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Abstract

We propose and analyze exact and inexact regularized Newton-type methods for finding a global
saddle point of a convex-concave unconstrained min-max optimization problem. Compared to their
first-order counterparts, investigations of second-order methods for min-max optimization are rela-
tively limited, as obtaining global rates of convergence with second-order information is much more
involved. In this paper, we highlight how second-order information can be used to speed up the
dynamics of dual extrapolation methods despite inexactness. Specifically, we show that the proposed
algorithms generate iterates that remain within a bounded set and the averaged iterates converge to
an ϵ-saddle point within O(ϵ−2/3) iterations in terms of a gap function. Our algorithms match the
theoretically established lower bound in this context and our analysis provides a simple and intuitive
convergence analysis for second-order methods without requiring any compactness assumptions. Fi-
nally, we present a series of numerical experiments on synthetic and real data that demonstrate the
efficiency of the proposed algorithms.

1 Introduction

Let Rm and Rn be finite-dimensional Euclidean spaces and assume that the function f : Rm ×Rn 7→ R
has a bounded and Lipschitz-continuous Hessian. We consider the problem of finding a global saddle
point of the following min-max optimization problem:

min
x∈Rm

max
y∈Rn

f(x,y), (1.1)

i.e., a pair of points (x⋆,y⋆) ∈ Rm × Rn such that

f(x⋆,y) ≤ f(x⋆,y⋆) ≤ f(x,y⋆), for all x ∈ Rm, y ∈ Rn.

Throughout our paper, we assume that the function f(x,y) is convex in x for all y ∈ Rn and concave
in y for all x ∈ Rm. This so-called convex-concave setting has been the focus of intense research in
optimization, game theory, economics and computer science for several decades now [Von Neumann
and Morgenstern, 1953, Dantzig, 1963, Blackwell and Girshick, 1979, Facchinei and Pang, 2007, Ben-
Tal et al., 2009], and variants of the problem have recently attracted significant interest in machine
learning and data science, with applications in generative adversarial networks (GANs) [Goodfellow
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et al., 2014, Arjovsky et al., 2017], adversarial learning [Sinha et al., 2018], distributed multi-agent
systems [Shamma, 2008], and many other fields; for a range of concrete examples, see Facchinei and
Pang [2007] and references therein.

Owing to the above, several classes of optimization algorithms have been proposed and analyzed
for finding a global saddle point of Eq. (1.1) in the convex-concave case. An important representative
algorithm is the extragradient (EG) method [Korpelevich, 1976, Antipin, 1978]. The method’s rate
of convergence for smooth and strongly-convex-strongly-concave functions and bilinear functions (i.e.,
when f(x,y) = x⊤Ay for some square, full-rank matrix A) was shown to be linear by Korpelevich
[1976] and Tseng [1995]. Subsequently, Nemirovski [2004] showed that the method enjoys an O(ϵ−1)
convergence guarantee for constrained problems with a compact domain, even if f is not strongly convex-
concave or bilinear. For a more general unconstrained setting, Solodov and Svaiter [1999] considered a
variant of EG (namely hybrid proximal extragradient (HPE) method) and proved that it achieved the
same convergence rate.

In addition to the extra-gradient algorithm itself, there are several variants that achieve similar con-
vergence rate guarantees with a lighter updating structure, such as optimistic gradient descent ascent
(OGDA) [Popov, 1980, Mokhtari et al., 2020, Kotsalis et al., 2022], forward-backward splitting [Tseng,
2000] and dual extrapolation [Nesterov, 2007]; for a partial survey, see Hsieh et al. [2019] and refer-
ences therein. All these methods are order-optimal first-order methods as they match the lower bound
of Ouyang and Xu [2021].

Transitioning for the moment to convex minimization problems, second-order methods are known
to enjoy superior convergence properties over their first-order counterparts, in both theory and prac-
tice. In particular, the celebrated accelerated cubic regularization of Newton’s method converges at a
rate of O(ϵ−1/3) [Nesterov, 2008] which outperforms the O(ϵ−1/2) lower bound for first-order methods
[Nemirovski and Yudin, 1983]. Moreover, first-order methods may perform poorly in ill-conditioned
problems and can be sensitive to the parameter choices in real application problems while the second-
order methods are often shown to be more robust in the same context [Pilanci and Wainwright, 2017,
Roosta-Khorasani and Mahoney, 2019, Berahas et al., 2020].

However, when moving back to the context of convex-concave min-max problems, two separate se-
ries of issues arise: (a) achieving acceleration with second-order information is more involved than in
the min-max setting; and (b) acquiring exact second-order information is more expensive in general.
Aiming to address these issues, a line of recent work has generalized classical methods from first- to
second-order, including EG and OGDA [Monteiro and Svaiter, 2012, Lin and Jordan, 2021, Bullins and
Lai, 2022, Jiang and Mokhtari, 2022]. These methods achieve a global rate of O(ϵ−2/3 log(1/ϵ)),1 but
they require solving a nontrivial implicit binary search problem at each iteration, and this can be com-
putationally expensive from a practical viewpoint.2 In a similar vein, Huang et al. [2022] extended the
cubic regularization approach of Newton’s method [Nesterov and Polyak, 2006] to min-max optimiza-
tion but their convergence analysis for convex-concave problems requires an error-bound condition. It
is also worth mentioning that all these existing second-order min-max optimization algorithms require
exact second-order information, and given the implicit nature of the inner loop subproblems involved,

1The lower bound of Ω(ϵ−2/3) for second-order min-max optimization algorithms has been recently established in the
VI literature [Lin and Jordan, 2022, Adil et al., 2022]. Although such bound is only valid under a linear span assumption,
it can be viewed as a benchmark for the algorithms that we consider in this paper.

2By “implicit”, we mean here that the method’s inner loop subproblem for computing the t-th iterate involves the
iterate being updated, so it results in an implicit update rule. By contrast, the term “explicit” means that any inner loop
subproblem for computing the t-th iterate does not involve said iterate.
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the methods’ robustness to inexact information cannot be taken for granted. In view of all this, it is
natural to ask:

Can we develop explicit second-order min-max optimization algorithms
that remain order-optimal even with inexact second-order information?

This paper provides an affirmative answer to the above question. By leveraging the recent progress
in the variational inequality (VI) literature [Lin and Jordan, 2022], we begin by proposing a conceptual
second-order min-max optimization algorithm with a global convergence guarantee of O(ϵ−2/3) in the
convex-concave case. The proposed algorithm does not contain any binary search procedure but still
requires exact second-order information and an exact solution of an inner explicit subproblem. To relax
these requirements, we subsequently propose a class of second-order min-max optimization algorithms
that only equire inexact second-order information and inexact subproblem solutions. The approximation
condition is inspired by Xu et al. [2020, Condition 1] and allows for direct construction of such oracles
through randomized sampling in the case of finite-sum problems [Drineas and Mahoney, 2018]. As
far as we are aware, this is the first class of sub-sampled Newton methods for solving finite-sum min-
max optimization problems, gaining considerable computational savings since the sample size increases
gracefully from a very small sample set. In terms of theoretical guarantees, we prove that these inexact
algorithms achieve the convergence guarantee of O(ϵ−2/3) and the sub-sampled Newton methods achieve
the same rate in high probability.

Overall, our paper stands at the interface of two synergistic research thrusts in the literature: one
is to generalize second-order methods for convex minimization problems [Huang et al., 2022] and the
other is to generalize first-order methods for min-max optimization problems [Monteiro and Svaiter,
2012, Lin and Jordan, 2021, Bullins and Lai, 2022, Jiang and Mokhtari, 2022]. To the best of our
knowledge, there are no explicit second-order methods in the literature that (i) achieve an order-
optimal convergence guarantee of Θ(ϵ−2/3) in the convex-concave case; and (ii) do not require exact
second-order information in their implementation. Experimental results on both real and synthetic data
demonstrate the efficiency of the proposed algorithms.

Notation and Organization. We use bold lower-case letters to denote vectors, as in x,y, z. For a
function f(·) : Rn → R, we let ∇f(z) denote the gradient of f at z. For a function f(·, ·) : Rm×Rn → R
of two variables, ∇xf(x,y) (or ∇yf(x,y)) to denote the partial gradient of f with respect to the first
variable (or the second variable) at point (x,y). We use ∇f(x,y) to denote the full gradient at (x,y)
where ∇f(x,y) = (∇xf(x,y),∇yf(x,y)) and ∇2f(x,y) to denote the full Hessian at (x,y). For a
vector x, we write ∥x∥ for its ℓ2-norm. Finally, we use O(·),Ω(·) to hide absolute constants which do
not depend on any problem parameter, and Õ(·), Ω̃(·) to hide absolute constants and log factors.

The remainder of the paper is organized as follows. In Section 2, we present the setup of smooth
min-max optimization and provide the definitions for functions and optimality criteria. In Section 3, we
propose an exact second-order min-max optimization algorithm without any binary search procedure
and prove that it achieves a global convergence rate of Ω(ϵ−2/3) in the convex-concave case. In Section 4,
we propose a broad class of second-order min-max optimization algorithms under inexact second-order
information and inexact subproblem solving and prove the same convergence guarantee. We also provide
the subsampled Newton method for solving the finite-sum min-max optimization problems. In Section 5,
we conduct the experiments on synthetic and real data to demonstrate the efficiency of our algorithms.
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2 Preliminaries

In this section, we present the basic setup of min-max problems under study, and we provide the
definitions for the optimality criteria considered in the sequel. In this regard, the regularity conditions
that we impose for the function f : Rm+n 7→ R are as follows:

Definition 2.1 A function f is ρ-Hessian Lipschitz if ∥∇2f(z)−∇2f(z′)∥ ≤ ρ∥z−z′∥ for all z, z′ ∈ Rn.

Definition 2.2 A differentiable function f is convex-concave if

f(x′,y) ≥ f(x,y) + (x′ − x)⊤∇xf(x,y), for all x′,x ∈ Rm and any fixed y ∈ Rn,
f(x,y′) ≤ f(x,y) + (y′ − y)⊤∇xf(x,y), for all y′,y ∈ Rn and any fixed x ∈ Rm.

We also define the notion of global saddle points for the min-max problem in Eq. (1.1).

Definition 2.3 A point (x⋆,y⋆) ∈ Rm×Rn is a global saddle point of a convex-concave function f(·, ·)
if we have f(x⋆,y) ≤ f(x⋆,y⋆) ≤ f(x,y⋆) for all x ∈ Rm and y ∈ Rn.

Finally, throughout this paper, we will assume that the following conditions are satisfied.

Assumption 2.4 The function f(x,y) is continuously differentiable. Furthermore, the function f(x,y)
is a convex function of x for any y ∈ Rn and a concave function of y for any x ∈ Rm. There also exists
at least one global saddle point of f(x,y) for the min-max problem in Eq. (1.1).

Assumption 2.5 The function f(x,y) : Rm × Rn 7→ R is ρ-Hessian Lipschitz. Formally, we have

∥∇2f(x,y)−∇2f(x′,y′)∥ ≤ ρ

∥∥∥∥[x− x′

y − y′

]∥∥∥∥ , for all (x,y), (x′,y′) ∈ Rm × Rn.

Under Assumption 2.4, we have f(x⋆,y) ≤ f(x⋆,y⋆) ≤ f(x,y⋆) for all x ∈ Rm and y ∈ Rn. This gives
rise to the Nikaido-Isoda gap function gap(x̂, ŷ) = f(x̂,y⋆)−f(x⋆, ŷ) ≥ 0 which provides a performance
measure for the closeness of (x̂, ŷ) to a global saddle point. Formally, we have

Definition 2.6 A point (x̂, ŷ) ∈ Rm×Rn is an ϵ-global saddle point of a convex-concave function f(·, ·)
if gap(x̂, ŷ) ≤ ϵ. If ϵ = 0, we have that (x̂, ŷ) is a global saddle point of the function f(·, ·).

In the subsequent sections of this paper, we propose a new regularized Newton method for solving the
min-max optimization problem in Eq. (1.1) and prove an optimal global convergence rate in the sense
that our upper bound on the required iteration number to return an ϵ-optimal solution matching the
known lower bound of Ω(ϵ−2/3) [Lin and Jordan, 2022, Adil et al., 2022].

In our algorithm, we denote the kth iterate by (xk,yk) and define the averaged (ergodic) iterates by
(x̄k, ȳk). More specifically, we have given a sequence of weights λn, n = 1, . . . , T , we let

x̄k = 1∑k
i=1 λi

(
k∑

i=1

λixi

)
, ȳk = 1∑k

i=1 λi

(
k∑

i=1

λiyi

)
. (2.1)

In our convergence analysis, we define the vector z = [x;y] ∈ Rm+n and the operator F : Rm+n 7→ Rm+n

as follows,

F (z) =

[
∇xf(x,y)
−∇yf(x,y)

]
. (2.2)
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Accordingly, the Jacobian of F is defined as follows (in fact, DF is asymmetric in general),

DF (z) =

[
∇2

xxf(x,y) ∇2
xyf(x,y)

−∇2
xyf(x,y) −∇2

yyf(x,y)

]
∈ R(m+n)×(m+n). (2.3)

In the following lemma, we summarize the properties of the operator F in Eq. (2.2) and its Jacobian in
Eq. (2.3) under Assumption 2.4 and 2.5. We note that most of the results in the following lemma are
well known [Nemirovski, 2004, Mokhtari et al., 2020] so we omit their proofs.

Lemma 2.7 Let F (·) and DF (·) be defined in Eq. (2.2) and (2.3). Under Assumption 2.4 and 2.5, the
following statements hold true,

(a) F is monotone, i.e., for any z, z′ ∈ Rm+n, we have (z− z′)⊤(F (z)− F (z′)) ≥ 0.

(b) DF is ρ-Lipschitz continuous, i.e., for any z′, z ∈ Rm+n, we have ∥DF (z)−DF (z′)∥ ≤ ρ∥z−z′∥.

(c) F (z⋆) = 0 for any global saddle point z⋆ ∈ Rm+n of the function f(·, ·).

Proof. Note that (a) and (c) have been proven in earlier work [Nemirovski, 2004, Mokhtari et al., 2020],
and it suffices to prove (b). By using the definition of DF (·) in Eq. (2.3), we have

(DF (z)−DF (z′))h =

[
Im

−In

]
(∇2f(z)−∇2f(z′))h. (2.4)

This implies that ∥(DF (z)−DF (z′))h∥ = ∥(∇2f(z)−∇2f(z′))h∥. Thus, we have

∥DF (z)−DF (z′)∥ = sup
h̸=0

{
∥(DF (z)−DF (z′))h∥

∥h∥

}
= sup

h̸=0

{
∥(∇2f(z)−∇2f(z′))h∥

∥h∥

}
.

This equality together with Assumption 2.5 implies the desired result in (b). □

Before proceeding to our algorithm and analysis, we present the following well-known result which will
be used in the subsequent analysis. Given its importance, we provide the proof for completeness.

Proposition 2.8 Let (x̄k, ȳk) and F (·) be defined in Eq. (2.1) and (2.2). Then, under Assumption 2.4,
the following statement holds true,

f(x̄k,y
⋆)− f(x⋆, ȳk) ≤ 1∑k

i=1 λi

(
k∑

i=1

λi(zi − z⋆)⊤F (zi)

)
.

Proof. Using the definition of the operator F (·) in Eq. (2.2), we have

1∑k
i=1 λi

(
k∑

i=1

λi(zi − z⋆)⊤F (zi)

)
= 1∑k

i=1 λi

(
k∑

i=1

λi((xi − x⋆)⊤∇xf(xi,yi)− (yi − y⋆)⊤∇yf(xi,yi))

)
.

Note that Assumption 2.4 guarantees that the function f(x,y) is a convex function of x for any y ∈ Rn

and a concave function of y for any x ∈ Rm. Then, we have

(xi − x⋆)⊤∇xf(xi,yi) ≥ f(xi,yi)− f(x⋆,yi), (yi − y⋆)⊤∇yf(xi,yi) ≤ f(xi,yi)− f(xi,y
⋆).
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Algorithm 1 Newton-MinMax((x0,y0), ρ, T )

Input: initial point (x0,y0), Lipschitz parameter ρ and iteration number T ≥ 1.
Initialization: set x̂0 = x0 and ŷ0 = y0.
for k = 0, 1, 2, . . . , T − 1 do

STEP 1: If (xk,yk) is a global saddle point of the min-max optimization problem, then stop.
STEP 2: Compute an exact solution (∆xk,∆yk) ∈ Rm×Rn of the cubic regularized min-max optimization
(we let ẑk = (x̂k, ŷk) for brevity):

min
∆x

max
∆y

{[
∆x
∆y

]⊤ [∇xf(ẑk)
∇yf(ẑk)

]
+ 1

2

[
∆x
∆y

]⊤ [∇2
xxf(ẑk) ∇2

xyf(ẑk)
∇2

xyf(ẑk) ∇2
yyf(ẑk)

] [
∆x
∆y

]
+ 2ρ∥∆x∥3 − 2ρ∥∆y∥3

}
. (3.1)

STEP 3: Compute λk+1 > 0 such that 1
15 ≤ λk+1ρ

√
∥∆xk∥2 + ∥∆yk∥2 ≤ 1

13 .
STEP 4a: Compute xk+1 = x̂k +∆xk.
STEP 4b: Compute yk+1 = ŷk +∆yk.
STEP 5a: Compute x̂k+1 = x̂k − λk+1∇xf(xk+1,yk+1).
STEP 5b: Compute ŷk+1 = ŷk + λk+1∇yf(xk+1,yk+1).

end for
Output: (x̄T , ȳT ) =

1∑T
k=1 λk

(∑T
k=1 λkxk,

∑T
k=1 λkyk

)
.

Putting these pieces together with λi > 0 for all 1 ≤ i ≤ k yields that

1∑k
i=1 λi

(
k∑

i=1

λi(zi − z⋆)⊤F (zi)

)
≥ 1∑k

i=1 λi

(
k∑

i=1

λi(f(xi,y
⋆)− f(x⋆,yi))

)
. (2.5)

Using the definition of (x̄k, ȳk) in Eq. (2.1) and that f is convex-concave, we have

1∑k
i=1 λi

(
k∑

i=1

λif(xi,y
⋆)

)
≥ f(x̄k,y

⋆), 1∑k
i=1 λi

(
k∑

i=1

λif(x
⋆,yi)

)
≤ f(x⋆, ȳk).

Plugging the above two inequalities in Eq. (2.5), we conclude the desired inequality. □

3 Conceptual Algorithm and Convergence Analysis

In this section, we present the scheme of Newton-MinMax and establish a global convergence rate
guarantee. Moreover, we provide intuition into why Newton-MinMax yields an optimal rate of global
convergence by leveraging the second-order information. It is worth mentioning that Newton-MinMax
is a conceptual algorithmic framework in which the exact second-order information is required and the
cubic regularized subproblem needs to be solved exactly at each iteration.

3.1 Algorithmic scheme

We summarize our second-order method, which we call Newton-MinMax((x0,y0), ρ, T ), in Algorithm 1
where (x0,y0) ∈ Rm×Rn is an initial point, ρ > 0 is a Lipschitz constant for the Hessian of the function
f and T ≥ 1 is an iteration number.

Our method is a generalization of the classical first-order dual extrapolation method [Nesterov, 2007]
in the context of min-max optimization. More specifically, with (x0,y0) ∈ Rm × Rn and (x̂0, ŷ0) =
(x0,y0), the kth iteration of dual extrapolation for solving Eq. (1.1) is given by
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• Compute a pair (∆xk,∆yk) ∈ Rm×Rn such that it is an exact solution of the following quadratic
regularized min-max optimization problem: (we let ẑk = (x̂k, ŷk) for brevity)

min
∆x

max
∆y

{[
∆x
∆y

]⊤ [∇xf(ẑk)
∇yf(ẑk)

]
+ ℓ∥∆x∥2 − ℓ∥∆y∥2

}
. (DE)

• Compute xk+1 = x̂k +∆xk and yk+1 = ŷk +∆yk.

• Compute x̂k+1 = x̂k − λ∇xf(xk+1,yk+1) and ŷk+1 = ŷk + λ∇yf(xk+1,yk+1).

Intuitively, the above scheme can be viewed as an instance of EG in the dual space and the rule
that transforms (x̂k, ŷk) into (x̂k+1, ŷk+1) is well known as the dual extrapolation step. If we set
λ = Θ(ℓ) where ℓ > 0 is the Lipschitz constant for the gradient of the function f , Nesterov [2007,
Theorem 2] guarantees that the averaged iterates converge to a global saddle point at a rate of O(ϵ−1).
By exploiting exact second-order information, Nesterov [2006] generalized his approach by replacing the
subproblem in Eq. (DE) with the cubic regularized subproblem that is similar to the one in Eq. (3.1)
from Algorithm 1. However, the resulting scheme with constant λ = Θ(ρ) is only guaranteed to achieve
the global convergence rate of O(ϵ−1) which is the same as its first-order counterpart [Nesterov, 2006,
Theorem 4].

Inspired by Lin and Jordan [2022], we propose an adaptive strategy for updating λk in Algorithm 1
and prove that our algorithm achieve an improved global rate of O(ϵ−2/3) under Assumptions 2.4
and 2.5. Intuitively, such a strategy will work well; in particular, λk is the step size in the dual space
and needs to increase as the iterate (xk,yk) approaches the set of global saddle points (note that the
value of

√
∥∆xk∥2 + ∥∆yk∥2 quantifies the quality of (xk,yk) in terms of the gap function). From a

practical viewpoint, Algorithm 1 can be valuable since it simplifies the existing schemes for second-order
min-max optimization by removing any line search procedure. We will relax the requirement of exact
second-order information and exact subproblem solving in Section 4 and present numerical results in
Section 5.

3.2 Convergence analysis

We provide our main results on the convergence rate for Algorithm 1 in terms of the number of calls of
the subproblem solvers. The following theorem gives us the global convergence rate of Algorithm 1 for
convex-concave min-max optimization problems.

Theorem 3.1 Suppose that Assumptions 2.4 and 2.5 hold. Then the iterates generated by Algorithm 1
are bounded,

and its output state enjoys the guarantee

gap(x̄T , ȳT ) ≤ 15
√
3ρ∥z0−z⋆∥3

T
3
2

(3.2)

i.e., the algorithm achieves an ϵ-optimal state within O(ϵ−2/3) iterations.

Remark 3.2 Theorem 3.1 demonstrates that Algorithm 1 achieves the lower bound established in the
literature on variational inequalities for second-order methods [Lin and Jordan, 2022, Adil et al., 2022]
and is thus order-optimal in this regard; in addition, it improves on the state-of-the-art bounds of Mon-
teiro and Svaiter [2012], Bullins and Lai [2022], Jiang and Mokhtari [2022] by shaving off all logarithmic
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factors. It is also worth mentioning that Theorem 3.1 is not a consequence of Lin and Jordan [2022,
Theorem 3.1] since the bounded feasible sets are necessary for their convergence analysis.

We define a Lyapunov function for the iterates generated by Algorithm 1 as follows:

Et = 1
2

(
∥x̂t − x0∥2 + ∥ŷt − y0∥2

)
, (3.3)

This function will be used to prove technical results that pertain to the dynamics of Algorithm 1. Recall
that z = [x;y], ẑ = [x̂; ŷ] and F is defined in Eq. (2.2). The first lemma gives us a key descent inequality.

Lemma 3.3 Suppose that Assumption 2.4 and 2.5 hold true. Then, we have

t∑
k=1

λk(zk − z⋆)⊤F (zk) ≤ E0 − Et + (z0 − ẑt)
⊤(z0 − z⋆)− 1

24

(
t∑

k=1

∥zk − ẑk−1∥2
)
, for all 1 ≤ t ≤ T,

where z⋆ = (x⋆,y⋆) is a global saddle point (cf. Assumption 2.4).

Proof. Using the definition of the Lyapunov function in Eq. (3.3) and ẑ = [x̂; ŷ], we have

Ek − Ek−1 =
1
2∥ẑk − z0∥2 − 1

2∥ẑk−1 − z0∥2 = (ẑk − ẑk−1)
⊤(ẑk − z0)− 1

2∥ẑk − ẑk−1∥2. (3.4)

Note that Step 5 shows that ẑk = ẑk−1 − λkF (zk). Plugging it into Eq. (3.4) yields

Ek − Ek−1 ≤ λk(z0 − ẑk)
⊤F (zk)− 1

2∥ẑk − ẑk−1∥2

= λk(z0 − z⋆)⊤F (zk) + λk(z
⋆ − zk)

⊤F (zk) + λk(zk − ẑk)
⊤F (zk)− 1

2∥ẑk − ẑk−1∥2.

Summing up the above inequality over k = 1, 2, . . . , t yields

t∑
k=1

λk(zk − z⋆)⊤F (zk) ≤ E0 − Et +
t∑

k=1

λk(z0 − z⋆)⊤F (zk)︸ ︷︷ ︸
I

+
t∑

k=1

λk(zk − ẑk)
⊤F (zk)− 1

2∥ẑk − ẑk−1∥2︸ ︷︷ ︸
II

.

(3.5)
By using the relationship ẑk = ẑk−1 − λkF (zk) again, we have

I =

t∑
k=1

λk(z0 − z⋆)⊤F (zk) =

t∑
k=1

(ẑk−1 − ẑk)
⊤(z0 − z⋆) = (ẑ0 − ẑt)

⊤(z0 − z⋆). (3.6)

In Step 2 of Algorithm 1, we compute a pair (∆xk,∆yk) ∈ Rm×Rn such that it is an exact solution of
the cubic regularized min-max optimization problem. Since this is an unconstrained and convex-concave
min-max optimization problem, we can write down its optimality condition as follows,[

∇xf(ẑk)
∇yf(ẑk)

]
+

[
∇2

xxf(ẑk) ∇2
xyf(ẑk)

∇2
xyf(ẑk) ∇2

yyf(ẑk)

] [
∆xk

∆yk

]
+

[
6ρ∥∆xk∥∆xk

−6ρ∥∆yk∥∆yk

]
= 0.

Equivalently, we have

F (ẑk) +DF (ẑk)∆zk + 6ρ

[
∥∆xk∥∆xk

∥∆yk∥∆yk

]
= 0. (3.7)
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Note that Step 4 in the compact form is equivalent to zk = ẑk−1 + ∆zk−1. By using Lemma 2.7, we
have

∥F (zk)− F (ẑk−1)−DF (ẑk−1)∆zk−1∥ ≤ ρ
2∥∆zk−1∥2. (3.8)

It suffices to decompose (zk − ẑk)
⊤F (zk) and bound it using Eq. (3.7) and (3.8). Indeed, we have

(zk − ẑk)
⊤F (zk)

≤ρ
2∥∆zk−1∥2∥zk − ẑk∥ − 6ρ(∥∆xk−1∥(xk − x̂k)

⊤∆xk−1 + ∥∆yk−1∥(yk − ŷk)
⊤∆yk−1).

≤ρ
2(∥∆zk−1∥3 + ∥∆zk−1∥2∥∥ẑk−1 − ẑk∥)− 6ρ(∥∆xk−1∥(xk − x̂k)

⊤∆xk−1 + ∥∆yk−1∥(yk − ŷk)
⊤∆yk−1).

Note that we have

(xk − x̂k)
⊤∆xk−1 = ∥∆xk−1∥2 + (∆xk−1)

⊤(x̂k−1 − x̂k) ≥ ∥∆xk−1∥2 − ∥∆xk−1∥∥x̂k−1 − x̂k∥,
(yk − ŷk)

⊤∆yk−1 = ∥∆yk−1∥2 + (∆yk−1)
⊤(ŷk−1 − ŷk) ≥ ∥∆yk−1∥2 − ∥∆yk−1∥∥ŷk−1 − ŷk∥.

This implies

∥∆xk−1∥(xk − x̂k)
⊤∆xk−1 + ∥∆yk−1∥(yk − ŷk)

⊤∆yk−1

≥ ∥∆xk−1∥3 − ∥∆xk−1∥2∥x̂k−1 − x̂k∥+ ∥∆yk−1∥3 − ∥yk − ŷk−1∥2∥ŷk−1 − ŷk∥
≥ (∥∆xk−1∥3 + ∥∆yk−1∥3)− ∥∆zk−1∥2∥ẑk−1 − ẑk∥
≥ 1

2∥∆zk−1∥3 − ∥∆zk−1∥2∥ẑk−1 − ẑk∥.

Putting these pieces together yields

(zk − ẑk)
⊤F (zk) ≤ 13ρ

2 ∥∆zk−1∥2∥∥ẑk−1 − ẑk∥ − 5ρ
2 ∥∆zk−1∥3.

Since ∆zk−1 = [∆xk−1; ∆yk−1], we have Step 3 of Algorithm 1 implies that 1
15 ≤ λkρ∥∆zk−1∥ ≤ 1

13
for all k ≥ 1. Thus, we have

II ≤
t∑

k=1

(
13λkρ

2 ∥∆zk−1∥2∥∥ẑk−1 − ẑk∥ − 1
2∥ẑk−1 − ẑk∥2 − 5λkρ

2 ∥∆zk−1∥3
)

≤
t∑

k=1

(
1
2∥∆zk−1∥∥ẑk−1 − ẑk∥ − 1

2∥ẑk−1 − ẑk∥2 − 1
6∥∆zk−1∥2

)
≤

t∑
k=1

(
max
η≥0

{
1
2∥∆zk−1∥η − 1

2η
2
}
− 1

6∥∆zk−1∥2
)

= − 1
24

(
t∑

k=1

∥∆zk−1∥2
)
. (3.9)

Plugging Eq. (3.6) and Eq. (3.9) into Eq. (3.5) and using ẑ0 = z0 and ∆zk−1 = zk − ẑk−1 yields

t∑
k=1

λk(zk − z⋆)⊤F (zk) ≤ E0 − Et + (z0 − ẑt)
⊤(z0 − z⋆)− 1

24

(
t∑

k=1

∥zk − ẑk−1∥2
)
.

This completes the proof. □
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Lemma 3.4 Suppose that Assumption 2.4 and 2.5 hold true. Then, we have

t∑
k=1

λk(zk − z⋆)⊤F (zk) ≤ 1
2∥z0 − z⋆∥2,

t∑
k=1

∥zk − ẑk−1∥2 ≤ 12∥z0 − z⋆∥2, ∥ẑt − z0∥ ≤ 2∥z0 − z⋆∥.

where z⋆ = (x⋆,y⋆) is a global saddle point (cf. Assumption 2.4).

Proof. Using the notation ẑ = [x̂; ŷ], we have Et = 1
2∥ẑt − z0∥2. Since ẑ0 = z0, we have

E0 − Et + (z0 − ẑt)
⊤(z0 − z⋆) ≤ −1

2∥ẑt − z0∥2 + 1
2∥ẑt − z0∥2 + 1

2∥z0 − z⋆∥2 = 1
2∥z0 − z⋆∥2.

Since z⋆ ∈ Rm+n is a global saddle point, we have (zk−z⋆)⊤F (zk) ≥ 0 for all k ≥ 1. Then, this together
with Lemma 3.3, yields

t∑
k=1

λk(zk − z⋆)⊤F (zk) ≤ 1
2∥z0 − z⋆∥2,

t∑
k=1

∥zk − ẑk−1∥2 ≤ 12∥z0 − z⋆∥2.

Further, Lemma 3.3 implies

E0 − Et + (z0 − ẑt)
⊤(z0 − z⋆) ≥

t∑
k=1

λk(zk − z⋆)⊤F (zk) +
1
24

(
t∑

k=1

∥zk − ẑk−1∥2
)

≥ 0.

Using Young’s inequality, we have

0 ≤ −1
2∥ẑt − z0∥2 + 1

4∥ẑt − z0∥2 + ∥z0 − z⋆∥2 = −1
4∥ẑt − z0∥2 + ∥z0 − z⋆∥2.

This completes the proof. □

We provide a technical lemma establishing a lower bound for
∑t

k=1 λk.

Lemma 3.5 Suppose that Assumption 2.4 and 2.5 hold true. Then, for every integer T ≥ 1, we have

T∑
k=1

λk ≥ T
3
2

30
√
3ρ∥z0−z⋆∥ ,

where z⋆ = (x⋆,y⋆) is a global saddle point of f(x,y) in Assumption 2.4.

Proof. Without loss of generality, we assume that z0 ̸= z⋆. Then, we have

t∑
k=1

(λk)
−2( 1

15ρ)
2 ≤

t∑
k=1

(λk)
−2(λk∥zk − ẑk−1∥)2 =

t∑
k=1

∥zk − ẑk−1∥2
Lemma 3.4

≤ 12∥z0 − z⋆∥2.

By the Hölder inequality, we have

t∑
k=1

1 =

t∑
k=1

(
(λk)

−2
) 1

3 (λk)
2
3 ≤

(
t∑

k=1

(λk)
−2

) 1
3
(

t∑
k=1

λk

) 2
3

.
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Putting these pieces together yields

t ≤
(
30
√
3ρ∥z0 − z⋆∥

) 2
3

(
t∑

k=1

λk

) 2
3

.

Letting t = T and rearranging yields

T∑
k=1

λk ≥ T
3
2

30
√
3ρ∥z0−z⋆∥ .

This completes the proof. □

Proof of Theorem 3.1. By Lemma 3.4, we have

∥zk+1 − ẑk∥2 ≤ 12∥z0 − z⋆∥2, ∥ẑk − z0∥ ≤ 2∥z0 − z⋆∥, for all k ≥ 0.

This implies that ∥zk − z0∥ ≤ 6∥z0 − z⋆∥ for all k ≥ 0. Putting these pieces yields that the iterates
{zk}k≥0 and {ẑk}k≥0 generated by Algorithm 1 are bounded by an universal constant. For every integer
T ≥ 1, Lemma 3.4 also implies

T∑
k=1

λk(zk − z⋆)⊤F (zk) ≤ 1
2∥z0 − z⋆∥2.

By Proposition 2.8, we have

f(x̄T ,y
⋆)− f(x⋆, ȳT ) ≤ 1∑T

k=1 λk

(
T∑

k=1

λk(zk − z⋆)⊤F (zk)

)
.

Putting these pieces together yields

f(x̄T ,y
⋆)− f(x⋆, ȳT ) ≤ 1

2(
∑T

k=1 λk)
∥z0 − z⋆∥2.

This together with Lemma 3.5 yields

f(x̄T ,y
⋆)− f(x⋆, ȳT ) ≤ 15

√
3ρ∥z0−z⋆∥3

T
3
2

.

By the definition of a gap function in Section 2, we have

gap(x̄T , ȳT ) ≤ 15
√
3ρ∥z0−z⋆∥3

T
3
2

. (3.10)

Therefore, we conclude from Eq. (3.10) that there exists some T > 0 such that the output (x̂, ŷ) =
Newton-MinMax((x0,y0), ρ, T ) satisfies that gap(x̂, ŷ) ≤ ϵ and the total number of calls of the subprob-
lem solvers is bounded by

O

(ρ(∥x0 − x⋆∥2 + ∥y0 − y⋆∥2)
3
2

ϵ

) 2
3

 .

This completes the proof.
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Algorithm 2 Inexact-Newton-MinMax((x0,y0), ρ, T )

Input: initial point (x0,y0), Lipschitz parameter ρ and iteration number T ≥ 1.
Initialization: set x̂0 = x0 and ŷ0 = y0 as well as parameters κH > 0, 0 < κm < min{1, ρ

4} and 0 < τ0 < ρ
4 .

for k = 0, 1, 2, . . . , T − 1 do
STEP 1: If (xk,yk) is a global saddle point of the min-max optimization problem, then stop.
STEP 2: Compute an approximate solution (∆xk,∆yk) ∈ Rm × Rn of the cubic regularized min-max
problem (we let ẑk = (x̂k, ŷk) for brevity):

min
∆x

max
∆y

{
mk(∆x,∆y) =

[
∆x
∆y

]⊤ [∇xf(ẑk)
∇yf(ẑk)

]
+ 1

2

[
∆x
∆y

]⊤
H(ẑk)

[
∆x
∆y

]
+ 2ρ∥∆x∥3 − 2ρ∥∆y∥3

}
, (4.1)

given that Condition 4.1 and 4.2 hold true with a proper choice of τk > 0.
STEP 3: Compute λk+1 > 0 such that 1

15 ≤ λk+1ρ
√
∥∆xk∥2 + ∥∆yk∥2 ≤ 1

14 .
STEP 4a: Compute xk+1 = x̂k +∆xk.
STEP 4b: Compute yk+1 = ŷk +∆yk.
STEP 5a: Compute x̂k+1 = x̂k − λk+1∇xf(xk+1,yk+1).
STEP 5b: Compute ŷk+1 = ŷk + λk+1∇yf(xk+1,yk+1).

end for
Output: (x̄T , ȳT ) =

1∑T
k=1 λk

(∑T
k=1 λkxk,

∑T
k=1 λkyk

)
.

4 Inexact Algorithm and Convergence Analysis

In this section, we present the scheme of Inexact-Newton-MinMax and prove the same global convergence
guarantee. Different from the conceptual framework of Newton-MinMax in Algorithm 1, our algorithm is
compatible with both inexact second-order information and inexact subproblem solving. Our inexactness
conditions are inspired by Xu et al. [2020, Condition 1 and 4] and allows for direct construction through
randomized sampling. As the consequence of our results, the sub-sampled Newton method is proposed
for solving finite-sum min-max optimization with a global convergence rate guarantee.

4.1 Algorithmic scheme

We summarize our inexact second-order method, which we call Inexact-Newton-MinMax((x0,y0), ρ, T ),
in Algorithm 2 where (x0,y0) ∈ Rm×Rn is an initial point, ρ > 0 is a Lipschitz constant for the Hessian
of the function f and T ≥ 1 is an iteration number.

Our method is a combination of Algorithm 1 and the inexact second-order framework for nonconvex
optimization [Xu et al., 2020] in the context of min-max optimization. More specifically, the difference
between the subproblems in Eq. (3.1) and Eq. (4.1) is that the inexact Hessian H(ẑk) ∈ R(m+n)×(m+n) is
used to approximate the exact Hessian at ẑk and could be formed and evaluated efficiently in practice.
Inspired by Xu et al. [2020, Condition 1] and Chen et al. [2022, Condition 3.1], we impose the conditions
on the inexact Hessian and the inexact subproblem solving. Formally, we have

Condition 4.1 (Inexact Hessian Regularity) For some κH > 0 and τk > 0, the inexact Hessian
H(ẑk) satisfies the following regularity conditions:

∥(H(ẑk)−∇2f(ẑk))∆zk∥ ≤ τk∥∆zk∥, ∥H(ẑk)∥ ≤ κH ,

where the iterates {ẑk}k≥0 and the updates {∆zk}k≥0 are generated by Algorithm 2.
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Condition 4.2 (Sufficient Inexact Solving) For some κm ∈ (0, 1), we are able to solve the min-max
subproblem in Eq. (4.1) approximately to find ∆zk = (∆xk,∆yk) such that

∥∇mk(∆zk)∥ ≤ κm ·min{∥∆zk∥2, ∥∇f(ẑk)∥},

where mk(·) is defined in Eq. (4.1). In addition, {ẑk}k≥0 and {∆zk}k≥0 are generated by Algorithm 2.

Under Condition 4.1 and 4.2, we prove that our proposed algorithm (cf. Algorithm 2) achieve the same
worst-case iteration complexity to obtain an ϵ-global saddle point of the min-max optimization problem
in Eq. (1.1) as that of the exact variant (cf. Algorithm 1); see Theorem 4.1 for the details.

For the merits of Condition 4.1 and its advantages over other approximation conditions in nonconvex
optimization, we refer to Xu et al. [2020, Section 1.3.2]. Despite the convex-concave structure, f is non-
convex in (x,y). Thus, Condition 4.1 is suitable for min-max optimization and allows for theoretically
principled use of many practical techniques to constructing H(ẑk).

One such scheme can be described explicitly in the context of large-scale finite-sum min-max opti-
mization problems of the form

min
x∈Rm

max
y∈Rn

f(x,y) ≜ 1
N

N∑
i=1

fi(x,y), (4.2)

and its special instantiation

min
x∈Rm

max
y∈Rn

f(x,y) ≜ 1
N

N∑
i=1

fi(a
⊤
i x,b

⊤
i y), (4.3)

where N ≫ 1, each of fi is a convex-concave function with bounded and Lipschitz-continuous Hessian,
and {(ai,bi)}Ni=1 ⊆ Rm×Rn are a few given data samples. This type of problems are common in machine
learning and scientific computing [Shalev-Shwartz and Ben-David, 2014, Roosta-Khorasani et al., 2014,
Roosta-Khorasani and Mahoney, 2019]. Then, we present both uniform and nonuniform sub-sampling
schemes to guarantee Condition 4.1 with high probability. In fact, the theoretical results are a little bit
stronger, namely

∥H(ẑk)−∇2f(ẑk)∥ ≤ τk, (4.4)

which will imply one of two key inequalities in Condition 4.1. As a consequence of Theorem 4.1, we give
the first sub-sampled Newton method for solving finite-sum min-max optimization problems and prove
the global convergence rate of O(ϵ−2/3) in the convex-concave case; see Theorem 4.8 for the details.

It remains to clarify how to approximately solve the cubic regularized min-max optimization prob-
lem in Eq. (4.1) such that Condition 4.2 holds true. We have conducted numerical experiments (see
Section 5) and found that the inexact subproblem solving can be efficiently done using the semismooth
Newton (SSN) method [Qi and Sun, 1993]. In terms of theoretical guarantee, Solodov and Svaiter [1998]
established the global convergence by exploiting the monotone structure and derived a local superlinear
convergence under the conditions that the generalized Jacobian is semismooth and nonsingular at an
optimal solution. These results were later extended by Zhou and Toh [2005] to the setting where the
generalized Jacobian is not necessarily nonsingular. In terms of practical efficiency, the SSN method
has received a considerable amount of attention due to its success in solving a wide range of structured
application problems [Ulbrich, 2011, Zhao et al., 2010, Milzarek and Ulbrich, 2014, Li et al., 2018a,b,
Milzarek et al., 2019].
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In what follows, we clarify how to approximately solve Eq. (4.1) using the SSN method. In particular,
we rewrite this problem equivalently in the following form of

min
(∆x,u)∈X

max
(∆y,v)∈Y

[
∆x
∆y

]⊤ [∇xf(ẑk)
∇yf(ẑk)

]
+ 1

2

[
∆x
∆y

]⊤ [
Hxx(ẑk) Hxy(ẑk)
Hxy(ẑk) Hyy(ẑk)

] [
∆x
∆y

]
+ 2ρu3 − 2ρv3,

where the constraint sets are X = {(∆x, u) : ∥∆x∥ ≤ u} and Y = {(∆y, v) : ∥∆y∥ ≤ v} and are known
as second-order cones [Lobo et al., 1998, Alizadeh and Goldfarb, 2003]. For simplicity, we let Z = X ×Y
and ∆z = (∆x, u,∆y, v). Then, it suffices to solve the nonsmooth equation in the form of

E(∆z) ≜ ∆z− PZ

∆z−


∇xf(ẑk) +Hxx(ẑk)∆x+Hxy(ẑk)∆y

6ρu2

−∇yf(ẑk)−Hxy(ẑk)∆x−Hyy(ẑk)∆y
6ρv2


 = 0. (4.5)

We will use the SSN method to solve Eq. (4.5). Indeed, it is clear that the operator E is monotone and
locally Lipschitz continuous over Z and we can apply the SSN method to find a zero of E(·). Then, it
suffices to compute an element of the generalized Jacobian of E(∆z). To that end, we define

J(∆z) = Im+n+2 − JPZ (w) ·

Im+n+2 −


Hxx(ẑk) 0 Hxy(ẑk) 0

0 12ρu 0 0
−Hxy(ẑk) 0 −Hyy(ẑk) 0

0 0 0 12ρv


 , (4.6)

where w ∈ Rm+n+2 is defined by

w = ∆z−


∇xf(ẑk) +Hxx(ẑk)∆x+Hxy(ẑk)∆y

6ρu2

−∇yf(ẑk)−Hxy(ẑk)∆x−Hyy(ẑk)∆y
6ρv2

 =


wx

wu

wy

wv

 .

If JPZ is an element of the generalized Jacobian of PZ , we have J(∆z) is an element of the generalized
Jacobian of E(∆z). Even though it is not easy to compute JPZ for a general convex set Z, the structure
of being the product of second-order cones implies that

JPZ (w) =

[
JPX (wx,wu) 0

0 JPY (wy,wv)

]
∈ R(m+n+2)×(m+n+2),

where JPX (wx,wu) and JPY (wy,wv) are (see Kanzow et al. [2009, Lemma 2.5])

JPX (wx,wu) =


0, wu ∈ (−∞,−∥wx∥),
Im+1, wu ∈ (∥wx∥,+∞),
D, otherwise,

for D = 1
2

( wu
∥wx∥ + 1

)
Im + wuwxw⊤

x
∥wx∥3

wx
∥wx∥

w⊤
x

∥wx∥ 1

 ,

and

JPY (wy,wv) =


0, wv ∈ (−∞,−∥wy∥),
In+1, wv ∈ (∥wy∥,+∞),
D, otherwise,

for D = 1
2

( wv
∥wy∥ + 1

)
In +

wvwyw⊤
y

∥wy∥3
wy

∥wy∥
w⊤

y

∥wy∥ 1

 .
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As a practical matter, we consider a simple combination of an adaptive regularized SSN method proposed
by Xiao et al. [2018] and a generalized minimum residual (GMRES) method [Saad and Schultz, 1986].
Given the current iterate ∆z ∈ Rm+n+2, we first compute the direction d ∈ Rm+n+2 by solving (J(∆z)+
ηIm+n+2)d = −E(∆z) inexactly using the GMRES method. Then, we follow the strategy in Xiao et al.
[2018] and decide if this d is accepted. Roughly speaking, if there is a sufficient decrease from ∥E(∆z)∥
to ∥E(∆z+ d)∥, we accept d and set the next iterate as ∆z+ d. Otherwise, a safeguard step is taken.
To evaluate E(∆z) at each iteration, we derive the closed-form expression of PZ(w) as follows,

PZ(w) =

[
PX (wx,wu)
PY(wy,wv)

]
∈ Rm+n+2,

where PX (wx,wu) and PY(wy,wv) are (see Kanzow et al. [2009, Lemma 2.2])

PX (wx,wu) =


0, wu ∈ (−∞,−∥wx∥),[

wx

wu

]
, wu ∈ (∥wx∥,+∞),

1
2

(
1 + wu

∥wx∥

)[ wx

∥wx∥

]
, otherwise,

and

PY(wy,wv) =


0, wv ∈ (−∞,−∥wy∥),[

wy

wv

]
, wv ∈ (∥wy∥,+∞),

1
2

(
1 + wv

∥wy∥

)[ wy

∥wy∥

]
, otherwise.

Remarkably, Kanzow et al. [2009, Lemma 2.3] guarantees that PZ is strongly semismooth, which has
been used to establish a strong local convergence guarantee for the adaptive regularized SSN method.
For more details on the algorithm and its convergence property, we refer the reader to Xiao et al. [2018].

4.2 Convergence analysis

We provide our main results on the convergence rate for Algorithm 2 in terms of the number of calls of
the subproblem solvers. The following theorem gives us the global convergence rate of Algorithm 2 for
convex-concave min-max optimization problems.

Theorem 4.1 Suppose that Assumption 2.4 and 2.5 hold true, 0 < τk ≤ min{τ0, ρ(1−κm)
4(κH+6ρ)∥∇f(ẑk)∥}

for all k ≥ 0 and ϵ ∈ (0, 1), the iterates generated by Algorithm 2 are bounded by an universal constant.
Moreover, there exists some T > 0 such that the output (x̂, ŷ) = Inexact-Newton-MinMax((x0,y0), ρ, T )
satisfies that gap(x̂, ŷ) ≤ ϵ and the total number of calls of the subproblem solvers is bounded by

O

(ρ(∥x0 − x⋆∥2 + ∥y0 − y⋆∥2)
3
2

ϵ

) 2
3

 ,

where (x⋆,y⋆) ∈ Rm×Rn is a global saddle point (cf. Assumption 2.4) and ρ > 0 is a Lipschitz constant
for the Hessian of the function f (cf. Assumption 2.5).
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Remark 4.2 Theorem 4.1 demonstrates that Algorithm 2 achieves the same global convergence rate as
Algorithm 1. To be more precise, Algorithm 2 can achieve the optimal convergence guarantee regardless
of inexact Hessian and inexact subproblem solving under Condition 4.1 and 4.2. Our subsequent analysis
is based on a combination of techniques for proving Theorem 3.1 and Xu et al. [2020, Lemma 14].

We use a Lyapunov function defined in Eq. (3.3) but for the iterates generated by Algorithm 2. Recall
that z = [x;y], ẑ = [x̂; ŷ] and F is defined in Eq. (2.2). The first lemma is analogous to Lemma 3.3.

Lemma 4.3 Suppose that Assumption 2.4 and 2.5 hold true and 0 < τk ≤ min{τ0, ρ(1−κm)
4(κH+6ρ)∥∇f(ẑk)∥}.

Then, we have

t∑
k=1

λk(zk − z⋆)⊤F (zk) ≤ E0 − Et + (z0 − ẑt)
⊤(z0 − z⋆)− 1

24

(
t∑

k=1

∥zk − ẑk−1∥2
)
, for all 1 ≤ t ≤ T,

where z⋆ = (x⋆,y⋆) is a global saddle point (cf. Assumption 2.4).

Proof. By using the same argument as used in Lemma 3.3, we have

t∑
k=1

λk(zk − z⋆)⊤F (zk) ≤ E0 −Et + (ẑ0 − ẑt)
⊤(z0 − z⋆) +

t∑
k=1

λk(zk − ẑk)
⊤F (zk)− 1

2∥ẑk − ẑk−1∥2. (4.7)

It remains to bound the term
∑t

k=1 λk(zk−ẑk)
⊤F (zk)− 1

2∥ẑk−ẑk−1∥2. Indeed, in Step 2 of Algorithm 2,
we compute a pair (∆xk,∆yk) ∈ Rm×Rn such that it is an inexact solution of the min-max optimization
subproblem in Eq. (4.1) under Condition 4.1 and 4.2. Note that Condition 4.2 can be written as follows,

∥∇mk(∆zk)∥ =

∥∥∥∥∇f(ẑk) +H(ẑk)∆zk +

[
6ρ∥∆xk∥∆xk

−6ρ∥∆yk∥∆yk

]∥∥∥∥ ≤ κm ·min{∥∆zk∥2, ∥∇f(ẑk)∥}.

Define J =

[
Im

−In

]
, we have

∥∥∥∥F (ẑk) + JH(ẑk)∆zk + 6ρ

[
∥∆xk∥∆xk

∥∆yk∥∆yk

]∥∥∥∥ ≤ κm ·min{∥∆zk∥2, ∥∇f(ẑk)∥}. (4.8)

Combining Step 4 of Algorithm 2 and Lemma 2.7, we have

∥F (zk)− F (ẑk−1)−DF (ẑk−1)∆zk−1∥ ≤ ρ
2∥∆zk−1∥2. (4.9)

It suffices to decompose (zk− ẑk)
⊤F (zk) and bound it using Condition 4.1, Eq. (4.8) and (4.9). Indeed,

we have

(zk − ẑk)
⊤F (zk) ≤ ∥zk − ẑk∥∥F (zk)− F (ẑk−1)−DF (ẑk−1)∆zk−1∥

+∥zk − ẑk∥
∥∥∥∥F (ẑk−1) + JH(ẑk−1)∆zk−1 + 6ρ

[
∥∆xk−1∥∆xk−1

∥∆yk−1∥∆yk−1

]∥∥∥∥
−6ρ(∥∆xk−1∥(xk − x̂k)

⊤∆xk−1 + ∥∆yk−1∥(yk − ŷk)
⊤∆yk−1)

+∥zk − ẑk∥∥(DF (ẑk−1)− JH(ẑk−1))∆zk−1∥.
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The first and second terms can be bounded using Eq. (4.8) and (4.9). The third term can be bounded
using the same argument from the proof of Lemma 3.3. For the fourth term, we have

∥(DF (ẑk−1)− JH(ẑk−1))∆zk−1∥ = ∥J(∇2f(ẑk−1)−H(ẑk−1))∆zk−1∥

= ∥(∇2f(ẑk−1)−H(ẑk−1))∆zk−1∥
Condition 4.1

≤ τk−1∥∆zk−1∥.

Putting these pieces together yields that

(zk − ẑk)
⊤F (zk) ≤ ∥zk − ẑk∥

((ρ
2 + κm

)
∥∆zk−1∥2 + τk−1∥∆zk−1∥

)
− 3ρ∥∆zk−1∥3 (4.10)

+6ρ∥∆zk−1∥2∥ẑk−1 − ẑk∥.

We claim that (ρ
2 + κm

)
∥∆zk−1∥2 + τk−1∥∆zk−1∥ ≤ ρ∥∆zk−1∥2. (4.11)

Indeed, for the case of ∥∆zk−1∥ ≥ 1, we have(ρ
2 + κm

)
∥∆zk−1∥2 + τk−1∥∆zk−1∥ ≤

(ρ
2 + κm + τk−1

)
∥∆zk−1∥2.

The above inequality together with 0 < κm < min{1, ρ4} and τk−1 ≤ τ0 <
ρ
4 yields Eq. (4.11). Otherwise,

we have ∥∆zk−1∥ < 1 and obtain from Condition 4.1 and 4.2 that

κm∥∇f(ẑk−1)∥ ≥
∥∥∥∥∇f(ẑk−1) +H(ẑk−1)∆zk−1 +

[
6ρ∥∆xk−1∥∆xk−1

−6ρ∥∆yk−1∥∆yk−1

]∥∥∥∥
≥ ∥∇f(ẑk−1)∥ − κH∥∆zk−1∥ − 6ρ∥∆zk−1∥2

≥ ∥∇f(ẑk−1)∥ − (κH + 6ρ)∥∆zk−1∥.

Rearranging the above inequality and using 0 < τk ≤ ρ(1−κm)
4(κH+6ρ)∥∇f(ẑk)∥ yields

∥∆zk−1∥ ≥ 1−κm
κH+6ρ∥∇f(ẑk−1)∥ ≥ 4τk−1

ρ .

Using 0 < κm < min{1, ρ4} again, we have(ρ
2 + κm

)
∥∆zk−1∥2 + τk−1∥∆zk−1∥ ≤

(
ρ
2 + κm +

τk−1

∥∆zk−1∥

)
∥∆zk−1∥2 ≤ ρ∥∆zk−1∥2.

Plugging Eq. (4.11) into Eq. (4.10) and using ∥zk − ẑk∥ ≤ ∥∆zk−1∥+ ∥ẑk−1 − ẑk∥ yields

(zk − ẑk)
⊤F (zk) ≤ 7ρ∥∆zk−1∥2∥∥ẑk−1 − ẑk∥ − 2ρ∥∆zk−1∥3.

Since ∆zk−1 = [∆xk−1; ∆yk−1], we have Step 3 of Algorithm 2 implies that 1
15 ≤ λkρ∥∆zk−1∥ ≤ 1

14
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for all k ≥ 1. Thus, we have

t∑
k=1

λk(zk − ẑk)
⊤F (zk)− 1

2∥ẑk − ẑk−1∥2

≤
t∑

k=1

(
7λkρ∥∆zk−1∥2∥∥ẑk−1 − ẑk∥ − 1

2∥ẑk−1 − ẑk∥2 − 2λkρ∥∆zk−1∥3
)

≤
t∑

k=1

(
1
2∥∆zk−1∥∥ẑk−1 − ẑk∥ − 1

2∥ẑk−1 − ẑk∥2 − 2
15∥∆zk−1∥2

)
≤

t∑
k=1

(
max
η≥0

{
1
2∥∆zk−1∥η − 1

2η
2
}
− 2

15∥∆zk−1∥2
)

= − 1
40

(
t∑

k=1

∥∆zk−1∥2
)
.

Therefore, we conclude from Eq. (4.7), ẑ0 = z0 and ∆zk−1 = zk − ẑk−1 that

t∑
k=1

λk(zk − z⋆)⊤F (zk) ≤ E0 − Et + (z0 − ẑt)
⊤(z0 − z⋆)− 1

40

(
t∑

k=1

∥zk − ẑk−1∥2
)
.

This completes the proof. □

Proof of Theorem 4.1. Applying the same argument for proving Lemma 3.4 with Lemma 4.3 instead
of Lemma 3.3, we have

∥zk+1 − ẑk∥2 ≤ 20∥z0 − z⋆∥2, ∥ẑk − z0∥ ≤ 2∥z0 − z⋆∥, for all k ≥ 0,

and
T∑

k=1

λk(zk − z⋆)⊤F (zk) ≤ 1
2∥z0 − z⋆∥2, for every integer T ≥ 1.

This above inequalities imply that ∥zk − z0∥ ≤ 7∥z0− z⋆∥ for all k ≥ 0. Putting these pieces yields that
the iterates {zk}k≥0 and {ẑk}k≥0 generated by Algorithm 2 are bounded by a universal constant. By
Proposition 2.8, we have

f(x̄T ,y
⋆)− f(x⋆, ȳT ) ≤ 1∑T

k=1 λk

(
T∑

k=1

λk(zk − z⋆)⊤F (zk)

)
.

Putting these pieces together yields

f(x̄T ,y
⋆)− f(x⋆, ȳT ) ≤ 1

2(
∑T

k=1 λk)
∥z0 − z⋆∥2.

By using the same argument as used in Lemma 3.5 with ∥zk+1−ẑk∥2 ≤ 20∥z0−z⋆∥2, we have
∑T

k=1 λk ≥
T

3
2

30
√
5ρ∥z0−z⋆∥ . Applying the same argument used for proving Theorem 3.1, we have

gap(x̄T , ȳT ) ≤ 15
√
5ρ∥z0−z⋆∥3

T
3
2

.
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Therefore, there exists some T > 0 such that the output (x̂, ŷ) = Inexact-Newton-MinMax((x0,y0), ρ, T )
satisfies that gap(x̂, ŷ) ≤ ϵ and the total number of calls of the subproblem solvers is bounded by

O

(ρ(∥x0 − x⋆∥2 + ∥y0 − y⋆∥2)
3
2

ϵ

) 2
3

 .

This completes the proof.

4.3 Finite-sum min-max optimization

We give concrete examples to clarify the ways to construct the inexact Hessian such that Condition 4.1
holds true. The key ingredient here is random sampling which can significantly reduce the computational
cost in an optimization setting [Xu et al., 2020] and we show that such technique can be employed for
solving the finite-sum min-max optimization problems in the form of Eq. (4.2) and (4.3).

Let the probability distribution of sampling ξ ∈ {1, 2, . . . , N} be defined as Prob(ξ = i) = pi ≥ 0 for
i = 1, 2, . . . , N and S ⊆ {1, 2, . . . , N} denote a collection of sampled indices (|S| is its cardinality), we
can construct the inexact Hessian as follows,

H(z) = 1
N |S|

∑
i∈S

1
pi
∇2fi(z). (4.12)

This construction is referred to as the sub-sampled Hessian and offers significant computational savings
if |S| ≪ N in big-data regime when N ≫ 1.

In the general finite-sum setting with Eq. (4.2), we suppose

sup
(x,y)∈Rm×Rn

∥∇2fi(z)∥ ≤ Bi, for all i ∈ {1, 2, . . . , N}, (4.13)

and letBmax = max1≤i≤N Bi. Then, we consider sampling with the uniform distribution over {1, 2, . . . , N},
i.e., pi =

1
N and summarize the sample complexity results in the following lemma. The proof is omitted

for brevity and we refer to Xu et al. [2020, Lemma 16] for the details.

Lemma 4.4 Suppose that Eq. (4.13) holds true and let Bmax be defined accordingly and 0 < τ, δ < 1.
A uniform sampling with or without replacement is performed to form the sub-sampled Hessian; indeed,
H(z) is constructed using Eq. (4.12) with pi =

1
n and the sample size satisfies

|S| ≥ ΘU (τ, δ) := 16B2
max

τ2
log
(
2(m+n)

δ

)
.

Then, we have
Prob(∥H(z)−∇2f(z)∥ ≤ τ) ≥ 1− δ.

Remark 4.5 Lemma 4.4 demonstrates that the inexact Hessian satisfies Condition 4.1 with probability

1−δ under certain τ and κH if it is constructed using the uniform sampling and |S| = Ω(B
2
max
τ2

log(m+n
δ )).

Indeed, the first inequality holds true with probability 1− δ since Prob(∥H(z)−∇2f(z)∥ ≤ τ) ≥ 1− δ,
and the second inequality is satisfied with κH = Bmax (this is a deterministic statement).
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In the special finite-sum setting with Eq. (4.3), we are able to construct a more “informative” distribution
of sampling ξ ∈ {1, 2, . . . , N} as opposed to simple uniform sampling. In particular, it is advantageous to
bias the probability distribution towards picking indices corresponding to those relevant fi’s carefully in
forming the Hessian. However, the construction of inexact Hessian and corresponding sample complexity
guarantee from Xu et al. [2020, Section 3.1] in nonconvex optimization requires that ∇2fi has rank one,
which is not valid in our case. To generalize Xu et al. [2020, Lemma 17], we avail ourselves directly of
the operator-Bernstein inequality [Gross and Nesme, 2010, Theorem 1].

It is clear that the Hessian of f in this case can be written as ∇2f(z) = 1
N

∑N
i=1Dif

′′
i (a

⊤
i x,b

⊤
i y)D

⊤
i

where Di =

[
ai

bi

]
∈ R(m+n)×2. In the compact form, we have ∇2f(z) = D⊤ΣD where

D⊤ =

 | · · · |
D1 · · · DN

| · · · |

 and Σ = 1
N

f
′′
1 (a

⊤
i x,b

⊤
i y) · · · · · ·

...
. . .

...
· · · · · · f ′′

N (a⊤i x,b
⊤
i y)

 . (4.14)

We suppose

sup
(x,y)∈Rm×Rn

∥f ′′
i (a

⊤
i x,b

⊤
i y)∥(∥ai∥2 + ∥bi∥2) ≤ Bi, for all i ∈ {1, 2, . . . , N}, (4.15)

and letBavg =
1
N

∑N
i=1Bi. Then, we consider sampling with the nonuniform distribution over {1, 2, . . . , N}

as follows,

pi =
∥f ′′

i (a⊤
i x,b⊤

i y)∥(∥ai∥2+∥bi∥2)∑N
j=1 ∥f ′′

j (a⊤
j x,b⊤

j y)∥(∥aj∥2+∥bj∥2)
. (4.16)

The following lemma summarizes the results on the sample complexity.

Lemma 4.6 Suppose that Eq. (4.15) holds true and let Bavg be defined accordingly and 0 < τ, δ < 1. A
nonuniform sampling is performed to form the sub-sampled Hessian; indeed, H(z) is constructed using
Eq. (4.12) with pi > 0 in Eq. (4.16) and the sample size satisfies

|S| ≥ ΘN (τ, δ) :=
4B2

avg

τ2
log
(
2(m+n)

δ

)
.

Then, we have
Prob(∥H(z)−∇2f(z)∥ ≤ τ) ≥ 1− δ.

Proof. For any fixed z ∈ Rm+n, we obtain from Eq. (4.12) and (4.14) that H(z) = 1
|S|
∑|S|

j=1Hj where

each random matrix Hj ∈ R(m+n)×(m+n) is random and satisfies that Prob(Hj =
1
pi
DiΣiiD

⊤
i ) = pi with

pi > 0 in Eq. (4.16). For simplicity, we define

Xj = Hj −∇2f(z) = Hj −D⊤ΣD, X =

|S|∑
j=1

Xj = |S|
(
H(z)−D⊤ΣD

)
.

Applying a similar argument as used for proving Xu et al. [2020, Lemma 17], we have E[Xj ] = 0 and

∥E[X2
j ]∥ ≤ ∥E[H2

j ]∥ =

∥∥∥∥∥
N∑
i=1

pi

(
1
pi
DiΣiiD

⊤
i

)2∥∥∥∥∥ =

∥∥∥∥∥
N∑
i=1

1
pi
DiΣiiD

⊤
i DiΣiiD

⊤
i

∥∥∥∥∥
≤

N∑
i=1

1
N2pi

∥f ′′
i (a

⊤
i x,b

⊤
i y)∥2(∥ai∥2 + ∥bi∥2)2 =

(
1
N

N∑
i=1

∥f ′′
i (a

⊤
i x,b

⊤
i y)∥(∥ai∥2 + ∥bi∥2)

)2

.
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Algorithm 3 Subsampled-Newton-MinMax((x0,y0), ρ, T , δ)

Input: initial point (x0,y0), Lipschitz parameter ρ, iteration number T ≥ 1 and failure probability δ ∈ (0, 1).
Initialization: set x̂0 = x0 and ŷ0 = y0 as well as parameters 0 < κm < min{1, ρ

4} and 0 < τ0 < ρ
4 .

for k = 0, 1, 2, . . . , T − 1 do
STEP 1: If (xk,yk) is a global saddle point of the min-max optimization problem, then stop.
STEP 2: Construct the inexact Hessian H(ẑk) using Eq. (4.12) and the sample set |S| ≥ ΘU (τk, 1− T

√
1− δ)

(uniform) or |S| ≥ ΘN (τk, 1− T
√
1− δ) (non-uniform) given 0 < τk ≤ min{τ0, ρ(1−κm)

4(Bmax+6ρ)∥∇f(ẑk)∥}.
STEP 3: Compute a pair (∆xk,∆yk) ∈ Rm × Rn such that it is an inexact solution of the following cubic
regularized min-max optimization problem: (we let ẑk = (x̂k, ŷk) for brevity)

min
∆x

max
∆y

{
mk(∆x,∆y) =

[
∆x
∆y

]⊤ [∇xf(ẑk)
∇yf(ẑk)

]
+ 1

2

[
∆x
∆y

]⊤
H(ẑk)

[
∆x
∆y

]
+ 2ρ∥∆x∥3 − 2ρ∥∆y∥3

}
,

given that Condition 4.2 hold true.
STEP 3: Compute λk+1 > 0 such that 1

15 ≤ λk+1ρ
√
∥∆xk∥2 + ∥∆yk∥2 ≤ 1

14 .
STEP 4a: Compute xk+1 = x̂k +∆xk.
STEP 4b: Compute yk+1 = ŷk +∆yk.
STEP 5a: Compute x̂k+1 = x̂k − λk+1∇xf(xk+1,yk+1).
STEP 5b: Compute ŷk+1 = ŷk + λk+1∇yf(xk+1,yk+1).

end for
Output: (x̄T , ȳT ) =

1∑T
k=1 λk

(∑T
k=1 λkxk,

∑T
k=1 λkyk

)
.

This together with Eq. (4.15) implies that ∥E[X2
j ]∥ ≤ B2

avg. Putting these pieces with the aforementioned
operator-Bernstein inequality yields

Prob(∥H(z)−∇2f(z)∥ ≥ τ) = Prob(∥X∥ ≥ τ |S|) ≤ 2(m+ n) exp
(

τ2|S|
4B2

avg

)
≤ δ.

This completes the proof. □

Remark 4.7 Compared to Lemma 4.4, the computation of sampling probability in Lemma 4.6 requires
going through all data points and the total cost amounts to one full gradient evaluation. However, the
computational savings stems from smaller sample size could dominate the extra cost of computing the
sampling probability in practice [Xu et al., 2016]. In particular, the sample size from Lemma 4.6 could
be smaller as Bavg ≤ Bmax which occurs if some Bi’s are much larger than the others. In addition, the
sample size is proportional to the log of the failure probability in Lemma 4.4 and 4.6, allowing the use
of a very small failure probability without increasing the sample size significantly.

Combining Algorithm 2 and these random sampling schemes gives the first class of sub-sampled Newton
methods for solving the finite-sum min-max optimization problems in the form of Eq. (4.2) and (4.3).
We summarize the detailed scheme in Algorithm 3 and prove the global convergence rate guarantee in
the high-probability sense. Formally, we have

Theorem 4.8 Suppose that Assumption 2.4 and 2.5 hold true and let ϵ ∈ (0, 1), the iterates generated
by Algorithm 3 are bounded by an universal constant. Moreover, there exists some T > 0 such that the
output (x̂, ŷ) = Subsampled-Newton-MinMax((x0,y0), ρ, T, δ) satisfies that gap(x̂, ŷ) ≤ ϵ with probability

1− δ and the total number of calls of the subproblem solvers is bounded by O(ϵ−
2
3 ).
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Proof of Theorem 4.8. Since Algorithm 3 is a straightforward combination of Algorithm 2 and the
random sampling schemes in Eq. (4.12) with κH = Bmax and 0 < τk ≤ min{τ0, ρ(1−κm)

4(Bmax+6ρ)∥∇f(ẑk)∥},
we conclude the desired results from Theorem 4.1 if the following statement holds true:

Prob
(
∥H(ẑk)−∇2f(ẑk)∥ ≤ τk for all 0 ≤ k ≤ T − 1

)
≥ 1− δ. (4.17)

To guarantee an overall accumulative success probability of 1− δ across all the T iterations, it suffices
to set the per-iteration failure probability as 1− T

√
1− δ as we have done in Step 2 of Algorithm 3. In

addition, we have 1− T
√
1− δ = O( δ

T ) = O(δϵ2/3). Since this failure probability has only been proven to
appear in the logarithmic factor for the sample size in both Lemma 4.4 and 4.6, the extra cost will not be
dominating. Thus, when Algorithm 3 terminates, all Hessian approximations have satisfied Eq. (4.17).
This completes the proof.

5 Numerical Experiment

In this section, we study the numerical performance of our algorithms for min-max problems with both
synthetic and real datasets. The baseline approaches include extragradient (EG) method, optimistic
gradient descent ascent (OGDA) method, stochastic EG and OGDA methods and second-order variants
of EG and OGDA methods.3 All of these algorithms were implemented using MATLAB R2021b on a
MacBook Pro with an Intel Core i9 2.4GHz and 16GB memory.

5.1 Cubic regularized bilinear min-max problem

Following the setup of Jiang and Mokhtari [2022], we consider the problem in the following form:

min
x∈Rn

max
y∈Rn

f(x,y) = ρ
6∥x∥

3 + y⊤(Ax− b). (5.1)

where ρ > 0, the entries of b ∈ Rn are generated independently from [−1, 1] and A ∈ Rn×n is given by

A =


1 −1

1 −1
. . .

. . .

1 −1
1

 .

This min-max optimization problem is obviously convex-concave and the function f is ρ-Hessian Lip-
schitz. This problem admits a global saddle point given by x⋆ = A−1b and y⋆ = −ρ

2∥x
⋆∥(A⊤)−1x⋆.

Thus, we use the gap function gap(x,y) defined in Section 2 as the evaluation metric. In our exper-
iment, the parameters are chosen as ρ = 1

20n and n ∈ {50, 100, 200}. Since the exact Hessian of f is
available and the subproblem can be computed up to high accuracy (using nonlinear equation solvers in
MATLAB), we apply Algorithm 1. For the baseline approaches, we include the EG and OGDA methods
and their second-order variants [Bullins and Lai, 2022, Jiang and Mokhtari, 2022] which both require
the exact Hessian at each iteration. We implement second-order EG using the pseudocode of Bullins
and Lai [2022, Algorithm 5.2 and 5.3] with fine-tuning parameters and second-order OGDA using the
code from the author of Jiang and Mokhtari [2022] with (α, β) = (0.5, 0.8). For a fair comparison, we
solve all the subproblems in second-order methods using nonlinear system solvers in MATLAB (i.e.,
fsolve).

3We exclude the algorithms in Huang et al. [2022] since their theoretical guarantee is proved under additional conditions.
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Figure 1: Performance of all the algorithms for n ∈ {50, 100, 200} when ρ = 1
20n is set. The numerical

results are presented in terms of iteration count (Top) and computational time (Bottom).

In Figure 1, we compare our algorithm with four other baseline algorithms in terms of gap function.
Our results evidence that the second-order method can be superior to the first-order method in terms
of solution accuracy: the first-order method barely makes any progress when the second-order method
converges successfully. Moreover, our algorithm outperforms the second-order methods [Bullins and Lai,
2022, Jiang and Mokhtari, 2022] in terms of both iteration numbers and computational time thanks
to its simple scheme without line search. However, this does not eliminate the potential advantages of
using line search in min-max optimization. In fact, we find that the hybrid line search scheme suggested
by Jiang and Mokhtari [2022] is quite powerful in practice and their algorithms with aggressive choices of
(α, β) can sometimes outperform our algorithm. However, such choices make their algorithm unstable.
As such, we set (α, β) = (0.5, 0.8) which is a bit conservative yet more robust. Finally, we believe that
it is promising to investigate the line search scheme further in Jiang and Mokhtari [2022] and see if
modifications can speed up second-order min-max optimization in a universal manner.

5.2 AUC maximization problem

The problem of maximizing area under the receiver operating characteristic curve [Hanley and McNeil,
1982] is a learning paradigm that learns a classifier for imbalanced data. It has a long history in machine
learning [Graepel and Obermayer, 2000] and has motivated many studies ranging from formulations to
algorithms and theory [Yang and Ying, 2022]. The goal is to find a classifier θ ∈ Rn that maximizes the
AUC score on a set of samples {(ai, bi)}Ni=1, where ai ∈ Rn and bi ∈ {−1,+1}.

23



Table 1: Statistics of datasets for AUC maximization.

Name Description N n Scaled Interval

a9a UCI adult 48842 123 [0, 1]
covetype forest covetype 581012 54 [0, 1]

w8a - 64700 300 [0, 1]

We consider the min-max formulation for AUC maximization [Ying et al., 2016, Shen et al., 2018]:

min
x=(θ,u,v)∈Rn+2

max
y∈R

1−p̂
N

{
N∑
i=1

(θ⊤ai − u)2I[bi=1]

}
+ p̂

N

{
N∑
i=1

(θ⊤ai − v)2I[bi=−1]

}
(5.2)

+2(1+y)
N

{
N∑
i=1

θ⊤ai(p̂I[bi=−1] − (1− p̂)I[bi=1])

}
+ ρ

6∥x∥
3 − p̂(1− p̂)y2,

where λ > 0 is a scalar, I[·] is an indicator function and p̂ = #{i:bi=1}
N be the proportion of samples with

positive label. It is clear that the min-max optimization problem in Eq. (5.2) is convex-concave and has
the finite-sum structure in the form of Eq. (4.2) with the function fi(x, y) given by

fi(x, y) = (1− p̂)(θ⊤ai − u)2I[bi=1] + p̂(θ⊤ai − v)2I[bi=−1]

+2(1 + y)θ⊤ai(p̂I[bi=−1] − (1− p̂)I[bi=1]) +
ρ
6∥x∥

3 − p̂(1− p̂)y2.

This min-max optimization problem is in the cubic form and admits a global saddle point. Thus, we
also use the gap function gap(x,y) defined in Section 2 as the evaluation metric. In our experiment,
the parameter is chosen as ρ = 1

N and we use 3 LIBSVM datasets4 for AUC maximization (see Table 1).
Since the problem in Eq. (5.2) has a finite-sum structure, we apply Algorithm 3 with uniform sampling.
For the baseline approaches, we include stochastic EG and OGDA methods [Juditsky et al., 2011, Hsieh
et al., 2019, Mertikopoulos et al., 2019, Kotsalis et al., 2022]. The stepsizes for SEG and SOGDA are in
the form of c√

k+1
where c > 0 is tuned using grid search and k is the iteration count. For our algorithm,

we choose δ = 0.01, κm = 0.1 and |Sk| = 160 log(100(d+3))
min{∥∇f(ẑk)∥2,∥∇f(zk)∥2}

5. For the subproblem solution, we

apply the semi-smooth Newton method as described in Section 4.1.
In Figure 2, we compare our algorithm with two other baseline algorithms in terms of gap function.

Our results show that the sub-sampled second-order method can be superior to the mini-batch stochastic
first-order method in terms of solution accuracy: stochastic first-order method barely makes any progress
when our sub-sampled second-order method converges successfully. Moreover, it is worth remarking that
our algorithm exhibits the (super)-linear convergence as the iterate approaches the optimal solution.
This intriguing property has been rigorously justified for the sub-sampled Newton method in the context
of convex optimization [Roosta-Khorasani and Mahoney, 2019]. Can we extend their results to convex-
concave min-max optimization and prove the local (super)-linear convergence for Algorithm 3 under
certain regularity condition? This is an interesting open question.

4https://www.csie.ntu.edu.tw/∼cjlin/libsvm/
5We observe that ∥∇f(ẑk)∥ fluctuates dramatically in the first few iterations when the sample size is small. Only using

∥∇f(ẑk)∥ to set the sample size in our algorithm makes it stuck at low-accurate solutions. In contrast, ∥∇f(zk)∥ decreases
steadily regardless of relatively small sample size. As such, we use this strategy to set the sample size.
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Figure 2: Performance of all the algorithms with 3 LIBSVM datasets when ρ = 1
N is set. The numerical

results are presented in terms of epoch count (Top) and computational time (Bottom).

6 Conclusions

In this paper, we propose and analyze exact and inexact regularized Newton-type methods for finding a
global saddle point of unconstrained and convex-concave min-max optimization problems with bounded
and Lipschitz-continuous Hessian. In terms of theoretical guarantee, our methods are proved to achieve
an optimal convergence guarantee of O(ϵ−2/3). Moreover, we show that our framework and convergence
analysis on inexact algorithms lead to the first sub-sampled Newton method for solving the finite-sum
min-max optimization problems with global convergence guarantee. Future research directions include
the extension of our results to more general nonconvex-nonconcave min-max optimization problems and
the customized implementation of our algorithms in real application problems.
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