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We examine the last-iterate convergence rate of Bregman proximal methods -from mirror descent to mirror-prox -in constrained variational inequalities. Our analysis shows that the convergence speed of a given method depends sharply on the Legendre exponent of the underlying Bregman regularizer (Euclidean, entropic, or other), a notion that measures the growth rate of said regularizer near a solution. In particular, we show that boundary solutions exhibit a clear separation of regimes between methods with a zero and non-zero Legendre exponent respectively, with linear convergence for the former versus sublinear for the latter. This dichotomy becomes even more pronounced in linearly constrained problems where, specifically, Euclidean methods converge along sharp directions in a finite number of steps, compared to a linear rate for entropic methods.

Introduction

This paper focuses on solving variational inequality (VI) problems of the form Find x * ∈ X such that ⟨v(x * ), x -x * ⟩ ≥ 0 for all x ∈ X , (VI)

where X is a closed convex subset of a finite-dimensional normed space V, and v : X → V * is a single-valued operator on X with values in V * , the dual of V. The study of such problems dates back to Stampacchia [START_REF] Stampacchia | Formes bilineaires coercitives sur les ensembles convexes[END_REF] and Minty [START_REF] Minty | On the generalization of a direct method of the calculus of variations[END_REF], and it has recently attracted considerable interest in many areas of mathematical programming, game theory and data science as a template for "optimization beyond minimization" -i.e., for problems where finding an optimal state does not necessarily involve minimizing a loss function. In particular, in addition to standard minimization problems -which are recovered when v = ∇f for some smooth function f -the general formulation (VI) includes saddle-point problems, games, complementarity problems, systems of nonlinear equations, and many other types of equilibrium problems; for a comprehensive introduction to the topic and its applications, see Facchinei & Pang [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF] and references therein. Algorithms for solving (VI) likewise have a rich history in optimization. To provide a short overview, the original proximal point methods [START_REF] Martinet | Régularisation d'inéquations variationnelles par approximations successives[END_REF][START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF] were shown to converge when v is monotone; however, these methods involve a backward step on v, so they are difficult to implement in practice. In this regard, forward methods that only require oracle access to v are more practical, but they fail to converge if v is merely monotone. Nonetheless, if coupled with an iterate averaging scheme, forward methods do converge, and they achieve an O(1/ √ t) convergence certificate after t iterations [START_REF] Bruck | On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space[END_REF][START_REF] Passty | Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[END_REF]. Bridging the gap between forward and backward methods, the extra-gradient (EG) algorithm [START_REF] Korpelevich | The extragradient method for finding saddle points and other problems[END_REF] provided an extrapolation mechanism that emulated a backward step with two interleaved forward steps, achieving in this way trajectory convergence when v is pseudomonotone and Lipschitz continuous. Subsequently, combining extrapolation with iterate averaging, the mirror-prox (MP) algorithm of Nemirovski [START_REF] Nemirovski | Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF] -which has the same update structure as [START_REF] Auslender | Interior projection-like methods for monotone variational inequalities[END_REF] -was shown to converge at a rate of O(1/t) in monotone VIs, a rate which is order-optimal for first-order methods [START_REF] Nemirovski | Information-based complexity of linear operator equations[END_REF][START_REF] Ouyang | Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems[END_REF].

A salient feature of the mirror-prox algorithm is that it foregoes Euclidean projections in favor of a more sophisticated Bregman proximal step in the spirit of mirror descent (MD) [START_REF] Auslender | Interior projection-like methods for monotone variational inequalities[END_REF][START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF][START_REF] Nemirovski | Problem Complexity and Method Efficiency in Optimization[END_REF]. Owing to this feature, mirror-prox achieves an almost dimension-free convergence speed in problems with a favorable geometry, all the while retaining an order-optimal dependence on t. Because of this "best-of-both-worlds" guarantee, the mirror-prox algorithm and its variants -dualized [START_REF] Nesterov | Dual extrapolation and its applications to solving variational inequalities and related problems[END_REF], optimistic [START_REF] Hsieh | On the convergence of single-call stochastic extra-gradient In NeurIPS '19[END_REF][START_REF] Popov | A modification of the Arrow-Hurwicz method for search of saddle points[END_REF][START_REF] Rakhlin | Optimization, learning, and games with predictable sequences[END_REF], stochastic [START_REF] Gidel | A variational inequality perspective on generative adversarial networks[END_REF][START_REF] Juditsky | Solving variational inequalities with stochastic mirrorprox algorithm[END_REF], adaptive [START_REF] Antonakopoulos | An adaptive mirror-prox algorithm for variational inequalities with singular operators[END_REF][START_REF] Antonakopoulos | Adaptive extra-gradient methods for min-max optimization and games[END_REF], etc.

-have become the method of choice for large-scale variational inequality problems where higher-order methods cannot be efficiently implemented. Our contributions. In this broad context, our paper seeks to quantify the finer trajectory convergence properties of Bregman proximal methods as a function of the geometry of the problem and the Bregman regularizer underlying the method. For generality, we focus on non-monotone VIs, and we examine the rate of convergence of a wide class of abstract mirrorprox (AMP) algorithms to local solutions that satisfy a second-order sufficient condition. Specifically, the AMP template includes as special cases the mirror-prox, mirror descent and optimistic mirror descent algorithms, so it provides a unified view of some of the most widely used Bregman methods in the literature.

Our first finding is that the algorithm's rate of convergence depends sharply on the chosen Bregman regularizer (Euclidean, entropic, or other). We formalize this via the notion of the Legendre exponent, which can roughly be described as the logarithmic ratio of the volume of a ball centered at the solution under study to that of a Bregman ball of the same radius. 1 For example, Euclidean methods have a Legendre exponent of β = 0 and they converge at a linear rate; entropic methods have a Legendre exponent of β = 1/2 at boundary points, and they converge at a rate of O(t -1 ); and more generally, as we show in Theorem 1, methods with a Legendre exponent β > 0 converge at a rate of O(t 1-1/β ). The Euclidean regime (β = 0) is perfectly aligned with existing results for the geometric last-iterate convergence rate of the EG algorithm and its variants in strongly monotone VIs [START_REF] Gidel | A variational inequality perspective on generative adversarial networks[END_REF][START_REF] Hsieh | On the convergence of single-call stochastic extra-gradient In NeurIPS '19[END_REF][START_REF] Malitsky | Projected reflected gradient methods for monotone variational inequalities[END_REF][START_REF] Mokhtari | A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: proximal point approach[END_REF]. By contrast, the Legendre regime (β > 0) indicates a significant drop in the algorithm's last-iterate convergence speed, even though ergodic convergence results might suggest otherwise.

Subsequently, we take a closer look at the convergence rate of AMP methods as a function of the constraints that are active at a solution x * of (VI) and the position of v(x * ) relative to said constraints. This analysis reveals that Bregman proximal methods have a particularly fine structure: along sharp directions (i.e., constraints along which v(x * ) is strictly inwardpointing), AMP algorithms converge in a finite number of iterations if β = 0, at a geometric rate if 0 < β ≤ 1/2, and at a rate of O(1/t 1/(2β-1) ) if 1/2 < β < 1 (cf. Theorem 2 for a precise statement). Thus, even though the rate estimates of Theorem 1 are in general tight, the actual rate of convergence of a Bregman method along different coordinates / constraints could be considerably different -and, in fact, dramatically faster if the solution under study is itself sharp. We find this separation property particularly appealing, as it highlights the interplay between sharp and non-sharp directions: Theorem 1 describes the rate of convergence along the latter, while Theorem 2 estimates the speed along the former.

Problem setup and preliminaries

2.1. Notation. In the rest of our paper, V will denote a n-dimensional real space with norm ∥•∥ and X will be a closed convex subset thereof. We will also write Y := V * for the dual of V, ⟨y, x⟩ for the canonical pairing between y ∈ Y and x ∈ V, and ∥y∥ * := max{⟨y, x⟩ : ∥x∥ ≤ 1} for the induced dual norm on Y. In addition, if f : V → R ∪ {∞} is an extended-real-valued convex function on V, we will write dom f = {x ∈ V : f (x) < ∞} for its effective domain, ∂f (x) = {y ∈ Y : f (x ′ ) ≥ f (x) + ⟨y, x ′ -x⟩ for all x ′ ∈ V} for the subdifferential of f at x ∈ V, and dom ∂f = {x ∈ V : ∂f (x) ̸ = ∅} for the domain of subdifferentiability of f . Finally, we will make frequent use of Landau's asymptotic notation, writing in particular (i)

f (t) = O(g(t)) and g(t) = Ω(f (t)) when lim sup t→∞ f (t)/g(t) < ∞; (ii) f (t) = Θ(g(t)) when f (t) = O(g(t)) and f (t) = Ω(g(t)); (iii) f (t) = o(g(t)) when lim sup t→∞ f (t)/g(t) = 0; and (iv) f (t) ∼ g(t) when lim t→∞ f (t)/g(t) = 1.

2.2.

Problem statement and basic assumptions. As we mentioned in the introduction, we will focus throughout on solving variational inequalities of the form:

Find x * ∈ X such that ⟨v(x * ), x -x * ⟩ ≥ 0 for all x ∈ X (VI)
where v : X → Y is a single-valued operator, which we call the problem's defining vector field, and for which we make the following blanket assumption:

Assumption 1 (Lipschitz continuity). v is L-Lipschitz continuous, i.e., ∥v(x ′ ) -v(x)∥ * ≤ L∥x ′ -x∥ for all x, x ′ ∈ X . (LC)
For concreteness, we provide below two archetypal examples of VI problems of this type:

Example 2.1 (Function minimization). Consider the minimization problem

min x∈X f (x) (Opt)
with f : X → R assumed smooth. Then, letting v(x) = ∇f (x), the solutions of (VI) are precisely the Karush-Kuhn-Tucker (KKT) points of (Opt) [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF].

♢

Example 2.2 (Saddle-point problems). A saddle-point -or min-max -problem can be stated in normal form as min

x1∈X1 max x2∈X2 L(x 1 , x 2 ) (SP)
where X 1 ⊆ R n1 and X 2 ⊆ R n2 are convex and closed, and the problem's objective function L : X 1 × X 2 → R is again assumed to be smooth. In the game-theoretic interpretation of the problem, x 1 is controlled by a player seeking to minimize L(•, x 2 ), whereas x 2 is controlled by a player seeking to maximize L(x 1 , •). Accordingly, solving (SP) consists of finding a Nash equilibrium (NE), i.e., an action profile

(x * 1 , x * 2 ) ∈ X := X 1 × X 2 such that L(x * 1 , x 2 ) ≤ L(x * 1 , x * 2 ) ≤ L(x 1 , x * 2 ) for all x 1 ∈ X 1 , x 2 ∈ X 2 .
If L is not convex-concave, Nash equilibria may fail to exist, in which case one typically looks for first-order stationary (FOS) points of L, i.e., action profiles

(x * 1 , x * 2 ) ∈ X 1 × X 2 such that x * 1 is a KKT point of L(•, x * 2 ) and, respectively, x * 2 is a KKT point of -L(x * 1 , •). In this case, if we set x = (x 1 , x 2 ) and v = (∇ x1 L, -∇ x2 L)
, it is straightforward to check that the solutions of (VI) are precisely the first-order stationary points of L.

♢

The above examples show that not all solutions of (VI) are desirable: for example, in the case of (Opt), such a solution could be a local maximum of f . For this reason, we will concentrate on solutions x * of (VI) that satisfy the following sufficiency condition: Assumption 2 (Second-order sufficiency). There exists a convex neighborhood B of x * in X and a positive constant µ > 0 such that

⟨v(x) -v(x * ), x -x * ⟩ ≥ µ∥x -x * ∥ 2 for all x ∈ B. (SOS)
In general, Assumption 2 guarantees that x * is the unique solution of (VI) in B. In particular, in the setting of (Opt), Assumption 2 implies that f grows (at least) quadratically along every ray emanating from x * , i.e., f

(x) -f (x * ) ≥ ⟨∇f (x * ), x -x * ⟩ + (µ/2)∥x -x * ∥ 2 = Ω(∥x -x * ∥ 2 ) for all x ∈ B (though, of course, this does not mean that f is strongly convex in B). Analogously, for (SP), Assumption 2 gives L(x 1 , x * 2 ) = Ω(∥x 1 -x * 1 ∥ 2 ) and L(x * 1 , x 2 ) = -Ω(∥x 2 -x * 2 ∥ 2 ), so x * is a local Nash equilibrium of L.
In view of the above, we will focus throughout on solutions satisfying (SOS).

Bregman proximal methods.

The algorithmic framework that we will consider is a general class of Bregman proximal methods that we collectively refer to as the abstract mirror-prox template. The principal ingredient of these methods is that of a Bregman regularizer -or distance-generating function (DGF) -which we define below as follows:

Definition 1 (Bregman regularizers and related notions). A proper, lower semi-continuous, strictly convex function h : V → R ∪ {∞} is said to be a Bregman regularizer on X if (1) h is supported on X , i.e., dom h = X .

(2) The subdifferential of h admits a continuous selection, i.e., there exists a continuous mapping ∇h : dom ∂h → Y such that ∇h(x) ∈ ∂h(x) for all x ∈ dom ∂h. (3) h is 1-strongly convex relative to ∥•∥, i.e., for all x ∈ dom ∂h, x ′ ∈ dom h, we have

h(x ′ ) ≥ h(x) + ⟨∇h(x), x ′ -x⟩ + 1 2 ∥x ′ -x∥ 2 . ( 1 
)
For posterity, the set X h := dom ∂h will be referred to as the prox-domain of h. We also define the Bregman divergence of h as

D(p, x) = h(p) -h(x) -⟨∇h(x), p -x⟩ for all x ∈ X h , p ∈ X (2) 
and the induced Bregman proximal mapping as

P x (y) = arg min x ′ ∈X {⟨y, x -x ′ ⟩ + D(x ′ , x)} for all x ∈ X h , y ∈ Y. ( 3 
) Example 2.3. A staple choice for h is the Euclidean regularizer h(x) = 1 2 ∥x∥ 2 2 . This choice gives D(p, x) = 1 2 ∥p -x∥ 2 and P x (y) = Π X (x + y), (4) 
with Π X (x) := arg min x ′ ∈X ∥x ′ -x∥ denoting the Euclidean projector on X .

♢

Further examples of Bregman regularizers are given in Section 3, where we also take an in-depth look into their properties. For now, given a Bregman regularizer on X , we proceed to define the abstract mirror-prox (AMP) template via the generic recursion

x t+1/2 = P xt (-γ t V t ) x t+1 = P xt (-γ t V t+1/2 ) (AMP)
where (1) t = 1, 2, . . . denotes the method's iteration counter.

(2) γ t > 0 is a (non-increasing) step-size sequence.

(3) V t and V t+1/2 are sequences of "oracle signals" whose precise definition we discuss below.

In terms of vocabulary (and for reasons that will also become clear in the sequel), the iterates x t , t = 1, 2, . . . , will be referred to as the "base states" of the method, while the "half-iterates" x t+1/2 , t = 1, 2, . . . , will be referred to as the method's "leading states". Finally, in terms of initialization, we will take for convenience x 1 = x 1/2 . Now, to link (AMP) to the problem under study, we will assume throughout that the sequence of oracle signals V t+1/2 is generated by querying v at x t+1/2 , i.e.,

V t+1/2 = v(x t+1/2 ) for all t = 1, 2, . . . (5) 
In words, (AMP) generates a new base state x t+1 by taking a Bregman proximal step from x t with oracle information from the leading state x t+1/2 . By contrast, x t+1/2 can be generated in a number of different ways, depending on the definition of V t . We present three prototypical examples below:

(1) The mirror-prox (MP) update:

V t = v(x t ) for all t = 1, 2, . . . (MP)
The motivation behind (MP) is that the algorithm tries to make more informed steps towards a solution of (VI) by "anticipating" the change of v via a second oracle query.

In the context of the Euclidean regularizer (4), the recursion (MP) is known as the extra-gradient (EG) algorithm, and was originally proposed by Korpelevich [START_REF] Korpelevich | The extragradient method for finding saddle points and other problems[END_REF]; for the bona fide Bregman version of the algorithm (and namesake of the method), see Nemirovski [START_REF] Nemirovski | Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF] and Juditsky et al. [START_REF] Juditsky | Solving variational inequalities with stochastic mirrorprox algorithm[END_REF].

(2) The mirror descent (MD) update is defined as

V t = 0 for all t = 1, 2, . . . (MD)
In this case, the method foregoes any look-ahead efforts and proceeds in a series of Bregman proximal steps x t+1 ← P xt (-γ t v(x t )). This method has a long history dating back to Nemirovski & Yudin [START_REF] Nemirovski | Problem Complexity and Method Efficiency in Optimization[END_REF]; for an appetizer, we refer the reader to [START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF][START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF][START_REF] Teboulle | A simplified view of first order methods for optimization[END_REF][START_REF] Zhou | On the convergence of mirror descent beyond stochastic convex programming[END_REF] and references therein.

(3) The optimistic mirror descent (OMD) update:

V t = v(x t-1/2 ) for all t = 1, 2, . . . (OMD)
The idea of this update is to lighten the per-iteration complexity of (MP) by making only a single query to v: this is done by approximating v(x t+1/2 ) with the previously available oracle signal, i.e., taking V t+1/2 ← v(x t-1/2 ). This "oracle reuse" idea dates back to Popov [START_REF] Popov | A modification of the Arrow-Hurwicz method for search of saddle points[END_REF], and it has been subsequently popularized in machine learning and other fields by [START_REF] Chiang | Online optimization with gradual variations[END_REF], [START_REF] Rakhlin | Optimization, learning, and games with predictable sequences[END_REF], and many others; for an overview, see [START_REF] Hsieh | On the convergence of single-call stochastic extra-gradient In NeurIPS '19[END_REF] and references therein.

The three algorithms described above are the most widely studied Bregman methods in the literature, so we will use them as running examples throughout. More generally, we will make the following assumption for the input signal V t generated at the method's base state. Assumption 3. For all t = 1, 2, . . . , the oracle signal V t is of the form:

V t = av(x t ) + bv(x t-1/2 ) (6) 
for some a, b ∈ [0, 1] with a + b ≤ 1 and a + b = 1 if b > 0.

In the language of Assumption 3, the three examples of (AMP) above can be recovered as follows:

• For (MP):

a = 1, b = 0. • For (MD): a = 0, b = 0. • For (OMD): a = 0, b = 1.
More general input sequences can also be considered -e.g., to cover for sequential or "k-to-1" update rules that are sometimes used in min-max problems [START_REF] Hsieh | The limits of min-max optimization algorithms: Convergence to spurious non-critical sets[END_REF] -but this would complicate the notation and the resulting rates, so Assumption 3 will suffice for our purposes. We also note in passing that the requirement "a + b = 1 if b > 0" is only introduced to ease notation and does not lead to a loss in generality: if b > 0, we can always rescale the method's step-size by a + b so that the condition a + b = 1 is satisfied automatically.

For future use, we close this section with some basic properties of the Bregman divergence and the induced proximal mapping: Lemma 1. Let h be a Bregman regularizer on X and let ∇h be a continuous selection of ∂h. Then, for all x ∈ X h , x + ∈ X and y ∈ Y, we have:

a) ∂h(x) = ∇h(x) + PC(x) (7a) b) x + = P x (y) ⇐⇒ ∇h(x) + y ∈ ∂h(x + ) ⇐⇒ ∇h(x + ) -∇h(x) ∈ y -PC(x + ) (7b) 
where PC(x) = {y ∈ Y : ⟨y, x ′ -x⟩ ≤ 0 for all x ′ ∈ X } denotes the polar cone to X at x. In particular, (AMP) is well-posed: x + = P x (y) implies that x + ∈ X h .

Lemma 2 (3-point identity). For all p ∈ X and all x, x + ∈ X h , we have:

D(p, x + ) = D(p, x) + D(x, x + ) + ⟨∇h(x + ) -∇h(x), x -p⟩ (8) 
Lemma 3 (Non-expansiveness). For all x ∈ X h and all y, y + ∈ Y we have:

∥P x (y + ) -P x (y)∥ ≤ ∥y + -y∥ * (9) 
These properties are fairly well known, so we omit their proofs; for a detailed treatment, we defer the interested reader to Beck & Teboulle [START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF], Juditsky et al. [START_REF] Juditsky | Solving variational inequalities with stochastic mirrorprox algorithm[END_REF], and Mertikopoulos & Zhou [START_REF] Mertikopoulos | Learning in games with continuous action sets and unknown payoff functions[END_REF].

Motivating examples

In this section, we take a closer look at some commonly used Bregman regularizers and the induced prox-mappings with the goal of determining the rate of convergence of the associated Bregman proximal method. For concreteness, we will focus on one-dimensional problems where X is a closed interval of R (possibly infinite), and v is the affine operator

v(x) = x -x * , x ∈ R, (10) 
for different choices of x * ∈ R. Moreover, for ease of presentation and notation, we will only examine the mirror descent recursion (MD) with constant step-size schedules of the form γ t ≡ γ for some γ > 0. In this case, we obtain the general recursive scheme

x t+1 = F (x t ) with F (x) = P x (-γv(x)), (11) 
and we will examine the rate of convergence of x t to x * by analyzing the behavior of F near x * .

Example 3.1 (Euclidean regularization). We begin with the quadratic regularizer h(x) = x 2 /2 for x ∈ X . Concretely, taking X = [0, ∞) and noting that h ′ (x) = x, we have:

a) Prox-domain: X h = X b) Bregman divergence: D(p, x) = (p -x) 2 /2 c) Prox-mapping: P x (y) = [x + y] + (12) 
Consider now the case x * = 0, i.e., v(x) = x. Then, for γ ∈ (0, 1), the update [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF] becomes

F (x) = x -γx = (1 -γ)x (13) 
i.e., F is contracting. We thus conclude that x t converges to x * = 0 at a geometric rate, viz. [START_REF] Bauschke | A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications[END_REF][START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF][START_REF] Shalev-Shwartz | Online learning and online convex optimization[END_REF]. In this case, we have h ′ (x) = 1 + log x, which gives the following:

D(x * , x t ) = 1 2 x 2 t = Θ (1 -γ) 2t or, in absolute value, |x t -x * | = Θ((1 -γ) t ). ♢ Example 3.2 (Entropic regularization). Another popular choice when X = [0, ∞) is the entropic regularizer h(x) = x log x [
a) Prox-domain: X h = ri X = (0, ∞) b) Bregman divergence: D(p, x) = p log(p/x) + x -p c) Prox-mapping: P x (y) = x exp(y) (14) 
Now, taking v(x) = x as in the previous example, the update rule [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF] becomes

F (x) = x exp(-γx) = x(1 -γx + o(x)) = x -γx 2 + o(x 2 ) as x → 0. (15) 
In contrast to [START_REF] Hiriart-Urruty | Fundamentals of Convex Analysis[END_REF], we now have F (x) ∼ x instead of (1 -γ)x, so F is no longer a contraction. Instead, the iterates of (15) may be analyzed by means of the following lemma.

Lemma 4. Suppose that f : R + → R + admits the asymptotic expansion

f (x) = x -λx 1+r + o(x 1+r ) as x → 0 (16) 
for positive constants λ, r > 0. Then, for u 1 > 0 small enough, the sequence

u t+1 = f (u t ), t = 1, 2, . . . , converges to 0 at a rate of u t ∼ (λrt) -1/r .
By means of this lemma (which we prove in Appendix A), we conclude that the iterates of [START_REF] Hsieh | The limits of min-max optimization algorithms: Convergence to spurious non-critical sets[END_REF] converge to 0 at a rate of

D(x * , x t ) = x t = |x t -x * | ∼ 1/(γt). ♢ Example 3.3 (Fractional power). Take X = [0, ∞) and v(x) =
x as in Examples 3.1 and 3.2 above. Then, for a given q > 0, q ̸ = 1, the fractional power regularizer -or Tsallis entropyon X is defined as h [START_REF] Mertikopoulos | Learning in games via reinforcement and regularization[END_REF][START_REF] Tsallis | Possible generalization of Boltzmann-Gibbs statistics[END_REF]. For this choice of regularizer, we have h ′ (x) = (1 -qx q-1 )/[q(1 -q)], and a series of straightforward calculations gives the following: 2 a) Prox-domain:

(x) = [q(1 -q)] -1 (x -x q ) [1,
X h = (0, ∞) if q ∈ (0, 1) and X h = [0, ∞) if q > 1 b) Bregman divergence: D(p, x) = x q -p q q(1 -q) -x q-1 x -p 1 -q c) Prox-mapping: P x (y) = x q-1 -(1 -q)y 1 q-1 for q ∈ (0, 1) (17) 
Now, when applied to v(x) = x, the fractional power variant of [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF] for q ∈ (0, 1) gives

F (x) = x [1 + γ(1 -q)x 2-q ] 1/(q-1) = x -γx 3-q + o(x 3-q ) as x → 0. (18) 
Hence, by Lemma 4, we conclude that x t converges to 0 at a rate of

D(x * , x t ) = Θ t -q/(2-q) or, in absolute value, |x t -x * | = Θ t -1/(2-q) .
♢ Example 3.4 (Hellinger distance). Our last example concerns the Hellinger regularizer

h(x) = - √ 1 -x 2 on X = [-1, 1]. Since h ′ (x) = x/ √ 1 -x 2 ,
we readily obtain the following:

a) Prox-domain: X h = ri X = (-1, 1) b) Bregman divergence: D(p, x) = 1 -px -(1 -p 2 )(1 -x 2 ) √ 1 -x 2 c) Prox-mapping: P x (y) = x + y √ 1 -x 2 1 -x 2 + (x + y √ 1 -x 2 ) 2 (19) 
In this case, taking v(x) = x as per the previous examples, yields

F (x) = x -γx √ 1 -x 2 1 -x 2 + (x -γx √ 1 -x 2 ) 2 ∼ x -γx as x → 0, (20) 
i.e., x t converges to x * = 0 at a geometric rate, as in Example 3.1. On the other hand, if we consider the shifted operator v(x) = x + 1, a somewhat tedious calculation (which we detail in Appendix A) gives the following Taylor expansion near x * = -1:

F (x) = x * + (x -x * ) -2 √ 2γ(x -x * ) 5/2 + o (x -x * ) 5/2 . (21) 
Hence, by Lemma 4, we conclude that x t converges to x * = -1 at a rate of

D(x * , x t ) = Θ(t -1/3 ) or, in absolute value, |x t -x * | = Θ(t -2/3
).

♢

Albeit one-dimensional, the above examples provide a representative view of the geometry of Bregman proximal methods near a solution. Specifically, they show that the Bregman divergence induced by a given regularizer may exhibit a drastically different behavior at the boundary of X : when x * is a boundary point, D(x * , x) could grow as Θ(∥x -x * ∥ 2 ) in the Euclidean case, as Θ(∥x -x * ∥) for the negative entropy, or, more generally, as Θ(∥x -x * ∥ q ) for the q-th power regularizer. As a result, when used as a measure of convergence, it is important to rescale the Bregman divergence accordingly in order to avoid inflating -or deflating -an algorithm's rate of convergence.

Nonetheless, even if we take this rescaling into account, different instances of (MD) may lead to completely different rates of convergence. Specifically, in terms of absolute values (or 2 Strictly speaking, the expression we provide for Px(y) is only valid when y < x q-1 /(1 -q). The reason for this is that the fractional power regularizer is not strongly convex over [0, ∞), so the corresponding prox-mapping Px(y) is not well-defined for all values of y. This detail is not important in the calculations that follow, so we disregard it for now. Iterations (t)

|x t -x * | Entropy theory: Θ(t -1 )
Fractional Power (q = 3/4) theory: Θ(t -4/5 ) Hellinger (shifted) theory: norms), we observe a geometric rate in the Euclidean and shifted Hellinger cases, a rate of Θ(1/t) for the negative entropy, and a rate of Θ(1/t 1/(2-q) ) for the q-th power regularizer (cf. Fig. 1 above). This is due to the different first-order behavior of the iterative update map x ← F (x) that underlies (MD), which is itself intimately related to the growth rate of the Bregman divergence near a solution x * of (VI). We will make this relation precise in the next section.

Θ(t -2/3 )

The Legendre exponent and convergence rate analysis

Our goal in this section is to provide a precise link between the geometry induced by a Bregman regularizer near a solution and the convergence rate of the associated Bregman proximal method. The key notion in this regard is that of the Legendre exponent, which we define and discuss in detail below.

4.1. The Legendre exponent. Our starting point is the observation that the strong convexity requirement for h can be equivalently expressed as

D(p, x) ≥ 1 2 ∥p -x∥ 2 for all p ∈ X , x ∈ X h , (22) 
or, more concisely, D(p, x) = Ω(∥p -x∥ 2 ) for x near p. Qualitatively, this means that the convergence topology induced by the Bregman divergence of h on X is at least as fine as the ambient norm topology: if a sequence x t ∈ X h , t = 1, 2, . . . , converges to p ∈ X in the Bregman sense (D(p, x t ) → 0), then it also converges in the ambient norm topology (∥x t -p∥ → 0). On the other hand, from a quantitative standpoint, the rate of this convergence could be quite different: as we already saw in the previous section, the reverse inequality D(p, x) = O(∥p -x∥ 2 ) may fail to hold, in which case D(p, x t ) and ∥x -x t ∥ would exhibit a different asymptotic behavior.

To quantify this gap, we introduce below the notion of the Legendre exponent:

Definition 2. Let h be a Bregman regularizer on X . Then the Legendre exponent of h at p ∈ X is defined as

β h (p) := inf β ∈ [0, 1] : lim sup x→p D(p, x) ∥x -p∥ 1-β < ∞ (23) 
and we will say that h is tight at p if the infimum is attained in [START_REF] Mertikopoulos | Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile[END_REF], i.e., if

β h (p) is the minimal β ∈ [0, 1] such that D(p, x) = O ∥p -x∥ 2(1-β) for x near p. (24) 
Informally, the Legendre exponent measures the deficit in relative size between ordinary "norm neighborhoods" in X and the corresponding "Bregman neighborhoods" induced by the sublevel sets of the Bregman divergence. This comparison will play a major role in the sequel, so we proceed with a series of examples and remarks: Remark 1. A first point to be made is that the restriction β ≥ 0 in Definition 2 is directly imposed by the strong convexity of h. More precisely, given that D(p, x) = Ω(∥p -x∥ 2 ) for x close to p, we cannot also have D(p, x) = O(∥p -x∥ 2+ε ) for any ε > 0. In particular, this shows that the "norm-like" behavior D(p, x) = Θ(∥p -x∥ 2 ) corresponds to the case β h (p) = 0: any other value of β h (p) would imply a different limiting behavior for D(p, x) as x → p. ♢ Remark 2. At the other end of the spectrum, the exponent β h (p) = 1 is representative of the case lim sup x→p D(p, x) > 0. In this case, the ambient norm topology is strictly coarser than the Bregman topology: specifically, D(p, x) might remain large even if p and x are topologically close. For example, let X = {x ∈ R n : ∥x∥ 2 ≤ 1} be the unit Euclidean ball in R n and consider the n-dimensional Hellinger regularizer h(x) = -1 -∥x∥ 2 2 . Then, for all p on the boundary of X and all x ∈ X h = int X , we readily get

D(p, x) = 1 -⟨p, x⟩ 1 -∥x∥ 2 2 . ( 25 
)
If n ≥ 2, the limit lim x→p D(p, x) may not exist, a fact which has the following counterintuitive consequences: (i) the "Hellinger ball" B h r (p) := {x ∈ X h : D(p, x) ≤ r 2 /2} is not closed in the Euclidean topology; and (ii) the "Hellinger center" p of B h r (p) actually belongs to the Euclidean boundary of B h r (p). As a result, for all n ≥ 2, it is straightforward to construct a sequence x t with ∥x t -p∥ 2 → 0, but which remains at constant Hellinger divergence relative to p.3 ♢ Remark 3. For illustration purposes, we compute below the Legendre exponent for each of the running examples of Section 3 (see also forthcoming Table 1):

(1) Quadratic regularization (Example 3.1): Since D(p, x) = (p -x) 2 /2 for all p, x ∈ X , we have β h (p) = 0 for all p ∈ X . (2) Negative entropy (Example 3.2): For p = 0, Eq. ( 14) gives D(0, x) = x, so β h (0) = 1/2.

Otherwise, for all p ∈ X h = (0, ∞), a Taylor expansion with Lagrange remainder yields D(p, x) = O((p -x) 2 ), so β h (p) = 0 for all p ∈ (0, ∞).

(3) Tsallis entropy (Example 3.3): For p = 0, Eq. ( 17) gives D(0, x) = x q /q, so β h (0) = max{0, 1 -q/2}. Otherwise, for all p ∈ X h = (0, ∞), a Taylor expansion yields D(p, x) = O((p -x) 2 ), so β h (p) = 0 in this case.

(4) Hellinger regularizer (Example 3.4): For p = ±1, Eq. [START_REF] Malitsky | Projected reflected gradient methods for monotone variational inequalities[END_REF] gives

D(±1, x) = (1 ∓ x)/(1 ± x) = Θ(|x ∓ 1| 1/2 ), so β h (±1) = 1 -1/4 = 3/4. Instead, if p ∈ (-1, 1) a Taylor expansion again yields D(p, x) = O((p -x) 2 ), so β h (p) = 0 in this case. ♢
Already, a common pattern that emerges from the examples above is that β h (p) = 0 whenever p is an interior point. We formalize this intuition below: Lemma 5. Suppose that ∇h is locally Lipschitz continuous. Then β h (p) = 0 for all p ∈ X h ; in particular, β h (p) = 0 whenever p ∈ ri X .

Proof. Fix some p ∈ X h and suppose that ∇h is locally Lipschitz continuous. Then there exists a neighborhood U of p in X and some κ > 0 such that

∥∇h(p) -∇h(x)∥ * ≤ κ∥p -x∥ for all x ∈ U ∩ X h . (26) 
Now, since ∇h(p) ∈ ∂h(p), we also have

D(p, x) = h(p) -h(x) -⟨∇h(x), p -x⟩ ≤ ⟨∇h(p) -∇h(x), p -x⟩ ≤ ∥∇h(p) -∇h(x)∥ * ∥p -x∥ ≤ κ∥p -x∥ 2 (27)
for all x ∈ U ∩ X h . This shows that [START_REF] Minty | On the generalization of a direct method of the calculus of variations[END_REF] holds with β = 0, i.e., β h (p) = 0. ■ Remark. Elaborating on [START_REF] Nemirovski | Information-based complexity of linear operator equations[END_REF], we see that the Legendre exponent of h at p is (1 -α)/2 whenever ∇h is locally Hölder continuous with exponent α in a neighborhood of p. However, the converse to this statement does not hold -as can be verified immediately from the entropic regularizer. ♢ 4.2. Convergence rate analysis. We are now in a position to state our first general result for the convergence rate of (AMP). To do so, we will assume in the rest of this section that x * is a solution of (VI) satisfying (SOS) and that h is tight at x * with Legendre exponent β * := β h (x * ). In particular, this means that there exists a neighborhood U of x * in X and a positive constant κ > 0 such that

D(x * , x) ≤ κ 2 ∥x -x * ∥ 2(1-β * ) for all x ∈ U. (28) 
We then have the following result.

Theorem 1. Suppose that Assumptions 1-3 hold and (AMP) is run with a constant step-size

γ t ≡ γ, t = 1, 2, . . . , such that γ ≤ 1 2φL and γ(1 -a -b) 2 ≤ µ 8L 2 (29) 
where φ = ( √ 5 + 1)/2 is the golden ratio. Then, if x 1 is initialized sufficiently close to x * , the iterates x t of (AMP) enjoy the following bounds:

Case 1: If β * = 0, then D(x * , x t ) ≤ 1 - µγ 2κ t-1 D(x * , x 1 ). ( 30 
) Domain (X ) Regularizer (h) Legendre Exponent (β * ) Convergence Rate Euclidean arbitrary x 2 /2 0 Linear Entropic [0, ∞) x log x 1/2 O(1/t) Tsallis [0, ∞) [q(1 -q)] -1 (x -x q ) max{0, 1 -q/2} O(1/t q/(2-q) ) Hellinger [-1, 1] - √ 1 -x 2 3/4 O(1/t 1/3 )
Table 1: Summary of the Legendre exponents and the associated convergence rates for the 1-dimensional examples of Section 2 (X ⊆ R). To avoid trivialities, all Legendre exponents refer to boundary points of X .

Case 2: If β * ∈ (0, 1), then

D(x * , x t ) ≤ D(x * , x 1 ) (1 + ρµγ(t -1)) 1/β * -1 (31) 
where

ρ = β * 1 -β * 1 max 2κ 1 1-β * D(x * , x 1 ) -β * 1-β * , 2 β * 1-β * (32)
Before moving on to the proof of Theorem 1, some remarks and corollaries are in order (see also Table 1 for an explicit illustration of the derived rates for Examples 3.1-3.4):

Remark 1. The first point of note is the sharp drop in the convergence rate of (AMP) from geometric, when β * = 0, to a power law when β * > 0. As we saw in Section 3, this drop is unavoidable, even when X is 1-dimensional and v is affine; in fact, the calculations of Section 3 show that the guarantees provided by Theorem 1 are, in general, unimprovable. ♢ Remark 2. We should also note that the guarantees of Theorem 1 are all stated in terms of the Bregman divergence, not the ambient norm. Since D(x * , x t ) = Ω(∥x t -x * ∥ 2 ), these bounds can be restated in terms of ∥x t -x * ∥, but this conversion is not without loss of information: if the bound D(x * , x t ) = Ω(∥x t -x * ∥ 2 ) is not tight, the actual rate in terms of the norm may be significantly different. This phenomenon was already observed in the 1-dimensional examples of Section 3 where D(x * , x t ) = Θ(∥x t -x * ∥ 2(1-β * ) ), in which case Theorem 1 gives

∥x t -x * ∥ = O t -1/(2β * ) (33) 
whenever β * > 0 (see also Table 1). In general however, the Bregman divergence may grow at different rates along different rays emanating from x * , so it is not always possible to translate a Bregman-based bound to a norm-based bound (or vice versa). This analysis requires a much closer look at the geometric structure of X , depending on which constraints are active at x * ; we examine this issue at depth in Section 5.

♢

Remark 3. We should also note that, even though Theorem 1 is stated for a constant step-size, our proof allows for a variable step-size γ t , provided that the step-size conditions (29) continue to hold. In this case, the bounds (30) and ( 31) respectively become

D(x * , x t ) ≤ t-1 s=1 1 - µγ t 2κ • D(x * , x 1 ) (34) 
for the Euclidean case (β * = 0), and

D(x * , x t ) ≤ D(x * , x 1 ) (1 + ρµ t-1 s=1 γ s ) 1/β * -1 (35) 
for the Legendre-like case (0 < β * < 1).

♢

Remark 4. The constants that appear in in Theorem 1, in particular in the step-size condition [START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF] are slightly loose for all three prime examples of (AMP). This is the price we pay for the generality of our approach, and can be seen in the proof of Proposition 2 below. The first of these lemmas relates the Bregman divergence relative to a base point p ∈ X before and after a prox-step. Lemma 6. Let x + = P x (y) for some x ∈ X h , y ∈ Y. Then, for all p ∈ X and all v ∈ PC(p), we have:

D(p, x + ) ≤ D(p, x) + ⟨y -v, x + -p⟩ -D(x + , x) (36a) 
≤ D(p, x) + ⟨y -v, x -p⟩ + 1 2 ∥y -v∥ 2 * . (36b) 
The next lemma extends Lemma 6 to emulate the two-step structure of (AMP):

Lemma 7. Let x + i = P x (y i ) for some x ∈ X h and y i ∈ Y, i = 1, 2.
Then, for all p ∈ X and all v ∈ PC(p), we have:

D(p, x + 2 ) ≤ D(p, x) + ⟨y 2 -v, x + 1 -p⟩ + 1 2 ∥y 2 -y 1 -v∥ 2 * -1 2 ∥x + 1 -x∥ 2 . ( 37 
)
Versions of the above inequalities already exist in the literature, cf. Beck & Teboulle [START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF], Juditsky et al. [START_REF] Juditsky | Solving variational inequalities with stochastic mirrorprox algorithm[END_REF], Mertikopoulos et al. [START_REF] Mertikopoulos | Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile[END_REF], and references therein. The main novelty in Lemmas 6 and 7 is the extra term involving the polar vector v ∈ PC(p); this term plays an important role in the sequel, so we provide complete proofs in Appendix A.

With these preliminaries in hand, we proceed to derive two further inequalities that play a pivotal role in the analysis of (AMP). The first is an immediate -but crucial -corollary of Lemma 7: Corollary 1. Let x * be a solution of (VI). Then, for all c ≥ 0 and all t = 1, 2, . . . , the iterates of (AMP) satisfy the template inequality

D(x * , x t+1 ) ≤ D(x * , x t ) -γ t ⟨V t+1/2 -cv(x * ), x t+1/2 -x * ⟩ + 1 2 γ 2 t ∥V t+1/2 -V t -cv(x * )∥ 2 * -1 2 ∥x t+1/2 -x t ∥ 2 . ( 38 
)
Proof. Since x * is a solution of (VI), we have v(x * ) ∈ -PC(x * ). Eq. ( 38) then follows by invoking Lemma 7 with

x ← x t , p ← x * , v ← -cγ t v(x * ) ∈ PC(x * ) and (y 1 , y 2 ) ← (-γ t V t , -γ t V t+1/2 ). ■
The second inequality that we derive provides an "energy function" for (AMP), namely

E t = D t + f t (39) 
where

D t = D(x * , x t ) and f t = γ 2 t-1 ∥(a + b)V t-1/2 -V t-1 ∥ 2 *
(40) with f 1 = 0 by convention. The lemma below outlines the Lyapunov properties of E t and provides much of the heavy lifting for Theorem 1.

Proposition 1. Suppose that Assumptions 1 and 3 hold and (AMP) is run with a step-size such that λγ t + 4γ 2 t L 2 ≤ 1 for some λ ≥ 0 and all t = 1, 2, . . . (41) Then, for all t = 1, 2, . . . , the iterates x t of (AMP) satisfy the inequality

E t+1 ≤ E t -λγ t f t -γ t ⟨v(x t+1/2 ) -v(x * ), x t+1/2 -x * ⟩ -γ t (a + b)⟨v(x * ), x t+1/2 -x * ⟩ -1 2 ∥x t+1/2 -x t ∥ 2 + γ 2 t (1 -a -b) 2 L 2 ∥x t+1/2 -x * ∥ 2 + 2γ 2 t (a + b) 2 L 2 ∥x t+1/2 -x t ∥ 2 . ( 42 
)
Proof. Let c = 1 -a -b so c ≥ 0 by Assumption 3. Corollary 1 then yields

D t+1 ≤ D t -γ t ⟨V t+1/2 -v(x * ), x t+1/2 -x * ⟩ -γ t (a + b)⟨v(x * ), x t+1/2 -x * ⟩ -1 2 ∥x t+1/2 -x t ∥ 2 + γ 2 t 2 ∥V t+1/2 -V t -cv(x * )∥ 2 * . (43) 
Since V t+1/2 = (a + b)V t+1/2 + cV t+1/2 , the last term above may be bounded as

1 2 γ 2 t ∥V t+1/2 -V t -cv(x * )∥ 2 * ≤ γ 2 t c 2 ∥V t+1/2 -v(x * )∥ 2 * + γ 2 t ∥(a + b)V t+1/2 -V t ∥ 2 * ≤ γ 2 t c 2 L 2 ∥x t+1/2 -x * ∥ 2 * + γ 2 t ∥(a + b)V t+1/2 -V t ∥ 2 * = γ 2 t (1 -a -b) 2 L 2 ∥x t+1/2 -x * ∥ 2 + f t+1 , (44) 
where we used Assumption 1 in the second line and the definition (39) of f t in the last one. Thus, combining Eqs. ( 43) and ( 44) and comparing to [START_REF] Zhou | On the convergence of mirror descent beyond stochastic convex programming[END_REF], it suffices to show that

2f t+1 ≤ (1 -λγ t )f t + 4γ 2 t (a + b) 2 L 2 ∥x t+1/2 -x t ∥ 2 for all t = 1, 2, . . . (45) 
We consider two distinct cases for this below.

Case 1: t = 1. By the definition (39) of f t and Eqs. ( 5) and ( 6), we have:

f 2 = γ 2 1 ∥(a + b)V 3/2 -V 1 ∥ 2 * = γ 2 1 (a + b) 2 ∥v(x 3/2 ) -v(x 1 )∥ 2 * ≤ γ 2 1 (a + b) 2 L 2 ∥x 3/2 -x 1 ∥ 2 , ( 46 
)
where we used the initialization assumption x 1 = x 1/2 in the second equality and the Lipschitz continuity of v in the last one. Since f 1 = 0 by construction, our claim is immediate. Case 2: t > 1. By Young's inequality and the Lipschitz continuity of v, we readily obtain

f t+1 = γ 2 t ∥(a + b)V t+1/2 -V t ∥ 2 * = γ 2 t (a + b)[v(x t+1/2 ) -v(x t )] + b[v(x t ) -v(x t-1/2 )] 2 * ≤ 2γ 2 t (a + b) 2 ∥v(x t+1/2 ) -v(x t )∥ 2 * + 2γ 2 t b 2 ∥v(x t ) -v(x t-1/2 )∥ 2 * ≤ 2γ 2 t (a + b) 2 L 2 ∥x t+1/2 -x t ∥ 2 + 2γ 2 t b 2 L 2 ∥x t -x t-1/2 ∥ 2 ≤ 2γ 2 t (a + b) 2 L 2 ∥x t+1/2 -x t ∥ 2 + 2γ 2 t b 2 L 2 γ 2 t-1 ∥V t-1/2 -V t-1 ∥ 2 * (47)
where, in the last line, we used Lemma 3 to bound the difference x t -x t-1/2 as

∥x t -x t-1/2 ∥ = ∥P xt-1 (-γ t-1 V t-1/2 ) -P xt-1 (-γ t-1 V t-1 )∥ ≤ γ t-1 ∥V t-1/2 -V t-1 ∥ * . (48)
Finally, by Assumption 3, we have c = 0

whenever b > 0, so b 2 γ 2 t-1 ∥V t-1/2 -V t-1 ∥ 2 * = b 2 γ 2 t-1 ∥(1 -c)V t-1/2 -V t-1 ∥ 2 * = b 2 f t for all t > 1.
Hence, putting everything together, we get

f t+1 ≤ 2γ 2 t (a + b) 2 L 2 ∥x t+1/2 -x t ∥ 2 + 2γ 2 t b 2 L 2 f t . (49) 
Eq. ( 45) then follows by the step-size requirement [START_REF] Tsallis | Possible generalization of Boltzmann-Gibbs statistics[END_REF], which implies that 2γ 2 t L 2 ≤ (1λγ t )/2. ■ Moving forward, since x * is a solution of (VI), the first line of (42) yields a negative O(γ t ) contribution to E t , whereas the third and fourth lines collectively represent a subleading O(γ 2 t ) "error term". This decomposition would suffice for the analysis of (AMP) if the coupling term ⟨v(x * ), x t+1/2 -x * ⟩ did not incur an additional O(γ t ) positive contribution to E t+1 . This error term is difficult to control in general, but if x * satisfies (SOS), it can be mitigated via the following bound: Lemma 8. Suppose that Assumption 2 holds. Then, for all x ∈ X , x ′ ∈ B and all c ∈ [0, 1], we have:

⟨v(x ′ ) -cv(x * ), x ′ -x * ⟩ ≥ 1 2 µ∥x -x * ∥ 2 -µ∥x ′ -x∥ 2 . ( 50 
)
Proof. Since x * is a solution of (VI) and c ∈ [0, 1], we have (1 -c)⟨v(x * ), x ′ -x * ⟩ ≥ 0 for all x ′ ∈ X . Hence, by Assumption 2, we get

⟨v(x ′ ) -cv(x * ), x ′ -x * ⟩ ≥ ⟨v(x ′ ) -v(x * ), x ′ -x * ⟩ ≥ µ∥x ′ -x * ∥ 2 (51) 
and our assertion follows from the basic bound ∥x -

x * ∥ 2 ≤ 2∥x -x ′ ∥ 2 + 2∥x ′ -x * ∥ 2 . ■
With this ancillary estimate in hand, we may finally sharpen Proposition 1 to obtain a bona fide energy inequality for solutions satisfying (SOS): Proposition 2. Suppose that Assumptions 1-3 hold and (AMP) is run with a step-size γ t such that

2µγ t + 4γ 2 t L 2 ≤ 1 and (1 -a -b) 2 γ t ≤ µ 8L 2 for all t = 1, 2, . . . (52) 
Then, for all t ≥ 1 such that x t+1/2 ∈ B, we have

E t+1 ≤ E t -µγ t f t -1 4 µγ t ∥x t -x * ∥ 2 . ( 53 
)
Proof. Assume that x t+1/2 ∈ B and set c = 1 -a -b. Then, invoking Lemma 8 with x ← x t and x ′ ← x t+1/2 , we get

⟨v(x t+1/2 )-v(x * ), x t+1/2 -x * ⟩+(a+b)⟨v(x * ), x t+1/2 -x * ⟩ ≥ 1 2 µ∥x t -x * ∥ 2 -µ∥x t+1/2 -x t ∥ 2 .
(54) Thus, taking λ ← µ in Proposition 1 (in terms of step-size conditions, the first part of (52) implies ( 41)) and combining with the above, the bound ( 42) becomes

E t+1 ≤ E t -µγ t f t -1 2 µγ t ∥x t -x * ∥ 2 + γ 2 t c 2 L 2 ∥x t+1/2 -x * ∥ 2 -1 2 1 -4γ 2 t (a + b) 2 L 2 -2µγ t ∥x t+1/2 -x t ∥ 2 . ( 55 
)
Hence, writing

∥x t+1/2 -x * ∥ 2 ≤ 2∥x t+1/2 -x t ∥ 2 + 2∥x t -x * ∥ 2
and rearranging, we obtain

E t+1 ≤ E t -µγ t f t -1 2 µγ t -4γ 2 t c 2 L 2 ∥x t -x * ∥ 2 -1 2 1 -4γ 2 t ((a + b) 2 + c 2 )L 2 -2µγ t ∥x t+1/2 -x t ∥ 2 . ( 56 
)
Since a, b, c ≥ 0 and a + b + c = 1, we also have (a + b) 2 + c 2 ≤ 1, so the step-size assumption (52) guarantees that the last term in (56) is nonpositive. Likewise, the second part of (52) gives µγ t -4γ 2 t c 2 L 2 ≥ 1 2 µγ t , so the energy inequality (53) follows and our proof is complete. ■ Remark. It is worth noting here that applying Lemma 8 in (55) introduces a factor 1/2 for (MD), even though x t = x t+1/2 by construction. Likewise, invoking the second part of the condition (52), which is void for both (MP) and (OMD), leads to a deterioration of the constants in our analysis.

♢

We finally have all the required building blocks in place to prove Theorem 1.

Proof of Theorem 1. Our proof strategy consists of the following basic steps:

(1) We first show that, if the step-size of (AMP) satisfies ( 29) and x 1 is initialized within a suitable neighborhood of x * , the sequence of leading states x t+1/2 , t = 1, 2, . . . , remains within the neighborhood U ∩ B of x * where the Legendre bound ( 28) and (SOS) hold concurrently. (2) By virtue of this stability result, the energy inequality (53) and the definition of the Legendre exponent allow us to express D t = D(x * , x t ) in recursive form as

D t+1 ≤ D t -O D 1/(1-β * ) t
up to an error term that vanishes at a geometric rate. The rates [START_REF] Nesterov | Dual extrapolation and its applications to solving variational inequalities and related problems[END_REF] and ( 31) are then derived by analyzing this recursive inequality for β * = 0 and β * > 0 respectively. We now proceed to detail the two steps outlined above.

Step 1: Stability. Take r > 0 such that B X r (x * ) := {x ∈ X : ∥x -x * ∥ ≤ r} ⊂ U ∩ B and assume further that

x 1/2 = x 1 ∈ U ∩ B is such that D(x * , x 1/2 ) = D(x * , x 1 ) ≤ (1 -λ)r 2 /4,
where λ ∈ (0, 1) is a constant to be determined later. Letting E 0 := D(x * , x 1 ), we will prove by induction on t that ∥x t-1/2 -x * ∥ ≤ r and E t ≤ E t-1 , (57) which will show in particular that x t+1/2 ∈ U ∩ B for all t ≥ 1. Indeed:

• For the base case (t = 1), we have ∥x 1/2 -x * ∥ ≤ 2D(x * , x 1/2 ) ≤ r and E 1 = E 0 by construction, so there is nothing to show.

• For the induction step, assume (57) holds. Then (22) yields

1 2 ∥x t -x * ∥ 2 ≤ D t ≤ E t ≤ E 1 = D(x * , x 1 ) ≤ 1 4 (1 -λ)r 2 (58) 
i.e., x t ∈ B X r (x * ). Now, to show that

x t+1/2 ∈ B X r (x * ), Lemma 6 with p ← x * , x ← x t , y ← -γ t V t and v ← -(a + b)γ t v(x * ) gives D t+1/2 ≤ D t -γ t ⟨V t -(a + b)v(x * ), x t+1/2 -x * ⟩ ≤ D t -aγ t ⟨v(x t ) -v(x * ), x t+1/2 -x * ⟩ -bγ t ⟨v(x t-1/2 ) -v(x * ), x t+1/2 -x * ⟩ (59)
and hence, by Young's inequality and ( 22), we get

1 2 ∥x t+1/2 -x * ∥ 2 ≤ D t + γ 2 t a∥v(x t ) -v(x * )∥ 2 * + γ 2 t b∥v(x t-1/2 ) -v(x * )∥ 2 * + 1 4 (a + b)∥x t+1/2 -x * ∥ 2 . ( 60 
)
Since a + b ≤ 1, using Assumption 1 and rearranging gives

∥x t+1/2 -x * ∥ 2 ≤ 4D t + 4γ 2 t L 2 max{∥x t -x * ∥ 2 , ∥x t-1/2 -x * ∥ 2 } ≤ (1 -λ)r 2 + 4γ 2 t L 2 r 2 (61) 
where we used the fact that ∥x t-1/2 -x * ∥ 2 ≤ r 2 and ∥x t -x * ∥ 2 ≤ 2D t ≤ 1 2 (1 -λ)r 2 (by the inductive hypothesis and (58) respectively). Therefore, with 2γ t L ≤ 1/φ < 1 by assumption, choosing λ = 1/φ 2 gives ∥x t+1/2 -x * ∥ 2 ≤ r 2 , which completes the first part of the induction.

For the second part, our step-size assumption gives

2µγ t + 4γ 2 t L 2 ≤ 2γ t L + 4γ 2 t L 2 ≤ 1/φ + 1/φ 2 = 1. (62) 
Thus, since x t+1/2 ∈ B, Proposition 2 readily gives

E t+1 ≤ E t -µγ t f t -1 4 µγ t ∥x t -x * ∥ 2 ≤ E t , (63) 
and the induction is complete.

Step 2: Convergence rate analysis. The local Legendre bound [START_REF] Nemirovski | Problem Complexity and Method Efficiency in Optimization[END_REF] allows us to rewrite (63) as

E t+1 ≤ E t -µγ t f t - µγ t 2 1-α κ 1+α D 1+α t (64)
where, for convenience, we set α = β * /(1 -β * ). We now distinguish two cases, depending on whether β * = 0 or β * > 0.

Case 1: If β * = 0, we have α = 0 by definition and κ ≥ 1 by [START_REF] Mertikopoulos | Learning in games with continuous action sets and unknown payoff functions[END_REF]. Eq. ( 64) then gives

E t+1 ≤ E t - µγ t 2κ D t -µγ t f t ≤ 1 - µγ t 2κ E t ( 65 
)
so the bound (30) follows immediately by setting γ t ≡ γ for all t. Case 2: If β * > 0, then α > 0 too, so we will proceed by rewriting all terms in Eq. ( 64) in terms of E t . To that end, we have:

E t+1 ≤ E t -µγ t f t - µγ t 2 1-α κ 1+α D 1+α t ≤ E t - µγ t D(x * , x 1 ) α f 1+α t - µγ t 2 1-α κ 1+α D 1+α t ≤ E t - µγ t max(2 1-α κ 1+α , D(x * , x 1 ) α ) D(x * , x t ) 1+α + f 1+α t ≤ E t - µγ t max(2κ 1+α , 2 α D(x * , x 1 ) α ) E 1+α t (66)
where, in the second line, we used (57) to bound f t as f t ≤ D(x * , x t ) + f t ≤ D(x * , x 1 ), and, in the last line, we used the convexity of x 1+α over R + . The rate (31) then follows by invoking Lemma 6 of [33, p. 46] (recreated in the appendix as Lemma A.1 for ease of reference). ■

Finer results for linearly constrained problems

Motivated by applications to game theory and linear programming, our goal in this section will be to take a closer look at the convergence rate of (AMP) for different solution configurations that may arise in practice -and, in particular, in linearly constrained problems. To that end, we begin by revisiting the examples of Section 3.

Motivating examples, redux.

A common feature of Examples 3.1-3.4 is that the problem's defining vector field vanishes at the solution point under scrutiny. In the series of examples below, we examine the rate of convergence achieved when this is not the case.

Example 5.1 (Euclidean regularization). Consider again the quadratic regularizer of Example 3.1 over X = [0, ∞), but with v(x) = x + 1. The solution of (VI) is still x * = 0 but the update (11) now becomes

F (x) = [x -γ(x + 1)] + = [(1 -γ)x -γ] + . ( 67 
)
Since F (x) = 0 for all sufficiently small x > 0, we readily conclude that x t converges to x * in a finite number of iterations.

♢

Example 5.2 (Entropic regularization). Under the entropic regularizer of Example 3.2, and taking again v(x) = x + 1, the update rule [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF] becomes

F (x) = x exp(-γ(x + 1)) = xe -γ + o(x) ∼ xe -γ (68) 
i.e., F is a contraction for small x > 0. Hence, in contrast to Example 3.2, x t converges to 0 at a geometric rate, even though the problem's solution lies on the boundary of X .

♢

Example 5.3 (Fractional power). Finally, consider the fractional power regularizer of Example 3.3, again with v(x) = x + 1. Then, for q ∈ (0, 1), the update rule [START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF] gives

F (x) = [x q-1 + γ(1 -q)(x + 1)] 1/(q-1) = x -γx 2-q + o(x 2-q ) ( 69 
)
for small x > 0. Thus, by Lemma 4, we conclude that x t converges to 0 as |x t -x * | = Θ t -1/(1-q) and hence D(x * , x t ) = Θ t -q/(1-q) , which is again faster than the rate predicted by Theorem 1.

♢

Examples 5.1-5.3 already show that the convergence rate of (AMP) can change drastically depending on whether v(x * ) is zero or not. In the example below, we examine in more detail the behavior of the individual coordinates of x t as a function of the position of v(x * ) relative to X .

Example 5.4 (Higher-dimensional simplices). Consider the canonical two-dimensional simplex

X = {(x 1 , x 2 , x 3 ) ∈ R 3 + : x 1 + x 2 + x 3 = 1} of R 3 equipped with the entropic regularizer h(x) = 3 i=1 x i log x i .
Consider also the vector field v(x) = x -p with p = (-ν 1 , -ν 2 , 1) for some ν 1 , ν 2 ≥ 0, so the solution of (VI) is x * = (0, 0, 1), an extreme point of X .

Since the Legendre exponent of h at x * is easily seen to be β h (x * ) = 1/2, Theorem 1 would indicate a rate of convergence of D(x * , x t ) = O(1/t) or, in terms of norms, ∥x t -x * ∥ = O(1/t). However, this rate can be very pessimistic if, for example, ν 1 > 0. Indeed, in this case, since x t converges to x * = (0, 0, 1), the relevant coordinates of v(x t ) will evolve as v 1 (x t ) = x 1,t + ν 1 = ν 1 + o(1) and v 3 (x t ) = x 3,t -1 = o(1). Accordingly, since entropic regularization on the simplex leads to the exponential weights update [START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF] x i,t+1 ∝ x i,t exp(-γv i (x t )) for all t ≥ 1, i = 1, 2, 3,

the fact that lim t→∞ x 3,t = 1 readily yields

x 1,t+1 ∼ x 1,t+1 x 3,t+1 = x 1,t x 3,t exp(-γv 1 (x t ) + γv 3 (x t )) = x 1,t x 3,t exp(-γν 1 + o(1)) (71) 
i.e., x 1,t converges to 0 at a geometric rate whenever ν 1 > 0.

By symmetry, the argument above yields the same rate for x 2,t if ν 2 > 0. However, as we show in Appendix B, if ν 2 = 0, we would have x 2,t = Θ(1/t) no matter the value of ν 1 (and likewise for the rate of x 1,t if ν 1 = 0). In other words, the rate provided by Theorem 1 is tight for the coordinate i ∈ {1, 2} with a vanishing drift coefficient ν i , but not otherwise; we will devote the rest of this section to deriving a formal statement (and proof) of the general principle underlying this observation. ♢ 5.2. Linearly constrained problems. For concreteness, we will focus in what follows on linearly constrained problems, which is where the structural configurations outlined in the previous examples are more prominent. To simplify the presentation and the analysis, we will identify V with R n endowed with the Euclidean scalar product ⟨•, •⟩, and we will not distinguish between primal and dual vectors (meaning in particular that the distinction between normal and polar cones will be likewise blurred).

Formally, we will consider polyhedral domains written in normal form as

X = {x ∈ R n + : Ax = b} (72)
for some matrix A ∈ R m×n and b ∈ R n . 4 Moreover, we will further assume that X admits a Slater point, i.e., there exists some x ∈ X such that x i > 0 for all i = 1, . . . , n. This setup is particularly flexible, as it allows us to identify the active constraints at x ∈ X with the zero components of x.

Elaborating further on this, since ⟨v(x * ), x -x * ⟩ ≥ 0 for all x ∈ X and any solution x * of (VI), we directly infer that -v(x * ) is an element of the normal cone NC(x * ) to X at x * . In our polyhedral setting, NC(x * ) admits an especially simple representation as

NC(x * ) = row(A) -{(ν 1 , . . . , ν n ) ∈ R n + : ν i = 0 whenever x * i = 0} (73) 
where row(A) = (ker A) ⊥ ⊆ R n denotes the row space of A [13, Ex. 5.2.6]. As a result, we see that x * is a solution of (VI) if and only if v(x * ) can be written in the form

v(x * ) - i∈A ν i e i ∈ row(A) (74) 
for an ensemble of non-negative slackness coefficients ν i ≥ 0, i ∈ A, where

A ≡ A(x * ) = {i : x * i = 0} (75) 
denotes the set of inequality constraints of (72) that are active at x * . In view of all this, we will distinguish the following solution configurations:

Definition 3 (Sharpness). Let x * ∈ X be a solution of (VI) with associated slackness coefficients ν i , i ∈ A, as per (74). The set of sharp (♯) and flat (♭) directions at x * are respectively defined as

A ♯ = {i ∈ A : ν i > 0} and A ♭ = {i ∈ A : ν i = 0}, (76) 
and we say that v is sharp at x * if A ♯ = A (or, equivalently, if A ♭ = ∅). The sharpness of v at x * is then defined as

ν * = min i∈A ♯ ν i . (77) 
The terminology "sharp" and "flat" alludes to the case where v is a gradient field, and is best illustrated by an example. To wit, let f (x 1 , x 2 ) = x 1 + 1 2 (x 2 -1) 2 for x 1 , x 2 ≥ 0, so f admits a (unique) global minimizer at x * = (0, 1). Applying Definition 3 to v = ∇f , we readily get A ♯ = {1} and A ♭ = {2}, reflecting the fact that f (x 1 , 1) exhibits a sharp minimum at 0 along x 1 whereas the landscape of f (0, x 2 ) is flat to first-order around 1 along x 2 . 5.3. Convergence rate analysis. We are now in a position to state and prove our refinement of Theorem 1 for linearly constrained problems. To that end, following Alvarez et al. [START_REF] Alvarez | Hessian Riemannian gradient flows in convex programming[END_REF], we will assume in the rest of this section that (AMP) is run with a Bregman regularizer h that is adapted to the polyhedral structure of X as per the definition below: 4 Inequality constraints of the form Ax ≤ b can also be accommodated in (72) by introducing the associated slack variables s = b -Ax ≥ 0. Even though this leads to a more verbose presentation of X , the form (72) is much more convenient in terms of notational overhead, so we will stick with the equality formulation throughout.

Definition 4. Let X be a polyhedral domain of the general form (72), and let θ : R + → R be a continuous function such that a) θ ′′ (x) exists and is positive for all x > 0; and b) θ ′′ is locally Lipschitz on (0, ∞). Then, a Bregman regularizer h on X is said to be decomposable with kernel θ if

h(x) = n i=1 θ(x i ) for all x ∈ X . (78) 
In addition to facilitating calculations, the notion of decomposability will further allow us to describe the convergence rate of the iterates of (AMP) near the boundary of X in finer detail. In fact, as it turns out, the speed of convergence along a given direction will actually be determined by the behavior of the derivative of the Bregman kernel θ near 0.

In this regard, there are two distinct regimes to consider. First, if lim x→0 + θ ′ (x) = -∞, it is straightforward to see that dom ∂h = ri X so, by Lemma 1, the iterates x t of (AMP) will remain in ri X for all t; in this case h is essentially smooth -or Legendre -in the sense of Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF]Chap. 26], and we will refer to it as steep. Otherwise, if θ ′ (0) exists and is finite, x t may reach the boundary of X in a finite number of iterations; we will refer to this case as non-steep. The key difference between these two regimes is that, in the non-steep case, the algorithm may achieve convergence in a finite number of steps (at least along certain directions). On the other hand, even though finite-time convergence is not possible in the steep regime, the algorithm's rate of convergence may still depend on the boundary behavior of θ. To illustrate this, we will consider the following concrete cases: Assumption 4. Let θ : R + → R be a kernel function as per Definition 4. Then θ ′ exhibits one of the following behaviors as x → 0 + : (a) Euclidean-like:

lim inf x→0 + θ ′ (x) > -∞. (b) Entropy-like: lim inf x→0 + [θ ′ (x) + log x] > -∞.
(c) Power-like: lim inf x→0 + x p θ ′ (x) > -∞ for some p ∈ (0, 1).

Remark. Cases (a)-(c) above respectively mean that |θ ′ (x)| grows as O(1), O(|log x|) or O(1/x p ) as x → 0 + . Clearly, we have (a) =⇒ (b) =⇒ (c) so these cases are not exclusive; nonetheless, to avoid overloading the presentation, when we say that (b) holds, we will tacitly imply that (a) does not also hold at the same time -and likewise for (c).

♢ With all this in hand, we proceed to show that, in linearly constrained problems, (AMP) converges along sharp directions at x * at an accelerated rate relative to Theorem 1: sublinear rates may become linear, and linear rates transform to convergence in finite time.

Theorem 2. Suppose that (AMP) is run in a polyhedral domain with a decomposable regularizer as per Definition 4. Suppose further that Assumptions 1-4 hold, and that the method's step-size and initialization satisfy the requirements of Theorem 1. Then, for all i ∈ A ♯ , we have:

(a) Under Assumption 4(a), there exists some T ≥ 1 such that:

x i,t = 0 for all t ≥ T (79a) 
(b) Under Assumption 4(b):

x i,t = O exp(-γν eff t/2) (79b) 
(c) Under Assumption 4(c):

x i,t = O (γν eff t/2) -1/p (79c) X NC(x * ) . x * -v(x * ) X NC(x * ) . x * -v(x * ) X NC(x * ) . x * -v(x * )
Figure 2: Different solution configurations: a non-extreme solution where v is sharp (left), an extreme solution where v is not sharp (center), and a sharp solution (i.e., an extreme solution where v is sharp; right).

where

ν eff = ν * if v is sharp at x * (i.e., A ♭ = ∅), ν * /ϱ otherwise, (80) 
and ϱ ≡ ϱ(A, b, x * ) ≥ 1 is a positive constant that depends only on X and x * .

Theorem 2 is the main result of this section so, before proving it, some remarks are in order. We begin with the observation that, if the sharp directions at x * suffice to characterize it, the coordinate-wise guarantees (79) must extend to the full space. This is always so if x * is an extreme point of X and v is sharp at x * , in which case we will say that x * is itself sharp. We then have the following immediate corollary of Theorem 2: Corollary 2. If x * is sharp, we have ∥x t -x * ∥ → 0 at a rate given by (79a), (79b), or (79c), depending respectively on whether Case (a), (b), or (c) of Assumption 4 holds.

Proof. First, note that x * is sharp if and only if span{e i : i ∈ A ♯ } + row(A) = R n : indeed, since X is a polyhedron, x * is extreme if and only if NC(x * ) has nonempty topological interior, and this, combined with (73) and the fact that A ♯ = A (since v is sharp at x * ), proves our assertion. We thus conclude that, for all i = 1, . . . , n, there exist λ ij ∈ R, j ∈ A ♯ , such that e i -j∈A ♯ λ ij e j ∈ row(A), and hence, for all t = 1, 2, . . . , we have x i,t -x * i = j∈A ♯ λ ij x j,t . Our claim then follows from Theorem 2 and the fact that all norms are equivalent on R n . ■

We continue with a series of observations elaborating further on Theorem 2.

Remark 1 (Examples). In our series of running examples, the guarantees of Theorem 2 are as follows:

(1) Euclidean regularization (Example 3.1): With θ(x) = x 2 /2, this regularizer satisfies Assumption 4(a) because θ ′ is defined and continuous on all of R + , so we get convergence along the sharp directions of x * in a finite number of steps. (2) Negative entropy (Example 3.2): The corresponding kernel is θ(x) = x log x for x ≥ 0.

Since θ ′ (x) = log x + 1 on (0, ∞), θ satifies Assumption 4(b), so the algorithm's rate of convergence along sharp directions is geometric. (3) Tsallis entropy (Example 3.3): For q < 1, the kernel θ(x) = [q(1 -q)] -1 (x -x q ) is differentiable on (0, ∞). Since θ ′ (x) = [q(1 -q)] -1 (1 -qx q-1 ), this kernel satisfies Assumption 4(c) with p = 1 -q, leading to an O(1/t 1/(1-q) ) rate of convergence along sharp directions. It is also worth noting here that the Legendre exponent at x * is upper bounded by p as β * ≤ (1 + p)/2; we defer the details of this calculation to Appendix B.

Bregman Kernel (θ) Generic rate (Theorem 1) Sharp rate (Theorem 2)

Euclidean x 2 /2 Linear Finite time Entropic x log x O(1/t) Linear Tsallis [q(1 -q)] -1 (x -x q ) O(1/t q/(2-q) ) O(1/t 1/(1-q) ) Hellinger - √ 1 -x 2 O(1/t 1/3 ) O(1/t 2 )
Table 2: Summary of the accelerated rates of convergence observed along sharp directions as a function of the underlying Bregman kernel (cf. Definition 4). The Euclidean, entropic and Tsallis kernels are the prototypical examples of Cases (a)-(c) of Assumption 4; to avoid trivialities, we only consider the behavior of θ at the boundary of its domain.

(4) Hellinger regularizer (Example 3.4): The Hellinger kernel is given by θ(x) = -√ 1 -x 2 , so θ ′ (x) = x/(1 -x 2 ) for all x ∈ (-1, 1). The behavior of this kernel would then correspond to Assumption 4(c) with p = 1/2. To facilitate comparisons with Theorem 1, we juxtapose the corresponding rates in Table 2.

♢

Remark 2 (Solution configurations). By construction (and the fact that X admits a Slater point), it is straightforward to verify that v is sharp at x * if and only if v(x * ) ∈ -ri(NC(x * )); likewise, x * is itself sharp if and only if v(x * ) ∈ -int(NC(x * )). As we noted in the proof of Corollary 2, the latter condition is equivalent to asking that span{e i : i ∈ A ♯ } + row(A) = R n , a condition which describes precisely the informal requirement that the sharp directions at x * suffice to characterize it. By contrast, if v is sharp at some non-extreme point x * , there exists some (nonzero) z ∈ TC(x * ) such that ⟨v(x * ), z⟩ = 0, indicating that the accelerated rates of Theorem 2 cannot be active along the residual direction z. We illustrate these distinct solution configurations in Fig. 2. ♢ Remark 3 (Alternative polyhedral representations). Even though every polyhedral domain can be represented in normal form by means of (72) -possibly up to introducing a set of slack variables to account for constraints of the form Ax ≤ b -some polyhedra can be represented more succinctly as

X = {x ∈ R n : Ax = b and ⟨c j , x⟩ ∈ R j , j = 1, . . . , m} (81) 
for an ensemble of vectors c j ∈ R n and intervals R j ⊆ R for each of the problem's inequality constraints j = 1, . . . , m. At the cost of heavier notation, Theorem 2 can be extended to this setting by considering decomposable Bregman regularizers of the form h(x) = m j=1 θ j (⟨c j , x⟩), x ∈ X , where each θ j is a suitable Bregman kernel on R j . Mutatis mutandis, the sets of active, sharp and flat constraints can then be defined as in Definition 3, and the guarantees of Theorem 2 would apply to the constraint excess variables χ j,t = ⟨c j , x t ⟩, j = 1, . . . , m. ♢ Remark 4 (Tightness and the structure of X ). It is also important to note that the dependence of ν eff on the structure of X in the second branch of (80) cannot be lifted. To see this, let

X = {x ∈ R 2 + : x 1 = εx 2 } (82) 
i.e., A = [1 -ε] and ker A is spanned by the vector z = (ε, 1). Then, if we take v(x) = x -p with p 1 ≤ 0 and p 2 ≥ 0 (so that the origin is a solution), and we equip X with the Bregman regularizer induced by the entropic kernel θ(x) = x log x, a straightforward calculation shows that the iterates of (MD) satisfy the recursion

εθ ′ (x 1,t+1 ) + θ ′ (x 2,t+1 ) = εθ ′ (x 1,t ) + θ ′ (x 2,t ) + γ εx 1,t + x 2,t -γ⟨p, z⟩. (83) 
Thus, letting χ t = x 2,t = x 1,t /ε, the above can be rewritten as

εθ ′ (εχ t+1 ) + θ ′ (χ t+1 ) = εθ ′ (εχ t ) + θ ′ (χ t ) + γ(ε 2 + 1)χ t -γ⟨p, z⟩ (84) 
and hence, with θ ′ (x) = 1 + log x, we finally get

χ t+1 = χ t exp -γ ε 2 + 1 ε + 1 χ t + γ ⟨p, z⟩ ε + 1 . ( 85 
)
Now, if ⟨p, z⟩ < 0, we readily infer that χ t = x 2,t converges linearly to 0 at a rate of

χ t ∼ exp - |⟨p, z⟩| ε + 1 γt (86)
as predicted by Theorem 2. In particular, if v(0) = -p = (ν * , ν * ) with ν * > 0, the iterates of (MD) converge geometrically to zero with exponent γν * , which matches the estimate of Theorem 2 up to a factor of 1/2 in the exponent. On the contrary, if v(0) = -p = (ν * , 0), the term |⟨-p, z⟩| = εν * depends on the linear structure of X and can be arbitrarily bad as ε goes to zero. This illustrates why one cannot do away with the dependence on the linear structure of X when v is not sharp at x * . ♢ 5.4. Proof of Theorem 2. We now proceed to the proof of Theorem 2, beginning with two helper lemmas tailored to the polyhedral structure of X . The first is a book-keeping result regarding the subdifferentiability of h.

Lemma 9.

Let h be a decomposable regularizer on X with kernel θ as per Definition 4. Then the domain of subdifferentiability of h is X h = {x ∈ X : x i ∈ dom ∂θ for all i = 1, . . . , n} and a continuous selection of ∂h is given by the expression

∇h(x) = n i=1 θ ′ (x i )e i for all x ∈ X h . (87) 
Proof. See Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF]Thm 23.8], whose qualification condition is satisfied thanks to the fact that X is polyhedral. ■

The second ingredient we will need is a separation result in the spirit of Farkas' lemma.

Lemma 10. Let X be a polyhedral domain of the general form (72). Then, for all x * ∈ X , there exists P = P (A, b, x * ) ≥ 1 such that, for all I ⊆ A ≡ A(x * ), at least one of the following holds: (a) I ̸ = ∅ and there exists i ∈ A \ I such that x i ≤ P max{x j : j ∈ I} for all x ∈ X . (b) There exists z ∈ ker A such that ∥z∥ ≤ P ,

z i = 0 if i ∈ I and P ≥ z i ≥ 1 if i ∈ A \ I.
The proof of Lemma 10 is based on Farkas' lemma so we relegate it to Appendix A and instead proceed to use it to prove our main result for linearly constrained problems.

Proof of Theorem 2. We will consider two main cases, depending on whether lim x→0 + h ′ (x) = -∞ (the steep case) or lim x→0 + h ′ (x) > -∞ (the non-steep case). The steep regime will cover Cases (b) and (c) of Assumption 4, whereas the non-steep regime will account for Case (a).

Case 1: the steep regime. We begin by noting that, without loss of generality, Cases (b) and (c) respectively imply that there exist C ∈ R and δ > 0 such that, for all x ∈ (0, δ), we have:

Under Assumption 4(b): θ ′ (x) ≥ log x -C (88a) 
Under Assumption 4(c):

θ ′ (x) ≥ -Cx -p (88b) 
With this in mind, let r > 0 be sufficiently small so that the relative neighborhood B r := {x ∈ X : ∥x -x * ∥ ≤ r} of x * in X satisfies:

• B r ⊆ U ∩ B with B and U defined by (SOS) and ( 28) respectively.

• If x ∈ B r then x i < δ for all i ∈ A.

• If x ∈ B r , then ∥v(x) -v(x * )∥ * ≤ ν * /(2P ) with ν * given by (77) and P given by Lemma 10. Recall that Step 1 of the proof of Theorem 1 implies that the iterates x t and halfiterates x t+1/2 of (AMP) will remain in B r for all t if x 1 is initialized sufficiently close to x * . Accordingly, with this stability guarantee in hand, we will construct sets

I ♯ ⊆ A ♯ , I ♭ ⊆ A ♭ such that, for all i ∈ I := I ♯ ∪ I ♭ , x i,t ≤ P |I| • exp(C + P ∥∇ h(x 1 )∥ * + P R -γν eff (t -1)/2) under Assumption 4(b), C[γν eff (t -1)/2 -P ∥∇ h(x 1 )∥ * -P R] -1 p + under Assumption 4(c), (89) 
where R := sup x∈Br i / ∈A θ ′ (x i )e i * , P ≥ 1 is the constant given by Lemma 10 and ν eff is defined as in (80) with ϱ = P |A|.

We will proceed inductively, starting with I ♯ = I ♭ = ∅, in which case the stated property holds trivially. For the inductive step, if (89) holds for I ♯ ⊊ A ♯ and I ♭ ⊆ A ♭ , we will show that there is some index j ∈ A \ I such that (89) still holds for I ∪ {j}. By iterating this procedure, since the number of active constraints is finite, we will reach I ♯ = A ♯ and the result of the theorem will follow.

To carry all this out, assume that I ♯ ⊊ A ♯ , I ♭ ⊆ A ♭ , and apply Lemma 10 to I = I ♯ ∪ I ♭ . If the first case of Lemma 10 holds, then I ̸ = ∅ and there exists i ∈ A such that

x i,t ≤ P max j∈I x j,t (90) 
so (89) still holds when i is appended to I ♯ or I ♭ (depending on whether it belongs to A ♯ or A ♭ ). Otherwise, the second case of Lemma 10 holds and there exists some z ∈ ker A with ∥z∥ ≤ P , z i = 0 if i ∈ I, and P ≥ z i ≥ 1 if i ∈ A \ I. Since h is steep, this means that x t+1 = P xt (-γV t+1/2 ) belongs to X h = ri X for all t = 1, 2, . . . , so the normal cone NC(x t+1 ) to X at x t+1 will be the affine hull of X , i.e., NC(x t+1 ) = row(A). Hence, Lemma 1 guarantees that ∇h(x t+1 ) -∇h(x t ) + γV t+1/2 ∈ row(A)

so, telescoping over s = 1 to t -1, we get

∇h(x t ) -∇h(x 1 ) + γ t-1 s=1 V s+1/2 ∈ row(A). (92) 
Taking the scalar product with z ∈ ker A then yields

n i=1 θ ′ (x i,t )z i = ⟨∇h(x 1 ), z⟩ -γ t-1 s=1 ⟨V s+1/2 , z⟩ (93) 
so, after rearranging and invoking to write ⟨v(x * ), z⟩ = i∈A ν i z i , we get

i∈A\I θ ′ (x i,t )z i + i∈I θ ′ (x i,t )z i = ⟨∇h(x 1 ), z⟩ -γ t-1 s=1 i∈A ν i z i + γ t-1 s=1 ⟨v(x * ) -V s+1/2 , z⟩ - i / ∈A θ ′ (x i,t )z i . (94) 
Now, by the properties we used to construct z, we further have

i∈A\I θ ′ (x i,t )z i ≤ P ∥∇h(x 1 )∥ * -γ(t -1) i∈A\I ν i z i + γ t-1 s=1 P ∥v(x * ) -V s+1/2 ∥ * + P i / ∈A θ ′ (x i,t )e i * ≤ P ∥∇h(x 1 )∥ * -γ(t -1) i∈A\I ν i z i + 1 2 γν * (t -1) + P R. ( 95 
)
where the second inequality follows from how we chose B r at the beginning of the proof. We conclude our analysis by distinguishing whether v is sharp at x * (i.e., if

A ♭ = ∅ or not). Case 1: If A ♭ = ∅, we have A \ I = A ♯ \ I ♯ and ν i ≥ ν * for all i ∈ A \ I, so (95) gives i∈A\I θ ′ (x i,t )z i + γ(t -1)ν * z i ≤ P ∥∇h(x 1 )∥ * + 1 2 γν * (t -1) + P R. (96) 
Choosing the coordinate j ∈ A \ I which corresponds to the smallest term in the sum on the left-hand side (LHS), we obtain that

(θ ′ (x j,t ) + γ(t -1)ν * )(|A| \ I)z j ≤ P ∥∇h(x 1 )∥ * + 1 2 γν * (t -1) + P R (97) 
and noting that |A \ I|z j ≥ 1 yields

θ ′ (x j,t ) ≤ P ∥∇h(x 1 )∥ * -1 2 γν * (t -1) + P R . (98) 
Case 2: If A ♭ ̸ = ∅, then, since I ♯ ⊊ A ♯ , the intersection of A \ I and A ♯ is not empty so that, i∈A\I ν i z i ≥ i∈A\I ν i ≥ ν * and the inequality (95) above becomes,

i∈A\I θ ′ (x i,t )z i ≤ P ∥∇h(x 1 )∥ * -1 2 γν * (t -1) + P R . (99) 
Now, choosing j to be the coordinate in A \ I which minimizes the LHS and bounding |A \ I| by 1 and |A|, we get that

θ ′ (x j,t )z j ≤ P ∥∇h(x 1 )∥ * - γν * 2|A| (t -1) + P R . (100) 
Dividing both sides by z j and using that it lies between 1 and P gives

θ ′ (x j,t ) ≤ P ∥∇h(x 1 )∥ * - γν * 2P |A| (t -1) + P R (101) 
Therefore, we have shown that, in both cases, there exists j ∈ A \ I such that (101) holds, since P |A| ≥ 1. Therefore, combining this inequality with (88) we conclude that (89) holds for j, and since P ≥ 1, we conclude that we can augment I ♯ or I ♭ by j, depending on whether it belongs to A ♯ or A ♭ .

Case 2: the non-steep regime. The proof borrows the structure of the first case, though it is more straightforward. Take r > 0 small enough such that B r := {x ∈ X : ∥x -x * ∥ ≤ r} satisfies

• B r is included in U ∩ B,
• if x, x ′ ∈ B r then, ∥∇h(x) -∇h(x ′ )∥ * ≤ γν * 3P where P is given by Lemma 10. This is possible since ∇h is continuous at x * .

• if x ∈ B r , then ∥v(x) -v(x * )∥ * ≤ ν * 3P . • No other constraint x i = 0 with i / ∈ A becomes active in B r .

As we have seen in the stability part of the proof of Theorem 1, if (AMP) is started close enough to x * , then all the iterates x t and the half-iterates x t+1/2 for s = 1, 2, . . . are contained in B r .

As above, fix some t ≥ T . We will build sets I ♯ ⊆ A ♯ , I ♭ ⊆ A ♭ with the property that that for all i ∈ I ♯ ∪ I ♭ , x i,t = 0 .

(102)

Starting with I ♯ = I ♭ = ∅, Eq. ( 102) is trivially verified. Now, take I ♯ ⊊ A ♯ , I ♭ ⊆ A ♭ which satisfy the desired property and, as before, apply Lemma 10 with I := I ♯ ∪ I ♭ . If the first case of Lemma 10 holds, then I ̸ = ∅ and there exists j ∈ A such that,

x j,t ≤ P max(x i,t : i ∈ I) ,

which yields the result by adding i to I ♯ or I ♭ depending whether it belongs to A ♯ or A ♭ . Otherwise, if the second case holds, there is some z ∈ ker A such that ∥z∥ ≤ P , z i = 0 if i ∈ I and P ≥ z i ≥ 1 if i ∈ A \ I. For the sake of contradiction, assume that for all i ∈ A \ I, x i,t > 0. Showing that this results in a contradiction will give us an additional coordinate j ∈ A \ I for which x j,t = 0 that we will then add to I ♯ or I ♭ as in the first case. Now, let us determine the normal cone at x t . Since x t belongs to B X r (x * ), no other constraint other than the ones corresponding to I can become active, and these constraints are actually active by the definition of I and Eq. (102). Hence, the normal cone at x t (see Eq. ( 73)) becomes NC(x t ) = -i∈I ν i e i : (ν i ) i∈I ∈ (R + ) I + row(A) ,

and taking a scalar product between the last inclusion of Lemma 1 and z, we get that, ∇h(x t ) -∇h(x t-1 ) -γV t-1/2 , z = 0 .

This means that, γ⟨v(x * ), z⟩ = ⟨∇h(x t ) -∇h(x t-1 ), z⟩ + γ⟨v(x * ) -γV t-1/2 , z⟩ ≤ 2γν * 3 (106)

where the last inequality comes from our definition of B X r (x * ). However, by (74) and the properties of z, we also have

⟨v(x * ), z⟩ = i∈A\I ν i z i ≥ ν * (107)
which is in contradiction with (106). We may therefore iteratively add coordinates of A for which x i,t = 0, which completes the induction and our proof. ■

Concluding remarks

Our results that Euclidean regularization leads to faster trajectory convergence rates near second-order sufficient (SOS) solutions. While this does not contradict the analysis of Nemirovski [START_REF] Nemirovski | Prox-method with rate of convergence O(1/t) for variational inequalities with Lipschitz continuous monotone operators and smooth convex-concave saddle point problems[END_REF] -which concerns the method's ergodic average in merely monotone problems and advocates the use of entropic regularization in domains with a favorable geometry -it does run contrary to its spirit.

We attribute the source of this discrepancy (at least in the non-sharp case) to the fact that Lipschitz continuity and second-order sufficiency are both norm-based conditions, so it is plausible to expect that norm-based regularizers would lead to better results. This raises the question of what the corresponding rate analysis would give in the case of Bregman-based variants of (LC) and (SOS), e.g., as in the recent works of Bauschke et al. [START_REF] Bauschke | A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications[END_REF], Lu et al. [START_REF] Lu | Relatively-smooth convex optimization by first-order methods and applications[END_REF], and Antonakopoulos et al. [START_REF] Antonakopoulos | An adaptive mirror-prox algorithm for variational inequalities with singular operators[END_REF]. We defer this analysis to future work. so the denominator of Eq. becomes 1 -x 2 + G(x) 2 = (x + 1)(2 -(x + 1) + G(x) which in turn shows that x 2,t ∼ x 2,t /x 3,t = Ω(1/t), as claimed.

♢ Remark 1 (Connection to the Bregman exponent, continuing from p. 21). We proceed to show here that, in Case of Assumption 4, the Bregman exponent at the solution satisfies β * ≤ (1 + p)/2. Indeed, under our stated assumptions, θ is actually differentiable throughout (0, ∞) so, whenever 0 ≤ x ′ ≤ x, we have θ(x ′ ) -θ(x) = - which shows that the Legendre exponent of h at x * is at most (1 + p)/2, as claimed.

♢

Figure 1 :

 1 Figure 1: The rate of convergence of (MD) in Examples 3.1-3.4. The Euclidean and shifted Hellinger regularizers lead to a geometric rate of convergence (see left figure); all other examples converge at a polynomial rate, and we provide the theoretically computed rate for comparison (dashed lines in the figure to the right).

♢ 4 . 3 .

 43 Proof of Theorem 1. We now proceed to the proof of Theorem 1, beginning with a series of helper lemmas and intermediate results tailored to the update structure of (AMP).

  to Assumption 4(c) with p < 1, the integral, x 0 θ ′ is well-defined. Then, letting x ′ → 0 + in (B.10), we get θ(0) -θ(x) ≤ -x 0 θ ′ (u) du. On the other hand, Assumption 4(c) implies that both -x 0 θ ′ (u) du and θ ′ (x)(0 -x) are bounded by O(x 1-p ) so θ(0) -θ(x) -θ ′ (x)(0 -x) = O(x 1-p ).Since A ̸ = ∅ and θ ′ is locally Lipschitz continuous, a similar argument as in the proof of Lemma 5 ultimately yieldsD(x * , x) = i∈A O x 1-p i + i / ∈A O (x * i -x i ) 2 = O ∥x * -x∥ 1-p (B.[START_REF] Facchinei | Finite-Dimensional Variational Inequalities and Complementarity Problems[END_REF] 

  (Three-dimensional simplex, continuing from p. 18). We conclude our treatment of the simplex by showing that x 2,t ∼ x 2,t /x 3,t = Ω(1/t) if ν 2 = 0 but ν 1 > 0. To begin with, we have v 2 (x t ) = x 2,t = o(1) so, arguing as in the first part of the example, we readily getx 1,t+1 x 2,t+1 = x 1,t x 2,t exp(-γν 1 + o(1)),(B.6)so x 1,t /x 2,t converges to 0 at a geometric rate. Accordingly, the quantity of interest x 3,t /x 2,t

									2 2
					= 1 + 2	√	2γ(x + 1) 3/2 -	√ 2 (x + 1) 5/2 + o (x + 1) 5/2 2 2γ
					= 1 +	√	2γ(x + 1) 3/2 -	√ 2γ 4 (x + 1) 5/2 + o (x + 1) 5/2 .	(B.4)
	Thus, plugging this expansion and Eq. (B.2) into Eq. (B.1) gives
	F (x) = = -1 + (x + 1) --1 + (x + 1) -√ 1 + √ 2γ(x + 1) 3/2 -2γ(x + 1) 3/2 + √ 2γ 4 (x + 1) 5/2 + o (x + 1) 5/2 √ 2γ 4 (x + 1) 5/2 + o (x + 1) 5/2 √ 2γ(x + 1) 3/2 + √ 2γ 4 (x + 1) 5/2 + o (x + 1) 5/2
		× 1 -	√	2γ(x + 1)	3 2 +	√ 4 2γ	(x + 1)	5 2 + o (x + 1)	5 2
	= -1 + (x + 1) -2 √	2γ(x + 1) 5/2 + o (x + 1) 5/2 ,	(B.5)
	which gives our assertion when x can be bounded as
	x 3,t+1 x 2,t+1	=	x 3,t x 2,t	exp(γv 2 (x t ) -γv 3 (x t ))
			=	x 3,t x 2,t	exp(γx 2,t -γ(x 3,t -1)) =	x 3,t x 2,t	exp(2γx 2,t + γx 1,t )
			≤	x 3,t x 2,t	exp 2γ	x 2,t x 3,t	+ γx 1,t	(B.7)
	Now, since both	x2,t x3,t and x 1,t go to zero,
		x 3,t+1 x 2,t+1	≤	x 3,t x 2,t	1 + 2γ	x 3,t x 2,t	+ γx 1,t + o 2	x 3,t x 2,t	+ x 1,t
					=	x 3,t x 2,t	+ 2γ +	γx 1,t x 3,t x 2,t	+ o 2 +	γx 1,t x 3,t x 2,t
					=	x 3,t x 2,t	+ 2γ + o(1) .	(B.8)
	since x 1,t /x 2,t vanishes as t → ∞. Hence, after telescoping, we conclude that
									x 3,t x 2,t	≤ 2γt + o(t),	(B.9)

* = -1. ♢ Example 5.4

For instance, if n = 2, the point xu = (1 -u, 2u(1 -u)) converges to p = (1, 0) as u → 0 + , even though D (p, xu) = 1 for all u ∈ (0, 1). Crucially, if n = 1, this phenomenon does not occur (cf. Example 3.4 in Section 3).
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Appendix A. Auxiliary results

In this appendix, we provide a series of helper lemmas and auxiliary results that we use repeatedly our paper. Lemmas on numerical sequences. The first two results we provide concern numerical sequences:

Lemma A.1. Consider two sequences of non-negative real numbers u t , α t ≥ 0, t = 1, 2, . . . , such that u t+1 ≤ u t -α t u 1+r t for some r > 0 and all t = 1, 2, . . . (A.1) Then, for all t = 1, 2, . . . , we have:

Proof. See Polyak [33, p. 46]. ■

The second result that we prove here is a slight variant of the above lemma.

Lemma 4. Suppose that f : R + → R + admits the asymptotic expansion

for positive constants λ, r > 0. Then, for u 1 > 0 small enough, the sequence u t+1 = f (u t ), t = 1, 2, . . . , converges to 0 at a rate of u t ∼ (λrt) -1/r .

Proof. By the assumption on f , there exists some ε > 0 such that

As a first consequence, if u 1 ≤ ε, Lemma A.1 readily implies that u t converges to zero and that u t ≤ ε for all t. Moreover, if ε is small enough so that 1 -2λε r > 0 and u 1 is positive, this implies that all u t , for t = 1, 2, . . . , are positive. In particular, it is then valid to consider the sequence u -r t , t = 1, 2, . . . , for which we get

Hence, u -r t ∼ rλt which gives the result. ■

Estimates for Bregman proximal steps. The next two results that we provide consider the evolution of the Bregman divergence before and after a prox step (or two): Lemma 6. Let x + = P x (y) for some x ∈ X h , y ∈ Y. Then, for all p ∈ X and all v ∈ PC(p), we have:

Proof. Our proof follows [START_REF] Mertikopoulos | Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile[END_REF]Proposition B.3], but with a slight modification to account for the extra term involving v ∈ PC(p). The first step is to invoke the three-point identity [START_REF] Ben-Tal | Lectures on modern convex optimization: analysis, algorithms, and engineering applications[END_REF] to write

(A.5) Then, after rearranging to isolate D(p, x + ), we get

where the inequality in the last line follows from Lemma 1. Hence, given that ⟨v, x + -p⟩ ≤ 0 by the fact that v ∈ PC(p), we readily obtain

For the second inequality of the lemma, note that

where the penultimate inequality follows directly from Young's inequality and the last one from [START_REF] Mertikopoulos | Learning in games with continuous action sets and unknown payoff functions[END_REF]. Our assertion is then obtained by combining this last bound with (A.7). ■

Then, for all p ∈ X and all v ∈ PC(p), we have:

Proof. Our proof follows [START_REF] Mertikopoulos | Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile[END_REF]Proposotion B.4], again with a slight modification to account for the extra terms involving v ∈ PC(p). Specifically, applying Lemma 6 with x + 2 = P x (y 2 ) and v ∈ PC(p) gives

To lower bound D(x + 2 , x), we invoke again Lemma 6 with p ← x + 2 and x + 1 = P x (y 1 ); this readily gives

and hence, after rearranging to D(x + 2 , x) and substituting the resulting bound in (A.9), we get

11) Thus, by Young's inequality and the strong convexity of h, we finally obtain

and our proof is complete. ■ A separation result. We now proceed to prove Lemma 10, which we restate below for convenience:

Lemma 10. Let X be a polyhedral domain of the general form (72). Then, for all x * ∈ X , there exists P = P (A, b, x * ) ≥ 1 such that, for all I ⊆ A ≡ A(x * ), at least one of the following holds: (a) I ̸ = ∅ and there exists i ∈ A \ I such that x i ≤ P max{x j : j ∈ I} for all x ∈ X . (b) There exists z ∈ ker A such that ∥z∥ ≤ P ,

Proof. Our claim is trivial if I = A, so we will focus exclusively on the case I ⊊ A. The stated constant P = P (A, b, x * ) will then be obtained as the maximum of 1 and the constants we obtain for each possible I ⊊ A.

The proof consists in discussing whether there exists (λ i ) i∈A\I ∈ (R + ) A\I not all zero and (µ i ) i∈I ∈ R I such that the inclusion [START_REF] Hiriart-Urruty | Fundamentals of Convex Analysis[END_REF] holds. Case (a) corresponds to the situation where such coeffeicients indeed exist while Case (b) holds when this is not possible. Case (a). Assume that there exists (λ i ) i∈A\I ∈ (R + ) A\I not all zero and (µ i ) i∈I ∈ R I such that (A.13) holds. In this case, I must be non-empty since otherwise X would be reduced to {0} (see the first inclusion), violating the definition (72) of X . In addition, there is some i ∈ A \ I such that λ i > 0 and thus we have

which corresponds to the first case of the lemma. Case (b). Otherwise, for all (λ i ) i∈A\I ∈ (R + ) A\I not all zero and (µ i ) i∈I ∈ R I , (A.13) does not hold.

To interpret this situation, we use the fact that X is of the general polyhedral form (72) so aff X = x * + ker A and x * always satisfies

Therefore, the fact that (A.13) does not hold for all (λ i ) i∈A\I ∈ (R + ) A\I not all zero and (µ i ) i∈I ∈ R I means that, the system, 

admits a solution z ∈ R n . Rescaling this solution z and setting P to max(∥z∥, ∥z∥ ∞ ) then gives the second case. ■

Appendix B. Omitted calculations

In this appendix, we provide some computational details that were left out of the main text to streamline our presentation.

Example 3.4 (Hellinger distance, continuing from p. 8). We proceed to compute the Taylor expansion of F near x * = -1 for the shifted operator v(x) = x + 1. Indeed, in this case, the fixed point operator F is given by