of X [60] and hence compact. Finally,
Lemma A.3 shows that Qiαi

(y) → 0 if yiαi
− yiβi

→ −∞, so the requirement Q(y) → X ∗

of (52b) is also satisfied, and we conclude that the set of undominated strategies is globally
coherent. ¶

Example 7.3 (Sharp equilibria in concave games). Following Polyak [52], a Nash equilibrium
of a concave game is sharp if the stationarity condition (FOS) holds as a strict inequality for
all x ̸= x∗, i.e.,

⟨v(x∗), x− x∗⟩ < 0 for all x ̸= x∗. (Sharp)
Examples of sharp equilibria include deterministic Nash policies in generic stochastic games
[68], the Nash equilibria of the power control game of Example 2.3 [47], etc.

Geometrically, sharp equilibria can be characterized by the condition that v(x∗) lies in the
(topological) interior of the polar cone PC(x∗) to X at x∗. This means in particular that there
exists a polyhedral cone C that is spanned by a finite set of vectors Z = {z1, . . . , zm} ⊆ V
such that a) the tangent cone TC(x∗) to X at x∗ is contained in the interior of C; and
b) ⟨v(x∗), z⟩ < 0 for all z ∈ Z. Lemma A.4 in Appendix A shows that Q(y) → S if
maxz∈Z⟨y, z⟩ → −∞, so we conclude that sharp equilibria are coherent. ¶

Example 7.4 (Stochastic linear programming). To borrow an example from optimization
(viewed here as a single-player game), let X be a convex polytope and consider the stochastic
linear program

maximize u(x) = Eθ[⟨V (θ), x⟩]
subject to x ∈ X (SLP)

where V (θ) is a random payoff vector drawn from some complete probability space (Θ,Pθ).
By linearity, the set of solutions X ∗ = argmaxu of (SLP) is a face of X ; moreover, if we let
v = Eθ[V (θ)] = ∇u(x), we have ⟨v, x− x∗⟩ < 0 whenever x∗ ∈ X ∗ and x ∈ X \ X ∗. Finally,
since X is a convex polytope, there exists a finite set of vectors Z = {z1, . . . , zm} such that
a) x∗+ z ∈ X \X ∗ for all x∗ ∈ X ∗, z ∈ Z; and b) every point x ∈ X \X ∗ can be decomposed
as x = x∗ + λz for some x∗ ∈ X ∗, z ∈ Z and λ > 0. Lemma A.4 in Appendix A shows that
Q(y)→ X ∗ whenever ⟨y, z⟩ → −∞ for all z ∈ Z, so (52b) is satisfied and we conclude that
the solution set X ∗ of (SLP) is globally coherent. ¶

The above examples illustrate that the notion of coherence underlies a diverse range of
game-theoretic settings and problems. In light of this, we devote the rest of this section to
analyzing the convergence properties of coherent sets under (MRM).

7The case of mixed strategies dominated by mixed strategies requires heavier notation, so we do not treat
it here.
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7.2. Convergence analysis. The first thing to note is that coherent sets are primal attractors.
Indeed, if S is coherent, it is straightforward to check that the function

E(y) = log
(
1 +

∑
z∈Z

exp ⟨y, z⟩
)

(55)

is a local energy function for E. First, if E(y)→ inf E = 0, we must have ⟨y, z⟩ → −∞ for
all z ∈ Z, and hence Q(y)→ S by Definition 6. Moreover, for all y such that x = Q(y) is
sufficiently close to S, we have ∇E(y) =

∑
z∈Z⟨v(x), z⟩e⟨y,z⟩

/
(1 +

∑
z∈Z e

⟨y,z⟩) < 0 by the
continuity of v. This shows that the requirements of Definition 5 are all satisfied, leading to
the following corollary of Theorem 3:

Corollary 9. Suppose that S is coherent, and let Xn be the sequence of play of (MRM)
with step-size and gradient signal assumptions as in Theorem 3. Then the conclusions of
Theorem 3 hold, namely (i) if S is globally coherent, Xn converges to S with probability 1;
and (ii) if S is locally coherent, Xn converges locally to S with probability at least 1− ρ if γ
is small enough relative to ρ.

Corollary 9 is a strong convergence guarantee in itself, but it does not exploit the sharper
structural properties of coherent sets. As we show below, the assumptions of Theorem 3 on
the method’s step-size and gradient signals can be relaxed considerably, allowing in many
cases the use of constant step-sizes. The key step to achieve this is the following refinement
of Lemma 1 for coherent sets.

Lemma 5. Suppose that S ⊆ X is coherent, and let Ez(y) = ⟨y, z⟩ for y ∈ Y, z ∈ Z. Then
the iterates En = Ez(Yn) of Ez satisfy the template inequality

En+1 ≤ En + γn⟨v(Xn), z⟩+ γnξn + γnχn. (56)

where the error terms ξn and χn are now given by

ξn = ⟨Un, z⟩ and χn = maxz∈Z∥z∥ ·Bn. (57)

Proof. Simply set y ← Yn+1 in Ez(y) and invoke the definition of (MRM). ■

Compared to Lemma 1, the template inequality (56) does not have a second-order term,
so the second moment of v̂n plays a much more minor role when dealing with coherent sets.
This can be seen very clearly in the following coherent analogue of Proposition 6:

Proposition 11. Suppose that S is globally coherent, and let Xn = Q(Yn) be the sequence of
play generated by (MRM). If (Sub) holds, then Xn converges to S with probability 1.

The crucial difference between Propositions 6 and 11 is that the former requires the
summability condition (Sum), while the latter requires only the subleading growth require-
ment (Sub). The latter assumption grants much more flexibility to the players because they
can employ practically any step-size of the form γn ∝ 1/np for some p ∈ [0, 1]. A similar
situation arises for locally coherent sets, in which case the stability requirement (Stb) can be
replaced by the “dominance” condition

P(In ≤ Cτµn /2 for all n) ≥ 1− ρ (Dom.I)
P(IIn ≤ Cτµn /2 for all n) ≥ 1− ρ (Dom.II)

for some C > 0 and µ ∈ [0, 1). Under this milder condition, we have:

Proposition 12. Suppose that S is locally coherent, fix some confidence level ρ > 0, and let
Xn = Q(Yn) be the sequence of play generated by (MRM). If (Sub) and (Dom) hold, there
exists an unbounded open set D ⊆ Y of initializations such that

P(Xn converges to S | Y1 ∈ D) ≥ 1− (m+ 1)ρ. (59)
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To streamline our presentation, we defer the proof of Propositions 11 and 12 to the end
of this section, and we proceed to state an explicit version of these results when (MRM)
adheres to the general schedule (33). Our main result in this regard is as follows:

Theorem 4. Let Xn = Q(Yn) be the sequence of play generated by (MRM) with step-size and
gradient signal sequences as per (33). Then:

Case 1: If S is globally coherent, Xn converges to S with probability 1.
Case 2: If S is locally coherent and, in addition, (i) p− s > 1/2; or (ii) 0 ≤ p < q/(2+ q)

and s < 1/2 − 1/q, there exists an open set D ⊆ Y of initializations such that,
for any ρ > 0

P(Xn converges to S | Y1 ∈ D) ≥ 1− ρ (60)

provided that γ > 0 is small enough relative to ρ.

In particular, by Proposition 4, we readily obtain the following explicit guarantees:

Corollary 10. Suppose that Algorithms 1–9 are run with step-size γn ∝ 1/np, p ∈ [0, 1], and
where applicable, a sampling parameter δn ∝ 1/nr, r ∈ (0, 1/2). If S is globally coherent, Xn

converges to S with probability 1 provided the following conditions are met:
• For Algorithms 1, 5 and 7–9: no additional requirements needed.
• For Algorithms 2–4 and 6: p > 0.

Corollary 11. Suppose that Algorithms 1–9 are run with step-size γn ∝ 1/np, p ∈ [0, 1], and
where applicable, a sampling parameter δn ∝ 1/nr, r ∈ (0, 1/2). Then the conclusions of
Theorem 4 for locally coherent sets continue to hold provided the following conditions are
met:
• For Algorithm 1: p > 1/2 if q = 2; no such requirement needed if q > 2.
• For Algorithms 2–4 and 6: p > 1/2 if q = 2; p > 0 otherwise.
• For Algorithms 5 and 7–9: no other requirements needed.

We should stress here that, depending on the statistical properties of the players’ feedback
mechanism, the above results imply convergence even with a constant step-size, a feature
which is quite unique in the context of stochastic approximation. To the best of our knowledge,
the only comparable result in the literature in terms of step-size assumptions is the recent
work of Giannou et al [22] for local convergence to strict Nash equilibria in finite games
under a “follow-the-generalized-leader” (FTGL) scheme: since strict equilibria are locally
coherent, the analysis of Giannou et al [22] corresponds to the last item of Corollary 11.

Perhaps surprisingly, the principal reason for this relaxation in terms of step-size require-
ments is not the boundedness of the q-th moments of the players’ oracle: the step-size
requirements of Section 6 cannot be relaxed for non-coherent attractors even if q =∞; at
the same time, the convergence guarantees of Theorem 4 for globally coherent sets yield
convergence with a constant step-size even when q = 2. Instead, as we hinted at before,
these sharper convergence properties are due to the fact that the quadratic error term
IIIn =

∑n
k=1 γ

2
kψ

2
k is not present in the case of coherent sets: it is precisely this simplification

that leads to convergence with significantly faster step-size schedules.
Our last result builds on this observation to show that convergence occurs at a finite

number of iterations if the mirror map of the process is surjective (e.g., if it is a Euclidean
projection):

Theorem 5. Suppose that the mirror map Q : Y → X of (MRM) is surjective. If S is
coherent, then, with probability 1, every trajectory Xn = Q(Yn) that converges to S does so
in a finite number of iterations, i.e., there exists some n0 such that Xn ∈ S for all n ≥ n0.
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Corollary 12. Suppose that (MRM) is run with Euclidean projections and step-size and
gradient signal sequences as per (33). If S is globally coherent and X is compact, the induced
sequence of play Xn = Q(Yn) converges to S in a finite number of iterations (a.s.).

In view of the above, coherent sets comprise perhaps the most well-behaved class of
rational outcomes under (MRM): the agents’ sequence of play converges to such sets in a
finite number of iterations, even with bandit, payoff-based feedback. We find this aspect
particularly intriguing because it shows that the algorithms’ long-run behavior remains
robust in the face of uncertainty, a property with important implications for the theory of
learning in games.

7.3. Technical proofs. We conclude this section with the proofs of Propositions 11 and 12
and Theorems 4 and 5. To set the stage for our analysis, it will be convenient to introduce
the family of sets

D(a) = {y ∈ Y : maxz∈Z⟨y, z⟩ < −a}. (61)

By Definition 6, these sets are mapped to neighborhoods of S under Q, so they are particularly
well-suited to serve as initialization domains for (MRM). In particular, by the requirements
of Definition 6 and the continuity of v, there exists some a such that c := − sup{⟨v(Q(y)), z⟩ :
y ∈ D(a), z ∈ Z} < 0. With all this in hand, the proofs of Propositions 11 and 12 are fairly
straightforward.

Proof of Proposition 11. Since S is globally coherent, we can take a = −∞ in the definition
of D(a) above. Then, telescoping (56) readily yields

Ez(Yn+1) ≤ Ez(Y1)− cτn + In + IIn for all z ∈ Z. (62)

Thus, if (Sub) holds, we get Ez(Yn)→ −∞ for all z ∈ Z, i.e., Xn = Q(Yn)→ S. ■

Proof of Proposition 12. Let µ ∈ [0, 1) be such that (Dom) holds for every z ∈ Z (recall that
ξn depends on z), and let ∆a = maxn{Cτµn−cτn}. Then, if Y1 is initialized in D := D(a+∆a),
we claim that Yn ∈ D(a) for all n. Indeed, this being trivially true for n = 1, assume it to be
the case for all k = 1, 2, . . . , n. Then, by (56) and our inductive hypothesis, we get

Ez(Yn+1) ≤ Ez(Y1)−
n∑

k=1

γk⟨v(Xk), z⟩+ In + IIn

≤ Ez(Y1)− cτn + Cτµn /2 + Cτµn /2 ≤ −a−∆a+∆a ≤ −a (63)

i.e., Yn+1 ∈ D(a), as claimed. Since Yn ∈ D(a) for all n, we conclude that (62) holds with
probability 1 on the event that (Dom.I) and (Dom.II) both hold for all z ∈ Z. Since (Dom.I)
involves |Z| = m separate events (one for each z ∈ Z) and IIn does not depend on z, it
follows that Ez(Yn)→ −∞ for all z ∈ Z with probability at least 1− (m+ 1)ρ. Our claim
then follows from Definition 6. ■

We are now in a position to prove Theorem 4.

Proof of Theorem 4. As in the case of Theorem 3, our proof will hinge on showing that (Sub)
and (Dom) hold under the stated step-size and sampling parameter schedules. Our claim
will then follow by a direct application of Propositions 11 and 12.

First, regarding (Sub), the law of large numbers for martingale difference sequences
[25, Theorem 2.18] shows that In/τn → 0 w.p.1 on the event

{∑
n γ

2
n E[ξ2n | Fn]/τ

2
n <∞

}
.

However
E[ξ2n | Fn] ≤ ∥z∥2 E[∥Un∥2∗ | Fn] ≤ ∥z∥2σ2

n = O(n2s) (64)
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so, in turn, given that s < 1/2, we get∑
n

γ2n E[ξ2n | Fn]

τ2n
= O

(∑
n

γ2nσ
2
n

τ2n

)
= O

(∑
n

n−2pn2s

n2(1−p)

)
= O

(∑
n

1

n2−2s

)
<∞. (65)

This establishes (Sub.I); as for the requirement (Sub.II), this follows by noting that∑n
k=1 γkBk

/∑n
k=1 γk → 0 if and only if Bn → 0, which is immediate from (33). This

shows that (Sub) holds, so the first case of the theorem follows from Proposition 11.
Now, for the second case of the theorem, since Bn is deterministic and Bn = O(1/nb)

for some b > 0, it is always possible to find C > 0 and µ ∈ (0, 1) so that (Dom.II)
holds. We are thus left to establish (Dom.I). To that end, let I∗n = sup1≤k≤n|In| and set
Pn := P(I∗n > Cτµn /2) so

Pn ≤
E[|In|q]

(C/2)qτµqn
≤ cq

E[
(∑n

k=1 γ
2
k∥Uk∥2∗

)q/2
]

τµqn
(66)

where cq is a positive constant depending only on C and q, and we used Kolmogorov’s
inequality [25, Corollary 2.1] in the first step and the Burkholder–Davis–Gundy inequality
[25, Theorem 2.10] in the second. To proceed, we will require the following variant of Hölder’s
inequality [7, p. 15]: (

n∑
k=1

akbk

)ρ

≤

(
n∑

k=1

a
λρ
ρ−1

k

)ρ−1 n∑
k=1

a
(1−λ)ρ
k bρk (67)

valid for all ak, bk ≥ 0 and all ρ > 1, λ ∈ [0, 1). Then, substituting ak ← γ2k, bk ← ∥Uk∥2∗,
ρ← q/2 and λ← 1/2− 1/q, (66) gives

Pn ≤ cq
(
∑n

k=1 γk)
q/2−1∑n

k=1 γ
1+q/2
k E[∥Uk∥q∗]

τµqn
≤ cq

∑n
k=1 γ

1+q/2
k σq

k

τ
1+(µ−1/2)q
n

(68)

We now consider two cases, depending on whether the numerator of (68) is summable or
not.

Case 1: p(1 + q/2) ≥ 1 + qs. In this case, the numerator of (68) is summable under (33),
so the fraction in (68) behaves as O(1/n(1−p)(1+(µ−1/2)q)).

Case 2: p(1 + q/2) < 1 + qs. In this case, the numerator of (68) is not summable under
(33), so the fraction in (68) behaves as O

(
n1−p(1+q/2)+qs

/
n(1−p)(1+(µ−1/2)q)

)
.

Thus, working out the various exponents, a straightforward – if tedious – calculation shows
that there exists some µ ∈ (0, 1) such that Pn is summable as long as s < 1/2 − 1/q and
0 ≤ p < q/(2 + q). Hence, if γ is sufficiently small relative to ρ, we conclude that

P(In ≤ Cτµn /2 for all n) ≥ 1−
∑

n Pn ≥ 1− ρ/2. (69)

Finally, if p > 1/2 + s, (Dom.I) is a straightforward consequence of (Stb.I). Our assertion
then follows by putting everything together and invoking Proposition 12. ■

We conclude this section with the proof of our finite-time convergence result.

Proof of Theorem 5. Since Q is surjective, Lemma A.1 shows that Q−1(S) contains a shifted
copy of

⋃
x∈S PC(x). Thus, given that maxz∈Z⟨Yn, z⟩ → −∞ by the proof of Theorem 4,

it follows that, for every a ∈ R, there exists some (possibly random) n0 ≡ n0(a) such that
maxz∈Z⟨Yn, z⟩ < −a for all n ≥ n0. This shows that Yn converges to Q−1(S) within a finite
number of iterations, as claimed. ■
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8. Concluding remarks

The proposed mirrored Robbins–Monro (MRM) stochastic approximation framework
captures a wide range of existing algorithms, both first- and zeroth-order, and it allows us to
derive a series of convergence results in a unified way. Conceptually speaking, an appealing
feature of this framework lies in the fact that it provides a scaffolding that can be used in
several other settings and algorithms of interest. The associated workflow is as follows:

(1) Estimate the bounds Bn and Mn for the signal sequence v̂n of the method under
study.

(2) Find suitable exponents b and s such that Bn = 1/nb and Mn = 1/ns, as per
Proposition 4.

(3) Determine the allowable range of step-size and/or other parameters by backsolving
the requirements of Theorems 2–4 for b and s.

In this way, we can immediately derive the properties of several other algorithmic schemes
in the literature, such as extra-gradient algorithms with zeroth-order feedback, optimistic
multiplicative weights updates with payoff-based information, learning with implicitly nor-
malized forecasters in the spirit of Audibert and Bubeck [2], etc. We leave the inclusion of
even more general frameworks – such as algorithms with adaptive step-sizes, learning with
asyncrhonous and/or delayed feedback, etc. – to future work.
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Appendix A. Regularizers and mirror maps

In this appendix we present some basic properties of the mirror map Q. To state them,
recall first that the subdifferential of a h at x ∈ X is defined as ∂h(x) := {y ∈ Y : h(x′) ≥
h(x) + ⟨y, x′ − x⟩ for all x′ ∈ V}, the domain of subdifferentiability of h is dom ∂h := {x ∈
domh : ∂h ≠ ∅}, and the convex conjugate of h is defined as h∗(y) = maxx∈X {⟨y, x⟩−h(x)}
for all y ∈ Y. We then have the following basic results.

Lemma A.1. Let h be a regularizer on X , and let Q : Y → X be its induced mirror map.
Then:

(1) Q is single-valued on Y: in particular, for all x ∈ X , y ∈ Y, we have x = Q(y) ⇐⇒
y ∈ ∂h(x).

(2) The prox-domain Xh := imQ of h satisfies riX ⊆ Xh ⊆ X .
(3) Q is (1/K)-Lipschitz continuous and Q = ∇h∗.

Lemma A.2. Let h be a regularizer on X with induced mirror map Q : Y → X , and let
F (p, y) = h(p) + h∗(y)− ⟨y, p⟩ for p ∈ X , y ∈ Y. Then, for all y′ ∈ Y, we have:

a) F (p, y) ≥ 1
2K ∥Q(y)− p∥2. (A.1a)

b) F (p, y′) ≤ F (p, y) + ⟨y′ − y,Q(y)− p⟩+ 1
2K ∥y

′ − y∥2∗. (A.1b)
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In particular, if h(0) = 0, we have

(K/2)∥Q(y)∥2 ≤ h∗(y) ≤ −minh+ ⟨y,Q(y)⟩+ (2/K)∥y∥2∗ for all y ∈ Y (A.2)

Variants of these lemmas can be found in [10, 45, 46], so we omit their proof. The next
properties we discuss concern the way that different regions of Y are mapped to X under Q.

Lemma A.3 (Mertikopoulos and Sandholm, 2016, Prop. A.1). Let h be a regularizer on the
simplex ∆(A) ⊆ RA. If yα − yβ → −∞, then Qα(y)→ 0.

Lemma A.4. Let h be a regularizer on X , let yn, n = 1, 2, . . . be a sequence in Y, and fix
some x ∈ X . If ⟨yn, z⟩ → −∞ for every nonzero z ∈ TC(x), we have Q(yn)→ x.

Proof. Assume that lim supn∥xn − x∥ > 0. Then, given that yn ∈ ∂h(xn), we get h(x) ≥
h(xn)+ ⟨yn, x−xn⟩ ≥ h(xn)−⟨yn, zn⟩∥xn−x∥, where we set zn = (xn−x)/∥xn−x∥. If we
further assume (by descending to a subsequence if needed) that zn converges in the unit sphere
of ∥·∥, there exists some z ∈ TC(x) with ∥z∥ = 1 and such that ⟨yn, zn⟩ ≤ (1 + ε)⟨yn, z⟩ for
some ε > 0. Thus, taking the lim sup of the above estimate gives h(x) ≥ ∞, a contradiction
which proves our claim. ■

Lemma A.5. Let h be a regularizer on a convex polytope P of V, let S be a face of P, and let
Z = {z1, . . . , zm} be a set of unit vectors of V such that every point x ∈ P \ S can be written
as x = p+ λz for some p ∈ S, z ∈ Z and λ > 0. If maxz∈Z⟨y, z⟩ → −∞, then Q(y)→ S.

Proof. By the compactness of P (and descending to a subsequence if necessary), we may
assume that xn = Q(yn) converges to some x ∈ P. If x /∈ S, there exist p ∈ S, z ∈ Z
and λ > 0 such that x = p + λz. In turn, this gives h(p) ≥ h(xn) + ⟨yn, p − xn⟩ =
h(xn)−⟨yn, zn⟩∥xn− p∥ where we set zn = (xn− p)/∥xn− p∥. Since zn → z, taking n→∞
yields h(p) ≥ ∞, a contradiction which shows that x = limxn ∈ S, as claimed. ■

Appendix B. Error estimates

Our aim in this appendix is to prove the bounds on the bias and magnitude of v̂n reported
in Table 1. We proceed to do so on a method-by-method basis.

Proof of Proposition 4. We begin with the oracle-based methods of Section 3.1, namely
Algorithms 1–6. For this, we will make free use of the fact that we can take Mq

n =
3q−1(Gq +Bq

n + σq
n) in (11), cf. the discussion after (9).

Algorithm 1: Stochastic gradient ascent. For (SGA), we have Un = Err(Xn; θn) and bn = 0,
so our claim follows immediately from the stated assumptions for (SFO).

Algorithm 2: Sequential gradient ascent. For (seqGA), we have

v̂i,n = Vi(X̂
i
n; θn) = vi(X̂

i
n) + Erri(X̂

i
n; θn). (B.1)

where X̂i
n = (. . . , Xi−1,n+1, Xi,n, Xi+1,n, . . . ). We thus have E[v̂i,n | Fn] = E[vi(X̂i

n) | Fn]
and hence

∥bi,n∥∗ ≤ E[∥vi(X̂i
n)− vi(Xn)∥∗ | Fn]

≤ Li E[∥X̂i
n −Xn∥ |Fn]

≤ γnLi maxj<i E[∥vj(X̂j
n) + Err(X̂j

n; θn)∥∗ | Fn]

≤ γnLi(G+ σ) = O(γn) = O(1/np). (B.2)

Likewise, the noise term Ui,n in (9) can be bounded as

∥Ui,n∥∗ = ∥v̂i,n − E[v̂i,n | Fn]∥∗
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= ∥vi(X̂i
n)− E[vi(X̂i

n) | Fn] + Erri(X̂
i
n; θn)∥∗ ≤ 2G+ ∥Erri(X̂i

n; θn)∥∗ (B.3)

which yields E[∥Un∥q∗ | Fn] = O(Gq + σq) = O(1) under the requirements (5) for (SFO).

Algorithm 3: Extra-gradient. For (EG), we have v̂n = V (Xn+1/2; θn+1/2) so E[v̂n | Fn] =
E[v(Xn+1/2) | Fn]. We thus get

∥bn∥∗ = ∥E[v̂n | Fn]− v(Xn)∥∗ ≤ E[∥v(Xn+1/2)− v(Xn)∥∗ | Fn]

≤ LE[∥Xn+1/2 −Xn∥ |Fn]

≤ γnLE[∥V (Xn; θn)∥∗ | Fn]

= γnLE[∥v(Xn) + Err(Xn; θn)∥∗ | Fn]

≤ γnL(G+ σ) = O(γn) = O(1/np) (B.4)

and, analogously

∥Un∥∗ = ∥v̂n−E[v̂n | Fn]∥∗ = ∥v(Xn+1/2)−E[v(Xn+1/2) | Fn]+Err(Xn+1/2; θn+1/2)∥∗ (B.5)

so E[∥Un∥q∗ | Fn] = O(Gq + σq) = O(1) under (5), as claimed.

Algorithm 4: Optimistic gradient. For (OG), we have again E[v̂n | Fn] = E[v(Xn+1/2) | Fn],
so the same series of arguments as above gives

∥bn∥∗ = ∥E[v̂n | Fn]− v(Xn)∥∗
≤ LE[∥Xn+1/2 −Xn∥ |Fn]

≤ γnLE[∥V (Xn−1/2; θn−1)∥∗ | Fn]

= γnLE[∥v(Xn−1/2) + Err(Xn−1/2; θn−1)∥∗ | Fn]

≤ γnL(G+ σ) = O(γn) = O(1/np) (B.6)

under (5) with q =∞. The noise term Un can be bounded in exactly the same way, so we
omit the calculations.

Algorithm 5: Exponential weights. We consider two cases, based on the information available
to the players. For the full information oracle (6a), we have v̂n = v(Xn) so bn = Un = 0 by
definition (i.e., the oracle is perfect). Otherwise, under the realization-based oracle (6b), we
have E[v̂n | Fn] = E[v(αn) | Fn] = v(Xn) because αn is sampled according to Xn. We thus
get bn = 0 and Un = O(1), which proves our assertion.

Algorithm 6: Mirror-prox. Mirroring the analysis for (EG), we have

∥bn∥∗ ≤ E[∥v(Xn+1/2)− v(Xn)∥∗ | Fn]

≤ LE[∥Xn+1/2 −Xn∥ |Fn]

≤ (L/K)E[∥Yn+1/2 − Yn∥∗ | Fn]

≤ γn(L/K)E[∥V (Xn; θn)∥∗ | Fn]

≤ γnL(G+ σ)/K = O(γn) = O(1/np) (B.7)

where the estimate in the second line follows from Lemma A.1. The rest now follows as in
the case of Algorithm 3.

We now proceed with the payoff-based methods of Section 3.2, namely Algorithms 7–9.
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Algorithm 7: Single-point stochastic approximation. Since ui is assumed bounded in the
context of (SPSA), the bound for Mn follows trivially. As for the bias of (SPSA), it will be
convenient to set V δ

i (x;w) = (di/δ)ui(x+δw)wi so, in obvious notation, v̂i,n = V δn
i (Xn;Wn).

Thus, if we fix a pivot point x ∈ X and a query point x̂ = x+ δw for some w ∈ E =
∏

i Ei, a
first-order Taylor expansion of ui with integral remainder gives

V δ
i (x;w) =

di
δ
ui(x̂) · wi =

di
δ
ui(x) · wi +

di
δ
⟨∇ui(x), z⟩ · wi (B.8a)

+

∫ 1

0

⟨∇ui(x+ τz)−∇ui(x), z⟩ dτ · wi (B.8b)

where we set z = x̂ − x = δw. Hence, if w is drawn uniformly at random from E , taking
expectations yields

E[(B.8a)] =
di
δ
E[⟨vi(x), zi⟩wi] +

di
δ

∑
j ̸=i

⟨∇xjui(x),E[zj ]⟩ E[wi]

= di E[⟨vi(x), wi⟩wi] = di ·
1

2di

di∑
ℓ=1

[viℓ(x)eiℓ − viℓ(x)(−eiℓ)] = vi(x) (B.9)

where we used the fact that E[wi] = 0 for all i ∈ N and that wi and wj are independent for
all i, j ∈ N , i ̸= j. As for the second term, Assumption 1 readily yields

∥E[(B.8b)]∥ ≤ di
δ

∫ 1

0

Liδ
2∥w∥2τ dτ = O(Lδ). (B.10)

Thus, by combining (B.9) and (B.10), we conclude that bi,n = E[V δn
i (Xn;Wn) | Fn] −

vi(Xn) = O(δn), which immediately yields the desired bound Bn = O(δn) = O(1/nr) for
(SPSA).

Algorithm 8: Dampened gradient approximation. Recall that v̂i,n = n · log(1+(ui(Xn+1/2)−
ui(Xn))Wi,n). Since ui(Xn+1/2)− ui(Xn) = (1/n)vi(Xn)Wi,n +O(1/n2) by the definition
of Xn+1/2, expanding the logairthm readily yiels Bn = O(1/n) and Mn = O(1). Our claim
then follows as above.

Algorithm 9: Exponential weights for exploration and exploitation. Since α̂n is sampled
according to X̂n, we readily get E[v̂i,n | Fn] = vi(X̂n), so Bn = O(∥X̂n −Xn∥) = O(δn) =
O(1/nr). Moreover, since X̂iαi,n ≥ δn/Ai, it follows that ∥v̂n∥∗ = O(1/δn) = O(nr), and
our proof is complete. ■
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