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ON THE RATE OF CONVERGENCE OF BREGMAN PROXIMAL METHODS
IN CONSTRAINED VARIATIONAL INEQUALITIES

WAÏSS AZIZIAN∗,♯, FRANCK IUTZELER∗,
JÉRÔME MALICK⋄, AND PANAYOTIS MERTIKOPOULOS§

Abstract. We examine the last-iterate convergence rate of Bregman proximal methods
– from mirror descent to mirror-prox – in constrained variational inequalities. Our analysis
shows that the convergence speed of a given method depends sharply on the Legendre
exponent of the underlying Bregman regularizer (Euclidean, entropic, or other), a notion
that measures the growth rate of said regularizer near a solution. In particular, we show
that boundary solutions exhibit a clear separation of regimes between methods with
a zero and non-zero Legendre exponent respectively, with linear convergence for the
former versus sublinear for the latter. This dichotomy becomes even more pronounced in
linearly constrained problems where, specifically, Euclidean methods converge along sharp
directions in a finite number of steps, compared to a linear rate for entropic methods.

1. Introduction

This paper focuses on solving variational inequality (VI) problems of the form

Find x∗ ∈ X such that ⟨v(x∗), x− x∗⟩ ≥ 0 for all x ∈ X , (VI)

where X is a closed convex subset of a finite-dimensional normed space V, and v : X → V∗

is a single-valued operator on X with values in V∗, the dual of V. The study of such
problems dates back to Stampacchia [39] and Minty [24], and it has recently attracted
considerable interest in many areas of mathematical programming, game theory and data
science as a template for “optimization beyond minimization” – i.e., for problems where
finding an optimal state does not necessarily involve minimizing a loss function. In particular,
in addition to standard minimization problems – which are recovered when v = ∇f for
some smooth function f – the general formulation (VI) includes saddle-point problems,
games, complementarity problems, systems of nonlinear equations, and many other types of
equilibrium problems; for a comprehensive introduction to the topic and its applications, see
Facchinei & Pang [11] and references therein.

Algorithms for solving (VI) likewise have a rich history in optimization. To provide a
short overview, the original proximal point methods [20, 37] were shown to converge when
v is monotone; however, these methods involve a backward step on v, so they are difficult
to implement in practice. In this regard, forward methods that only require oracle access
to v are more practical, but they fail to converge if v is merely monotone. Nonetheless, if
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coupled with an iterate averaging scheme, forward methods do converge, and they achieve
an O(1/

√
t) convergence certificate after t iterations [9, 32].

Bridging the gap between forward and backward methods, the extra-gradient (EG)
algorithm [17] provided an extrapolation mechanism that emulated a backward step with
two interleaved forward steps, achieving in this way trajectory convergence when v is
pseudomonotone and Lipschitz continuous. Subsequently, combining extrapolation with
iterate averaging, the mirror-prox (MP) algorithm of Nemirovski [27] – which has the same
update structure as [4] – was shown to converge at a rate of O(1/t) in monotone VIs, a rate
which is order-optimal for first-order methods [26, 31].

A salient feature of the mirror-prox algorithm is that it foregoes Euclidean projections in
favor of a more sophisticated Bregman proximal step in the spirit of mirror descent (MD)
[4, 7, 28]. Owing to this feature, mirror-prox achieves an almost dimension-free convergence
speed in problems with a favorable geometry, all the while retaining an order-optimal
dependence on t. Because of this “best-of-both-worlds” guarantee, the mirror-prox algorithm
and its variants – dualized [30], optimistic [14, 34, 35], stochastic [12, 16], adaptive [2, 3], etc.
– have become the method of choice for large-scale variational inequality problems where
higher-order methods cannot be efficiently implemented.
Our contributions. In this broad context, our paper seeks to quantify the finer trajectory
convergence properties of Bregman proximal methods as a function of the geometry of the
problem and the Bregman regularizer underlying the method. For generality, we focus on
non-monotone VIs, and we examine the rate of convergence of a wide class of abstract mirror-
prox (AMP) algorithms to local solutions that satisfy a second-order sufficient condition.
Specifically, the AMP template includes as special cases the mirror-prox, mirror descent and
optimistic mirror descent algorithms, so it provides a unified view of some of the most widely
used Bregman methods in the literature.

Our first finding is that the algorithm’s rate of convergence depends sharply on the chosen
Bregman regularizer (Euclidean, entropic, or other). We formalize this via the notion of the
Legendre exponent, which can roughly be described as the logarithmic ratio of the volume of
a ball centered at the solution under study to that of a Bregman ball of the same radius.1 For
example, Euclidean methods have a Legendre exponent of β = 0 and they converge at a linear
rate; entropic methods have a Legendre exponent of β = 1/2 at boundary points, and they
converge at a rate of O(t−1); and more generally, as we show in Theorem 1, methods with a
Legendre exponent β > 0 converge at a rate of O(t1−1/β). The Euclidean regime (β = 0)
is perfectly aligned with existing results for the geometric last-iterate convergence rate of
the EG algorithm and its variants in strongly monotone VIs [12, 14, 19, 25]. By contrast,
the Legendre regime (β > 0) indicates a significant drop in the algorithm’s last-iterate
convergence speed, even though ergodic convergence results might suggest otherwise.

Subsequently, we take a closer look at the convergence rate of AMP methods as a function
of the constraints that are active at a solution x∗ of (VI) and the position of v(x∗) relative to
said constraints. This analysis reveals that Bregman proximal methods have a particularly
fine structure: along sharp directions (i.e., constraints along which v(x∗) is strictly inward-
pointing), AMP algorithms converge in a finite number of iterations if β = 0, at a geometric
rate if 0 < β ≤ 1/2, and at a rate of O(1/t1/(2β−1)) if 1/2 < β < 1 (cf. Theorem 2 for a
precise statement). Thus, even though the rate estimates of Theorem 1 are in general tight,

1This notion was first introduced in the conference paper [5], which can be seen as a precursor of our
work. The paper [5] deals with stochastic variational inequalities (so there is no overlap with the results
presented herein and the derived rates are naturally different), but the notion of the Legendre exponent plays
a similar role in both works.
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the actual rate of convergence of a Bregman method along different coordinates / constraints
could be considerably different – and, in fact, dramatically faster if the solution under study
is itself sharp. We find this separation property particularly appealing, as it highlights
the interplay between sharp and non-sharp directions: Theorem 1 describes the rate of
convergence along the latter, while Theorem 2 estimates the speed along the former.

2. Problem setup and preliminaries

2.1. Notation. In the rest of our paper, V will denote a n-dimensional real space with norm
∥·∥ and X will be a closed convex subset thereof. We will also write Y := V∗ for the dual of V ,
⟨y, x⟩ for the canonical pairing between y ∈ Y and x ∈ V , and ∥y∥∗ := max{⟨y, x⟩ : ∥x∥ ≤ 1}
for the induced dual norm on Y . In addition, if f : V → R ∪ {∞} is an extended-real-valued
convex function on V, we will write dom f = {x ∈ V : f(x) < ∞} for its effective domain,
∂f(x) = {y ∈ Y : f(x′) ≥ f(x) + ⟨y, x′ − x⟩ for all x′ ∈ V} for the subdifferential of f at
x ∈ V, and dom ∂f = {x ∈ V : ∂f(x) ̸= ∅} for the domain of subdifferentiability of f .
Finally, we will make frequent use of Landau’s asymptotic notation, writing in particular
(i) f(t) = O(g(t)) and g(t) = Ω(f(t)) when lim supt→∞ f(t)/g(t) < ∞; (ii) f(t) = Θ(g(t))
when f(t) = O(g(t)) and f(t) = Ω(g(t)); (iii) f(t) = o(g(t)) when lim supt→∞ f(t)/g(t) = 0;
and (iv) f(t) ∼ g(t) when limt→∞ f(t)/g(t) = 1.

2.2. Problem statement and basic assumptions. As we mentioned in the introduction, we
will focus throughout on solving variational inequalities of the form:

Find x∗ ∈ X such that ⟨v(x∗), x− x∗⟩ ≥ 0 for all x ∈ X (VI)

where v : X → Y is a single-valued operator, which we call the problem’s defining vector
field, and for which we make the following blanket assumption:

Assumption 1 (Lipschitz continuity). v is L-Lipschitz continuous, i.e.,

∥v(x′)− v(x)∥∗ ≤ L∥x′ − x∥ for all x, x′ ∈ X . (LC)

For concreteness, we provide below two archetypal examples of VI problems of this type:

Example 2.1 (Function minimization). Consider the minimization problem

min
x∈X

f(x) (Opt)

with f : X → R assumed smooth. Then, letting v(x) = ∇f(x), the solutions of (VI) are
precisely the Karush–Kuhn–Tucker (KKT) points of (Opt) [11]. ♢

Example 2.2 (Saddle-point problems). A saddle-point – or min-max – problem can be stated
in normal form as

min
x1∈X1

max
x2∈X2

L(x1, x2) (SP)

where X1 ⊆ Rn1 and X2 ⊆ Rn2 are convex and closed, and the problem’s objective function
L : X1 × X2 → R is again assumed to be smooth. In the game-theoretic interpretation
of the problem, x1 is controlled by a player seeking to minimize L(·, x2), whereas x2 is
controlled by a player seeking to maximize L(x1, ·). Accordingly, solving (SP) consists of
finding a Nash equilibrium (NE), i.e., an action profile (x∗

1, x
∗
2) ∈ X := X1 × X2 such that

L(x∗
1, x2) ≤ L(x∗

1, x
∗
2) ≤ L(x1, x

∗
2) for all x1 ∈ X1, x2 ∈ X2. If L is not convex-concave, Nash

equilibria may fail to exist, in which case one typically looks for first-order stationary (FOS)
points of L, i.e., action profiles (x∗

1, x
∗
2) ∈ X1 × X2 such that x∗

1 is a KKT point of L(·, x∗
2)

and, respectively, x∗
2 is a KKT point of −L(x∗

1, ·). In this case, if we set x = (x1, x2) and
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v = (∇x1L,−∇x2L), it is straightforward to check that the solutions of (VI) are precisely
the first-order stationary points of L. ♢

The above examples show that not all solutions of (VI) are desirable: for example, in
the case of (Opt), such a solution could be a local maximum of f . For this reason, we will
concentrate on solutions x∗ of (VI) that satisfy the following sufficiency condition:

Assumption 2 (Second-order sufficiency). There exists a convex neighborhood B of x∗ in X
and a positive constant µ > 0 such that

⟨v(x)− v(x∗), x− x∗⟩ ≥ µ∥x− x∗∥2 for all x ∈ B. (SOS)

In general, Assumption 2 guarantees that x∗ is the unique solution of (VI) in B. In
particular, in the setting of (Opt), Assumption 2 implies that f grows (at least) quadratically
along every ray emanating from x∗, i.e., f(x)− f(x∗) ≥ ⟨∇f(x∗), x−x∗⟩+(µ/2)∥x−x∗∥2 =
Ω(∥x − x∗∥2) for all x ∈ B (though, of course, this does not mean that f is strongly
convex in B). Analogously, for (SP), Assumption 2 gives L(x1, x

∗
2) = Ω(∥x1 − x∗

1∥2) and
L(x∗

1, x2) = −Ω(∥x2 − x∗
2∥2), so x∗ is a local Nash equilibrium of L. In view of the above,

we will focus throughout on solutions satisfying (SOS).

2.3. Bregman proximal methods. The algorithmic framework that we will consider is a
general class of Bregman proximal methods that we collectively refer to as the abstract
mirror-prox template. The principal ingredient of these methods is that of a Bregman
regularizer – or distance-generating function (DGF) – which we define below as follows:

Definition 1 (Bregman regularizers and related notions). A proper, lower semi-continuous,
strictly convex function h : V → R ∪ {∞} is said to be a Bregman regularizer on X if

(1) h is supported on X , i.e., domh = X .
(2) The subdifferential of h admits a continuous selection, i.e., there exists a continuous

mapping ∇h : dom ∂h→ Y such that ∇h(x) ∈ ∂h(x) for all x ∈ dom ∂h.
(3) h is 1-strongly convex relative to ∥·∥, i.e., for all x ∈ dom ∂h, x′ ∈ domh, we have

h(x′) ≥ h(x) + ⟨∇h(x), x′ − x⟩+ 1
2∥x

′ − x∥2. (1)

For posterity, the set Xh := dom ∂h will be referred to as the prox-domain of h. We also
define the Bregman divergence of h as

D(p, x) = h(p)− h(x)− ⟨∇h(x), p− x⟩ for all x ∈ Xh, p ∈ X (2)
and the induced Bregman proximal mapping as

Px(y) = argmin
x′∈X

{⟨y, x− x′⟩+D(x′, x)} for all x ∈ Xh, y ∈ Y. (3)

Example 2.3. A staple choice for h is the Euclidean regularizer h(x) = 1
2∥x∥

2
2. This choice

gives
D(p, x) = 1

2∥p− x∥2 and Px(y) = ΠX (x+ y), (4)
with ΠX (x) := argminx′∈X ∥x′ − x∥ denoting the Euclidean projector on X . ♢

Further examples of Bregman regularizers are given in Section 3, where we also take an
in-depth look into their properties. For now, given a Bregman regularizer on X , we proceed
to define the abstract mirror-prox (AMP) template via the generic recursion

xt+1/2 = Pxt
(−γtVt) xt+1 = Pxt

(−γtVt+1/2) (AMP)

where
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(1) t = 1, 2, . . . denotes the method’s iteration counter.

(2) γt > 0 is a (non-increasing) step-size sequence.

(3) Vt and Vt+1/2 are sequences of “oracle signals” whose precise definition we discuss
below.

In terms of vocabulary (and for reasons that will also become clear in the sequel), the iterates
xt, t = 1, 2, . . . , will be referred to as the “base states” of the method, while the “half-iterates”
xt+1/2, t = 1, 2, . . . , will be referred to as the method’s “ leading states”. Finally, in terms of
initialization, we will take for convenience x1 = x1/2.

Now, to link (AMP) to the problem under study, we will assume throughout that the
sequence of oracle signals Vt+1/2 is generated by querying v at xt+1/2, i.e.,

Vt+1/2 = v(xt+1/2) for all t = 1, 2, . . . (5)

In words, (AMP) generates a new base state xt+1 by taking a Bregman proximal step
from xt with oracle information from the leading state xt+1/2. By contrast, xt+1/2 can be
generated in a number of different ways, depending on the definition of Vt. We present three
prototypical examples below:

(1) The mirror-prox (MP) update:

Vt = v(xt) for all t = 1, 2, . . . (MP)

The motivation behind (MP) is that the algorithm tries to make more informed steps
towards a solution of (VI) by “anticipating” the change of v via a second oracle query.
In the context of the Euclidean regularizer (4), the recursion (MP) is known as the
extra-gradient (EG) algorithm, and was originally proposed by Korpelevich [17]; for
the bona fide Bregman version of the algorithm (and namesake of the method), see
Nemirovski [27] and Juditsky et al. [16].

(2) The mirror descent (MD) update is defined as

Vt = 0 for all t = 1, 2, . . . (MD)

In this case, the method foregoes any look-ahead efforts and proceeds in a series
of Bregman proximal steps xt+1 ← Pxt

(−γtv(xt)). This method has a long history
dating back to Nemirovski & Yudin [28]; for an appetizer, we refer the reader to
[7, 29, 40, 42] and references therein.

(3) The optimistic mirror descent (OMD) update:

Vt = v(xt−1/2) for all t = 1, 2, . . . (OMD)

The idea of this update is to lighten the per-iteration complexity of (MP) by making
only a single query to v: this is done by approximating v(xt+1/2) with the previously
available oracle signal, i.e., taking Vt+1/2 ← v(xt−1/2). This “oracle reuse” idea dates
back to Popov [34], and it has been subsequently popularized in machine learning and
other fields by [10], [35], and many others; for an overview, see [14] and references
therein.

The three algorithms described above are the most widely studied Bregman methods in
the literature, so we will use them as running examples throughout. More generally, we will
make the following assumption for the input signal Vt generated at the method’s base state.
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Assumption 3. For all t = 1, 2, . . . , the oracle signal Vt is of the form:

Vt = av(xt) + bv(xt−1/2) (6)

for some a, b ∈ [0, 1] with a+ b ≤ 1 and a+ b = 1 if b > 0.

In the language of Assumption 3, the three examples of (AMP) above can be recovered
as follows:
• For (MP): a = 1, b = 0.
• For (MD): a = 0, b = 0.
• For (OMD): a = 0, b = 1.

More general input sequences can also be considered – e.g., to cover for sequential or “k-to-1”
update rules that are sometimes used in min-max problems [15] – but this would complicate
the notation and the resulting rates, so Assumption 3 will suffice for our purposes. We also
note in passing that the requirement “a+ b = 1 if b > 0” is only introduced to ease notation
and does not lead to a loss in generality: if b > 0, we can always rescale the method’s
step-size by a+ b so that the condition a+ b = 1 is satisfied automatically.

For future use, we close this section with some basic properties of the Bregman divergence
and the induced proximal mapping:

Lemma 1. Let h be a Bregman regularizer on X and let ∇h be a continuous selection of ∂h.
Then, for all x ∈ Xh, x+ ∈ X and y ∈ Y, we have:

a) ∂h(x) = ∇h(x) + PC(x) (7a)

b) x+ = Px(y) ⇐⇒ ∇h(x) + y ∈ ∂h(x+) ⇐⇒ ∇h(x+)−∇h(x) ∈ y − PC(x+) (7b)

where PC(x) = {y ∈ Y : ⟨y, x′ − x⟩ ≤ 0 for all x′ ∈ X} denotes the polar cone to X at x. In
particular, (AMP) is well-posed: x+ = Px(y) implies that x+ ∈ Xh.

Lemma 2 (3-point identity). For all p ∈ X and all x, x+ ∈ Xh, we have:

D(p, x+) = D(p, x) +D(x, x+) + ⟨∇h(x+)−∇h(x), x− p⟩ (8)

Lemma 3 (Non-expansiveness). For all x ∈ Xh and all y, y+ ∈ Y we have:

∥Px(y
+)− Px(y)∥ ≤ ∥y+ − y∥∗ (9)

These properties are fairly well known, so we omit their proofs; for a detailed treatment,
we defer the interested reader to Beck & Teboulle [7], Juditsky et al. [16], and Mertikopoulos
& Zhou [22].

3. Motivating examples

In this section, we take a closer look at some commonly used Bregman regularizers and
the induced prox-mappings with the goal of determining the rate of convergence of the
associated Bregman proximal method. For concreteness, we will focus on one-dimensional
problems where X is a closed interval of R (possibly infinite), and v is the affine operator

v(x) = x− x∗, x ∈ R, (10)

for different choices of x∗ ∈ R. Moreover, for ease of presentation and notation, we will only
examine the mirror descent recursion (MD) with constant step-size schedules of the form
γt ≡ γ for some γ > 0. In this case, we obtain the general recursive scheme

xt+1 = F (xt) with F (x) = Px(−γv(x)), (11)
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and we will examine the rate of convergence of xt to x∗ by analyzing the behavior of F near
x∗.

Example 3.1 (Euclidean regularization). We begin with the quadratic regularizer h(x) = x2/2
for x ∈ X . Concretely, taking X = [0,∞) and noting that h′(x) = x, we have:

a) Prox-domain: Xh = X
b) Bregman divergence: D(p, x) = (p− x)2/2

c) Prox-mapping: Px(y) = [x+ y]+

(12)

Consider now the case x∗ = 0, i.e., v(x) = x. Then, for γ ∈ (0, 1), the update (11) becomes

F (x) = x− γx = (1− γ)x (13)

i.e., F is contracting. We thus conclude that xt converges to x∗ = 0 at a geometric rate, viz.

D(x∗, xt) =
1
2x

2
t = Θ

(
(1− γ)2t

)
or, in absolute value, |xt − x∗| = Θ((1− γ)t). ♢

Example 3.2 (Entropic regularization). Another popular choice when X = [0,∞) is the
entropic regularizer h(x) = x log x [6, 7, 38]. In this case, we have h′(x) = 1 + log x, which
gives the following:

a) Prox-domain: Xh = riX = (0,∞)

b) Bregman divergence: D(p, x) = p log(p/x) + x− p

c) Prox-mapping: Px(y) = x exp(y)

(14)

Now, taking v(x) = x as in the previous example, the update rule (11) becomes

F (x) = x exp(−γx) = x(1− γx+ o(x)) = x− γx2 + o(x2) as x→ 0. (15)

In contrast to (13), we now have F (x) ∼ x instead of (1−γ)x, so F is no longer a contraction.
Instead, the iterates of (15) may be analyzed by means of the following lemma.

Lemma 4. Suppose that f : R+ → R+ admits the asymptotic expansion

f(x) = x− λx1+r + o(x1+r) as x→ 0 (16)

for positive constants λ, r > 0. Then, for u1 > 0 small enough, the sequence ut+1 = f(ut),
t = 1, 2, . . . , converges to 0 at a rate of ut ∼ (λrt)−1/r.

By means of this lemma (which we prove in Appendix A), we conclude that the iterates
of (15) converge to 0 at a rate of

D(x∗, xt) = xt = |xt − x∗| ∼ 1/(γt). ♢

Example 3.3 (Fractional power). Take X = [0,∞) and v(x) = x as in Examples 3.1 and 3.2
above. Then, for a given q > 0, q ̸= 1, the fractional power regularizer – or Tsallis entropy –
on X is defined as h(x) = [q(1− q)]−1(x− xq) [1, 21, 41]. For this choice of regularizer, we
have h′(x) = (1 − qxq−1)/[q(1 − q)], and a series of straightforward calculations gives the
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following:2

a) Prox-domain: Xh = (0,∞) if q ∈ (0, 1) and Xh = [0,∞) if q > 1

b) Bregman divergence: D(p, x) =
xq − pq

q(1− q)
− xq−1x− p

1− q

c) Prox-mapping: Px(y) =
[
xq−1 − (1− q)y

] 1
q−1 for q ∈ (0, 1)

(17)

Now, when applied to v(x) = x, the fractional power variant of (11) for q ∈ (0, 1) gives

F (x) = x [1 + γ(1− q)x2−q]1/(q−1) = x− γx3−q + o(x3−q) as x→ 0. (18)

Hence, by Lemma 4, we conclude that xt converges to 0 at a rate of

D(x∗, xt) = Θ
(
t−q/(2−q)

)
or, in absolute value, |xt − x∗| = Θ

(
t−1/(2−q)

)
. ♢

Example 3.4 (Hellinger distance). Our last example concerns the Hellinger regularizer
h(x) = −

√
1− x2 on X = [−1, 1]. Since h′(x) = x/

√
1− x2, we readily obtain the following:

a) Prox-domain: Xh = riX = (−1, 1)

b) Bregman divergence: D(p, x) =
1− px−

√
(1− p2)(1− x2)√
1− x2

c) Prox-mapping: Px(y) =
x+ y

√
1− x2√

1− x2 + (x+ y
√
1− x2)2

(19)

In this case, taking v(x) = x as per the previous examples, yields

F (x) =
x− γx

√
1− x2√

1− x2 + (x− γx
√
1− x2)2

∼ x− γx as x→ 0, (20)

i.e., xt converges to x∗ = 0 at a geometric rate, as in Example 3.1. On the other hand, if we
consider the shifted operator v(x) = x+ 1, a somewhat tedious calculation (which we detail
in Appendix A) gives the following Taylor expansion near x∗ = −1:

F (x) = x∗ + (x− x∗)− 2
√
2γ(x− x∗)5/2 + o

(
(x− x∗)5/2

)
. (21)

Hence, by Lemma 4, we conclude that xt converges to x∗ = −1 at a rate of

D(x∗, xt) = Θ(t−1/3) or, in absolute value, |xt − x∗| = Θ(t−2/3). ♢

Albeit one-dimensional, the above examples provide a representative view of the geometry
of Bregman proximal methods near a solution. Specifically, they show that the Bregman
divergence induced by a given regularizer may exhibit a drastically different behavior at the
boundary of X : when x∗ is a boundary point, D(x∗, x) could grow as Θ(∥x− x∗∥2) in the
Euclidean case, as Θ(∥x− x∗∥) for the negative entropy, or, more generally, as Θ(∥x− x∗∥q)
for the q-th power regularizer. As a result, when used as a measure of convergence, it is
important to rescale the Bregman divergence accordingly in order to avoid inflating – or
deflating – an algorithm’s rate of convergence.

Nonetheless, even if we take this rescaling into account, different instances of (MD) may
lead to completely different rates of convergence. Specifically, in terms of absolute values (or

2Strictly speaking, the expression we provide for Px(y) is only valid when y < xq−1/(1− q). The reason
for this is that the fractional power regularizer is not strongly convex over [0,∞), so the corresponding
prox-mapping Px(y) is not well-defined for all values of y. This detail is not important in the calculations
that follow, so we disregard it for now.
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Figure 1: The rate of convergence of (MD) in Examples 3.1–3.4. The Euclidean
and shifted Hellinger regularizers lead to a geometric rate of convergence (see
left figure); all other examples converge at a polynomial rate, and we provide
the theoretically computed rate for comparison (dashed lines in the figure to the
right).

norms), we observe a geometric rate in the Euclidean and shifted Hellinger cases, a rate of
Θ(1/t) for the negative entropy, and a rate of Θ(1/t1/(2−q)) for the q-th power regularizer
(cf. Fig. 1 above). This is due to the different first-order behavior of the iterative update
map x← F (x) that underlies (MD), which is itself intimately related to the growth rate of
the Bregman divergence near a solution x∗ of (VI). We will make this relation precise in the
next section.

4. The Legendre exponent and convergence rate analysis

Our goal in this section is to provide a precise link between the geometry induced by a
Bregman regularizer near a solution and the convergence rate of the associated Bregman
proximal method. The key notion in this regard is that of the Legendre exponent, which we
define and discuss in detail below.

4.1. The Legendre exponent. Our starting point is the observation that the strong convexity
requirement for h can be equivalently expressed as

D(p, x) ≥ 1
2∥p− x∥2 for all p ∈ X , x ∈ Xh, (22)

or, more concisely, D(p, x) = Ω(∥p− x∥2) for x near p. Qualitatively, this means that the
convergence topology induced by the Bregman divergence of h on X is at least as fine as
the ambient norm topology: if a sequence xt ∈ Xh, t = 1, 2, . . . , converges to p ∈ X in
the Bregman sense (D(p, xt) → 0), then it also converges in the ambient norm topology
(∥xt − p∥ → 0). On the other hand, from a quantitative standpoint, the rate of this
convergence could be quite different: as we already saw in the previous section, the reverse
inequality D(p, x) = O(∥p − x∥2) may fail to hold, in which case

√
D(p, xt) and ∥x − xt∥

would exhibit a different asymptotic behavior.
To quantify this gap, we introduce below the notion of the Legendre exponent :
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Definition 2. Let h be a Bregman regularizer on X . Then the Legendre exponent of h at
p ∈ X is defined as

βh(p) := inf

{
β ∈ [0, 1] : lim sup

x→p

√
D(p, x)

∥x− p∥1−β
<∞

}
(23)

and we will say that h is tight at p if the infimum is attained in (23), i.e., if βh(p) is the
minimal β ∈ [0, 1] such that

D(p, x) = O
(
∥p− x∥2(1−β)

)
for x near p. (24)

Informally, the Legendre exponent measures the deficit in relative size between ordinary
“norm neighborhoods” in X and the corresponding “Bregman neighborhoods” induced by
the sublevel sets of the Bregman divergence. This comparison will play a major role in the
sequel, so we proceed with a series of examples and remarks:

Remark 1. A first point to be made is that the restriction β ≥ 0 in Definition 2 is directly
imposed by the strong convexity of h. More precisely, given that D(p, x) = Ω(∥p− x∥2) for
x close to p, we cannot also have D(p, x) = O(∥p − x∥2+ε) for any ε > 0. In particular,
this shows that the “norm-like” behavior D(p, x) = Θ(∥p − x∥2) corresponds to the case
βh(p) = 0: any other value of βh(p) would imply a different limiting behavior for D(p, x) as
x→ p. ♢

Remark 2. At the other end of the spectrum, the exponent βh(p) = 1 is representative of
the case lim supx→p D(p, x) > 0. In this case, the ambient norm topology is strictly coarser
than the Bregman topology: specifically, D(p, x) might remain large even if p and x are
topologically close. For example, let X = {x ∈ Rn : ∥x∥2 ≤ 1} be the unit Euclidean ball in
Rn and consider the n-dimensional Hellinger regularizer h(x) = −

√
1− ∥x∥22. Then, for all

p on the boundary of X and all x ∈ Xh = intX , we readily get

D(p, x) =
1− ⟨p, x⟩√
1− ∥x∥22

. (25)

If n ≥ 2, the limit limx→p D(p, x) may not exist, a fact which has the following counterintuitive
consequences: (i) the “Hellinger ball” Bhr (p) := {x ∈ Xh : D(p, x) ≤ r2/2} is not closed in
the Euclidean topology; and (ii) the “Hellinger center” p of Bhr (p) actually belongs to the
Euclidean boundary of Bhr (p). As a result, for all n ≥ 2, it is straightforward to construct a
sequence xt with ∥xt − p∥2 → 0, but which remains at constant Hellinger divergence relative
to p.3 ♢

Remark 3. For illustration purposes, we compute below the Legendre exponent for each of
the running examples of Section 3 (see also forthcoming Table 1):

(1) Quadratic regularization (Example 3.1): Since D(p, x) = (p− x)2/2 for all p, x ∈ X ,
we have βh(p) = 0 for all p ∈ X .

(2) Negative entropy (Example 3.2): For p = 0, Eq. (14) gives D(0, x) = x, so βh(0) = 1/2.
Otherwise, for all p ∈ Xh = (0,∞), a Taylor expansion with Lagrange remainder
yields D(p, x) = O((p− x)2), so βh(p) = 0 for all p ∈ (0,∞).

3For instance, if n = 2, the point xu = (1 − u,
√

2u(1− u)) converges to p = (1, 0) as u → 0+, even
though D (p, xu) = 1 for all u ∈ (0, 1). Crucially, if n = 1, this phenomenon does not occur (cf. Example 3.4
in Section 3).
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(3) Tsallis entropy (Example 3.3): For p = 0, Eq. (17) gives D(0, x) = xq/q, so βh(0) =
max{0, 1 − q/2}. Otherwise, for all p ∈ Xh = (0,∞), a Taylor expansion yields
D(p, x) = O((p− x)2), so βh(p) = 0 in this case.

(4) Hellinger regularizer (Example 3.4): For p = ±1, Eq. (19) gives D(±1, x) =√
(1∓ x)/(1± x) = Θ(|x∓ 1|1/2), so βh(±1) = 1− 1/4 = 3/4. Instead, if p ∈ (−1, 1)

a Taylor expansion again yields D(p, x) = O((p− x)2), so βh(p) = 0 in this case. ♢

Already, a common pattern that emerges from the examples above is that βh(p) = 0
whenever p is an interior point. We formalize this intuition below:

Lemma 5. Suppose that ∇h is locally Lipschitz continuous. Then βh(p) = 0 for all p ∈ Xh;
in particular, βh(p) = 0 whenever p ∈ riX .

Proof. Fix some p ∈ Xh and suppose that ∇h is locally Lipschitz continuous. Then there
exists a neighborhood U of p in X and some κ > 0 such that

∥∇h(p)−∇h(x)∥∗ ≤ κ∥p− x∥ for all x ∈ U ∩ Xh. (26)

Now, since ∇h(p) ∈ ∂h(p), we also have

D(p, x) = h(p)− h(x)− ⟨∇h(x), p− x⟩ ≤ ⟨∇h(p)−∇h(x), p− x⟩
≤ ∥∇h(p)−∇h(x)∥∗∥p− x∥ ≤ κ∥p− x∥2 (27)

for all x ∈ U ∩ Xh. This shows that (24) holds with β = 0, i.e., βh(p) = 0. ■

Remark. Elaborating on (26), we see that the Legendre exponent of h at p is (1 − α)/2
whenever ∇h is locally Hölder continuous with exponent α in a neighborhood of p. However,
the converse to this statement does not hold – as can be verified immediately from the
entropic regularizer. ♢

4.2. Convergence rate analysis. We are now in a position to state our first general result for
the convergence rate of (AMP). To do so, we will assume in the rest of this section that
x∗ is a solution of (VI) satisfying (SOS) and that h is tight at x∗ with Legendre exponent
β∗ := βh(x

∗). In particular, this means that there exists a neighborhood U of x∗ in X and a
positive constant κ > 0 such that

D(x∗, x) ≤ κ

2
∥x− x∗∥2(1−β∗) for all x ∈ U . (28)

We then have the following result.

Theorem 1. Suppose that Assumptions 1–3 hold and (AMP) is run with a constant step-size
γt ≡ γ, t = 1, 2, . . . , such that

γ ≤ 1

2φL
and γ(1− a− b)2 ≤ µ

8L2
(29)

where φ = (
√
5 + 1)/2 is the golden ratio. Then, if x1 is initialized sufficiently close to x∗,

the iterates xt of (AMP) enjoy the following bounds:
Case 1: If β∗ = 0, then

D(x∗, xt) ≤
(
1− µγ

2κ

)t−1

D(x∗, x1). (30)
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Domain (X ) Regularizer (h) Legendre Exponent (β∗) Convergence Rate

Euclidean arbitrary x2/2 0 Linear
Entropic [0,∞) x log x 1/2 O(1/t)

Tsallis [0,∞) [q(1− q)]−1(x− xq) max{0, 1− q/2} O(1/tq/(2−q))

Hellinger [−1, 1] −
√
1− x2 3/4 O(1/t1/3)

Table 1: Summary of the Legendre exponents and the associated convergence
rates for the 1-dimensional examples of Section 2 (X ⊆ R). To avoid trivialities,
all Legendre exponents refer to boundary points of X .

Case 2: If β∗ ∈ (0, 1), then

D(x∗, xt) ≤
D(x∗, x1)

(1 + ρµγ(t− 1))1/β∗−1
(31)

where

ρ =
β∗

1− β∗
1

max
(
2κ

1
1−β∗ D(x∗, x1)

− β∗
1−β∗ , 2

β∗
1−β∗

) (32)

Before moving on to the proof of Theorem 1, some remarks and corollaries are in order
(see also Table 1 for an explicit illustration of the derived rates for Examples 3.1–3.4):

Remark 1. The first point of note is the sharp drop in the convergence rate of (AMP) from
geometric, when β∗ = 0, to a power law when β∗ > 0. As we saw in Section 3, this drop
is unavoidable, even when X is 1-dimensional and v is affine; in fact, the calculations of
Section 3 show that the guarantees provided by Theorem 1 are, in general, unimprovable. ♢

Remark 2. We should also note that the guarantees of Theorem 1 are all stated in terms
of the Bregman divergence, not the ambient norm. Since D(x∗, xt) = Ω(∥xt − x∗∥2), these
bounds can be restated in terms of ∥xt − x∗∥, but this conversion is not without loss of
information: if the bound D(x∗, xt) = Ω(∥xt − x∗∥2) is not tight, the actual rate in terms
of the norm may be significantly different. This phenomenon was already observed in the
1-dimensional examples of Section 3 where D(x∗, xt) = Θ(∥xt − x∗∥2(1−β∗)), in which case
Theorem 1 gives

∥xt − x∗∥ = O
(
t−1/(2β∗)

)
(33)

whenever β∗ > 0 (see also Table 1). In general however, the Bregman divergence may grow
at different rates along different rays emanating from x∗, so it is not always possible to
translate a Bregman-based bound to a norm-based bound (or vice versa). This analysis
requires a much closer look at the geometric structure of X , depending on which constraints
are active at x∗; we examine this issue at depth in Section 5. ♢

Remark 3. We should also note that, even though Theorem 1 is stated for a constant
step-size, our proof allows for a variable step-size γt, provided that the step-size conditions
(29) continue to hold. In this case, the bounds (30) and (31) respectively become

D(x∗, xt) ≤
t−1∏
s=1

(
1− µγt

2κ

)
·D(x∗, x1) (34)
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for the Euclidean case (β∗ = 0), and

D(x∗, xt) ≤
D(x∗, x1)

(1 + ρµ
∑t−1

s=1 γs)
1/β∗−1

(35)

for the Legendre-like case (0 < β∗ < 1). ♢

Remark 4. The constants that appear in in Theorem 1, in particular in the step-size condition
(29) are slightly loose for all three prime examples of (AMP). This is the price we pay for
the generality of our approach, and can be seen in the proof of Proposition 2 below. ♢

4.3. Proof of Theorem 1. We now proceed to the proof of Theorem 1, beginning with a
series of helper lemmas and intermediate results tailored to the update structure of (AMP).
The first of these lemmas relates the Bregman divergence relative to a base point p ∈ X
before and after a prox-step.

Lemma 6. Let x+ = Px(y) for some x ∈ Xh, y ∈ Y. Then, for all p ∈ X and all v ∈ PC(p),
we have:

D(p, x+) ≤ D(p, x) + ⟨y − v, x+ − p⟩ −D(x+, x) (36a)

≤ D(p, x) + ⟨y − v, x− p⟩+ 1
2∥y − v∥2∗ . (36b)

The next lemma extends Lemma 6 to emulate the two-step structure of (AMP):

Lemma 7. Let x+
i = Px(yi) for some x ∈ Xh and yi ∈ Y, i = 1, 2. Then, for all p ∈ X and

all v ∈ PC(p), we have:

D(p, x+
2 ) ≤ D(p, x) + ⟨y2 − v, x+

1 − p⟩+ 1
2∥y2 − y1 − v∥2∗ − 1

2∥x
+
1 − x∥2. (37)

Versions of the above inequalities already exist in the literature, cf. Beck & Teboulle
[7], Juditsky et al. [16], Mertikopoulos et al. [23], and references therein. The main novelty
in Lemmas 6 and 7 is the extra term involving the polar vector v ∈ PC(p); this term plays
an important role in the sequel, so we provide complete proofs in Appendix A.

With these preliminaries in hand, we proceed to derive two further inequalities that play
a pivotal role in the analysis of (AMP). The first is an immediate – but crucial – corollary
of Lemma 7:

Corollary 1. Let x∗ be a solution of (VI). Then, for all c ≥ 0 and all t = 1, 2, . . . , the
iterates of (AMP) satisfy the template inequality

D(x∗, xt+1) ≤ D(x∗, xt)− γt⟨Vt+1/2 − cv(x∗), xt+1/2 − x∗⟩
+ 1

2γ
2
t ∥Vt+1/2 − Vt − cv(x∗)∥2∗ − 1

2∥xt+1/2 − xt∥2. (38)

Proof. Since x∗ is a solution of (VI), we have v(x∗) ∈ −PC(x∗). Eq. (38) then follows
by invoking Lemma 7 with x ← xt, p ← x∗, v ← −cγtv(x∗) ∈ PC(x∗) and (y1, y2) ←
(−γtVt,−γtVt+1/2). ■

The second inequality that we derive provides an “energy function” for (AMP), namely

Et = Dt + ft (39)

where
Dt = D(x∗, xt) and ft = γ2

t−1∥(a+ b)Vt−1/2 − Vt−1∥2∗ (40)
with f1 = 0 by convention. The lemma below outlines the Lyapunov properties of Et and
provides much of the heavy lifting for Theorem 1.
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Proposition 1. Suppose that Assumptions 1 and 3 hold and (AMP) is run with a step-size
such that

λγt + 4γ2
tL

2 ≤ 1 for some λ ≥ 0 and all t = 1, 2, . . . (41)
Then, for all t = 1, 2, . . . , the iterates xt of (AMP) satisfy the inequality

Et+1 ≤ Et − λγtft − γt⟨v(xt+1/2)− v(x∗), xt+1/2 − x∗⟩
− γt(a+ b)⟨v(x∗), xt+1/2 − x∗⟩ − 1

2∥xt+1/2 − xt∥2

+ γ2
t (1− a− b)2L2∥xt+1/2 − x∗∥2

+ 2γ2
t (a+ b)2L2∥xt+1/2 − xt∥2. (42)

Proof. Let c = 1− a− b so c ≥ 0 by Assumption 3. Corollary 1 then yields

Dt+1 ≤ Dt − γt⟨Vt+1/2 − v(x∗), xt+1/2 − x∗⟩
− γt(a+ b)⟨v(x∗), xt+1/2 − x∗⟩ − 1

2∥xt+1/2 − xt∥2

+
γ2
t

2
∥Vt+1/2 − Vt − cv(x∗)∥2∗. (43)

Since Vt+1/2 = (a+ b)Vt+1/2 + cVt+1/2, the last term above may be bounded as
1
2γ

2
t ∥Vt+1/2 − Vt − cv(x∗)∥2∗ ≤ γ2

t c
2∥Vt+1/2 − v(x∗)∥2∗ + γ2

t ∥(a+ b)Vt+1/2 − Vt∥2∗
≤ γ2

t c
2L2∥xt+1/2 − x∗∥2∗ + γ2

t ∥(a+ b)Vt+1/2 − Vt∥2∗
= γ2

t (1− a− b)2L2∥xt+1/2 − x∗∥2 + ft+1 , (44)

where we used Assumption 1 in the second line and the definition (39) of ft in the last one.
Thus, combining Eqs. (43) and (44) and comparing to (42), it suffices to show that

2ft+1 ≤ (1− λγt)ft + 4γ2
t (a+ b)2L2∥xt+1/2 − xt∥2 for all t = 1, 2, . . . (45)

We consider two distinct cases for this below.
Case 1: t = 1. By the definition (39) of ft and Eqs. (5) and (6), we have:

f2 = γ2
1∥(a+ b)V3/2 − V1∥2∗ = γ2

1(a+ b)2∥v(x3/2)− v(x1)∥2∗ ≤ γ2
1(a+ b)2L2∥x3/2 − x1∥2,

(46)

where we used the initialization assumption x1 = x1/2 in the second equality and the Lipschitz
continuity of v in the last one. Since f1 = 0 by construction, our claim is immediate.
Case 2: t > 1. By Young’s inequality and the Lipschitz continuity of v, we readily obtain

ft+1 = γ2
t ∥(a+ b)Vt+1/2 − Vt∥2∗

= γ2
t

∥∥(a+ b)[v(xt+1/2)− v(xt)] + b[v(xt)− v(xt−1/2)]
∥∥2
∗

≤ 2γ2
t (a+ b)2∥v(xt+1/2)− v(xt)∥2∗ + 2γ2

t b
2∥v(xt)− v(xt−1/2)∥2∗

≤ 2γ2
t (a+ b)2L2∥xt+1/2 − xt∥2 + 2γ2

t b
2L2∥xt − xt−1/2∥2

≤ 2γ2
t (a+ b)2L2∥xt+1/2 − xt∥2 + 2γ2

t b
2L2γ2

t−1∥Vt−1/2 − Vt−1∥2∗ (47)

where, in the last line, we used Lemma 3 to bound the difference xt − xt−1/2 as

∥xt − xt−1/2∥ = ∥Pxt−1(−γt−1Vt−1/2)− Pxt−1(−γt−1Vt−1)∥ ≤ γt−1∥Vt−1/2 − Vt−1∥∗. (48)

Finally, by Assumption 3, we have c = 0 whenever b > 0, so b2γ2
t−1∥Vt−1/2 − Vt−1∥2∗ =

b2γ2
t−1∥(1− c)Vt−1/2 − Vt−1∥2∗ = b2ft for all t > 1. Hence, putting everything together, we

get
ft+1 ≤ 2γ2

t (a+ b)2L2∥xt+1/2 − xt∥2 + 2γ2
t b

2L2ft. (49)
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Eq. (45) then follows by the step-size requirement (41), which implies that 2γ2
tL

2 ≤ (1 −
λγt)/2. ■

Moving forward, since x∗ is a solution of (VI), the first line of (42) yields a negative O(γt)
contribution to Et, whereas the third and fourth lines collectively represent a subleading
O(γ2

t ) “error term”. This decomposition would suffice for the analysis of (AMP) if the
coupling term ⟨v(x∗), xt+1/2 − x∗⟩ did not incur an additional O(γt) positive contribution to
Et+1. This error term is difficult to control in general, but if x∗ satisfies (SOS), it can be
mitigated via the following bound:

Lemma 8. Suppose that Assumption 2 holds. Then, for all x ∈ X , x′ ∈ B and all c ∈ [0, 1],
we have:

⟨v(x′)− cv(x∗), x′ − x∗⟩ ≥ 1
2µ∥x− x∗∥2 − µ∥x′ − x∥2. (50)

Proof. Since x∗ is a solution of (VI) and c ∈ [0, 1], we have (1− c)⟨v(x∗), x′ − x∗⟩ ≥ 0 for all
x′ ∈ X . Hence, by Assumption 2, we get

⟨v(x′)− cv(x∗), x′ − x∗⟩ ≥ ⟨v(x′)− v(x∗), x′ − x∗⟩ ≥ µ∥x′ − x∗∥2 (51)

and our assertion follows from the basic bound ∥x− x∗∥2 ≤ 2∥x− x′∥2 + 2∥x′ − x∗∥2. ■

With this ancillary estimate in hand, we may finally sharpen Proposition 1 to obtain a
bona fide energy inequality for solutions satisfying (SOS):

Proposition 2. Suppose that Assumptions 1–3 hold and (AMP) is run with a step-size γt
such that

2µγt + 4γ2
tL

2 ≤ 1 and (1− a− b)2γt ≤
µ

8L2
for all t = 1, 2, . . . (52)

Then, for all t ≥ 1 such that xt+1/2 ∈ B, we have

Et+1 ≤ Et − µγtft − 1
4µγt∥xt − x∗∥2. (53)

Proof. Assume that xt+1/2 ∈ B and set c = 1− a− b. Then, invoking Lemma 8 with x← xt

and x′ ← xt+1/2, we get

⟨v(xt+1/2)−v(x∗), xt+1/2−x∗⟩+(a+b)⟨v(x∗), xt+1/2−x∗⟩ ≥ 1
2µ∥xt−x∗∥2−µ∥xt+1/2−xt∥2.

(54)
Thus, taking λ← µ in Proposition 1 (in terms of step-size conditions, the first part of (52)
implies (41)) and combining with the above, the bound (42) becomes

Et+1 ≤ Et − µγtft − 1
2µγt∥xt − x∗∥2 + γ2

t c
2L2∥xt+1/2 − x∗∥2

− 1
2

(
1− 4γ2

t (a+ b)2L2 − 2µγt
)
∥xt+1/2 − xt∥2. (55)

Hence, writing ∥xt+1/2 − x∗∥2 ≤ 2∥xt+1/2 − xt∥2 + 2∥xt − x∗∥2 and rearranging, we obtain

Et+1 ≤ Et − µγtft − 1
2

(
µγt − 4γ2

t c
2L2
)
∥xt − x∗∥2

− 1
2

(
1− 4γ2

t ((a+ b)2 + c2)L2 − 2µγt
)
∥xt+1/2 − xt∥2. (56)

Since a, b, c ≥ 0 and a+ b+ c = 1, we also have (a+ b)2 + c2 ≤ 1, so the step-size assumption
(52) guarantees that the last term in (56) is nonpositive. Likewise, the second part of
(52) gives µγt − 4γ2

t c
2L2 ≥ 1

2µγt, so the energy inequality (53) follows and our proof is
complete. ■
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Remark. It is worth noting here that applying Lemma 8 in (55) introduces a factor 1/2
for (MD), even though xt = xt+1/2 by construction. Likewise, invoking the second part of
the condition (52), which is void for both (MP) and (OMD), leads to a deterioration of the
constants in our analysis. ♢

We finally have all the required building blocks in place to prove Theorem 1.

Proof of Theorem 1. Our proof strategy consists of the following basic steps:
(1) We first show that, if the step-size of (AMP) satisfies (29) and x1 is initialized within

a suitable neighborhood of x∗, the sequence of leading states xt+1/2, t = 1, 2, . . . ,
remains within the neighborhood U ∩ B of x∗ where the Legendre bound (28) and
(SOS) hold concurrently.

(2) By virtue of this stability result, the energy inequality (53) and the definition of
the Legendre exponent allow us to express Dt = D(x∗, xt) in recursive form as
Dt+1 ≤ Dt − O

(
D

1/(1−β∗)
t

)
up to an error term that vanishes at a geometric rate.

The rates (30) and (31) are then derived by analyzing this recursive inequality for
β∗ = 0 and β∗ > 0 respectively.

We now proceed to detail the two steps outlined above.
Step 1: Stability. Take r > 0 such that BXr (x∗) := {x ∈ X : ∥x − x∗∥ ≤ r} ⊂ U ∩ B and
assume further that x1/2 = x1 ∈ U ∩ B is such that D(x∗, x1/2) = D(x∗, x1) ≤ (1− λ)r2/4,
where λ ∈ (0, 1) is a constant to be determined later. Letting E0 := D(x∗, x1), we will prove
by induction on t that

∥xt−1/2 − x∗∥ ≤ r and Et ≤ Et−1, (57)
which will show in particular that xt+1/2 ∈ U ∩ B for all t ≥ 1. Indeed:
• For the base case (t = 1), we have ∥x1/2 − x∗∥ ≤

√
2D(x∗, x1/2) ≤ r and E1 = E0 by

construction, so there is nothing to show.

• For the induction step, assume (57) holds. Then (22) yields
1
2∥xt − x∗∥2 ≤ Dt ≤ Et ≤ E1 = D(x∗, x1) ≤ 1

4 (1− λ)r2 (58)

i.e., xt ∈ BXr (x∗). Now, to show that xt+1/2 ∈ BXr (x∗), Lemma 6 with p← x∗, x← xt,
y ← −γtVt and v ← −(a+ b)γtv(x

∗) gives

Dt+1/2 ≤ Dt − γt⟨Vt − (a+ b)v(x∗), xt+1/2 − x∗⟩
≤ Dt − aγt⟨v(xt)− v(x∗), xt+1/2 − x∗⟩

− bγt⟨v(xt−1/2)− v(x∗), xt+1/2 − x∗⟩ (59)

and hence, by Young’s inequality and (22), we get
1
2∥xt+1/2 − x∗∥2 ≤ Dt + γ2

t a∥v(xt)− v(x∗)∥2∗ + γ2
t b∥v(xt−1/2)− v(x∗)∥2∗

+ 1
4 (a+ b)∥xt+1/2 − x∗∥2 . (60)

Since a+ b ≤ 1, using Assumption 1 and rearranging gives

∥xt+1/2 − x∗∥2 ≤ 4Dt + 4γ2
tL

2 max{∥xt − x∗∥2, ∥xt−1/2 − x∗∥2}
≤ (1− λ)r2 + 4γ2

tL
2r2 (61)

where we used the fact that ∥xt−1/2 − x∗∥2 ≤ r2 and ∥xt − x∗∥2 ≤ 2Dt ≤ 1
2 (1− λ)r2

(by the inductive hypothesis and (58) respectively). Therefore, with 2γtL ≤ 1/φ < 1 by
assumption, choosing λ = 1/φ2 gives ∥xt+1/2 − x∗∥2 ≤ r2, which completes the first
part of the induction.
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For the second part, our step-size assumption gives

2µγt + 4γ2
tL

2 ≤ 2γtL+ 4γ2
tL

2 ≤ 1/φ+ 1/φ2 = 1. (62)

Thus, since xt+1/2 ∈ B, Proposition 2 readily gives

Et+1 ≤ Et − µγtft − 1
4µγt∥xt − x∗∥2 ≤ Et, (63)

and the induction is complete.
Step 2: Convergence rate analysis. The local Legendre bound (28) allows us to rewrite (63)
as

Et+1 ≤ Et − µγtft −
µγt

21−ακ1+α
D1+α

t (64)

where, for convenience, we set α = β∗/(1− β∗). We now distinguish two cases, depending
on whether β∗ = 0 or β∗ > 0.

Case 1: If β∗ = 0, we have α = 0 by definition and κ ≥ 1 by (22). Eq. (64) then gives

Et+1 ≤ Et −
µγt
2κ

Dt − µγtft ≤
(
1− µγt

2κ

)
Et (65)

so the bound (30) follows immediately by setting γt ≡ γ for all t.
Case 2: If β∗ > 0, then α > 0 too, so we will proceed by rewriting all terms in Eq. (64) in

terms of Et. To that end, we have:

Et+1 ≤ Et − µγtft −
µγt

21−ακ1+α
D1+α

t

≤ Et −
µγt

D(x∗, x1)α
f1+α
t − µγt

21−ακ1+α
D1+α

t

≤ Et −
µγt

max(21−ακ1+α, D(x∗, x1)α)

[
D(x∗, xt)

1+α + f1+α
t

]
≤ Et −

µγt
max(2κ1+α, 2αD(x∗, x1)α)

E1+α
t (66)

where, in the second line, we used (57) to bound ft as ft ≤ D(x∗, xt) + ft ≤
D(x∗, x1), and, in the last line, we used the convexity of x1+α over R+. The rate
(31) then follows by invoking Lemma 6 of [33, p. 46] (recreated in the appendix
as Lemma A.1 for ease of reference). ■

5. Finer results for linearly constrained problems

Motivated by applications to game theory and linear programming, our goal in this
section will be to take a closer look at the convergence rate of (AMP) for different solution
configurations that may arise in practice – and, in particular, in linearly constrained problems.
To that end, we begin by revisiting the examples of Section 3.

5.1. Motivating examples, redux. A common feature of Examples 3.1–3.4 is that the prob-
lem’s defining vector field vanishes at the solution point under scrutiny. In the series of
examples below, we examine the rate of convergence achieved when this is not the case.

Example 5.1 (Euclidean regularization). Consider again the quadratic regularizer of Exam-
ple 3.1 over X = [0,∞), but with v(x) = x+ 1. The solution of (VI) is still x∗ = 0 but the
update (11) now becomes

F (x) = [x− γ(x+ 1)]+ = [(1− γ)x− γ]+ . (67)

Since F (x) = 0 for all sufficiently small x > 0, we readily conclude that xt converges to x∗

in a finite number of iterations. ♢
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Example 5.2 (Entropic regularization). Under the entropic regularizer of Example 3.2, and
taking again v(x) = x+ 1, the update rule (11) becomes

F (x) = x exp(−γ(x+ 1)) = xe−γ + o(x) ∼ xe−γ (68)

i.e., F is a contraction for small x > 0. Hence, in contrast to Example 3.2, xt converges to 0
at a geometric rate, even though the problem’s solution lies on the boundary of X . ♢

Example 5.3 (Fractional power). Finally, consider the fractional power regularizer of Exam-
ple 3.3, again with v(x) = x+ 1. Then, for q ∈ (0, 1), the update rule (11) gives

F (x) = [xq−1 + γ(1− q)(x+ 1)]1/(q−1) = x− γx2−q + o(x2−q) (69)

for small x > 0. Thus, by Lemma 4, we conclude that xt converges to 0 as |xt − x∗| =
Θ
(
t−1/(1−q)

)
and hence D(x∗, xt) = Θ

(
t−q/(1−q)

)
, which is again faster than the rate

predicted by Theorem 1. ♢

Examples 5.1–5.3 already show that the convergence rate of (AMP) can change drastically
depending on whether v(x∗) is zero or not. In the example below, we examine in more detail
the behavior of the individual coordinates of xt as a function of the position of v(x∗) relative
to X .

Example 5.4 (Higher-dimensional simplices). Consider the canonical two-dimensional simplex
X = {(x1, x2, x3) ∈ R3

+ : x1 + x2 + x3 = 1} of R3 equipped with the entropic regularizer
h(x) =

∑3
i=1 xi log xi. Consider also the vector field v(x) = x− p with p = (−ν1,−ν2, 1) for

some ν1, ν2 ≥ 0, so the solution of (VI) is x∗ = (0, 0, 1), an extreme point of X .
Since the Legendre exponent of h at x∗ is easily seen to be βh(x

∗) = 1/2, Theorem 1
would indicate a rate of convergence of D(x∗, xt) = O(1/t) or, in terms of norms, ∥xt−x∗∥ =
O(1/t). However, this rate can be very pessimistic if, for example, ν1 > 0. Indeed, in this
case, since xt converges to x∗ = (0, 0, 1), the relevant coordinates of v(xt) will evolve as
v1(xt) = x1,t + ν1 = ν1 + o(1) and v3(xt) = x3,t − 1 = o(1). Accordingly, since entropic
regularization on the simplex leads to the exponential weights update [7]

xi,t+1 ∝ xi,t exp(−γvi(xt)) for all t ≥ 1, i = 1, 2, 3, (70)

the fact that limt→∞ x3,t = 1 readily yields

x1,t+1 ∼
x1,t+1

x3,t+1
=

x1,t

x3,t
exp(−γv1(xt) + γv3(xt)) =

x1,t

x3,t
exp(−γν1 + o(1)) (71)

i.e., x1,t converges to 0 at a geometric rate whenever ν1 > 0.
By symmetry, the argument above yields the same rate for x2,t if ν2 > 0. However, as we

show in Appendix B, if ν2 = 0, we would have x2,t = Θ(1/t) no matter the value of ν1 (and
likewise for the rate of x1,t if ν1 = 0). In other words, the rate provided by Theorem 1 is
tight for the coordinate i ∈ {1, 2} with a vanishing drift coefficient νi, but not otherwise; we
will devote the rest of this section to deriving a formal statement (and proof) of the general
principle underlying this observation. ♢

5.2. Linearly constrained problems. For concreteness, we will focus in what follows on
linearly constrained problems, which is where the structural configurations outlined in the
previous examples are more prominent. To simplify the presentation and the analysis, we
will identify V with Rn endowed with the Euclidean scalar product ⟨·, ·⟩, and we will not
distinguish between primal and dual vectors (meaning in particular that the distinction
between normal and polar cones will be likewise blurred).
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Formally, we will consider polyhedral domains written in normal form as

X = {x ∈ Rn
+ : Ax = b} (72)

for some matrix A ∈ Rm×n and b ∈ Rn.4 Moreover, we will further assume that X admits a
Slater point, i.e., there exists some x ∈ X such that xi > 0 for all i = 1, . . . , n. This setup is
particularly flexible, as it allows us to identify the active constraints at x ∈ X with the zero
components of x.

Elaborating further on this, since ⟨v(x∗), x− x∗⟩ ≥ 0 for all x ∈ X and any solution x∗ of
(VI), we directly infer that −v(x∗) is an element of the normal cone NC(x∗) to X at x∗. In
our polyhedral setting, NC(x∗) admits an especially simple representation as

NC(x∗) = row(A)− {(ν1, . . . , νn) ∈ Rn
+ : νi = 0 whenever x∗

i = 0} (73)

where row(A) = (kerA)⊥ ⊆ Rn denotes the row space of A [13, Ex. 5.2.6]. As a result, we
see that x∗ is a solution of (VI) if and only if v(x∗) can be written in the form

v(x∗)−
∑
i∈A

νiei ∈ row(A) (74)

for an ensemble of non-negative slackness coefficients νi ≥ 0, i ∈ A, where

A ≡ A(x∗) = {i : x∗
i = 0} (75)

denotes the set of inequality constraints of (72) that are active at x∗. In view of all this, we
will distinguish the following solution configurations:

Definition 3 (Sharpness). Let x∗ ∈ X be a solution of (VI) with associated slackness
coefficients νi, i ∈ A, as per (74). The set of sharp (♯) and flat (♭) directions at x∗ are
respectively defined as

A♯ = {i ∈ A : νi > 0} and A♭ = {i ∈ A : νi = 0}, (76)

and we say that v is sharp at x∗ if A♯ = A (or, equivalently, if A♭ = ∅). The sharpness of v
at x∗ is then defined as

ν∗ = mini∈A♯
νi. (77)

The terminology “sharp” and “flat” alludes to the case where v is a gradient field, and
is best illustrated by an example. To wit, let f(x1, x2) = x1 +

1
2 (x2 − 1)2 for x1, x2 ≥ 0,

so f admits a (unique) global minimizer at x∗ = (0, 1). Applying Definition 3 to v = ∇f ,
we readily get A♯ = {1} and A♭ = {2}, reflecting the fact that f(x1, 1) exhibits a sharp
minimum at 0 along x1 whereas the landscape of f(0, x2) is flat to first-order around 1 along
x2.

5.3. Convergence rate analysis. We are now in a position to state and prove our refinement
of Theorem 1 for linearly constrained problems. To that end, following Alvarez et al. [1], we
will assume in the rest of this section that (AMP) is run with a Bregman regularizer h that
is adapted to the polyhedral structure of X as per the definition below:

4Inequality constraints of the form Ax ≤ b can also be accommodated in (72) by introducing the associated
slack variables s = b−Ax ≥ 0. Even though this leads to a more verbose presentation of X , the form (72)
is much more convenient in terms of notational overhead, so we will stick with the equality formulation
throughout.
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Definition 4. Let X be a polyhedral domain of the general form (72), and let θ : R+ → R
be a continuous function such that a) θ′′(x) exists and is positive for all x > 0; and b) θ′′ is
locally Lipschitz on (0,∞). Then, a Bregman regularizer h on X is said to be decomposable
with kernel θ if

h(x) =

n∑
i=1

θ(xi) for all x ∈ X . (78)

In addition to facilitating calculations, the notion of decomposability will further allow us
to describe the convergence rate of the iterates of (AMP) near the boundary of X in finer
detail. In fact, as it turns out, the speed of convergence along a given direction will actually
be determined by the behavior of the derivative of the Bregman kernel θ near 0.

In this regard, there are two distinct regimes to consider. First, if limx→0+ θ′(x) = −∞,
it is straightforward to see that dom ∂h = riX so, by Lemma 1, the iterates xt of (AMP)
will remain in riX for all t; in this case h is essentially smooth – or Legendre – in the sense
of Rockafellar [36, Chap. 26], and we will refer to it as steep. Otherwise, if θ′(0) exists and is
finite, xt may reach the boundary of X in a finite number of iterations; we will refer to this
case as non-steep. The key difference between these two regimes is that, in the non-steep case,
the algorithm may achieve convergence in a finite number of steps (at least along certain
directions). On the other hand, even though finite-time convergence is not possible in the
steep regime, the algorithm’s rate of convergence may still depend on the boundary behavior
of θ. To illustrate this, we will consider the following concrete cases:

Assumption 4. Let θ : R+ → R be a kernel function as per Definition 4. Then θ′ exhibits
one of the following behaviors as x→ 0+:

(a) Euclidean-like: lim infx→0+ θ′(x) > −∞.
(b) Entropy-like: lim infx→0+ [θ

′(x) + log x] > −∞.
(c) Power-like: lim infx→0+ xpθ′(x) > −∞ for some p ∈ (0, 1).

Remark. Cases (a)–(c) above respectively mean that |θ′(x)| grows as O(1), O(|log x|) or
O(1/xp) as x → 0+. Clearly, we have (a) =⇒ (b) =⇒ (c) so these cases are not exclusive;
nonetheless, to avoid overloading the presentation, when we say that (b) holds, we will tacitly
imply that (a) does not also hold at the same time – and likewise for (c). ♢

With all this in hand, we proceed to show that, in linearly constrained problems, (AMP)
converges along sharp directions at x∗ at an accelerated rate relative to Theorem 1: sublinear
rates may become linear, and linear rates transform to convergence in finite time.

Theorem 2. Suppose that (AMP) is run in a polyhedral domain with a decomposable regular-
izer as per Definition 4. Suppose further that Assumptions 1–4 hold, and that the method’s
step-size and initialization satisfy the requirements of Theorem 1. Then, for all i ∈ A♯, we
have:

(a) Under Assumption 4(a), there exists some T ≥ 1 such that:

xi,t = 0 for all t ≥ T (79a)

(b) Under Assumption 4(b):
xi,t = O

(
exp(−γνefft/2)

)
(79b)

(c) Under Assumption 4(c):

xi,t = O
(
(γνefft/2)

−1/p
)

(79c)
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X

NC(x∗)

. x∗−v(x∗)

X

NC(x∗)
. x∗

−v(x∗)

X

NC(x∗)
. x∗

−v(x∗)

Figure 2: Different solution configurations: a non-extreme solution where v is
sharp (left), an extreme solution where v is not sharp (center), and a sharp solution
(i.e., an extreme solution where v is sharp; right).

where

νeff =

{
ν∗ if v is sharp at x∗ (i.e., A♭ = ∅),
ν∗/ϱ otherwise,

(80)

and ϱ ≡ ϱ(A, b, x∗) ≥ 1 is a positive constant that depends only on X and x∗.

Theorem 2 is the main result of this section so, before proving it, some remarks are in
order. We begin with the observation that, if the sharp directions at x∗ suffice to characterize
it, the coordinate-wise guarantees (79) must extend to the full space. This is always so if
x∗ is an extreme point of X and v is sharp at x∗, in which case we will say that x∗ is itself
sharp. We then have the following immediate corollary of Theorem 2:

Corollary 2. If x∗ is sharp, we have ∥xt − x∗∥ → 0 at a rate given by (79a), (79b), or (79c),
depending respectively on whether Case (a), (b), or (c) of Assumption 4 holds.

Proof. First, note that x∗ is sharp if and only if span{ei : i ∈ A♯}+ row(A) = Rn: indeed,
since X is a polyhedron, x∗ is extreme if and only if NC(x∗) has nonempty topological interior,
and this, combined with (73) and the fact that A♯ = A (since v is sharp at x∗), proves our
assertion. We thus conclude that, for all i = 1, . . . , n, there exist λij ∈ R, j ∈ A♯, such that
ei−

∑
j∈A♯

λijej ∈ row(A), and hence, for all t = 1, 2, . . . , we have xi,t−x∗
i =

∑
j∈A♯

λijxj,t.
Our claim then follows from Theorem 2 and the fact that all norms are equivalent on Rn. ■

We continue with a series of observations elaborating further on Theorem 2.

Remark 1 (Examples). In our series of running examples, the guarantees of Theorem 2 are
as follows:

(1) Euclidean regularization (Example 3.1): With θ(x) = x2/2, this regularizer satis-
fies Assumption 4(a) because θ′ is defined and continuous on all of R+, so we get
convergence along the sharp directions of x∗ in a finite number of steps.

(2) Negative entropy (Example 3.2): The corresponding kernel is θ(x) = x log x for x ≥ 0.
Since θ′(x) = log x+ 1 on (0,∞), θ satifies Assumption 4(b), so the algorithm’s rate
of convergence along sharp directions is geometric.

(3) Tsallis entropy (Example 3.3): For q < 1, the kernel θ(x) = [q(1− q)]−1(x− xq) is
differentiable on (0,∞). Since θ′(x) = [q(1 − q)]−1(1 − qxq−1), this kernel satisfies
Assumption 4(c) with p = 1− q, leading to an O(1/t1/(1−q)) rate of convergence along
sharp directions. It is also worth noting here that the Legendre exponent at x∗ is
upper bounded by p as β∗ ≤ (1 + p)/2; we defer the details of this calculation to
Appendix B.
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Bregman Kernel (θ) Generic rate (Theorem 1) Sharp rate (Theorem 2)

Euclidean x2/2 Linear Finite time
Entropic x log x O(1/t) Linear
Tsallis [q(1− q)]−1(x− xq) O(1/tq/(2−q)) O(1/t1/(1−q))

Hellinger −
√
1− x2 O(1/t1/3) O(1/t2)

Table 2: Summary of the accelerated rates of convergence observed along sharp
directions as a function of the underlying Bregman kernel (cf. Definition 4).
The Euclidean, entropic and Tsallis kernels are the prototypical examples of
Cases (a)–(c) of Assumption 4; to avoid trivialities, we only consider the behavior
of θ at the boundary of its domain.

(4) Hellinger regularizer (Example 3.4): The Hellinger kernel is given by θ(x) = −
√
1− x2,

so θ′(x) = x/(1 − x2) for all x ∈ (−1, 1). The behavior of this kernel would then
correspond to Assumption 4(c) with p = 1/2.

To facilitate comparisons with Theorem 1, we juxtapose the corresponding rates in Table 2.
♢

Remark 2 (Solution configurations). By construction (and the fact that X admits a Slater
point), it is straightforward to verify that v is sharp at x∗ if and only if v(x∗) ∈ − ri(NC(x∗));
likewise, x∗ is itself sharp if and only if v(x∗) ∈ − int(NC(x∗)). As we noted in the proof of
Corollary 2, the latter condition is equivalent to asking that span{ei : i ∈ A♯}+row(A) = Rn,
a condition which describes precisely the informal requirement that the sharp directions at
x∗ suffice to characterize it. By contrast, if v is sharp at some non-extreme point x∗, there
exists some (nonzero) z ∈ TC(x∗) such that ⟨v(x∗), z⟩ = 0, indicating that the accelerated
rates of Theorem 2 cannot be active along the residual direction z. We illustrate these
distinct solution configurations in Fig. 2.

♢

Remark 3 (Alternative polyhedral representations). Even though every polyhedral domain
can be represented in normal form by means of (72) – possibly up to introducing a set
of slack variables to account for constraints of the form Ax ≤ b – some polyhedra can be
represented more succinctly as

X = {x ∈ Rn : Ax = b and ⟨cj , x⟩ ∈ Rj , j = 1, . . . ,m} (81)

for an ensemble of vectors cj ∈ Rn and intervals Rj ⊆ R for each of the problem’s inequality
constraints j = 1, . . . ,m. At the cost of heavier notation, Theorem 2 can be extended
to this setting by considering decomposable Bregman regularizers of the form h(x) =∑m

j=1 θj(⟨cj , x⟩), x ∈ X , where each θj is a suitable Bregman kernel on Rj . Mutatis
mutandis, the sets of active, sharp and flat constraints can then be defined as in Definition 3,
and the guarantees of Theorem 2 would apply to the constraint excess variables χj,t = ⟨cj , xt⟩,
j = 1, . . . ,m. ♢

Remark 4 (Tightness and the structure of X ). It is also important to note that the dependence
of νeff on the structure of X in the second branch of (80) cannot be lifted. To see this, let

X = {x ∈ R2
+ : x1 = εx2} (82)
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i.e., A = [1 − ε] and kerA is spanned by the vector z = (ε, 1). Then, if we take v(x) = x− p
with p1 ≤ 0 and p2 ≥ 0 (so that the origin is a solution), and we equip X with the Bregman
regularizer induced by the entropic kernel θ(x) = x log x, a straightforward calculation shows
that the iterates of (MD) satisfy the recursion

εθ′(x1,t+1) + θ′(x2,t+1) =
[
εθ′(x1,t) + θ′(x2,t)

]
+ γ
(
εx1,t + x2,t

)
− γ⟨p, z⟩. (83)

Thus, letting χt = x2,t = x1,t/ε, the above can be rewritten as

εθ′(εχt+1) + θ′(χt+1) =
[
εθ′(εχt) + θ′(χt)

]
+ γ(ε2 + 1)χt − γ⟨p, z⟩ (84)

and hence, with θ′(x) = 1 + log x, we finally get

χt+1 = χt exp

(
−γ ε

2 + 1

ε+ 1
χt + γ

⟨p, z⟩
ε+ 1

)
. (85)

Now, if ⟨p, z⟩ < 0, we readily infer that χt = x2,t converges linearly to 0 at a rate of

χt ∼ exp

(
−|⟨p, z⟩|

ε+ 1
γt

)
(86)

as predicted by Theorem 2. In particular, if v(0) = −p = (ν∗, ν∗) with ν∗ > 0, the iterates
of (MD) converge geometrically to zero with exponent γν∗, which matches the estimate of
Theorem 2 up to a factor of 1/2 in the exponent. On the contrary, if v(0) = −p = (ν∗, 0),
the term |⟨−p, z⟩| = εν∗ depends on the linear structure of X and can be arbitrarily bad as
ε goes to zero. This illustrates why one cannot do away with the dependence on the linear
structure of X when v is not sharp at x∗. ♢

5.4. Proof of Theorem 2. We now proceed to the proof of Theorem 2, beginning with two
helper lemmas tailored to the polyhedral structure of X . The first is a book-keeping result
regarding the subdifferentiability of h.

Lemma 9. Let h be a decomposable regularizer on X with kernel θ as per Definition 4. Then
the domain of subdifferentiability of h is Xh = {x ∈ X : xi ∈ dom ∂θ for all i = 1, . . . , n}
and a continuous selection of ∂h is given by the expression

∇h(x) =
n∑

i=1

θ′(xi)ei for all x ∈ Xh. (87)

Proof. See Rockafellar [36, Thm 23.8], whose qualification condition is satisfied thanks to
the fact that X is polyhedral. ■

The second ingredient we will need is a separation result in the spirit of Farkas’ lemma.

Lemma 10. Let X be a polyhedral domain of the general form (72). Then, for all x∗ ∈ X ,
there exists P = P (A, b, x∗) ≥ 1 such that, for all I ⊆ A ≡ A(x∗), at least one of the
following holds:

(a) I ≠ ∅ and there exists i ∈ A \ I such that xi ≤ P max{xj : j ∈ I} for all x ∈ X .
(b) There exists z ∈ kerA such that ∥z∥ ≤ P , zi = 0 if i ∈ I and P ≥ zi ≥ 1 if i ∈ A\I.

The proof of Lemma 10 is based on Farkas’ lemma so we relegate it to Appendix A and
instead proceed to use it to prove our main result for linearly constrained problems.

Proof of Theorem 2. We will consider two main cases, depending on whether limx→0+ h′(x) =
−∞ (the steep case) or limx→0+ h′(x) > −∞ (the non-steep case). The steep regime will
cover Cases (b) and (c) of Assumption 4, whereas the non-steep regime will account for
Case (a).
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Case 1: the steep regime. We begin by noting that, without loss of generality, Cases (b)
and (c) respectively imply that there exist C ∈ R and δ > 0 such that, for all x ∈ (0, δ), we
have:

Under Assumption 4(b): θ′(x) ≥ log x− C (88a)

Under Assumption 4(c): θ′(x) ≥ −Cx−p (88b)

With this in mind, let r > 0 be sufficiently small so that the relative neighborhood Br :=
{x ∈ X : ∥x− x∗∥ ≤ r} of x∗ in X satisfies:
• Br ⊆ U ∩ B with B and U defined by (SOS) and (28) respectively.
• If x ∈ Br then xi < δ for all i ∈ A.
• If x ∈ Br, then ∥v(x) − v(x∗)∥∗ ≤ ν∗/(2P ) with ν∗ given by (77) and P given by

Lemma 10.
Recall that Step 1 of the proof of Theorem 1 implies that the iterates xt and half-

iterates xt+1/2 of (AMP) will remain in Br for all t if x1 is initialized sufficiently close to x∗.
Accordingly, with this stability guarantee in hand, we will construct sets I♯ ⊆ A♯, I♭ ⊆ A♭

such that, for all i ∈ I := I♯ ∪ I♭,

xi,t ≤ P |I| ·

{
exp(C + P∥∇h(x1)∥∗ + PR− γνeff(t− 1)/2) under Assumption 4(b),

C[γνeff(t− 1)/2− P∥∇h(x1)∥∗ − PR]
− 1

p

+ under Assumption 4(c),
(89)

where R := supx∈Br

∥∥∑
i/∈A θ′(xi)ei

∥∥
∗, P ≥ 1 is the constant given by Lemma 10 and νeff is

defined as in (80) with ϱ = P |A|.
We will proceed inductively, starting with I♯ = I♭ = ∅, in which case the stated property

holds trivially. For the inductive step, if (89) holds for I♯ ⊊ A♯ and I♭ ⊆ A♭, we will show
that there is some index j ∈ A \ I such that (89) still holds for I ∪ {j}. By iterating this
procedure, since the number of active constraints is finite, we will reach I♯ = A♯ and the
result of the theorem will follow.

To carry all this out, assume that I♯ ⊊ A♯, I♭ ⊆ A♭, and apply Lemma 10 to I = I♯ ∪ I♭.
If the first case of Lemma 10 holds, then I ≠ ∅ and there exists i ∈ A such that

xi,t ≤ P maxj∈I xj,t (90)

so (89) still holds when i is appended to I♯ or I♭ (depending on whether it belongs to A♯

or A♭). Otherwise, the second case of Lemma 10 holds and there exists some z ∈ kerA
with ∥z∥ ≤ P , zi = 0 if i ∈ I, and P ≥ zi ≥ 1 if i ∈ A \ I. Since h is steep, this means
that xt+1 = Pxt(−γVt+1/2) belongs to Xh = riX for all t = 1, 2, . . . , so the normal cone
NC(xt+1) to X at xt+1 will be the affine hull of X , i.e., NC(xt+1) = row(A). Hence, Lemma 1
guarantees that

∇h(xt+1)−∇h(xt) + γVt+1/2 ∈ row(A) (91)
so, telescoping over s = 1 to t− 1, we get

∇h(xt)−∇h(x1) + γ

t−1∑
s=1

Vs+1/2 ∈ row(A). (92)

Taking the scalar product with z ∈ kerA then yields
n∑

i=1

θ′(xi,t)zi = ⟨∇h(x1), z⟩ − γ

t−1∑
s=1

⟨Vs+1/2, z⟩ (93)
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so, after rearranging and invoking (74) to write ⟨v(x∗), z⟩ =
∑

i∈A νizi, we get∑
i∈A\I

θ′(xi,t)zi +
∑
i∈I

θ′(xi,t)zi = ⟨∇h(x1), z⟩ − γ

t−1∑
s=1

∑
i∈A

νizi

+ γ

t−1∑
s=1

⟨v(x∗)− Vs+1/2, z⟩ −
∑
i/∈A

θ′(xi,t)zi. (94)

Now, by the properties we used to construct z, we further have∑
i∈A\I

θ′(xi,t)zi ≤ P∥∇h(x1)∥∗ − γ(t− 1)
∑

i∈A\I

νizi

+ γ

t−1∑
s=1

P∥v(x∗)− Vs+1/2∥∗ + P

∥∥∥∥∥∑
i/∈A

θ′(xi,t)ei

∥∥∥∥∥
∗

≤ P∥∇h(x1)∥∗ − γ(t− 1)
∑

i∈A\I

νizi +
1
2γν

∗(t− 1) + PR. (95)

where the second inequality follows from how we chose Br at the beginning of the proof.
We conclude our analysis by distinguishing whether v is sharp at x∗ (i.e., if A♭ = ∅ or

not).
Case 1: If A♭ = ∅, we have A \ I = A♯ \ I♯ and νi ≥ ν∗ for all i ∈ A \ I, so (95) gives∑

i∈A\I

θ′(xi,t)zi + γ(t− 1)ν∗zi ≤ P∥∇h(x1)∥∗ + 1
2γν

∗(t− 1) + PR. (96)

Choosing the coordinate j ∈ A \ I which corresponds to the smallest term in the
sum on the left-hand side (LHS), we obtain that

(θ′(xj,t) + γ(t− 1)ν∗)(|A| \ I)zj ≤ P∥∇h(x1)∥∗ + 1
2γν

∗(t− 1) + PR (97)

and noting that |A \ I|zj ≥ 1 yields

θ′(xj,t) ≤ P∥∇h(x1)∥∗ − 1
2γν

∗(t− 1) + PR . (98)

Case 2: If A♭ ̸= ∅, then, since I♯ ⊊ A♯, the intersection of A \ I and A♯ is not empty so
that,

∑
i∈A\I νizi ≥

∑
i∈A\I νi ≥ ν∗ and the inequality (95) above becomes,∑

i∈A\I

θ′(xi,t)zi ≤ P∥∇h(x1)∥∗ − 1
2γν

∗(t− 1) + PR . (99)

Now, choosing j to be the coordinate in A \ I which minimizes the LHS and
bounding |A \ I| by 1 and |A|, we get that

θ′(xj,t)zj ≤ P∥∇h(x1)∥∗ −
γν∗

2|A|
(t− 1) + PR . (100)

Dividing both sides by zj and using that it lies between 1 and P gives

θ′(xj,t) ≤ P∥∇h(x1)∥∗ −
γν∗

2P |A|
(t− 1) + PR (101)

Therefore, we have shown that, in both cases, there exists j ∈ A \ I such that (101) holds,
since P |A| ≥ 1. Therefore, combining this inequality with (88) we conclude that (89) holds
for j, and since P ≥ 1, we conclude that we can augment I♯ or I♭ by j, depending on whether
it belongs to A♯ or A♭.
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Case 2: the non-steep regime. The proof borrows the structure of the first case, though it is
more straightforward.

Take r > 0 small enough such that Br := {x ∈ X : ∥x− x∗∥ ≤ r} satisfies
• Br is included in U ∩ B,

• if x, x′ ∈ Br then, ∥∇h(x)−∇h(x′)∥∗ ≤ γν∗

3P where P is given by Lemma 10. This is
possible since ∇h is continuous at x∗.

• if x ∈ Br, then ∥v(x)− v(x∗)∥∗ ≤ ν∗

3P .
• No other constraint xi = 0 with i /∈ A becomes active in Br.

As we have seen in the stability part of the proof of Theorem 1, if (AMP) is started close
enough to x∗, then all the iterates xt and the half-iterates xt+1/2 for s = 1, 2, . . . are contained
in Br.

As above, fix some t ≥ T . We will build sets I♯ ⊆ A♯, I♭ ⊆ A♭ with the property that
that

for all i ∈ I♯ ∪ I♭, xi,t = 0 . (102)

Starting with I♯ = I♭ = ∅, Eq. (102) is trivially verified. Now, take I♯ ⊊ A♯, I♭ ⊆ A♭

which satisfy the desired property and, as before, apply Lemma 10 with I := I♯ ∪ I♭. If the
first case of Lemma 10 holds, then I ≠ ∅ and there exists j ∈ A such that,

xj,t ≤ P max(xi,t : i ∈ I) , (103)

which yields the result by adding i to I♯ or I♭ depending whether it belongs to A♯ or A♭

. Otherwise, if the second case holds, there is some z ∈ kerA such that ∥z∥ ≤ P , zi = 0 if
i ∈ I and P ≥ zi ≥ 1 if i ∈ A\I. For the sake of contradiction, assume that for all i ∈ A\I,
xi,t > 0. Showing that this results in a contradiction will give us an additional coordinate
j ∈ A \ I for which xj,t = 0 that we will then add to I♯ or I♭ as in the first case.

Now, let us determine the normal cone at xt. Since xt belongs to BXr (x∗), no other
constraint other than the ones corresponding to I can become active, and these constraints
are actually active by the definition of I and Eq. (102). Hence, the normal cone at xt (see
Eq. (73)) becomes

NC(xt) =

{
−
∑
i∈I

νiei : (νi)i∈I ∈ (R+)
I

}
+ row(A) , (104)

and taking a scalar product between the last inclusion of Lemma 1 and z, we get that,〈
∇h(xt)−∇h(xt−1)− γVt−1/2, z

〉
= 0 . (105)

This means that,

γ⟨v(x∗), z⟩ = ⟨∇h(xt)−∇h(xt−1), z⟩+ γ⟨v(x∗)− γVt−1/2, z⟩ ≤
2γν∗

3
(106)

where the last inequality comes from our definition of BXr (x∗). However, by (74) and the
properties of z, we also have

⟨v(x∗), z⟩ =
∑

i∈A\I

νizi ≥ ν∗ (107)

which is in contradiction with (106). We may therefore iteratively add coordinates of A for
which xi,t = 0, which completes the induction and our proof. ■
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6. Concluding remarks

Our results indicate that Euclidean regularization leads to faster trajectory convergence
rates near second-order sufficient (SOS) solutions. While this does not contradict the analysis
of Nemirovski [27] – which concerns the method’s ergodic average in merely monotone
problems and advocates the use of entropic regularization in domains with a favorable
geometry – it does run contrary to its spirit.

We attribute the source of this discrepancy (at least in the non-sharp case) to the fact that
Lipschitz continuity and second-order sufficiency are both norm-based conditions, so it is
plausible to expect that norm-based regularizers would lead to better results. This raises the
question of what the corresponding rate analysis would give in the case of Bregman-based
variants of (LC) and (SOS), e.g., as in the recent works of Bauschke et al. [6], Lu et al. [18],
and Antonakopoulos et al. [2]. We defer this analysis to future work.
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Appendix A. Auxiliary results

In this appendix, we provide a series of helper lemmas and auxiliary results that we use
repeatedly our paper.
Lemmas on numerical sequences. The first two results we provide concern numerical se-
quences:

Lemma A.1. Consider two sequences of non-negative real numbers ut, αt ≥ 0, t = 1, 2, . . . ,
such that

ut+1 ≤ ut − αtu
1+r
t for some r > 0 and all t = 1, 2, . . . (A.1)

Then, for all t = 1, 2, . . . , we have:

ut+1 ≤
u1(

1 + rur
1

∑t
s=1 αs

)1/r . (A.2)

Proof. See Polyak [33, p. 46]. ■

The second result that we prove here is a slight variant of the above lemma.

Lemma 4. Suppose that f : R+ → R+ admits the asymptotic expansion

f(x) = x− λx1+r + o(x1+r) as x→ 0 (16)

for positive constants λ, r > 0. Then, for u1 > 0 small enough, the sequence ut+1 = f(ut),
t = 1, 2, . . . , converges to 0 at a rate of ut ∼ (λrt)−1/r.

Proof. By the assumption on f , there exists some ε > 0 such that

x− 2λx1+r ≤ f(x) ≤ x− λ

2
x1+r for all x ∈ [0, ε]. (A.3)

As a first consequence, if u1 ≤ ε, Lemma A.1 readily implies that ut converges to zero and
that ut ≤ ε for all t. Moreover, if ε is small enough so that 1− 2λεr > 0 and u1 is positive,
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this implies that all ut, for t = 1, 2, . . . , are positive. In particular, it is then valid to consider
the sequence u−r

t , t = 1, 2, . . . , for which we get

u−r
t+1 − u−r

t =
[
ut − λu1+r

t + o
(
u1+r
t

)]−r − u−r
t

= u−r
t (1− λur

t + o (ur
t ))

−r − u−r
t = rλ+ o (1) . (A.4)

Hence, u−r
t ∼ rλt which gives the result. ■

Estimates for Bregman proximal steps. The next two results that we provide consider the
evolution of the Bregman divergence before and after a prox step (or two):

Lemma 6. Let x+ = Px(y) for some x ∈ Xh, y ∈ Y. Then, for all p ∈ X and all v ∈ PC(p),
we have:

D(p, x+) ≤ D(p, x) + ⟨y − v, x+ − p⟩ −D(x+, x) (36a)

≤ D(p, x) + ⟨y − v, x− p⟩+ 1
2∥y − v∥2∗ . (36b)

Proof. Our proof follows [23, Proposition B.3], but with a slight modification to account for
the extra term involving v ∈ PC(p). The first step is to invoke the three-point identity (8)
to write

D(p, x) = D(p, x+) +D(x+, x) + ⟨∇h(x)−∇h(x+), x+ − p⟩. (A.5)
Then, after rearranging to isolate D(p, x+), we get

D(p, x+) = D(p, x)−D(x+, x)− ⟨∇h(x)−∇h(x+), x+ − p⟩
≤ D(p, x)−D(x+, x)− ⟨y, x+ − p⟩ (A.6)

where the inequality in the last line follows from Lemma 1. Hence, given that ⟨v, x+− p⟩ ≤ 0
by the fact that v ∈ PC(p), we readily obtain

D(p, x+) ≤ D(p, x)−D(x+, x)− ⟨y − v, x+ − p⟩ . (A.7)

For the second inequality of the lemma, note that

−⟨y − v, x+ − p⟩ = −⟨y − v, x+ − x⟩ − ⟨y − v, x− x+⟩
≤ 1

2∥y − v∥2∗ + 1
2∥x

+ − x∥2 − ⟨y − v, x− x+⟩
≤ 1

2∥y − v∥2∗ +D(x+, x)− ⟨y − v, x− x+⟩ (A.8)

where the penultimate inequality follows directly from Young’s inequality and the last one
from (22). Our assertion is then obtained by combining this last bound with (A.7). ■

Lemma 7. Let x+
i = Px(yi) for some x ∈ Xh and yi ∈ Y, i = 1, 2. Then, for all p ∈ X and

all v ∈ PC(p), we have:

D(p, x+
2 ) ≤ D(p, x) + ⟨y2 − v, x+

1 − p⟩+ 1
2∥y2 − y1 − v∥2∗ − 1

2∥x
+
1 − x∥2. (37)

Proof. Our proof follows [23, Proposotion B.4], again with a slight modification to account
for the extra terms involving v ∈ PC(p). Specifically, applying Lemma 6 with x+

2 = Px(y2)
and v ∈ PC(p) gives

D(p, x+
2 ) ≤ D(p, x) + ⟨y2 − v, x+

2 − p⟩ −D(x+
2 , x)

≤ D(p, x) + ⟨y2 − v, x+
1 − p⟩+ ⟨y2 − v, x+

2 − x+
1 ⟩ −D(x+

2 , x) (A.9)

To lower bound D(x+
2 , x), we invoke again Lemma 6 with p ← x+

2 and x+
1 = Px(y1); this

readily gives
D(x+

2 , x
+
1 ) ≤ D(x+

2 , x) + ⟨y1, x
+
1 − x+

2 ⟩ −D(x+
1 , x) (A.10)
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and hence, after rearranging to isolate D(x+
2 , x) and substituting the resulting bound in

(A.9), we get

D(p, x+
2 ) ≤ D(p, x)+⟨y2−v, x+

1 −p⟩+⟨y2−y1−v, x
+
2 −x

+
1 ⟩−D(x+

2 , x
+
1 )−D(x+

1 , x). (A.11)

Thus, by Young’s inequality and the strong convexity of h, we finally obtain

D(p, x+
2 ) ≤ D(p, x) + ⟨y2 − v, x+

1 − p⟩+ 1
2∥y2 − y1 − v∥2∗

+ 1
2∥x

+
2 − x+

1 ∥2 − 1
2∥x

+
2 − x+

1 ∥2 − 1
2∥x

+
1 − x∥2

≤ D(p, x) + ⟨y2 − v, x+
1 − p⟩+ 1

2∥y2 − y1 − v∥2∗ − 1
2∥x

+
1 − x∥2 (A.12)

and our proof is complete. ■

A separation result. We now proceed to prove Lemma 10, which we restate below for
convenience:

Lemma 10. Let X be a polyhedral domain of the general form (72). Then, for all x∗ ∈ X ,
there exists P = P (A, b, x∗) ≥ 1 such that, for all I ⊆ A ≡ A(x∗), at least one of the
following holds:

(a) I ≠ ∅ and there exists i ∈ A \ I such that xi ≤ P max{xj : j ∈ I} for all x ∈ X .
(b) There exists z ∈ kerA such that ∥z∥ ≤ P , zi = 0 if i ∈ I and P ≥ zi ≥ 1 if i ∈ A\I.

Proof. Our claim is trivial if I = A, so we will focus exclusively on the case I ⊊ A. The
stated constant P = P (A, b, x∗) will then be obtained as the maximum of 1 and the constants
we obtain for each possible I ⊊ A.

The proof consists in discussing whether there exists (λi)i∈A\I ∈ (R+)
A\I not all zero

and (µi)i∈I ∈ RI such that the inclusion

X ⊂

x ∈ Rn :
∑

i∈A\I

λixi =
∑
i∈I

µixi

 (A.13)

holds. Case (a) corresponds to the situation where such coeffeicients indeed exist while
Case (b) holds when this is not possible.
Case (a). Assume that there exists (λi)i∈A\I ∈ (R+)

A\I not all zero and (µi)i∈I ∈ RI such
that (A.13) holds. In this case, I must be non-empty since otherwise X would be reduced
to {0} (see the first inclusion), violating the definition (72) of X . In addition, there is some
i ∈ A \ I such that λi > 0 and thus we have

∀x ∈ X , xi ≤
max (|λj | : j ∈ I)

λi
max(xj : j ∈ I) (A.14)

which corresponds to the first case of the lemma.
Case (b). Otherwise, for all (λi)i∈A\I ∈ (R+)

A\I not all zero and (µi)i∈I ∈ RI , (A.13) does
not hold.

To interpret this situation, we use the fact that X is of the general polyhedral form (72)
so aff X = x∗ + kerA and x∗ always satisfies

∑
i∈A\I λix

∗
i =

∑
i∈I µix

∗
i = 0 so that

Eq. (A.13) ⇐⇒ aff X ⊂

x ∈ Rn :
∑

i∈A\I

λixi =
∑
i∈I

µixi


⇐⇒ kerA ⊂

x ∈ Rn :
∑

i∈A\I

λixi =
∑
i∈I

µixi


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⇐⇒
∑

i∈A\I

λiei −
∑
i∈I

µiei ∈ row(A). (A.15)

Therefore, the fact that (A.13) does not hold for all (λi)i∈A\I ∈ (R+)
A\I not all zero and

(µi)i∈I ∈ RI means that, the system,∑
i∈A\I

λiei =
∑
i∈I

µiei +A⊤r , (A.16)

with variables (λi)i∈A\I ∈ (R+)
A\Inot all zero, (µi)i∈I ∈ RI , r ∈ Rm, has no solution.

Hence, by Motzkin’s theorem on the alternative (see e.g., [8, Ex. 1.4.2])5, this means that
the system, 

zi > 0 for i ∈ A \ I
zi = 0 for i ∈ A
Az = 0

(A.17)

admits a solution z ∈ Rn. Rescaling this solution z and setting P to max(∥z∥, ∥z∥∞) then
gives the second case. ■

Appendix B. Omitted calculations

In this appendix, we provide some computational details that were left out of the main
text to streamline our presentation.

Example 3.4 (Hellinger distance, continuing from p. 8). We proceed to compute the Taylor
expansion of F near x∗ = −1 for the shifted operator v(x) = x+ 1. Indeed, in this case, the
fixed point operator F is given by

F (x) = Px(−γv(x)) = Px(−γ(x+ 1))

=
x− γ(x+ 1)

√
1− x2√

1− x2 + (x− γ(x+ 1)
√
1− x2)2

=
G(x)√

1− x2 +G(x)2
, (B.1)

with G(x) = x−γ(x+1)
√
1− x2. Now, the behavior of G near x∗ = −1 can be approximated

as

G(x) = x− γ(x+ 1)3/2(1− x)1/2

= −1 + (x+ 1)− γ(x+ 1)3/2(2− (x+ 1))1/2

= −1 + (x+ 1)−
√
2γ(x+ 1)3/2

(
1− 1

4 (x+ 1) + o(x+ 1)
)

= −1 + (x+ 1)−
√
2γ(x+ 1)3/2 +

√
2γ
4 (x+ 1)5/2 + o

(
(x+ 1)5/2

)
. (B.2)

Another Taylor expansion then yields

G(x)2 =
(
1− (x+ 1) +

√
2γ(x+ 1)3/2 −

√
2γ
4 (x+ 1)5/2 + o

(
(x+ 1)5/2

))2
= 1− 2(x+ 1) + 2

√
2γ(x+ 1)3/2 + (x+ 1)2 −

√
2γ
2 (x+ 1)5/2 + o

(
(x+ 1)5/2

)
(B.3)

5With the notations of [8, Ex. 1.4.2], the lines of the matrix S are made of the ei for i ∈ A \ I and the
lines of the matrix N are the ei for i ∈ I, −ei for i ∈ I, the lines of A and their opposite.
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so the denominator of Eq. (B.1) becomes√
1− x2 +G(x)2 =

(
(x+ 1)(2− (x+ 1) +G(x)2

)2
=
(
1 + 2

√
2γ(x+ 1)3/2 −

√
2γ
2 (x+ 1)5/2 + o

(
(x+ 1)5/2

))2
= 1 +

√
2γ(x+ 1)3/2 −

√
2γ
4 (x+ 1)5/2 + o

(
(x+ 1)5/2

)
. (B.4)

Thus, plugging this expansion and Eq. (B.2) into Eq. (B.1) gives

F (x) =
−1 + (x+ 1)−

√
2γ(x+ 1)3/2 +

√
2γ
4 (x+ 1)5/2 + o

(
(x+ 1)5/2

)
1 +
√
2γ(x+ 1)3/2 −

√
2γ
4 (x+ 1)5/2 + o

(
(x+ 1)5/2

)
=
(
−1 + (x+ 1)−

√
2γ(x+ 1)3/2 +

√
2γ
4 (x+ 1)5/2 + o

(
(x+ 1)5/2

))
×

(
1−
√
2γ(x+ 1)

3
2 +

√
2γ

4
(x+ 1)

5
2 + o

(
(x+ 1)

5
2

))
= −1 + (x+ 1)− 2

√
2γ(x+ 1)5/2 + o

(
(x+ 1)5/2

)
, (B.5)

which gives our assertion when x∗ = −1. ♢

Example 5.4 (Three-dimensional simplex, continuing from p. 18). We conclude our treatment
of the simplex by showing that x2,t ∼ x2,t/x3,t = Ω(1/t) if ν2 = 0 but ν1 > 0. To begin with,
we have v2(xt) = x2,t = o(1) so, arguing as in the first part of the example, we readily get

x1,t+1

x2,t+1
=

x1,t

x2,t
exp(−γν1 + o(1)), (B.6)

so x1,t/x2,t converges to 0 at a geometric rate. Accordingly, the quantity of interest x3,t/x2,t

can be bounded as
x3,t+1

x2,t+1
=

x3,t

x2,t
exp(γv2(xt)− γv3(xt))

=
x3,t

x2,t
exp(γx2,t − γ(x3,t − 1)) =

x3,t

x2,t
exp(2γx2,t + γx1,t)

≤ x3,t

x2,t
exp

(
2γ

x2,t

x3,t
+ γx1,t

)
(B.7)

Now, since both x2,t

x3,t
and x1,t go to zero,

x3,t+1

x2,t+1
≤ x3,t

x2,t

(
1 + 2γ

x3,t

x2,t
+ γx1,t + o

(
2
x3,t

x2,t
+ x1,t

))
=

x3,t

x2,t
+ 2γ +

γx1,tx3,t

x2,t
+ o

(
2 +

γx1,tx3,t

x2,t

)
=

x3,t

x2,t
+ 2γ + o(1) . (B.8)

since x1,t/x2,t vanishes as t→∞. Hence, after telescoping, we conclude that
x3,t

x2,t
≤ 2γt+ o(t), (B.9)

which in turn shows that x2,t ∼ x2,t/x3,t = Ω(1/t), as claimed. ♢
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Remark 1 (Connection to the Bregman exponent, continuing from p. 21). We proceed to
show here that, in Case (c) of Assumption 4, the Bregman exponent at the solution satisfies
β∗ ≤ (1+ p)/2. Indeed, under our stated assumptions, θ is actually differentiable throughout
(0,∞) so, whenever 0 ≤ x′ ≤ x, we have

θ(x′)− θ(x) = −
∫ x

x′
θ′(u) du. (B.10)

Moreover, thanks to Assumption 4(c) with p < 1, the integral,
∫ x

0
θ′is well-defined. Then,

letting x′ → 0+ in (B.10), we get θ(0) − θ(x) ≤ −
∫ x

0
θ′(u) du. On the other hand, As-

sumption 4(c) implies that both −
∫ x

0
θ′(u) du and θ′(x)(0− x) are bounded by O(x1−p) so

θ(0)− θ(x)− θ′(x)(0− x) = O(x1−p). Since A ̸= ∅ and θ′ is locally Lipschitz continuous, a
similar argument as in the proof of Lemma 5 ultimately yields

D(x∗, x) =
∑
i∈A
O
(
x1−p
i

)
+
∑
i/∈A

O
(
(x∗

i − xi)
2
)
= O

(
∥x∗ − x∥1−p

)
(B.11)

which shows that the Legendre exponent of h at x∗ is at most (1 + p)/2, as claimed. ♢
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