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Cutaneous involvement of chronic graft-versus-host disease (cGVHD) has a wide range of

manifestations including a lichenoid form with a currently assumed mixed Th1/Th17

signature and a sclerotic form with Th1 signature. Despite substantial heterogeneity of

innate and adaptive immune cells recruited to the skin and of the different clinical

manifestations, treatment depends mainly on the severity of the skin involvement and

relies on systemic, high-dose glucocorticoids alone or in combination with a calcineurin

inhibitor. We performed the first study using RNA sequencing to profile and compare the

transcriptome of lichen planus cGVHD (n5 8), morphea cGVHD (n5 5), and healthy

controls (n 5 6). Our findings revealed shared and unique inflammatory pathways to each

cGVHD subtype that are both pathogenic and targetable. In particular, the deregulation of

IFN signaling pathway was strongly associated with cutaneous cGVHD, whereas the

triggering receptor expressed on myeloid cells 1 pathway was found to be specific of lichen

planus and likely contributes to its pathogenesis. The results were confirmed at a protein

level by performing immunohistochemistry staining and at a transcriptomic level using

real-time quantitative polymerase chain reaction.

Introduction

Graft-versus-host disease (GVHD) is a severe complication and a major cause of nonrelapse mortality
following allogenic hematopoietic stem cell transplantation.1-3 Cutaneous chronic GVHD (cGVHD)
includes a lichenoid form (lichen planus [LP]-like eruptions and poikiloderma) and a sclerotic form
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Key Points

� RNA sequencing
suggests the potential
role of TREM-1 in
lichen planus
cutaneous cGVHD
pathogenesis, thus
providing new
treatment target.

� The results were
confirmed at a protein
level by
immunohistochemical
testing and real-time
quantitative PCR.
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Figure 1. Transcriptomic signature of LP and morphea cGVHD skin lesions. (A) Venn diagram showing the overlap between DEGs in lesional skin of cGVHD as

compared with healthy controls (CONT). LP vs CONT in blue, morphea vs CONT in green, and LP vs morphea in red. (B-C) Volcano plot with log2FC and2log10 P values for

the DEGs between LP (n5 8) (B) and morphea (n5 5) (C) cGVHD skin lesions vs CONT (n 5 6). The most upregulated genes are toward the right, the most downregulated

genes are toward the left, and the most statistically significant genes are toward the top. Genes of interest are encircled. (D) Scatterplot of the expression FCs of DEGs

in lesional cGVHD. (E) Heatmap of the 50 most upregulated DEGs shared between LP and morphea, defined by contrasting lesional skin of cGVHD and CONT.
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(morphea-like, diffuse sclerosis or lichen sclerosus–like features).4

Cutaneous cGVHD is mediated by the activation of alloreactive
donor T cells, a defect of CD41Foxp31CD251 regulatory T cells
(Tregs),5 a profound disruption of B-cell homeostasis, and pathologi-
cal tissue repair with fibrosis.3 Although lichenoid cGVHD has been
associated with a mixed Th1/Th17 signature and sclerotic cGVHD
with a Th1 signature, other T-cell subsets may contribute to its path-
ogenesis.6,7 Despite pathogenic and clinical heterogeneity, treat-
ment of cGVHD relies mainly on the severity of the skin involvement.
Standard first-line therapy for moderate to severe cutaneous
cGVHD relies on systemic, high-dose glucocorticoids alone or in
combination with a calcineurin inhibitor. Therefore, studies providing
new insights into the mechanisms of skin cGVHD subtypes are
mandatory. To address this issue, we performed an RNA sequenc-
ing study of the transcriptomes of LP and morphea cGVHD skin
lesions. The results were confirmed at a protein level by performing
immunohistochemistry staining and at a transcriptomic level using
real-time quantitative polymerase chain reaction (RT-qPCR).

Methods

Refer to supplemental Methods for details.

RNA sequencing

RNA from 13 patients with cGVHD and 6 healthy controls (CONT)
were extracted and sequenced on the Illumina sequencing platform.

Immunohistochemical testing

Archival skin samples from LP cGVHD (n 5 3), morphea cGVHD
(n 5 3), and CONT (n 5 3) were processed for immunohistochemi-
cal testing to detect triggering receptor expressed on myeloid cells
1 (TREM-1) signaling. Abdominal aorta atherosclerosis (n 5 3) was
used as positive control.

RT-qPCR

RT-qPCR was performed to measure TREM-1 messenger RNA
(mRNA) expression in LP cGVHD (n5 6), morphea cGVHD (n5 5),
and CONT (n5 5).

Data analysis

Differential expression (DE) analyses were conducted using
DESeq2 R package in R (Benjamini-Hochberg adjusted P-value
,5% and jlog2 (fold-change FC)j $ 1). Functional analyzes were
performed using gene set enrichment analysis (GSEA) on all genes
and ingenuity pathway analysis (IPA) software on differentially
expressed genes (DEGs).

Study approval

This study was reviewed and approved by the local ethics commit-
tee at Comit�e de Protection des Personnes (CPP) Paris Ile de
France IV (Paris, France) with informed consent obtained from all
patients (Saint-Louis Hospital, Paris, France, between January 2017
and February 2019).

Results and discussion

Skin biopsies were obtained from patients diagnosed with LP
(n 5 8) and morphea (n 5 5) cGVHD according to the National
Institutes of Health consensus criteria with histologic confirmation8

and were compared with CONT (n 5 6). At the time of skin sam-
pling, patients had no immunosuppressive treatment (n 5 7) or low
residual immunosuppressive treatment background (n 5 6) (see
supplemental Table 1 for complete clinical and molecular features
collected for each patient/sample).

Although both the first 2 and the first 3 principal component analy-
sis of the whole transcriptome could separate the CONT from the
lesional skin samples, neither of them could provide perfect separa-
tion between the 2 subtypes of cutaneous cGVHD (supplemental
Figure 1), suggesting that these 2 manifestations of cutaneous
cGVHD have significant overlap in their molecular composition.

LP cGVHD transcriptome analysis

The DE analysis for LP cGVHD vs CONT identified 2945 DEGs (up/
down 5 2284/661; Figure 1A-B; supplemental Table 2A). Toll-like
receptors (TLRs) such as TLR2, TLR7, and TLR8 were found upregu-
lated. TLRs are known to play a fundamental role in the activation of
innate immunity and in the initiation phase of cGVHD through produc-
tion of interferon (IFN).2,9 Upregulated DEGs also included genes
associated with IFN signaling and Th1 pathway such as STAT4, Tbet,
several members of the TNFa superfamily, and their receptors, as well
as IL12B and IL12 receptors. Notably, 3 relevant chemokine DEGs
(CXCL9, CXCL10, and CXCL11) were highly expressed (log2FC . 9).
These IFNg-inducible chemokines are known to induce a chemo-
tactic response in Th1 and natural killer cells expressing CXCR3,
which was also found highly upregulated (log2FC 5 4.718).10-12

CXCL9 has been proposed as a serum prognostic biomarker in
cGVHD and was found to be expressed in lesional tissues.13,14

Expression of TNFSF13B (also known as BAFF) was also found to
be upregulated. Increased serum BAFF level is associated with B-cell
dysregulation in cGVHD.15-17 Macrophage surface markers such as
IFN-g–inducible allograft inflammatory factor-1 (AIF1), CD163, and
CD68 were found to be upregulated, suggesting that macrophages
are increased in dermis of lichenoid cGVHD.

Morphea cGVHD transcriptome analysis

When comparing morphea cGVHD vs CONT, 1652 DEGs were
identified (up/down 5 1281/371; Figure 1A-C; supplemental Table
2B). DEGs involved in the IFN signaling (CXCL9, CXCL10, IFNG,
MX1, and IFI27), T-cell activation (PRKCQ, CD3G, CD3D, and
ITGAL), and Th1 pathway (STAT1, IL12RB1, and IL12RB2), as
well as genes encoding for Th1 chemokines (CCL5), were highly
expressed.

Common and specific molecular features of LP and

morphea cGVHD

IFN signature in cutaneous cGVHD. Type 2 and type 2 IFNs
play a role in the initiation and persistence of cGVHD.18 To confirm

Figure 1 (continued) Levels of expression for most of the DEGs differed in the 2 pathologies. Data are presented as log2 transcripts per million (TPM) expression value.

Expression values are depicted according to the color scale. TPM values were estimated for each experimental dataset. A pseudo-count of 0.001 was added to each transcript

before log2 transformation. Annotations are colored based on the TPM property, ranging from blue for 0, through to white for the mean TPM, up to red for the highest TPM for

any gene in the sample.
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the role of IFN signature in cutaneous cGVHD, we looked at the
shared genes between LP and morphea cGVHD. We identified
979 DEGs shared between LP and morphea defined by contrasting
lesional skin of cGVHD and CONT (Figure 1A; supplemental Table

2C), suggesting that these 2 manifestations of cutaneous cGVHD
have significant overlap in their molecular signature. Furthermore, the
comparison between the magnitudes in dysregulation in the lesional
skin in both subtypes showed a strong correlation (Figure 1D,
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Spearman r 5 .736, P , .001). Among the shared genes, a robust
upregulation of specific type 1 IFN-induced genes (eg, CXCL9,
CXCL10, CXCL11, and MX1) and of IFN-induced genes related to
antigen processing and presentation (MSR1, PSMB9, and PSME2),
antiviral and antibacterial function (APOL1 and IFI35), and IFN recep-
tor signaling (STAT1) were found (Figure 1E).

GSEA analyses of normalized data based on the normalized enrich-
ment score ($1.5) identified 2 gene sets enriched in both LP and

morphea that are related to IFNg and a responses (Figure 2A-B).
IFNg expression and a Th1/Th17 polarization has been reported in
human cGVHD.6

Most of the canonical pathways identified in both datasets (using
IPA) were involved in the immune response and inflammation. In LP
cGVHD, IFN signaling as well Th1 and Th2 pathways were pre-
dicted to be activated (Figure 2C). Although lichenoid cGVHD is
currently defined by a mixed Th1/Th17 signature, a recent study
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suggested that the Th2 pathway may also be involved.6,7 In mor-
phea cGVHD, IFN signaling as well as Th1 and Th2 pathways were
also predicted to be activated (Figure 2D).

Identification of TREM-1 signaling pathway in LP cGVHD.
A total of 208 DEGs were identified when comparing LP to mor-
phea (up/down 5 183/25) (Figure 2E). Among the 10 most signifi-
cant canonical pathways identified using IPA (Figure 2F), TREM-1
signaling pathway was predicted to be activated with upregulation
of CASP5, TREM-1, CXCL8, DEFB4B, ICAM1, IL10, NLRP10, and
TLR8. TREM-1 (CD354) is a cell surface receptor mainly expressed
on myeloid cells (monocytes, macrophages, and granulocytes),
known to amplify the inflammatory response by acting synergistically
with TLRs.19,20 TREM-1 constitutively associates with DAP1221 for
induction of intracellular signals leading to production of proinflam-
matory cytokines (eg, IL-8/CXCL8 and TNFa), chemokines, and
cell-surface molecule.22 CD177 that has been previously suggested
as a potential ligand for TREM-1 was found to be upregulated in
our DEGs (with a log2FC of 4.77) when comparing LP to mor-
phea.22,23 Several other candidates were suggested as potential
ligands such as HMGB, Hsp70, and PGLYRP1.23

IHC testing and RT-qPCR in patients with LP and mor-
phea cGVHD. To further evaluate TREM-1 activation in LP
cGVHD, we performed immunohistochemical (IHC) testing for
TREM-1 on archival skin lesion samples from LP, morphea, and
CONT (Figure 3A). Abdominal aorta atherosclerosis was used as
positive control. In LP skin lesion samples, TREM-1 was detected in
several mononuclear cells among inflammatory cells in the dermis.
The labeled cells were consistent with macrophages’ morphology.
TREM-1 was also strongly expressed in macrophages of the lipid
core in atherosclerosis. In comparison, no TREM-1 signal was
detected in biopsies obtained from morphea cGVHD and healthy
controls. Overexpression of TREM-1 in LP cGVHD may be due to
either higher abundance of TREM-11 macrophages, without induc-
tion of TREM-1 expression on per cell level, or due to associated
enhanced expression of TREM-1 gene.

Furthermore, increased expression of TREM-1 in LP cGVHD was
validated by means of RT-qPCR. Although TREM-1 showed
increased mRNA expression in morphea cGVHD, significantly
higher expression (P 5 .044) was observed in LP cGVHD (Figure
3B; supplemental Table 3).

Increased expression of TREM-1 has been reported in psoriasis and
atopic dermatitis.24,25 Psoriasis patients showed a decrease in
TREM-1 expression following narrow-band ultraviolet B, anti-TNF,
and anti-IL17 treatments.24 Similarly, in atopic dermatitis patients
subjected to a 12-week treatment with cyclosporine, a significant
decrease in TREM-1 mRNA levels was observed.25 Preclinical stud-
ies showed that TREM-1 inhibition, via synthetic soluble TREM-1

protein mimickers (LP17 and LR12), is effective in treating or pre-
venting inflammatory disorders.23 Altogether, these data suggest
that TREM-1 could be a promising therapeutic target in LP cGVHD.

Our findings suggest that despite distinct clinical features of LP and
morphea, these manifestations of cutaneous cGVHD have signifi-
cant overlap in their molecular transcriptional structure. Additional
studies using samples from posttransplant patients without cGVHD
for comparison might provide further information about the molecular
pathogenesis of cutaneous cGVHD. Finally, important distinctions
were drawn between LP and morphea. We have uncovered the
potential novel involvement of TREM-1 in the pathogenesis of LP
cGVHD, thus providing new insights for future treatment targets.
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