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A splitting method for SDEs with locally Lipschitz drift:

Illustration on the FitzHugh-Nagumo model

Evelyn Buckwar∗∗††, Adeline Samson‡‡, Massimiliano Tamborrino§§, Irene Tubikanec∗

Abstract

In this article, we construct and analyse an explicit numerical splitting method for a class of
semi-linear stochastic differential equations (SDEs) with additive noise, where the drift is allowed
to grow polynomially and satisfies a global one-sided Lipschitz condition. The method is proved
to be mean-square convergent of order 1 and to preserve important structural properties of the
SDE. First, it is hypoelliptic in every iteration step. Second, it is geometrically ergodic and has an
asymptotically bounded second moment. Third, it preserves oscillatory dynamics, such as ampli-
tudes, frequencies and phases of oscillations, even for large time steps. Our results are illustrated
on the stochastic FitzHugh-Nagumo model and compared with known mean-square convergent
tamed/truncated variants of the Euler-Maruyama method. The capability of the proposed split-
ting method to preserve the aforementioned properties may make it applicable within different
statistical inference procedures. In contrast, known Euler-Maruyama type methods commonly fail
in preserving such properties, yielding ill-conditioned likelihood-based estimation tools or compu-
tationally infeasible simulation-based inference algorithms.
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1 Introduction
The aim of this article is to construct and analyse a splitting method for semi-linear stochastic
differential equations (SDEs) of additive noise type

dX(t) = F (X(t))dt+ ΣdW (t) :=
[
AX(t) +N(X(t))

]
dt+ ΣdW (t), X(0) = X0, (1)
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where the diffusion matrix Σ may be degenerate and the drift F satisfies a global one-sided
Lipschitz condition and is allowed to grow polynomially. Coefficients with these properties appear
in many applications [27], ranging from physics [44, 50] over population growth problems [30, 35]
to neuroscience [19, 25, 53] and others. As an illustrative equation from this class of SDEs, we
discuss the stochastic FitzHugh-Nagumo (FHN) model [6, 8, 40], a well-known neuronal model
describing the generation of spikes of single neurons at the intracellular level. This model is given
by the 2-dimensional SDE

d

V (t)

U(t)


︸ ︷︷ ︸

:=X(t)

=

 1
ε

(
V (t)− V 3(t)− U(t)

)
γV (t)− U(t) + β


︸ ︷︷ ︸

:= F (X(t))

dt +

σ1 0

0 σ2


︸ ︷︷ ︸

:=Σ

dW (t), (2)

where σ1 may be zero. The V -component of the system describes the evolution of the membrane
voltage of the neuron and the U -component is a recovery variable. Our aim is to construct a
numerical method for (1), and (2) in particular, which is easy to implement and also applicable
across different disciplines in the broad field of statistical inference. This implies that the method
needs to meet several requirements:

• Statistical applications require strong approximations of SDEs. Thus, we focus on the con-
cept of mean-square convergence [36, 49, 66]. Since it was shown in [28] that the stan-
dard Euler-Maruyama method does not converge in the mean-square sense under the above
assumptions on the drift F , the development of mean-square convergent variants of this
method has received much attention. In particular, tamed [29, 60, 66, 72] and truncated
[21, 27, 42, 43] Euler-Maruyama methods have been proposed. They all aim to control
the unbounded growth arising from the non-globally Lipschitz drift by enforcing a rescaling
modification to the drift and/or diffusion coefficients.

• Simulation-based statistical methods require to generate paths of SDEs as computationally
efficient as possible, see, e.g., [12]. Using explicit numerical methods is a first step to achieve
sufficiently low computational cost. While the aforementioned mean-square convergent vari-
ants of the Euler-Maruyama method are explicit, they commonly fail in preserving important
structural properties of the SDE. The major key to computational efficiency, however, is to
construct explicit methods which are capable to preserve the underlying properties for time
steps as large as possible. This leads to the next point.

• An important issue in the field of (stochastic) numerical analysis is the preservation of
structural properties of the considered SDE by the numerical method used to approximate it.
Geometric Numerical Integration is a well-established framework in this context [22]. Here,
we discuss the preservation of hypoellipticity, geometric ergodicity and oscillatory dynamics
such as amplitudes, frequencies and phases of oscillations:

– The diffusion matrix Σ of SDE (1) may be of full rank or degenerate, where in the latter
case the SDE may be hypoelliptic, depending on the drift F . The case of degenerate
noise naturally occurs in many applications [2, 18, 38, 40, 44, 50], with the hypoelliptic
property ensuring that the solution of the SDE admits a smooth transition density [54].
This means that the noise is propagated through the whole system via the drift of the
SDE, even though it does not directly act on all components. In many inference ap-
proaches using discrete approximations of SDEs, it is necessary that a discrete analogue
of the hypoelliptic property holds at each iteration step. In particular, considering a
discretised time interval with equidistant time steps ∆ = ti − ti−1, the distribution of

the numerical solution X̃(ti) of (1) at time ti given the previous value X̃(ti−1) must
admit a smooth density, a property that we term 1-step hypoellipticity. It is known
that Euler-Maruyama type methods do not satisfy this if the SDE is not elliptic but
only hypoelliptic. Thus, they yield ill conditioned likelihood-based inference methods
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[18, 46, 56]. Higher-order Taylor approximation methods [36] may be 1-step hypoellip-
tic [18]. However, since such methods may neither be mean-square convergent in the
case of superlinearly growing coefficients [28], nor preserve other structural properties,
they may lead again to ill-posed statistical problems.

– The analysis of the asymptotic behaviour of the process is of further crucial interest. In
particular, if SDE (1) possesses an underlying Lyapunov structure, it may be geometri-
cally ergodic [44]. This property ensures that the distribution of the process converges
exponentially fast to a unique limit for any starting value X0, and has two important
statistical implications. First, the choice of the initial value X0 is negligible since its
impact on the distribution of the process decreases exponentially fast. This is relevant,
especially when the process is only partially observed, since X0 is usually not known.
Second, there is a correspondence of “time averages along trajectories” and “space aver-
ages across trajectories” of geometrically ergodic systems, see, e.g., [2, 17]. This means
that quantities related to the distribution of the process can be estimated from a sin-
gle path simulated over a sufficiently large time horizon instead of relying on repeated
simulations of trajectories. For the importance of this feature in statistical inference
algorithms, we refer, e.g., to [12]. Euler-Maruyama type methods may not provide these
features as they tend to lose the Lyapunov structure of the SDE [2, 44]. In particular,
here we illustrate that they react sensitively to the initial condition X0, and that they
may yield poor approximations of the underlying invariant density of the process.

– The last structural properties we are focusing on are features linked to oscillatory dy-
namics such as amplitudes, frequencies and phases of oscillations. Already in the de-
terministic scenario it has been observed that Euler type methods may not preserve
amplitudes and frequencies of oscillations, see, e.g., [13, 22]. Similar findings have been
made for Euler-Maruyama type methods in the stochastic case. For example, it has
been proved that the Euler-Maruyama method does not preserve the growth rate of the
second moment of linear stochastic harmonic oscillators, overshooting the amplitudes
of the underlying oscillations, even for arbitrarily small time steps ∆ [65]. Similar non-
preserving results of oscillation amplitudes have been observed for non-linear, ergodic
and higher-dimensional stochastic oscillators [2, 14, 16]. Taming/truncating perturba-
tions do not improve this behaviour. Even worse, taming perturbations may also lead
to a non-preservation of frequencies of oscillations [32, 33]. This lack of amplitude and
frequency preservation is also confirmed by our numerical experiments on the FHN
model (2). Moreover, we find that Euler-Maruyama type methods may also not pre-
serve phases of oscillations. This poor behaviour is linked to the non-preservation of
geometric ergodicity.

Here, we propose to apply the splitting technique, an approach that addresses all previously
listed issues. The general idea of this method is to split the SDE of interest into exactly solvable
subequations, to derive their solutions, and to compose them in a suitable way. We refer to
[7, 45] for a thorough discussion of splitting methods for ordinary differential equations (ODEs)
and to [1, 2, 3, 9, 11, 14, 38, 48, 51, 55, 61] for articles considering extensions to SDEs. Note
that it is often possible to split the differential equation under consideration into different sets of
subequations, the choice of the most useful set depending on the problem to be solved. For the
class of SDEs with additive noise, where the drift F consists of a linear and a non-linear term, i.e.,
F (X(t)) = AX(t)+N(X(t)), as in Equation (1), the idea is to exclude the nonlinear term N(X(t))
into a deterministic differential subequation and to treat the remaining linear term AX(t) via a
stochastic differential subequation. In this article, we exploit properties of the exact solutions of
both subequations, as illustrated on the FHN model (2). When N is globally Lipschitz continuous
and uniformly bounded, this idea has been applied to the Jansen and Rit neural mass model in [2],
and for locally Lipschitz N it has been applied to the Allen-Cahn equation in [11].

We illustrate that splitting methods may be able to deal with mean-square convergence issues
arising from superlinearly growing coefficients. In particular, in Lemma 2, we prove the bound-
edness of the moments of the proposed splitting method. This result is the key to establish its
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mean-square convergence. In Theorem 2, we use Tretyakov’s and Zhang’s “Fundamental mean-
square convergence theorem for SDEs with locally Lipschitz coefficients” [66] to prove that the
splitting method converges with mean-square order 1. This is in agreement with the convergence
rate of comparable known splitting methods in the globally Lipschitz scenario [2, 3, 48], and with
standard methods such as the Euler-Maruyama method in the case of additive noise [36]. More-
over, we address the fact that splitting methods may also be able to tackle the problems arising
from degenerate noise structures. In particular, in Theorem 3, we show that the proposed splitting
method is 1-step hypoelliptic and yields non-degenerate multivariate normal transition distribu-
tions for any time step ∆, provided that the stochastic subequation of the splitting framework is
chosen to be hypoelliptic. This may be beneficial for likelihood-based inference. Furthermore, in
Theorem 4, we prove that the constructed method satisfies a discrete Lyapunov condition, and is
thus geometrically ergodic, for any time step ∆. This result requires an assumption on the solution
of the deterministic subequation defined via N(X(t)) and that

∥∥eA∆
∥∥ < 1, where the matrix norm

is induced by the Euclidean norm. Moreover, in Corollary 1, we show that the second moment of
the splitting method is asymptotically bounded by a constant which is independent of the time
step size ∆ and the number of time steps i. This result holds if, in addition, the logarithmic norm
[62, 64] of the matrix A is strictly negative. In the one-dimensional case, some of the involved
expressions simplify such that, in Corollary 2, we obtain a precise closed-form (asymptotic) bound
of the second moment of the proposed splitting method. This bound is illustrated on a cubic
one-dimensional model problem with drift given by F (X(t)) = −X3(t) [28, 44]. In addition, we
illustrate the proposed splitting method on the stochastic FHN model (2) and show through a
variety of numerical experiments that it preserves the qualitative dynamics of neuronal spiking,
in particular, amplitudes, frequencies and phases of the underlying oscillations even for large time
steps ∆.

The article is organised as follows. In Section 2, we introduce necessary mathematical prelim-
inaries and notations, and we discuss equations of interest and relevant properties. In Section 3,
we present the proposed splitting method. In Section 4, we establish its mean-square conver-
gence. In Section 5, we prove its 1-step hypoellipticity, establish its geometric ergodicity, derive an
(asymptotic) second moment bound and illustrate these results on a one-dimensional cubic model
problem. In Section 6, we apply the proposed splitting approach to the stochastic FHN model (2).
In Section 7, we provide a variety of numerical experiments, illustrating the theoretical results and
reporting comparisons with different tamed/truncated variants of the Euler-Maruyama method.
Conclusions are given in Section 8.

2 Model and properties

Throughout, the following notations are used.

Notation 1. Let x, y ∈ Rd be two generic vectors. Then xl denotes the l-th entry of x, x> the
transpose of x, ‖x‖ = (x2

1 + . . .+x2
d)

1/2 the Euclidean norm of x and (x, y) = x1y1 + . . . + xdyd
the scalar product of x and y. Further, let A,B ∈ Rd×d be two generic matrices. Then alj
denotes the component in the l-th row and j-th column of A, A> the transpose of A, 0d the d-
dimensional zero vector and Id the d × d-dimensional identity matrix. Moreover, we denote by
‖A‖ =

√
λmax(A>A) the matrix norm which is induced by the Euclidean norm, where λmax(A) is

the largest eigenvalue of A, and with µ(A) = λmax((A+ A>)/2) the real-valued logarithmic norm
which results from the Euclidean norm and its induced matrix norm.

Let (Ω,F ,P) be a complete probability space with filtration (F(t))t∈[0,T ]. Further, let (W (t))t∈[0,T ]

be am-dimensional Wiener process defined on that space and adapted to (F(t))t∈[0,T ]. We consider
the d-dimensional autonomous SDE of additive noise type (1)

dX(t) = F (X(t))dt+ ΣdW (t) :=
[
AX(t) +N(X(t))

]
dt+ ΣdW (t), X(0) = X0,

where t ∈ [0, T ], T > 0, A ∈ Rd×d, Σ ∈ Rd×m, F : Rd → Rd and N : Rd → Rd are locally
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Lipschitz continuous. The initial value X0 is an F(0)-measurable Rd-valued random variable

which is independent of (W (t))t∈[0,T ] and such that E
[
‖X0‖2p

]
<∞ for all p ≥ 1.

Conditions required to ensure the existence of a unique strong solution of SDE (1), which is
regular in the sense of [34], i.e., it is defined on the entire interval [0, T ] such that sample paths
do not blow up to infinity in finite time, are, e.g., discussed in [4, 34, 37, 41]. Here, we follow the
setting in [29, 32, 66] and suppose that the drift satisfies a global one-sided Lipschitz condition
and is allowed to grow polynomially at infinity. It suffices to place these conditions on N :

Assumption 1. (A1) The function N is globally one-sided Lipschitz continuous, i.e., there exists
a constant c1 > 0 such that

(x− y,N(x)−N(y)) ≤ c1 ‖x− y‖2 , ∀ x, y ∈ Rd.

(A2) The function N grows at most polynomially, i.e., there exist constants c2 > 0 and χ ≥ 1
such that

‖N(x)−N(y)‖2 ≤ c2(1 + ‖x‖2χ−2
+ ‖y‖2χ−2

)||x− y||2, ∀ x, y ∈ Rd.

Assumption 1 also ensures the finiteness of the moments of the solution of (1) [24, 34, 66, 72]. In
particular, there exists a constant K(T, p) > 0 such that

E
[

sup
0≤t≤T

‖X(t)‖2p
]
≤ K(T, p)

(
1 + E

[
‖X0‖2p

])
. (3)

Moreover, the process (X(t))t∈[0,T ] is a Markov process. Denoting B(Rd) the Borel sigma-

algebra on Rd, its transition probability is defined as

Pt(A, x) := P (X(t) ∈ A|X(0) = x) , (4)

where A ∈ B(Rd). This corresponds to the probability that the process reaches a Borel set A ⊂ Rd
at time t, provided that it started in x ∈ Rd at time 0 < t.

2.1 Noise structure: ellipticity and hypoellipticity

Depending on the noise structure, two classes of models are obtained. The first class is called
elliptic and corresponds to SDEs with a non-degenerate diffusion matrix, i.e., ΣΣ> is of full rank.
In particular, we consider the case d = m and a diagonal matrix Σ = diag[σ1, . . . , σd] with entries
σj > 0 for j = 1, . . . , d.

The second class corresponds to SDEs with degenerate diffusion matrix, as it naturally occurs
in many application models. Following the notion in [18], we consider m = d− 1 and Σ given by

Σ :=

0>d−1

Γ

 , (5)

where Γ = diag[σ1, . . . , σd−1] ∈ R(d−1)×(d−1) is a diagonal matrix with entries σj > 0 for
j = 1, . . . , d− 1. The first component of the solution (X(t))t∈[0,T ] is called smooth, since it is
not directly affected by the noise. The remaining d − 1 components are called rough, because
the noise acts directly on them. In this scenario, SDE (1) is often hypoelliptic. It means that
the transition probability (4) admits a smooth density, even though ΣΣ> is not of full rank.
This is the case when the SDE satisfies the weak Hörmander condition, based on the concept of
Lie-brackets [54]. In [18], it was shown that a necessary and sufficient condition for the SDE to
meet the weak Hörmander condition is that at least one of the rough coordinates of the process
(X(t))t∈[0,T ] appears in the first component F1(X(t)) of the drift, that is

∀x ∈ Rd,
(
∂rF1(x), σj

)
6= 0 for at least one j = 1, . . . , d− 1, (6)
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where σj denotes the j-th column vector of Γ and ∂rF1(x) := (∂x2
F1(x), . . . , ∂xdF1(x))> is the

vector of partial derivatives of the first entry of the drift with respect to the rough components.
This setting can be extended to multiple smooth coordinates by requiring that at least one of the
rough coordinates enters those components of the drift, where noise does not directly act upon.

2.2 Lyapunov structure: geometric ergodicity

Here, a particular interest lies in SDEs of type (1) where the drift F (X(t)) satisfies the following
dissipativity condition

(F (x), x) ≤ α− δ ‖x‖2 , ∀ x ∈ Rd, (7)

where α, δ > 0. Condition (7) ensures that the function L : Rd → [1,∞) defined by L(x) := 1 + ‖x‖2
is a Lyapunov function for (1), see [44]. That is L(x)→∞ as ‖x‖ → ∞, and there exist constants
ρ, η > 0 such that

L{L(x)} ≤ −ρL(x) + η, (8)

where L is the generator of the SDE given by

L{g(x)} =

d∑
l=1

Fl(x)
∂g

∂xl
(x) +

1

2

d∑
l,j=1

[
ΣΣ>

]
lj

∂2g

∂xl∂xj
(x),

for sufficiently smooth functions g : Rd → R. The existence of a Lyapunov function satisfying (8)
is the key to establish the geometric ergodicity of the solution of (1). This property means that the
distribution of the Markov process (X(t))t∈[0,T ] converges exponentially fast to a unique invariant
distribution π, satisfying

π(A) =

∫
Rd

Pt(A, x)π(dx), ∀ A ∈ B(Rd), t ∈ [0, T ].

In particular, if SDE (1) is elliptic, the existence of a Lyapunov function meeting Condition (8)
suffices to establish the geometric ergodicity of (X(t))t∈[0,T ]. If SDE (1) is not elliptic, the process
is geometrically ergodic, if, in addition to fulfilling Condition (8), it is hypoelliptic and satisfies
the irreducibility condition Pt(A, x) > 0 for all open sets A ∈ B(Rd) and x ∈ Rd. The reader is
referred to [44] and the references therein for further details.

3 Splitting method

Consider a discretised time interval [0, T ] with equidistant time steps ∆ = ti − ti−1 ∈ (0,∆0],

∆0 ∈ (0, 1), i = 1, . . . , n, where t0 = 0 and tn = T . Throughout, we denote by (X̃(ti))i=0,...,n a

numerical solution of SDE (1), approximating the process (X(t))t∈[0,T ] at ti, where X̃(0) := X0.
A numerical splitting solution is obtained based on the following three steps [7, 45]:

(i) Split the equation of interest into exactly solvable subequations, which may consist of deter-
ministic and/or stochastic dynamical systems;

(ii) Derive the exact solutions of these subequations;

(iii) Compose the derived solutions in a proper way.

In this section, the following splitting strategy is proposed for SDEs of type (1).
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Step (i): Choice of the subequations To make use of the treatable underlying stochastic linear
dynamics, we propose to split Equation (1) into the following two subequations

dX [1](t) = AX [1](t)dt+ ΣdW (t), X [1](0) = X
[1]
0 , t ∈ [0, T ], (9)

dX [2](t) = N(X [2](t))dt, X [2](0) = X
[2]
0 , t ∈ [0, T ]. (10)

This splitting strategy is an extension of the method presented in [2], where the authors con-
sider a globally Lipschitz Hamiltonian type equation with uniformly bounded non-linear terms.
Our method considers a more general class of coefficients N(X(t)), including functions which are
allowed to grow polynomially at infinity according to Assumption 1.

Step (ii): Exact solution of the subequations In the following, we discuss the subequations (9)

and (10), and denote by ϕ
[k]
t (X0), k = 1, 2, their exact solutions (flows) at time t and starting from

X0. The first subequation (9) is a linear SDE. It can be solved exactly, even when the dimension
d is large and independent of whether the equation has an elliptic or hypoelliptic noise structure
[5, 41]. In particular, the exact solution of (9) is given by

X [1](t) = eAtX
[1]
0 +

t∫
0

eA(t−s)Σ dW (s). (11)

The Itô integral in (11) is normally distributed with mean 0d. Moreover, using Itô’s isometry
and the fact that the components of the Wiener process are independent, its d × d-dimensional
covariance matrix is given by

C(t) =

t∫
0

eA(t−s)ΣΣ>(eA(t−s))> ds. (12)

Hence, paths of (9) can be simulated exactly at the discrete time points ti. In particular,

ϕ
[1]
∆ (X [1](ti−1)) := X [1](ti) = eA∆X [1](ti−1) + ξi−1, i = 1, . . . , n, (13)

where the ξi−1 are independent and identically distributed d-dimensional Gaussian vectors with
mean 0d and covariance matrix C(∆) given by (12).

Due to (A1) of Assumption 1, the global solution of the second subequation (10) exists, i.e., it
is defined on the entire interval [0, T ] such that it does not blow up to infinity in finite time [26].
At the discrete time points ti, we have

ϕ
[2]
∆ (X [2](ti−1)) := X [2](ti) = f(X [2](ti−1); ∆), i = 1, . . . , n, (14)

where f : Rd → Rd denotes the exact solution of Equation (10).

Remark 1. To establish the boundedness of the moments (Lemma 2), the Lyapunov condition
(Theorem 4) and the asymptotic second moment bound (Corollary 1 and 2), we exploit properties
of the exact solution f of Equation (10). These will be illustrated on a cubic model problem and
the FHN model (2) in Section 5 and Section 6, respectively. However, note that some of the results
presented in the following are formulated with conditions not involving f directly (see Lemma 1 on
the mean-square consistency and Theorem 3 on the 1-step hypoellipticity). Therefore, these results
would also hold when a numerical method to approximate the solution of Equation (10) is used.
We refer to [23, 26] for an exhaustive discussion of numerical methods for locally Lipschitz ODEs.

Step (iii): Composition of the exact solutions To finally obtain a numerical solution of SDE (1),
the exact solutions (13) and (14) of the subequations (9) and (10) are composed in every iteration
step. In particular, we investigate the following explicit method

X̃LT(ti) =
(
ϕ

[1]
∆ ◦ ϕ

[2]
∆

) (
X̃LT(ti−1)

)
= eA∆f(X̃LT(ti−1); ∆) + ξi−1, (15)
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which is based on the Lie-Trotter (LT) composition approach [67].
Note that the matrix exponential eA∆ and the covariance matrix C(∆) required in (15) have

to be precomputed only once for a given time step ∆, and the normal random variables ξi−1,
i = 1, . . . , n, can be obtained using a Cholesky decomposition of the covariance matrix C(∆).

4 Mean-square convergence

In this section, mean-square convergence of order 1 is proved for the constructed splitting method.
It has been observed in the globally Lipschitz case that splitting methods have the same conver-
gence order as the standard Euler-Maruyama method, i.e., order 1 in the case of additive noise,
see, e.g., [2, 3, 48]. We extend this result to the one-sided Lipschitz case.

Throughout this section, K denotes a generic constant, which may depend on T , p and ∆0,
but is independent of ∆ and i.

4.1 Required background

To establish mean-square convergence, we rely on Theorem 2.1 of [66], which provides an extension
of Milstein’s fundamental theorem on the mean-square order of convergence for globally Lipschitz
coefficients [47] (see also Theorem 1.1 in [49]) to the considered setting specified in Assumption 1.
To facilitate the illustration of our results, we recall this statement in Theorem 1 below, after
defining the required ingredients of mean-square consistency and boundedness of moments.

Let Xti−1,x(ti) denote the true solution at time ti starting from x at time ti−1, i.e., X(ti−1) = x,

and X̃ti−1,x(ti) the one-step approximation used to construct a numerical solution X̃(ti). In
particular, the one-step approximation of the numerical method discussed in the previous section
is defined by (15), where X̃LT(ti−1) is replaced by x.

Definition 1. The one-step approximation X̃ti−1,x(ti) of a numerical solution X̃(ti) of SDE (1) is
mean-square consistent of order q2 − 1/2, if for some p ≥ 1, there exist α ≥ 1, ∆0 > 0 and K > 0
such that for arbitrary ti, i = 1, . . . , n, x ∈ Rd, and all ∆ ∈ (0,∆0], it holds that∥∥∥E [Xti−1,x(ti)− X̃ti−1,x(ti)

]∥∥∥ ≤ K
(

1 + ‖x‖2α
)1/2

∆q1 ,(
E
[∥∥∥Xti−1,x(ti)− X̃ti−1,x(ti)

∥∥∥2p
])1/(2p)

≤ K
(

1 + ‖x‖2αp
)1/(2p)

∆q2 ,

with q2 ≥ 1/2 and q1 ≥ q2 + 1/2.

Besides mean-square consistency, the boundedness of the moments of the numerical solution has
to be proved. In the globally Lipschitz case, this is guaranteed by the linear growth bounds of the
coefficients.

Definition 2. A numerical solution X̃(ti) of SDE (1) has bounded moments, if for any p ≥ 1, there
exist ∆0 > 0 and K > 0 such that for all ∆ ∈ (0,∆0] and i = 0, . . . , n, it holds that

E
[∥∥∥X̃(ti)

∥∥∥2p
]
≤ K

(
1 + E

[
‖X0‖2p

])
.

Based on the above defined ingredients, the following theorem guarantees mean-square conver-
gence.

Theorem 1 (Theorem 2.1 in Tretyakov and Zhang (2013) [66]). Let X̃(ti) denote a numerical solu-

tion of SDE (1) at time ti starting at X0, constructed using the one-step approximation X̃ti−1,x(ti).
Further, let Assumption 1 hold. If

(i) The one-step approximation X̃ti−1,x(ti) is mean-square consistent of order q2 − 1/2 in the
sense of Definition 1.

8



(ii) The numerical method X̃(ti) has bounded moments in the sense of Definition 2.

Then the numerical method X̃(ti) is mean-square convergent of order q2− 1/2, i.e., for any n and
i = 0, . . . , n, the following inequality holds:(

E
[∥∥∥X(ti)− X̃(ti)

∥∥∥2p
])1/(2p)

≤ K
(

1 + E
[
‖X0‖2pc

])1/(2p)

∆q2−1/2,

where K > 0 and c ≥ 1.

4.2 Mean-square convergence of the splitting method

In the following, we prove the required Conditions (i) and (ii) of Theorem 1 for the constructed
splitting method.

Condition (i) can be proved in a similar fashion as Lemma 2.1 in [48] (globally Lipschitz
case) and Lemma 3.2 in [66, 72] (locally Lipschitz case). These proofs rely on the mean-square
consistency of the Euler-Maruyama method, which is given by

X̃EM(ti) = X̃EM(ti−1) + F (X̃EM(ti−1))∆ + Σ
√

∆ψi−1, (16)

where the ψi−1 ∼ N (0m, Im), i = 1, . . . , n, are independent and identically distributed m-
dimensional standard Gaussian vectors [36, 49].

Lemma 1 (Mean-square consistency). Let X̃LT
ti−1,x(ti) be the one-step approximation of the splitting

method defined through (15) and let Assumption 1 hold. Further, assume that the drift F (x) has
continuous first and second order derivatives in x which satisfy a polynomial growth condition of
the form (A2). Then X̃LT

ti−1,x(ti) is mean-square consistent of order 1 in the sense of Definition 1.
In particular, q1 = 2 and q2 = 3/2.

Proof. Consider first the one-step approximation

X̃EM
ti−1,x(ti) = x+ F (x)∆ + Σ

√
∆ψi−1 (17)

of the Euler-Maruyama method (16) applied to SDE (1). Since we consider the case of additive
noise and (A2) holds for the drift F (x) = Ax+N(x) by assumption of Lemma 1, it follows from
the proof of Lemma 3.2 in [72] that (17) satisfies Definition 1 with q1 = 2, q2 = 3/2. Thus, it
suffices to compare the splitting and Euler-Maruyama methods.

Since the drift of the stochastic subequation (9) of the splitting framework grows linearly, using
again Lemma 3.2 in [72] (see also Section 1.1.5 in [49]), its solution can be expressed as

ϕ
[1]
∆ (x) = x+Ax∆ + Σ

√
∆ψi−1 + rs(x,∆), (18)

where rs(x,∆) satisfies the inequalities of Definition 1 for α = 1, q1 = 2 and q2 = 3/2. In
particular, we have that

‖E [rs(x,∆)]‖ ≤ K
(

1 + ‖x‖2
)1/2

∆2,(
E
[
‖rs(x,∆)‖2p

])1/(2p)

≤ K
(

1 + ‖x‖2p
)1/(2p)

∆3/2.

(19)

Similarly, since N(x) satisfies (A2), the solution of the deterministic subequation (10) of the
splitting framework can be expressed as

ϕ
[2]
∆ (x) = x+N(x)∆ + rd(x,∆), (20)

where

‖rd(x,∆)‖ ≤ K
(

1 + ‖x‖2α
)1/2

∆2, (21)

9



for some α ≥ 1. The one-step approximation of the Lie-Trotter splitting method is then obtained
by composing the above expressions (18) and (20), yielding

X̃LT
ti−1,x(ti) = (ϕ

[1]
∆ ◦ ϕ[2]

∆ )(x) = x+N(x)∆ + rd(x,∆) +Ax∆ +AN(x)∆2 +Ard(x,∆)∆

+Σ
√

∆ψi−1 + rs
(
x+N(x) + rd(x,∆),∆

)
.

Thus, the difference between the splitting and Euler-Maruyama methods becomes

rLT(x,∆) := X̃LT
ti−1,x(ti)− X̃EM

ti−1,x(ti)

= rd(x,∆) +AN(x)∆2 +Ard(x,∆)∆ + rs
(
x+N(x) + rd(x,∆),∆

)
.

Using (A2) and the inequalities (19) and (21), it follows that rLT(x,∆) also satisfies the inequalities
in Definition 1 for q1 = 2, q2 = 3/2 and some α ≥ 1. This concludes the proof.

Now, we establish the boundedness of the moments of the splitting method. Intuitively, this
is guaranteed by the use of the global exact solution of the locally Lipschitz ODE (10), which
is defined on the entire interval [0, T ] without any explosion occuring in finite time. Thus, the
iterative composition of this function with the solution of the linear SDE via the Lie-Trotter
method (15) does not cause an explosion of the moments in finite time either. The formal proof
of this result, provided in Lemma 2, is done in the spirit of the proof of Proposition 3 in [11].

Lemma 2 (Boundedness of moments). Let X̃LT(ti) be the splitting method defined through (15)

and let Assumption 1 hold. Then X̃LT(ti) is mean-square bounded in the sense of Definition 2.

Proof. Consider the linear SDE

dZ(t) = AZ(t)dt+ ΣdW (t), Z(0) = Z0 = 0d.

Its exact solution is given by

Z(t) =

t∫
0

eA(t−s)ΣdW (s),

where Z(t) is normally distributed with mean vector 0d and covariance matrix C(t) as defined in
(12). Consequently, the moments of Z(t) are bounded, i.e., for any p ≥ 1 there exists KZ(T, p) > 0
such that

E
[

sup
0≤t≤T

‖Z(t)‖2p
]
≤ KZ(T, p). (22)

Now, define the process R(ti) := X̃LT(ti) − Z(ti). It suffices to prove the boundedness of the
moments of R(ti). Note that in a discretised regime we have that Z(ti) = eA∆Z(ti−1) + ξi−1.
Thus,

‖R(ti)‖ =
∥∥∥eA∆

(
f(X̃LT(ti−1); ∆)− Z(ti−1)

)∥∥∥
=

∥∥∥eA∆
(
f(R(ti−1) + Z(ti−1); ∆)− f(Z(ti−1); ∆) + f(Z(ti−1); ∆)− Z(ti−1)

)∥∥∥ .
Using that

∥∥eA∆x
∥∥ ≤ ∥∥eA∆

∥∥ ‖x‖ ≤ eµ(A)∆ ‖x‖ for all x ∈ Rd, we obtain

‖R(ti)‖ ≤ eµ(A)∆ ‖f(R(ti−1) + Z(ti−1); ∆)− f(Z(ti−1); ∆)‖
+eµ(A)∆ ‖f(Z(ti−1); ∆)− Z(ti−1)‖ .

Since the function N : Rd → Rd satisfies (A1), using the continuous Gronwall Lemma, the
function f : Rd → Rd fulfils the following global Lipschitz condition

‖f(x; ∆)− f(y; ∆)‖ ≤ ec1∆ ‖x− y‖ , ∀ x, y ∈ Rd,
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where the constant c1 is the same as in Assumption (A1), see, e.g., Theorem 1.2.17 in [26].
Moreover, using the Taylor series expansion (20) f(x; ∆) = x + N(x)∆ + rd(x,∆), and applying
(A2) and (21), we obtain

‖f(x; ∆)− x‖ = ‖∆N(x) + rd(x,∆)‖ ≤ ∆ ‖N(x)‖+ ‖rd(x,∆)‖ ≤ c̄(1 + ‖x‖ĉ)∆,

where c̄ and ĉ are positive constants. Thus, defining c̃ := max{|µ(A)|, c1} > 0, we get that

‖R(ti)‖ ≤ ec̃∆ ‖R(ti−1)‖+ ec̃∆∆c̄
(
1 + ‖Z(ti−1)‖ĉ

)
.

Now, we can perform back iteration, obtaining

‖R(ti)‖ ≤ ec̃ti ‖R0‖+ c̄∆

i∑
k=1

ec̃k∆
(

1 + ‖Z(ti−k)‖ĉ
)

≤ ec̃T ‖X0‖+ c̄
(

1 + sup
0≤l≤i−1

‖Z(tl)‖ĉ
)

∆

i∑
k=1

ec̃k∆,

where we used that R0 = X0, since Z0 = 0d. Using that

∆

i∑
k=1

ec̃k∆ = (ec̃ti − 1)
∆ec̃∆

ec̃∆ − 1
≤ (ec̃T − 1)

∆0e
c̃∆0

ec̃∆0 − 1
, ∀ ∆ ∈ (0,∆0],

we get that

‖R(ti)‖ ≤ ec̃T ‖X0‖+ c̄(ec̃T − 1)
∆0e

c̃∆0

ec̃∆0 − 1

(
1 + sup

0≤l≤i−1
‖Z(tl)‖ĉ

)
.

Thus, there exists a constant K(T,∆0) > 0 such that

‖R(ti)‖ ≤ K(T,∆0)
(

1 + ‖X0‖+ sup
0≤l≤i−1

‖Z(tl)‖ĉ
)
.

Considering the 2p-th moments and using (22) concludes the proof.

Based on the above results, we establish the mean-square convergence of the splitting method
in the following theorem.

Theorem 2 (Mean-square convergence). Let X̃LT(ti) be the splitting method defined through (15)

and let the assumptions of Theorem 1, Lemma 1 and Lemma 2 hold. Then X̃LT(ti) is mean-square
convergent of order 1.

Proof. The result is a direct consequence of Theorem 1, Lemma 1 and Lemma 2.

Note that, in contrast to ODEs [22], the mean-square convergence order of splitting methods
for SDEs cannot be increased by using compositions based on fractional steps. Indeed, to achieve
this in the stochastic scenario, higher-order stochastic integrals would be required [48]. Thus, the
splitting method

X̃S(ti) =
(
ϕ

[2]
∆/2 ◦ ϕ

[1]
∆ ◦ ϕ

[2]
∆/2

) (
X̃S(ti−1)

)
= f

(
eA∆f

(
X̃S(ti−1); ∆/2

)
+ ξi−1; ∆/2

)
, (23)

which is based on the Strang (S) composition approach [63], is expected to also have mean-square
order 1. Nevertheless, it has been observed that Strang methods may perform better than Lie-
Trotter methods in numerical experiments, possibly due to the symmetry of this composition
method, see, e.g., [2, 13, 14, 68]. Thus, the Strang method (23) is also considered in the numerical
experiments reported in Section 7.
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5 Structure preservation

The mean-square convergence discussed in the previous section is a limit result for the time dis-
cretisation step ∆ going to zero over a finite interval. This result does not carry any information
about the quality of the numerical method under the use of strictly positive time steps ∆, as always
required when implementing any numerical method. In the following, we discuss the preservation
of important structural properties, focusing on hypoellipticity and ergodicity.

5.1 Preservation of noise structure and 1-step hypoellipticity

To obtain a discrete analogue of the transition probability (4) introduced in Section 2, we define

the k-step transition probability of a numerical solution X̃(ti) of SDE (1) as follows

P̃tk(A, x) := P(X̃(tk) ∈ A|X̃(0) = x), (24)

where A ∈ B(Rd) and x ∈ Rd. Now, assume that SDE (1) is hypoelliptic, i.e., its transition
probability (4) has a smooth density even though ΣΣ> is not of full rank, see Section 2.1. We
introduce a discrete version of this property in the subsequent definition.

Definition 3 (k-step hypoellipticity). Let X̃(ti) be a numerical solution of (1) and k ∈ N be the

smallest k such that its transition probability (24) has a smooth density. Then, X̃(ti) is called
k-step hypoelliptic.

This means that the numerical method propagates the noise into the smooth component after k
iteration steps. The preservation of this property is not an issue when using the numerical method
to simulate paths of the SDE over a large enough time horizon, as standard methods usually
satisfy it for some k. For example, the Euler-Maruyama method has been observed to be 2-step
hypoelliptic, see, e.g., Corollary 7.4 in [44].

However, the case k = 1, where we also use the notation

P̃∆(A, x) := P(X̃(ti) ∈ A|X̃(ti−1) = x), (25)

is of crucial relevance when using the numerical method within statistical applications. For ex-
ample, in the field of likelihood-based parameter estimation, explicit numerical methods are used
to approximate transition densities [18, 46, 56]. In this regard, a particular interest lies in sit-

uations where (25) corresponds to a non-degenerate multivariate normal distribution, i.e., X̃(ti)

given X̃(ti−1) is normally distributed with a covariance matrix that reflects the propagation of
the noise to the smooth components. This is not the case for the Euler-Maruyama method (16),
as it yields a degenerate multivariate normal transition distribution with conditional covariance
matrix given by

Cov(X̃EM(ti)|X̃EM(ti−1)) = ∆ΣΣ>.

Note that the same degenerate covariance matrix is obtained by tamed/truncated variants of the
Euler-Maruyama method (see Section 7.1).

In contrast, the conditional covariance matrix of the Lie-Trotter splitting (15) coincides with
C(∆), as defined in (12). Thus, if the stochastic linear subequation (9) of the splitting framework is
hypoelliptic, the proposed splitting method yields a non-degenerate multivariate normal transition
distribution.

Assumption 2. The matrix A is such that SDE (9) is hypoelliptic.

Theorem 3 (1-step hypoellipticity). Let X̃LT(ti) be the splitting method defined through (15) and

let Assumption 2 hold. Then, X̃LT(ti) is 1-step hypoelliptic according to Definition 3. More-

over, X̃LT(ti) given X̃LT(ti−1) admits a non-degenerate normal distribution with mean vector and
covariance matrix given by

E
[
X̃LT(ti)|X̃LT(ti−1)

]
= eA∆f(X̃LT(ti−1); ∆), Cov(X̃LT(ti)|X̃LT(ti−1)) = C(∆),

respectively, where C(∆) is defined in (12).
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Proof. The fact that X̃LT(ti) given X̃LT(ti−1) is normally distributed with the corresponding mean
vector and covariance matrix is an immediate consequence of formula (15), recalling that the ξi
are Gaussian random vectors with null mean and covariance matrix C(∆). Moreover, the linear
SDE (9) is hypoelliptic by assumption. Thus, its solution (X [1](t))t∈[0,T ] has conditional covariance

matrix C(t) = Cov(X [1](t)|X [1]
0 ) (12) which is of full rank. Since the covariance matrix of the Lie-

Trotter splitting equals C(∆), this method is 1-step hypoelliptic according to Definition 3, and
thus the normal distribution is non-degenerate.

Remark 2. Note that the 1-step hypoellipticity of the Lie-Trotter splitting (15) and the fact that this
method yields a non-degenerate normal transition distribution according to Theorem 3 hold without
requiring any conditions on the nonlinearity of SDE (1). Moreover, even though the transition
distribution of the Strang splitting (23) is not explicitly available in general, this numerical method
is expected to be 1-step hypoelliptic too, since it also benefits from the covariance matrix C(∆) (12).

5.2 Preservation of Lyapunov structure and geometric ergodicity

We now assume that SDE (1) is geometrically ergodic. The main task to establish the geometric er-
godicity of a numerical solution of (1) is to prove a discrete analogue of the Lyapunov condition (8)
introduced in Section 2.2.

Definition 4 (Discrete Lyapunov condition). Let L be a Lyapunov function for SDE (1). A nu-

merical solution X̃(ti) of (1) satisfies the discrete Lyapunov condition if there exist ρ̃ ∈ (0, 1) and
η̃ ≥ 0 such that

E
[
L(X̃(ti))|X̃(ti−1)

]
≤ ρ̃L(X̃(ti−1)) + η̃, ∀ i ∈ N.

Analogously to the continuous case, this condition implies geometric ergodicity of the numerical
method if SDE (1) is elliptic. If the equation is not elliptic, in addition to the discrete Lyapunov
condition, k-step hypoellipticity and a discrete irreducibility condition are required. For further
details, the reader is referred to [2, 44].

Euler-Maruyama type methods do not preserve this property, especially when the drift of SDE
(1) is only locally Lipschitz continuous. In particular, the problem does not lie in the preservation
of hypoellipticity and irreducibility, but in preserving the Lyapunov structure [44]. Consider, for
example, the cubic one-dimensional SDE

dX(t) = −X3(t)dt+ σdW (t), X(0) = X0. (26)

Since F (x)x = −x4 ≤ 1 − x4 ≤ 2 − 2x2, this SDE satisfies the dissipativity condition (7). Thus,
L(x) = 1 + x2 is a Lyapunov function satisfying (8) and the process (X(t))t∈[0,T ] is geometrically
ergodic. However, it is shown in Lemma 6.3 of [44] that, if E[X2

0 ] ≥ 2/∆, the second moment of
the Euler-Maruyama method goes to infinity as the time ti grows, since

E
[(
X̃EM(ti)

)2
]
≥ E[X2

0 ] + ti.

Thus, for any fixed time step ∆ > 0 (even when it is chosen to be arbitrarily small), one can
find a starting value X0 such that the Euler-Maruyama method does not converge to a unique
invariant distribution. This also means that for any ∆ > 0 and X0, there is a positive probability
of blow-up, as discussed in [26].

In contrast, splitting methods may preserve the Lyapunov structure [2, 10, 39]. This is also

proved for the proposed splitting method and the Lyapunov function L(x) = 1 + ‖x‖2, under an
additional Assumption on the function f and the matrix A, respectively.

Assumption 3. There exists a constant c3 ≥ 0 such that for any x ∈ Rd, it holds that

‖f(x; ∆)‖2 ≤ ‖x‖2 + c3∆, ∀∆ ∈ (0,∆0].
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Assumption 4. The matrix A is such that
∥∥eA∆

∥∥ < 1 for all ∆ ∈ (0,∆0].

Theorem 4 (Discrete Lyapunov condition). Let X̃LT(ti) be the splitting method defined through

(15), and let Assumptions 3 and 4 hold. Then X̃LT(ti) satisfies the discrete Lyapunov condition

of Definition 4 with Lyapunov function L(x) = 1 + ‖x‖2.

Proof. We have that∥∥∥X̃LT(ti)
∥∥∥2

=
∥∥∥eA∆f(X̃LT(ti−1); ∆) + ξi−1

∥∥∥2

= f(X̃LT(ti−1); ∆)>(eA∆)>(eA∆)f(X̃LT(ti−1); ∆)

+f(X̃LT(ti−1); ∆)>(eA∆)>ξi−1 + ξ>i−1e
A∆f(X̃LT(ti−1); ∆) + ξ>i−1ξi−1.

Denoting the diagonal entries of the covariance matrix C(∆) (12) by cjj(∆), taking the expectation,

using the fact that X̃LT(ti−1) and ξi−1 are independent, that E[ξi−1] = 0d, that E[ξ>i−1] = 0>d and
that

C̄(∆) :=

d∑
j=1

cjj(∆) = E[ξ>i−1ξi−1],

we get that

E
[∥∥∥X̃LT(ti)

∥∥∥2
]

= E
[∥∥∥eA∆f(X̃LT(ti−1); ∆)

∥∥∥2
]

+ C̄(∆). (27)

Considering

L(X̃LT(ti)) = 1 +
∥∥∥X̃LT(ti)

∥∥∥2

,

and using (27) and Assumption 3, we get that

E
[
L(X̃LT(ti))|X̃LT(ti−1)

]
= 1 +

∥∥∥eA∆f(X̃LT(ti−1); ∆)
∥∥∥2

+ C̄(∆)

≤ 1 +
∥∥eA∆

∥∥2
(∥∥∥X̃LT(ti−1)

∥∥∥2

+ c3∆

)
+ C̄(∆) +

∥∥eA∆
∥∥2

=
∥∥eA∆

∥∥2
L(X̃LT(ti−1)) + 1 +

∥∥eA∆
∥∥2
c3∆ + C̄(∆),

where we added
∥∥eA∆

∥∥2
in the inequality. Thus, applying Assumption 4, the discrete Lyapunov

condition of Definition 4 is satisfied for

ρ̃ =
∥∥eA∆

∥∥2
< 1 and η̃ = 1 +

∥∥eA∆
∥∥2
c3∆ + C̄(∆) > 0,

which proves the result.

In the following corollary of Theorem 4, we show that the second moment of the splitting
method is asymptotically bounded by a constant which is independent of T , ∆ and i. In particular,
this bound is reached exponentially fast, independently of the choice of X0, in agreement with
the geometric ergodicity of the splitting method. This result also requires Assumption 3 and an
assumption related to the matrix A.

Assumption 5. The matrix A is such that the logarithmic norm µ(A) < 0.

Note that Assumption 5 implies Assumption 4, since
∥∥eA∆

∥∥ ≤ eµ(A)∆ [64]. However, the converse
is not true in general. Assumption 5 is, e.g., satisfied for normal matrices, where all eigenvalues
have strictly negative real part [62]. Matrices contained in this class are, e.g., diagonal ones with
strictly negative diagonal entries.
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Corollary 1 (Asymptotic second moment bound). Let X̃LT(ti) be the splitting method defined
through (15), and let Assumptions 3 and 5 hold. Then, there exists a constant KLT

∞ > 0, which is
independent of T , ∆ and i, such that

lim
ti→∞

E
[∥∥∥X̃LT(ti)

∥∥∥2
]
≤ KLT

∞ .

Proof. Recalling (27) from the proof of Theorem 4, and using Assumption 3 and the logarithmic
norm, we further obtain

E
[∥∥∥X̃LT(ti)

∥∥∥2
]
≤ e2µ(A)∆

(
E
[∥∥∥X̃LT(ti−1)

∥∥∥2
]

+ c3∆

)
+ C̄(∆).

Now, we can perform back iteration, yielding

E
[∥∥∥X̃LT(ti)

∥∥∥2
]
≤ e2µ(A)tiE

[
‖X0‖2

]
+ c3∆

i∑
k=1

e2µ(A)k∆ + C̄(∆)

i−1∑
k=0

e2µ(A)k∆.

Using that

i∑
k=1

e2µ(A)k∆ =
(

1− e2µ(A)ti
) e2µ(A)∆

1− e2µ(A)∆
,

i−1∑
k=0

e2µ(A)k∆ =
(

1− e2µ(A)ti
) 1

1− e2µ(A)∆
,

we obtain

E
[∥∥∥X̃LT(ti)

∥∥∥2
]
≤ e2µ(A)tiE

[
‖X0‖2

]
+
(

1− e2µ(A)ti
)(c3∆e2µ(A)∆

1− e2µ(A)∆
+

C̄(∆)

1− e2µ(A)∆

)
. (28)

Applying Assumption 5, yields

lim
ti→∞

E
[∥∥∥X̃LT(ti)

∥∥∥2
]
≤ c3∆e2µ(A)∆

1− e2µ(A)∆
+

C̄(∆)

1− e2µ(A)∆
.

Now, we have that

∆e2µ(A)∆

1− e2µ(A)∆
≤ − 1

2µ(A)
, ∀ ∆ > 0 and

∆

1− e2µ(A)∆
≤ ∆0

1− e2µ(A)∆0
, ∀ ∆ ∈ (0,∆0]. (29)

Moreover, recalling that eA∆ = Id + ∆A + O(∆2), it follows from (12) that C̄(∆) = O(∆). This
implies the result.

Remark 3. Theorem 4 and Corollary 1 can be proved similarly for the Strang splitting method (23).

The one-dimensional case Consider the case d = 1, Σ = σ > 0 and A = −a < 0. In this case,
the solution of the linear SDE (9) corresponds to the Ornstein-Uhlenbeck process

X [1](t) = e−atX
[1]
0 + σ

t∫
0

e−a(t−s)dW (s), (30)

with variance (12) given by

C(t) =
σ2

2a
(1− e−2at). (31)

Thus, due to the specific form of (31), the previously derived bound can be expressed in closed-
form for any time ti. In particular, the following (asymptotic) bound for the second moment of
the splitting method (15) is obtained.
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Corollary 2 (Closed-form (asymptotic) second moment bound). Let d = 1, Σ = σ > 0 and

A = −a < 0. Further, let X̃LT(ti) be the splitting method defined through (15), and let Assump-
tion 3 be satisfied. Then, it holds that

E
[
(X̃LT(ti))

2
]
≤ KLT(ti, X0) := e−2atiE

[
X2

0

]
+ (1− e−2ati)

(
c3
2a

+
σ2

2a

)
,

lim
ti→∞

E
[
(X̃LT(ti))

2
]
≤ KLT

∞ :=
c3
2a

+
σ2

2a
.

Proof. Using (31) and noting that C̄(∆) = C(∆) and that µ(A) = −a < 0, the result is a direct
consequence of Corollary 1.

Note that, for ti = 0, the bound KLT(0, X0) in Corollary 2 coincides with E[X2
0 ]. Moreover,

since a > 0, the distribution of (30) converges to a unique limit

X [1](t)
D−−−→

t→∞
N
(

0,
σ2

2a

)
. (32)

Intuitively, this fact, combined with Assumption 3, guarantees the geometric ergodicity of the
splitting method obtained via Theorem 4, and thus the existence of the asymptotic bound for the
second moment reported in Corollary 2.

Cubic model problem For an illustration of the derived bound, consider again SDE (26). We
propose to rewrite this equation as

dX(t) =
(
−X(t) +X(t)−X3(t)

)
dt+ σdW (t),

and to choose
A = −1 < 0, N(X(t)) = X(t)−X3(t). (33)

The exact solution of the resulting linear SDE (9) is then given by (30) for a = 1, and that of
ODE (10) is given by

X [2](t) = f(X
[2]
0 ; t) =

X
[2]
0√

e−2t + (X
[2]
0 )2(1− e−2t)

. (34)

This choice guarantees that all required assumptions are satisfied.

Proposition 1. Let A, N and f be as in (33) and (34), respectively. Then, Assumptions 1–5 are
satisfied.

Proof. The proof is given in Appendix A.

Therefore, the proposed splitting method (15) applied to SDE (26) is not only mean-square
convergent, but also geometrically ergodic. In particular, while even for arbitrarily small ∆ one can
find X0 such that the second moment of the Euler-Maruyama method explodes (see the beginning
of Section 5.2), the second moment of the splitting method is bounded by KLT(ti, X0), which
converges to the constant KLT

∞ = 1/4 + σ2/2 exponentially fast and for any choice of the initial
value X0, see Corollary 2.

In Figure 1, we illustrate the derived second moment bound KLT(ti, X0) (grey solid line) of
Corollary 2 for SDE (26) as a function of the time ti, in comparison with E[X2(ti)] (red dashed
line). The latter is estimated based on 104 paths generated under the Lie-Trotter splitting (15).
The asymptotic bound KLT

∞ of Corollary 2 is indicated by the blue dotted line.
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Figure 1: Bound KLT(ti, X0) (as a function of time) and asymptotic bound KLT
∞ of Corollary 2

for SDE (26) (a = 1 and c3 = 1/2) with σ = 1/2 and X0 = 2, and estimate of E[X2(ti)] obtained
from 104 paths generated under the LT splitting.

Remark 4. For SDE (26), an immediate choice of the subequations of the splitting framework would
also be N(X(t)) = −X3(t) and A = 0. For this choice, Assumption 1 related to the locally Lipschitz
function N is satisfied, and thus the resulting splitting method (15) is mean-square convergent.
Also, Assumptions 2 and 3 are satisfied. However, since eA∆ = 1 and µ(A) = 0, Assumptions 4
and 5 do not hold, asymptotic bounds cannot be derived, and the preservation of ergodicity remains
an open question. In particular, in contrast to the proposed approach (see formulas (30) and (32)),

the distribution of the solution X [1](t) = X
[1]
0 + σW (t) of the resulting linear SDE (9) does not

converge to a unique limit as t tends to infinity.

6 Stochastic FitzHugh-Nagumo model

In this section, the proposed splitting strategy is illustrated on the stochastic FHN model, a widely
used neuronal model. It is given by the 2-dimensional SDE (2) with solution X(t) := (V (t), U(t))>

for t ∈ [0, T ]. This equation has been used to model the firing activity of single neurons [19, 53]. If
the membrane voltage of the neuron is sufficiently high, it releases an action potential, also called
spike. The first component (V (t))t∈[0,T ] describes the membrane voltage of the neuron at time t,
while the second component (U(t))t∈[0,T ] corresponds to a recovery variable modelling the channel
kinetics. The parameter ε > 0 corresponds to the time scale separation of the two components
and β ≥ 0 and γ > 0 are position and duration parameters of an excitation, respectively.

6.1 Properties of the FHN model

If both noise intensities σ1 and σ2 are strictly positive, the model is elliptic. If σ1 = 0, the diffusion
term becomes ΣdW (t) = (0, σ2)>dW2(t), corresponding to the notation in (5). In this case, due
to the U -component entering the first entry of the drift F (X(t)), the model is hypoelliptic. This
is confirmed by the fact that

∂uF1(x)σ2 = −σ2

ε
6= 0, (35)

guaranteeing Condition (6). We refer to [6, 8, 33, 52] and to [18, 40] for the consideration of the
elliptic and hypoelliptic FHN model, respectively, and to [15] for an investigation of both cases.
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Moreover, it has been proved that the FHN model is ergodic, see, e.g., [8, 40]. Here, we study
this property under a restricted parameter space, for which SDE (2) satisfies the dissipativity

condition (7) such that the function L(x) = 1+‖x‖2 is a Lyapunov function meeting Condition (8).

Proposition 2 (Dissipativity of the FHN model). Let∣∣∣∣γ − 1

ε

∣∣∣∣ < 2 min

{
1

ε
, 1− τ

}
,

for some arbitrarily small τ ∈ (0, 1). Then, the drift F of the FHN model (2) satisfies the dissipa-
tivity condition (7).

Proof. We have that

(F (x), x) =
( 1

ε (v − v3 − u)

γv − u+ β

 ,

v
u

) =
1

ε
(v2 − v4) + vu(γ − 1

ε
)− u2 + βu.

Defining c := |γ − 1/ε|, using 2vu ≤ v2 + u2 and v2 − v4 ≤ 1 − v2, applying Young’s inequality
βu ≤ u2τ̄ /2 + β2/2τ̄ , for some arbitrarily small τ̄ > 0, and setting τ = τ̄ /2, we obtain

(F (x), x) ≤ 1

ε
(1− v2) +

c

2
(v2 + u2)− u2 + τu2 +

β2

2τ̄

= −v2(
1

ε
− c

2
)− u2(1− τ − c

2
) +

1

ε
+
β2

2τ̄
.

Since
1

ε
− c

2
> 0 and 1− τ − c

2
> 0,

by assumption, it follows that
(F (x), x) ≤ α− δ ‖x‖2 ,

where α = 1/ε+ β2/2τ̄ > 0 and δ = min{1/ε− c/2, 1− τ − c/2} > 0.

Note that the condition on the model parameters in Proposition 2 is satisfied for parameter settings
which may be relevant in applications, see Section 7. For example, it is met when γ = 1/ε.

6.2 Splitting method for the FHN model

The FHN model (2) is a semi-linear SDE of type (1). The choice of the matrix A and the function
N(X(t)) is not unique. While the locally Lipschitz term −V 3(t)/ε and the constant β have to
enter into N(X(t)), the goal is to allocate the remaining terms such that as many of the introduced
assumptions as possible are satisfied. For the splitting method to satisfy Assumption 2, and thus
to be 1-step hypoelliptic, the term −U(t)/ε of the first component of the drift must enter into
AX(t). Moreover, shifting the term γV (t) to AX(t) leads to a decoupling of the resulting ODE
(10) such that its global solution can be derived exactly and proved to satisfy Assumption 3. Thus,
there are four strategies left, depending on whether the remaining terms V (t)/ε and −U(t) enter
into AX(t) or N(X(t)). The only case where the matrix A meets Assumption 4 (under a restricted
parameter space) is when −U(t) appears in AX(t) and V (t)/ε in N(X(t)). Similar to the proposed
splitting of SDE (26), the resulting linear SDE (9) is then geometrically ergodic. In particular, it
corresponds to a version of the well-studied damped stochastic harmonic oscillator whose matrix
exponential eAt and covariance matrix C(t) have manageable expressions. Therefore, we propose
to choose the matrix A and the function N as follows

A =

0 − 1
ε

γ −1

 , N(X(t)) =

 1
ε

(
V (t)− V 3(t)

)
β

 . (36)
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The resulting linear damped stochastic harmonic oscillator (9) with A as in (36) is weakly-,
critically- or over-damped, depending on whether

κ :=
4γ

ε
− 1 (37)

is positive, zero or negative, respectively. This terminology, along with the choice of κ, is linked
to the roots of the characteristic function of the underlying deterministic equation, see, e.g.,
Chapter 5 in [71]. In particular, the sign of κ determines the shape of the exponential of the
matrix A. If κ = 0,

eAt = e−
t
2

1 + t
2 − t

ε

εt
4 1− t

2

 .

If κ > 0,

eAt = e−
t
2

cos( 1
2

√
κt) + 1√

κ
sin( 1

2

√
κt) − 2

ε
√
κ

sin( 1
2

√
κt)

2γ√
κ

sin( 1
2

√
κt) cos( 1

2

√
κt)− 1√

κ
sin( 1

2

√
κt)

 .

If κ < 0, the sine and cosine terms of the above expressions can be rearranged using the relations

cos

(
1

2

√
κt

)
= cosh

(
1

2

√
−κt

)
and

1√
κ

sin

(
1

2

√
κt

)
=

1√
−κ

sinh

(
1

2

√
−κt

)
. (38)

Moreover, the covariance matrix C(t) (12) also depends on the sign of κ and is given as follows.
If κ = 0,

c11(t) =
e−t

4ε2
(
4σ2

2

(
−2 + 2et − t(2 + t)

)
+ ε2σ2

1

(
−10 + 10et − t(6 + t)

))
,

c12(t) = c21(t) =
e−t

8ε

(
−4σ2

2t
2 + ε2σ2

1

(
4et − (2 + t)2

))
,

c22(t) =
e−t

16

(
4σ2

2

(
−2 + 2et − (t− 2)t

)
+ ε2σ2

1

(
−2 + 2et − t(2 + t)

))
.

If κ > 0,

c11(t) =
εe−t

2γκ

(
−4γ

ε2
(σ2

1γ + σ2
2

1

ε
) + κet(σ2

1(1 +
γ

ε
) + σ2

2

1

ε2
)

+
(
σ2

1(1− 3γ

ε
) + σ2

2

1

ε2

)
cos(
√
κt)−

√
κ(σ2

1(1− γ

ε
) + σ2

2

1

ε2
) sin(

√
κt)

)
,

c12(t) = c21(t) =
εe−t

2κ

(
σ2

1κe
t − 2

ε
(σ2

1γ + σ2
2

1

ε
)

+
(
σ2

1(1− 2γ

ε
) + 2σ2

2

1

ε2

)
cos(
√
κt)− σ2

1

√
κ sin(

√
κt)

)
,

c22(t) =
εe−t

2κ

(
(σ2

2

1

ε
+ σ2

1γ)
(

cos(
√
κt)− 4γ

ε
+ κet

)
+ (σ2

2

1

ε
− σ2

1γ)
√
κ sin(

√
κt)

)
.

If κ < 0, the relations (38) can again be used to rewrite the above expressions accordingly.
Note that parameter configurations typically considered in the literature fulfill κ > 0, see, e.g.,
[18, 40, 15]. This is in agreement with the fact that, under κ > 0, SDE (9) models a weakly
damped system which describes oscillatory dynamics.

The exact solution of the resulting ODE (10) with N(X(t)) as in (36) reads as

X [2](t) = f(X
[2]
0 ; t) =


V

[2]
0√

e−
2t
ε +(V

[2]
0 )2

(
1−e−

2t
ε

)
βt+ U

[2]
0

 . (39)
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The corresponding Lie-Trotter splitting method for the FHN model (2) is then given by (15),
where the matrix exponential eA∆, the covariance matrix C(∆) and the function f are as reported
above.

6.3 Properties of the splitting method for the FHN model

In the following proposition, we verify Assumptions 1–4.

Proposition 3. Let A, N and f be as in (36) and (39), respectively. Then the following statements
hold.

(i) N satisfies Assumption 1.

(ii) A satisfies Assumption 2.

(iii) If β = 0, then f satisfies Assumption 3.

(iv) If γ = 1/ε, then A satisfies Assumption 4.

Proof. The proof is given in Appendix B.

Therefore, the proposed splitting method (15) applied to the FHN model (2) is mean-square
convergent of order 1, according to Theorem 2.

Applying Theorem 3, the method is also 1-step hypoelliptic and yields a non-degenerate Gaus-
sian distribution with covariance matrix C(∆) reported above. This matrix is thus of full rank,
even if σ1 = 0 and independently of the value of κ.

Moreover, for β = 0 and γ = 1/ε, L(x) = 1 + ‖x‖2 is a Lyapunov function for the FHN
model (2) according to Propositon 2 and the method satisfies a discrete Lyapunov condition via
Theorem 4. Combined with the 1-step hypoellipticity and a discrete irreducibility condition, which
can be proved in the same way as done, e.g, in [2, 14, 44], the splitting method is geometrically
ergodic. Intuitively, the Lyapunov structure of the FHN model is kept by the numerical solution,
since the linear SDE (9) determined by the matrix A in (36) is geometrically ergodic, implying
that the process (X [1](t))t∈[0,T ] converges to a unique invariant distribution given by

X [1](t)
D−−−→

t→∞
N
(0

0

 ,

 5
2σ

2
1 + 2

ε2σ
2
2

ε
2σ

2
1

ε
2σ

2
1

ε2

8 σ
2
1 + 1

2σ
2
2

),
for κ = 0, and

X [1](t)
D−−−→

t→∞
N
(0

0

 ,

 ε
2γ (σ2

1 + γ
ε σ

2
1 + 1

ε2σ
2
2) ε

2σ
2
1

ε
2σ

2
1

1
2 (εγσ2

1 + σ2
2)

),
for κ 6= 0. Since this fact holds without any restrictions of the parameters, it is expected that the
splitting method preserves this property for any values of γ > 0 and ε > 0. This is confirmed by
our numerical experiments (see Section 7).

Note also that, under γ = 1/ε, the logarithmic norm µ(A) = 0. Thus, Assumption 5 is not
fulfilled and the asymptotic bound of Corollary 1 cannot be derived.

Remark 5. Another plausible choice of the subequations is

A =

0 − 1
ε

γ 0

 , N(X(t)) =

 1
ε

(
V (t)− V 3(t)

)
−U(t) + β

 .

For this choice, Assumption 1 related to the locally Lipschitz function N is satisfied, and the
splitting method is mean-square convergent. In addition, since the term −U(t)/ε still enters into
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AX(t), Assumption 2 holds, and the method is thus also 1-step hypoelliptic. Moreover, Assump-
tion 3 would also hold under β = 0. However, in this case, the linear SDE (9) corresponds to
a version of the simple (undamped) harmonic oscillator which is not ergodic. In particular, its
matrix exponential is given by

eAt =

 cos(
√
γt√
ε

) − 1√
εγ sin(

√
γt√
ε

)
√
εγ sin(

√
γt√
ε

) cos(
√
γt√
ε

)

 ,

with
∥∥eA∆

∥∥ ≥ 1 and
∥∥eA∆

∥∥ = 1 for γ = 1/ε in particular.

7 Numerical experiments for the FHN model

We now illustrate the performance of the Lie-Trotter (15) and Strang (23) splitting methods
in comparison with Euler-Maruyama type methods through a variety of numerical experiments
carried out on the FHN model (2). First, the proved mean-square convergence order 1 is illustrated
numerically. Second, the ability of the different numerical methods to preserve the qualitative
dynamics of neuronal spiking is analysed, in particular their ability to reproduce the correct
amplitudes and frequencies of the underlying oscillations when the time step ∆ is increased. Third,
the robustness of the numerical methods to changes in the initial condition X0, and how the choice
of X0 may influence the preservation of the phases of the underlying oscillations are analysed. All
simulations are carried out in the computing environment R [59]. Before we present the simulation
results, different Euler-Maruyama type comparison methods, proposed for superlinearly growing
coefficients, are recalled.

7.1 Revision of Euler-Maruyama type methods

In [28], it has been shown that the Euler-Maruyama method (16) is not mean-square convergent
if at least one of the coefficients of the SDE grows superlinearly, as this results in unbounded
moments of the iterates. Since then, several explicit variants of this method have been proposed,
which aim to control this unbounded growth.

The first variant, designed for polynomially growing and one-sided Lipschitz drift and globally
Lipschitz diffusion coefficients, has been introduced in [29]. It is based on a taming perturbation
which avoids large values caused by the superlinearly growing drift. The method is defined through
the iteration

X̃TEM(ti) = X̃TEM(ti−1) +
F (X̃TEM(ti−1))∆

1 +
∥∥∥F (X̃TEM(ti−1))

∥∥∥∆
+ Σ
√

∆ψi−1, (40)

and proved to be mean-square convergent of order 1/2 (order 1) for SDEs with multiplicative
noise (additive noise), i.e., it yields the same convergence rate as achieved by the Euler-Maruyama
method in the globally Lipschitz case [36].

Another variant, aiming to tame both the drift and the diffusion term, has been suggested in
[66]. The method is defined via

X̃DTEM(ti) = X̃DTEM(ti−1) +
F (X̃DTEM(ti−1))∆ + Σ

√
∆ψi−1

1 +
∥∥∥F (X̃DTEM(ti−1))

∥∥∥∆ +
∥∥∥Σ
√

∆ψi−1

∥∥∥ , (41)

and is designed for the broader class of equations where also the diffusion coefficient is allowed to
grow polynomially at infinity and satisfies a one-sided Lipschitz condition. It has been shown to
converge with mean-square order 1/2 (also in the case of additive noise). For similar variants of
the Euler-Maruyama method, see, e.g, [60, 72].
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The strong convergence (without order) of a different class of variants, based on space trunca-
tion techniques, has been discussed in [27]. In particular, we recall the two methods

X̃TrEM(ti) = X̃TrEM(ti−1) +
F (X̃TrEM(ti−1))∆

max
{

1,
∥∥∥F (X̃TrEM(ti−1))

∥∥∥∆
} + Σ

√
∆ψi−1, (42)

X̃DTrEM(ti) = X̃DTrEM(ti−1) +
F (X̃DTrEM(ti−1))∆ + Σ

√
∆ψi−1

max
{

1,∆
∥∥∥F (X̃DTrEM(ti−1))∆ + Σ

√
∆ψi−1

∥∥∥} , (43)

constructed to truncate the drift and the drift and diffusion term, respectively.
Another type of truncated Euler-Maruyama method, with mean-square convergent rate arbi-

trarily close to 1, has been proposed in [42, 43]. Here, we recall the partially truncated variant
discussed in [21]. This method assumes that the drift can be decomposed as

F (X(t)) = F1(X(t)) + F2(X(t)),

where F1 is globally Lipschitz continuous and F2 satisfies Assumption 1. It is given by

X̃PTrEM(ti) = X̃PTrEM(ti−1) +
(
F1(X̃PTrEM(ti−1)) + F∆

2 (X̃PTrEM(ti−1))
)

∆ + Σ
√

∆ψi−1, (44)

where the function F∆
2 is a truncated version of F2. In particular, it is given by

F∆
2 (x) = F2

(
min{‖x‖ , µ−1

(
h(∆)

)
} x

‖x‖

)
,

where µ : R+ → R+ such that µ(r)→∞ as r →∞ and

sup
‖x‖≤r

(
‖F2(x)‖

)
≤ µ(r), ∀ r ≥ 1,

and, for ∆∗ ∈ (0, 1], h : (0,∆∗]→ (0,∞) such that

h(∆∗) ≥ µ(1), lim
∆→0

h(∆) =∞ and ∆1/4h(∆) ≤ 1, ∀∆ ∈ (0, 1).

Thus, the method is not uniquely defined and depends on the choice of µ(·) and h(·). Following
[21], for the cubic model problem (26), we consider F1 ≡ 0, µ(r) = r3 and h(∆) = ∆−1/5. For this
choice, the above conditions on h are satisfied for ∆∗ = 1, since h(∆∗) = µ(1) = 1. Moreover, it
holds that µ−1(h(∆)) = ∆−1/15. Numerical experiments for the cubic model problem are reported
in Appendix C. For the FHN model (2), we consider

F1(X(t)) =

 1
ε

(
V (t)− U(t)

)
γV (t)− U(t) + β

 , F2(X(t)) =

− 1
εV

3(t)

0

 ,

µ(r) = r3/ε and h(∆) = ∆−1/5. For this choice, the conditions on h are satisfied for ∆∗ = 1/ε−5,
since then h(∆∗) = 1/ε = µ(1). Therefore, when ε is small, this method requires very small time
steps ∆, and is thus highly inefficient (see the subsequent sections).

In the following, we denote by tamed (TEM), diffusion tamed (DTEM), truncated (TrEM),
diffusion truncated (DTrEM) and partially truncated (PTrEM) Euler-Maruyama method, the
schemes (40), (41), (42), (43) and (44), respectively.
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Figure 2: Illustration of the mean-square convergence order on the FHN model (2) via the RMSE
(45). All model parameters are set to 1, X0 = (0, 0)> and T = 5.

7.2 Convergence order

The mean-square convergence order can be illustrated by approximating the left-hand side of the
inequality in Theorem 1 (for a fixed time T and p = 1) with the root mean-squared error (RMSE)
defined by

RMSE(∆) :=

(
1

M

M∑
l=1

∥∥∥X l(T )− X̃ l
∆(T )

∥∥∥2
)1/2

, (45)

where X l(T ) and X̃ l
∆(T ) denote the l-th simulated path at a fixed time T of the true process and

the approximated process, respectively, for l = 1, . . . ,M .
In Figure 2, we report the RMSEs of the different numerical methods in log2 scale as a function

of the time step ∆ used to simulate X̃ l
∆(T ). Since the true process is not known, the reference

values X l(T ) are simulated with the TEM method (40) using the small time step ∆ = 2−14. We
verified that using a different scheme for the simulation of the reference paths does not affect the
results of the experiments. The approximated trajectories X̃ l

∆(T ) are generated with the LT (15),
S (23), TEM (40), DTEM (41), TrEM (42), DTrEM (43) and PTrEM (44) method, respectively,
under different choices of the time step, namely ∆ = 2−k, k = 6, . . . , 12. We consider T = 5,
M = 104, X0 = (0, 0)> and set all model parameters to 1. All RMSEs are also reported in
Table 1. The theoretical convergence order 1, established in Theorem 2, is confirmed numerically.
The S splitting yields the smallest RMSEs among all considered numerical methods. The RMSEs
of the LT method lie slightly above those obtained under the TrEM and DTrEM methods, which
are identical (up to the reported precision). The RMSEs of the tamed Euler-Maruyama methods
are larger than those obtained under the splitting, TrEM and DTrEM methods. For the DTEM
method we only observe a convergence of order 1/2, in agreement with the observations in [33, 66].
The PTrEM method yields the largest RMSEs. However, we observe that for smaller values of σi,
i = 1, 2, the method improves (see also Appendix C, where the impact of the noise intensity on
the performance of that method is discussed).
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Table 1: RMSE (45) for different values of ∆. All model parameters are set to 1, X0 = (0, 0)>

and T = 5.

∆ S LT TEM DTEM TrEM DTrEM PTrEM

2−6 0.01320 0.01751 0.03628 0.27208 0.01667 0.01667 2.23688

2−7 0.00659 0.00871 0.01795 0.20075 0.00824 0.00824 1.41733

2−8 0.00323 0.00431 0.00889 0.14726 0.00410 0.00410 0.83296

2−9 0.00161 0.00213 0.00438 0.10639 0.00204 0.00204 0.45305

2−10 0.00079 0.00106 0.00213 0.07664 0.00101 0.00101 0.22307

2−11 0.00039 0.00053 0.00099 0.05446 0.00050 0.00050 0.10771

2−12 0.00020 0.00027 0.00043 0.03877 0.00027 0.00027 0.05273

7.3 Preservation of neuronal spiking dynamics: amplitudes and frequencies

In the following, we analyse the ability of the considered methods to preserve the qualitative
neuronal spiking dynamics of the FHN model. In particular, we investigate whether the amplitudes
and frequencies of the neuronal oscillations are kept when increasing the time step ∆. Throughout
this and the next section, we omit the DTEM method (41) as it yields a performance comparable to
that of the TEM method (40). Moreover, we set β = σ1 = 0.1 and σ2 = 0.2, and consider different
values for γ and ε. These parameters are of particular interest, because they regulate the spiking
intensity of the neuron and separate the time scale of the two model components, respectively.
When ε is small, both variables evolve on different time scales. This situation is often referred
to as “stiff” case, while larger values of ε refer to the “nonstiff” case, see, e.g., [13]. Furthermore,
these parameters determine the value of

∥∥eA∆
∥∥, and thus the validity of Theorem 4. Since the

true process is not available, all reference paths are obtained under the TEM method (40), using
the small time step ∆ = 2 · 10−5. Also in this case, the choice of the scheme used to simulate the
reference paths does not affect the results of the experiments. Moreover, note that all paths are
generated using the same set of pseudo random numbers in each example.

In the following, the focus lies on the V -component of the process solving SDE (2), modelling
the membrane voltage, which can be experimentally recorded with intracellular measurements.
Similar results are obtained for the U -component.

In Figure 3, we report paths of the V -component of the FHN model generated under different
values of the time step ∆. An increase in γ leads to an increase in the frequency of the oscillations,
and thus in the number of released spikes. Both splitting methods yield almost overlapping paths
as ∆ increases, preserving thus the qualitative dynamics of the model, independently of the choice
of the intensity parameter γ. In contrast, the TEM method underestimates the frequency and
overestimates the amplitude of the neuronal oscillations as ∆ increases, for both values of γ under
consideration. For similar observations regarding tamed methods, we refer to [32, 33]. Note also
that the paths btained under the TEM method already start deviating from the reference paths
for ∆ = 2 · 10−3, performing thus worse than the TrEM and DTrEM methods. Since ε = 0.05, the
quantity ∆∗ required for the PTrEM method (see Section 7.1) equals 1/ε−5 = 3.125·10−7. We then
observe that this method produces the desired paths only for very small time steps (∆ = 2 · 10−8

in Figure 3) and fails for the other values of ∆ under consideration.
For a deeper investigation of the neuronal spiking dynamics, we consider the spectral density

of the V -component, which takes into account its autocovariance, and thus the dependence of the
membrane voltage on previous epochs. It is given by

SV (ν) = F {rV } (ν) =

∞∫
−∞

rV (τ)e−i2πντ dτ, (46)

where F denotes the Fourier transformation, rV the autocovariance function of (V (t))t∈[0,T ] and
the frequency ν can be interpreted as the number of oscillations in one time unit. We estimate the
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Figure 3: Paths of the V -component of the FHN model (2) simulated under the considered nu-
merical methods for X0 = (−1, 0)>, β = σ1 = 0.1, σ2 = 0.2, ε = 0.05, two different values of γ
and increasing time step ∆. Paths of the PTrEM method are also generated under a smaller time
step than used for the other methods, i.e., ∆ = 2 ·10−8. All paths correspond to the same random
realisation.

spectral density SV (ν) with a smoothed periodogram estimator, see, e.g., [12, 58], based on paths
generated over the time interval [0, 103]. We use the R-function spectrum and set the required
smoothing parameter to span= 0.3T .

The estimated spectral densities obtained under different values of γ and different choices of
the time step ∆ are reported in Figure 4. As desired, for a fixed γ, all spectral densities estimated
from the paths generated under the splitting schemes are almost overlapping as ∆ increases. In
contrast, the frequency ν estimated under the Euler-Maruyama type methods decreases as ∆
increases, and the height of the peaks, carrying information about the amplitude of the neuronal
oscillations, increases with ∆. Their performance deteriorates as γ increases, the TrEM and
DTrEM methods yielding better results than the TEM method. For the considered values of
∆, the spectral densities based on the PTrEM method cannot be derived, because this method
produces “NaN” values. This is indicated by the horizontal lines in the bottom left panels. Note
also that the estimated frequencies are in agreement with those deduced from Figure 3.

Moreover, the Euler-Maruyama type methods perform even worse in terms of second moment
(amplitude) preservation when the parameter ε is increased, while the splitting methods preserve
the qualitative behaviour of the model. This is illustrated in Figure 5, where we increase ε to 1 (the
quantity ∆∗ introduced for the PTrEM method in Section 7.1 thus equals 1), fix γ = 20 and report
phase portraits of the system obtained under the different numerical methods for ∆ = 2 · 10−4

and ∆ = 2 · 10−2. Again, the splitting methods preserve the behaviour of the process (X(t))t∈[0,T ]
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Figure 4: Estimates of the spectral density (46) of the V -component of the FHN model (2) obtained
under the considered numerical methods for X0 = (0, 0)>, β = σ1 = 0.1, σ2 = 0.2, ε = 0.05, two
different values of γ and increasing time step ∆.

as ∆ increases, while the Euler-Maruyama type methods produce larger orbits, overshooting the
second moment of the process.

In addition, we investigate the ability of the considered numerical methods to approximate the
underlying invariant density of the process (X(t))t∈[0,T ]. In particular, we estimate the marginal
invariant density of the V -component of the FHN model with a standard kernel density estimator
given by

πV (v) =
1

nH

n∑
i=1

K

(
v − Ṽ (ti)

H

)
, (47)

where H is a smoothing bandwidth and K a kernel function [57]. Taking advantage of the ergodicity

of the FHN model, the sample Ṽ (ti), i = 1, . . . , n, in (47) is obtained from a long-time simulation
of a single path. We use the R-function density, a kernel estimator as described in (47).

In Figure 6, we report the marginal invariant densities of the process (V (t))t∈[0,T ] estimated
via (47) based on paths generated over the time interval [0, 104], for ε = 1, γ = 20 and different
values of ∆. Both splitting methods yield reliable estimates for all values of ∆ under consideration.
In contrast, the densities obtained under the Euler-Maruyama type methods already deviate from
the desired ones for ∆ = 2 · 10−3, and suggest a transition from a unimodal to a bimodal density
when ∆ is further increased to 2 · 10−2. It is again visible that the Euler-Maruyama type methods
overestimate the second moment, and thus the amplitudes of the process. Similar results are also
obtained for the U -component.
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Figure 5: Phase portraits of the FHN model (2) simulated under the considered numerical methods
for X0 = (0, 0)>, β = σ1 = 0.1, σ2 = 0.2, ε = 1, γ = 20 and increasing time step ∆. All paths
correspond to the same random realisation.
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Figure 6: Estimates of the invariant density (47) of the V -component of the FHN model (2)
obtained under the considered numerical methods for X0 = (0, 0)>, β = σ1 = 0.1, σ2 = 0.2, ε = 1,
γ = 20 and increasing time step ∆.

7.4 Impact of the initial condition: preservation of phases

Finally, we compare the considered numerical methods regarding their sensitivity to changes in
the initial condition X0. In particular, we illustrate that, when V0 is large, i.e., when the process
starts far away from the mean of the invariant distribution, the considered Euler-Maruyama type
methods do not correctly reproduce the phases of the underlying oscillations, even when the time
step ∆ is very small. In contrast, the splitting methods are less sensitive to changes in the initial
condition. Similar observations are made when U0 is large (figures not shown).

The impact of V0 on the performance of the different numerical methods is shown in Figure 7
and Figure 8, where we report paths of the V -component, simulated under ∆ = 2 · 10−4, U0 = 0
and different values of V0. The grey reference path is simulated under ∆ = 2 ·10−7 using the TEM
method (40). As before, the results are not influenced by the choice of the numerical method used
to generate the reference paths. The underlying parameter values are the same as in Section 7.3,
choosing γ = 5 and ε = 0.05 in Figure 7, and γ = 20 and ε = 1 in Figure 8. As desired, the splitting
methods are barely influenced by V0, even when it is very large, with paths overlapping with the
reference paths for all t under consideration. In contrast, when V0 is large, the Euler-Maruyama
type methods introduce a delay in when the generated paths reach the oscillatory dynamics, this
behaviour deteriorating as V0 increases. Moreover, they also do not preserve the phases of the
oscillations, introducing a shift. In Figure 7, the DTrEM method reaches the correct oscillatory
dynamics, though shifted, almost as fast as the splitting methods for V0 = 104, but fails to reach
the invariant regime for V0 = 103. In Figure 8, it does not enter the invariant regime for both
V0 = 103 and V0 = 104. Moreover, spurious oscillations produced by the DTrEM method were
obtained for other parameter combinations, as also observed in [33, 66]. For ε = 0.05 (see Figure 7),
the PTrEM method does not produce the desired paths, even when V0 is close to the invariant
mean. For ε = 1 (see Figure 8), it yields the correct path when V0 = 1, a path which initially
deviates from the others when V0 = 3, and produces high-amplitude oscillations, not entering
the invariant regime, when V0 = 103 and V0 = 104. Therefore, the PTrEM method reacts very
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Figure 7: Paths of the V -component of the FHN model (2) simulated under the considered nu-
merical methods for different values of V0 (U0 = 0), ∆ = 2 · 10−4, β = σ1 = 0.1, σ2 = 0.2, γ = 5
and ε = 0.05. The grey reference paths are obtained under ∆ = 2 · 10−7 using the TEM method
(40). All paths correspond to the same random realisation.
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Figure 8: Paths of the V -component of the FHN model (2) simulated under the considered nu-
merical methods for different values of V0 (U0 = 0), ∆ = 2 · 10−4, β = σ1 = 0.1, σ2 = 0.2, γ = 20
and ε = 1. The grey reference paths are obtained under ∆ = 2 ·10−7 using the TEM method (40).
All paths correspond to the same random realisation.

sensitively to the choice of X0, this undesired behaviour being also observed for the cubic model
problem (26) introduced in Section 5, see Appendix C.

Remark 6. Note that the only considered combination of γ and ε in this section for which Assump-
tion 4, and thus Theorem 4 holds is γ = 1/ε = 20. However, we do not observe a difference in
the quality of the splitting methods depending on the combination of these parameters. Intuitively,
this is because the underlying linear SDE (9) with matrix A as in (36), i.e., the damped stochastic
oscillator, is geometrically ergodic for all γ > 0 and ε > 0.
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8 Conclusion and discussion

We propose a splitting strategy to approximate the solutions of semi-linear SDEs with additive
noise and globally one-sided Lipschitz continuous drift coefficients which are allowed to grow
polynomially. We prove that the resulting explicit Lie-Trotter splitting method is mean-square
convergent of order 1. In contrast to existing explicit mean-square convergent Euler-Maruyama
type methods, which may also achieve a convergence rate of order 1, the constructed method
preserves important structural properties of the model.

First, it provides a more accurate approximation of the noise structure of the SDE through
the covariance matrix of the exact solution of the stochastic subequation. In particular, while
the conditional covariance matrix of Euler-Maruyama type methods only contains the information
of the diffusion matrix Σ, the splitting method also relies on the matrix A in the semi-linear
drift. This is particularly beneficial when the SDE is hypoelliptic. Indeed, while the conditional
covariance matrix of the existing methods is degenerate in that case, we establish the desired 1-step
hypoellipticity of the constructed splitting method, meaning that it admits a smooth transition
density in every iteration step. In particular, the method yields non-degenerate Gaussian transition
densities, a feature which is advantageous within likelihood-based estimation techniques, where
the existing numerical methods cannot be applied [18, 46, 56].

Second, Euler-Maruyama type methods do not preserve the geometric ergodicity of the process.
As a consequence, they are not robust to changes in the initial condition, yield poor approximations
of the underlying invariant distribution, or do not preserve the moments of the process. In contrast,
the proposed splitting method is proved to preserve the Lyapunov structure of the SDE, as long
as an assumption on the solution f of the deterministic subequation is satisfied and it holds that∥∥eA∆

∥∥ < 1 for all ∆ ∈ (0,∆0]. If, in addition, the logarithmic norm µ(A) < 0, the method is
proved to have an asymptotically bounded second moment. In the one-dimensional case, a precise
bound of the second moment of the splitting method is derived in closed-form and illustrated on
a cubic model problem. We also consider the FHN model, a well known equation used to describe
the firing activity of single neurons. The geometric ergodicity of the proposed splitting method
applied to this equation is established under a restricted parameter space.

Third, we illustrate on the FHN model that, in contrast to Euler-Maruyama type methods,
the proposed splitting method preserves the amplitudes, frequencies and phases of neuronal oscil-
lations, even for large time steps. This may make the method particularly beneficial when used,
e.g., to simulate large networks of neurons, or when embedded within simulation-based inference
procedures. Besides the Lie-Trotter splitting method, we also consider a method which is based on
a Strang composition in our numerical experiments. Both splitting methods perform comparably
good throughout, the Strang splitting behaving slightly better in some scenarios. As the con-
sidered Euler-Maruyama type methods do converge, their lack of structure preservation becomes
less visible when using very small time steps. However, the use of significantly smaller time steps
results in drastically higher computational costs, making these methods highly inefficient and, con-
sequently, computationally infeasible within simulation-based inference algorithms, as previously
illustrated in [12].

Several generalisations of the considered approach are possible. The proposed splitting strategy
can be, e.g., applied to the stochastic Van der Pol oscillator [69, 70], whose investigation leads to
similar numerical results. The presented approach may be also applied to SDEs (1) with other
types of nonlinearity. In particular, as long as the ODE determined by the function N is exactly
solvable (see [31] for diverse solution methods) and satisfies some useful conditions, the method
presented in this article may be used. Moreover, the proposed method may be extended to SDEs
with multiplicative noise, e.g., to Σ(X(t)) = σX(t), σ > 0, where the stochastic subequation of the
splitting framework corresponds to the geometric Brownian motion. This may be relevant, e.g.,
for the stochastic Ginzburg-Landau equation arising from the theory of superconductivity [20, 28].
Furthermore, the investigation of conditions under which the presented results are still valid when
the solution of ODE (10) is not available exactly, constitutes another topic for future research.
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Appendix

A Proof of Proposition 1

Proof. Assumption 1: We start with Assumption (A1) and have that(
N(x)−N(y)

)
(x− y) = (x− y)2

(
1− (x2 + xy + y2)

)
≤ (x− y)2.

Thus, the assumption holds for c1 = 1, see also Example 1.2.16 in [26].
Now, consider Assumption (A2). We have that(

N(x)−N(y)
)2

≤ 2(x− y)2 + 2(y3 − x3)2 = 2(x− y)2 + 2(x− y)2(y2 + xy + x2)2

≤ 2(x− y)2 + 9(x− y)2(x4 + y4),

where we used that 2xy ≤ x2 +y2 and that (3x2/2 + 3y2/2)2 ≤ 9(x4 + y4)/2 in the last inequality.
Thus, we obtain that (

N(x)−N(y)
)2

≤ 9(x− y)2
(

1 + x4 + y4
)
,

which proves that the assumption holds for c2 = 9 and χ = 3.
Assumption 2: Since d = 1, this is clear.
Assumption 3: We prove the statement for c3 = 1/2. Setting y = x2, it has to be shown that

f2(x; t) = g(y; t) :=
y

e−2t + y(1− e−2t)
≤ y +

1

2
t =: h(y; t), ∀t ∈ (0,∆0].

Since g(y; 0) = h(y; 0) = y, it suffices to prove that for any y ∈ R+
0 it holds that

g′(y; t) = − 2e2t(y − 1)y

(1 + (e2t − 1)y)
2 ≤

1

2
= h′(y; t), ∀t ∈ (0,∆0],

where ′ denotes the derivative with respect to t. Consider two cases. First, let y /∈ (0, 1). Then
it holds that g′(y; t) ≤ 0 for all t ≥ 0. Second, let y ∈ (0, 1). To prove that g′(y; t) ≤ 1/2, we
determine the global maximum of g′(y; t) with respect to t. Solving g′′(y; t) = 0 with respect to t,
gives that

tmax =
1

2
log

(
1

y
− 1

)
.

Noting that tmax exists and that g′(y; tmax) = 1/2 for any y ∈ (0, 1) proves the result.

Remark 7. If y ∈ (0, 1), it also holds that

g′(y; t) ≤ 2e2ty(1− y) ≤ 1

2
e2t ≤ e2∆0

2
.

Thus, a simpler argument suffices to prove the statement for c3(∆0) = e2∆0

2 > 1
2 .

Assumptions 4 and 5: These statements are satisfied because A = −1, and thus the matrix
norm

∥∥eA∆
∥∥ = e−∆ < 1 and the logarithmic norm µ(A) = −1 < 0.
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B Proof of Proposition 3

Proof. Assumption 1: Denote x = (v1, u1)> and y = (v2, u2)>. We start with Assumption (A1)
and have that

(N(x)−N(y), x− y) =
1

ε
(v1 − v2)2

(
1− (v2

1 + v1v2 + v2
2)
)
≤ 1

ε
(v1 − v2)2 ≤ 1

ε
‖x− y‖2 .

Thus, the assumption holds for c1 = 1/ε.
Now, consider Assumption (A2). Applying similar arguments as in Appendix A, we have that

‖N(x)−N(y)‖2 =

(
1

ε
(v1 − v2) +

1

ε
(v3

2 − v3
1)

)2

≤ 2

ε2
(v1 − v2)2 +

9

ε2
(v1 − v2)2(v4

1 + v4
2).

Using that (v1 − v2)2 ≤ ‖x− y‖2 and that v4
1 + v4

2 ≤ ‖x‖
4

+ ‖y‖4, we finally obtain that

‖N(x)−N(y)‖2 ≤ 9

ε2
‖x− y‖2

(
1 + ‖x‖4 + ‖y‖4

)
.

Thus, the assumption holds for c2 = 9/ε2 and χ = 3.
Assumption 2: Condition (6) holds for the linear SDE (9), since

∂u(Ax)1σ2 = −σ2

ε
6= 0.

Thus, the equation is hypoelliptic.
Assumption 3: We have that

f(x; ∆) = (f1(v; ∆), f2(u; ∆))>.

Consider the V -component. The fact that, for any v ∈ R it holds that

f2
1 (v; ∆) ≤ v2 +

1

2ε
∆ ∀ ∆ ≥ 0,

can be proved in the same way as in Appendix A. Regarding the U -component, by assumption,
we have that

f2
2 (u; ∆) = u2.

Thus,

‖f(x; ∆)‖2 = f2
1 (v; ∆) + f2

2 (v; ∆) ≤ v2 + u2 +
1

2ε
∆ = ‖x‖2 +

1

2ε
∆,

which proves the statement for c3 = 1/(2ε).
Assumption 4: Recall that ∥∥eA∆

∥∥ =
√
λmax ((eA∆)>(eA∆)),

and define B := (eA∆)>(eA∆). It suffices to prove that λmax (B) < 1 for all ∆ ∈ (0,∆0].
Since by assumption γ = 1/ε, κ defined in (37) becomes κ = 4γ2 − 1. When κ = 0, this

condition is equivalent to γ = 1/2. In this case, the eigenvalues of B are given by

λ1(∆) =
1

2
e−∆

(
2 + ∆2 −

√
∆2(4 + ∆2)

)
≤ λ2(∆) =

1

2
e−∆

(
2 + ∆2 +

√
∆2(4 + ∆2)

)
.

It holds that λ′2(∆) < 0 for all ∆ > 0, where ′ denotes the derivative with respect to ∆. Thus,
λ2(∆) is strictly decreasing in ∆. Noting that λ2(0) = 1 implies the statement.

When κ < 0, γ < 1/2. In this case, the eigenvalues of B are given by

λ1(∆, γ) =
e−∆

κ

(
4γ2 − cosh(

√
−κ∆)−

√
2
[
1− 8γ2 + cosh(

√
−κ∆)

]
sinh2(

√
−κ∆/2)

)
,

λ2(∆, γ) =
e−∆

κ

(
4γ2 − cosh(

√
−κ∆) +

√
2
[
1− 8γ2 + cosh(

√
−κ∆)

]
sinh2(

√
−κ∆)/2

)
,
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where λ1(∆, γ) ≤ λ2(∆, γ) for all ∆ > 0 and γ < 1/2. For γ < 1/2 arbitrary, but fixed, the partial
derivative of λ2(∆, γ) with respect to ∆ exists and satisfies

∂

∂∆
λ2(∆, γ) < 0, ∀ ∆ ∈ (0,∆0].

Thus, the function λ2(∆, γ) is strictly decreasing in ∆. Moreover, we have that λ2(0, γ) = 1 for
any γ, which implies the statement.

When κ > 0, γ > 1/2. In this case, the eigenvalues of B are given by

λ1(∆, γ) =
e−∆

κ

(
4γ2 − cos(

√
κ∆)−

√
2
[
−1 + 8γ2 − cos(

√
κ∆)

]
sin2(

√
κ∆/2)

)
,

λ2(∆, γ) =
e−∆

κ

(
4γ2 − cos(

√
κ∆) +

√
−1 + 8γ2 − 8γ2 cos(

√
κ∆) + cos2(

√
κ∆)

)
.

Again, we observe that λ1(∆, γ) ≤ λ2(∆, γ) for all ∆ > 0 and γ > 1/2. Consider γ > 1/2 arbitrary,
but fixed. Moreover, define I∆ := {2πl/

√
κ, l ∈ N}. Since cos(2πl) = 1 and sin(πl) = 0, we have

that
λ1(γ,∆) = λ2(γ,∆) = e−∆ < 1, ∀ ∆ ∈ I∆.

Let now ∆ ∈ (0,∞)\I∆. For those values of ∆, the partial derivative of λ2(∆, γ) with respect to
∆ exists. In particular, we have that

∂

∂∆
λ2(∆, γ) < 0, ∀ ∆ ∈ (0,∞)\I∆.

Thus, for a fixed γ, the function λ2(∆, γ) is strictly decreasing in ∆. Noting that λ2(0, γ) = 1 for
any γ implies the statement.

C Numerical experiments for the cubic model problem

Consider the cubic model problem (26) introduced in Section 5. We now illustrate how the choice
of X0 influences the behaviour of paths of the ergodic process X(t) simulated under the different
numerical methods. If X0 is large compared to the invariant mean, the standard Euler-Maruyama
method (16) produces paths which are computationally pushed to +/− infinity within a few
iteration steps, even for very small values of ∆. This is not the case for the tamed/truncated
variants of this method. However, they may also react sensitively to X0, even for small ∆. This
is illustrated in Figure 9, where we report paths of SDE (26) generated for different values of X0,
using ∆ = 10−4 and σ = 1/2. The grey reference paths are simulated under ∆ = 10−7 using the
TEM method (40). The choice of the reference method does not change the reported results, and
all paths are generated under the same underlying pseudo random numbers. Note that, the DTEM
method (41) is not reported in Figure 9, because it shows a performance comparable to that of the
TEM method (40). As desired, the paths obtained under the splitting methods (15) and (23) are
not deterred by large values of X0, and overlap with the reference path for all values of X0 under
consideration. In contrast, for large values of X0, the Euler-Maruyama type methods introduce a
delay in when the respective paths reach the reference path. This behaviour deteriorates as X0

increases. The path obtained under the PTrEM method (44) initially deviates from the desired
one, even when X0 = 5, not reaching the reference path for the values of t under consideration for
X0 = 104 and X0 = 3 · 104. Note also that, for some values of X0, we observe that the DTrEM
method (43) may produce spurious oscillations (figures not shown). See [33, 66], where such a
behaviour has also been observed.
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Figure 9: Paths of SDE (26) simulated under the considered numerical methods for different values
of X0, ∆ = 10−4 and σ = 1/2. The grey reference paths are obtained under ∆ = 10−7 using the
TEM method (40). All paths correspond to the same random realisation.
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Figure 10: Paths of SDE (26) simulated under the LT and PTrEM methods for X0 = 0, ∆ = 10−4

and different values of σ. The grey reference paths are obtained under ∆ = 10−7 using the TEM
method (40). All paths correspond to the same random realisation.

In addition, we observe that the PTrEM method (44) may also produce paths which deviate
from the desired ones for larger values of the noise parameter σ. This is illustrated in Figure 10,
where we report paths of SDE (26) generated under X0 = 0, ∆ = 10−4 and different values
of σ. While the paths obtained under the LT splitting (15) (the same is observed for all other
schemes except for the PTrEM method) overlap with the reference paths for both values of σ
under consideration, the PTrEM method produces a path which deviates from the desired one
when σ = 4 (right panel). This behaviour deteriorates as σ increases.
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