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If a granular material is poured from above on a horizontal surface between two parallel, vertical
plates, a sand heap grows in time. For small piles, the grains flow smoothly downhill, but after a
critical pile size Xc, the flow becomes intermittent: sudden avalanches slide downhill from the apex
to the base, followed by an “uphill front” that slowly climbs up, until a new downhill avalanche
interrupts the process. By means of experiments controlling the distance between the apex of
the sandpile and the container feeding it from above, we show that Xc grows linearly with the
input flux, but scales as the square root of the feeding height. We explain these facts based on
a phenomenological model based on the experimental observation that the flowing granular phase
forms a “wedge” on top of the static one, differently from the case of stationary heaps. Moreover,
we demonstrate that our controlled experiments allow to predict the value of Xc for the common
situation in which the feeding height decreases as the pile increases in size.

I. INTRODUCTION

Granular matter is known to exhibit many unexpected
behaviors [1–15] since, depending on the way it is han-
dled, it behaves as a solid, a liquid or a gas [16, 17]. Most
granular flows encountered in nature, and industry, are
located in the liquid regime, where the material is dense
but still flows as a fluid. This regime have received no lit-
tle attention from the scientific community in the search
for constitutive laws capable of reproducing the diversity
of observed behaviors [18–24]. However, one behavior
in particular has been poorly studied, and it constitutes
the focus of our paper: the transition from continuous to
intermittent flows (CIT).

The phenomenon was first described in the so-called ro-
tating drum geometry, i.e., for a cylinder partially filled
with granular matter rotating around its axis of symme-
try, which lies in a plane perpendicular to the force of
gravity. If this device rotates slowly enough, the parti-
cle flow near the free surface is intermittent producing
avalanches. However, for higher rotational velocities, the
particles establish a continuous flow such that the free
surface shows a stationary profile, as reported by Ra-
jchenbach [25].

Shortly after, Lemieux and Durian showed the exis-
tence of a continuous to intermittent transition in the
flow of glass beads down a stationary heap, confined be-
tween plane-parallel walls, as the input flux decreased
[26], which was corroborated by Jop et al. when study-
ing the role of confinement in this type of geometry [21].
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FIG. 1. Experimental setup. (a) Sketch of the experimental
setup, where the sliding container allows to control the value
of the grain feeding height, h (the darker color indicate the
mobile grains) (b) Diagram showing three stages of the heap
growth at constant h, corresponding to times t1, t2 and t3.
The upper side shows a lateral view of the Hele-Shaw cell
including a vertical line of pixels that allows to construct the
spatial-temporal diagram shown in the bottom panel. The
diagram, which corresponds to a real experiment, illustrates
the constancy of h.
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Altshuler and co-workers [27] also observed a CIT in
narrow sand rivers moving through conical piles in vari-
ous configurations: by increasing the pile base size, grown
with constant input flux, or by varying the input flux in
both open and closed piles with a constant size base. In
another study by this group, they observed that the tran-
sition was maintained after reducing the pile dimension
by confining it in a Hele-Shaw cell [28].

More recently, Fischer et al. [29] found that for a
given range of rotational speeds, rotating drums exhibit a
progressive transition of flow by temporal intermittency,
where spontaneous and erratic changes from one regime
to another occur.

Here we study the CIT in a growing granular heap
–in which the control parameter is its size– where the
drop height of the grains is controlled.Our experiments
reveal that the horizontal size of the pile where the CIT
takes place, Xc, depends linearly on the input flux and
varies as the squared root of the dropping height. We ex-
plain those scalings in terms of a model based on previous
knowledge on dense granular flows. On the other hand,
we show that it is possible to predict Xc without control-
ling the dropping height, based on the data obtained by
controlling it.

II. EXPERIMENTAL

A sand heap is grown into a Hele-Shaw cell of width
w = 12 mm consisting in two vertical glass plates perpen-
dicular to a flat horizontal surface of 28 cm long. One of
the thin vertical sides of the cell is closed by a glass wall,
and the opposite one is open. A thin stream of sand
is dropped through a modifiable rectangular slit made
in the bottom of a parallelepiped-shaped container held
on top of the cell, so the sand enters parallel and near
the thin, closed vertical wall of the Hele-Shaw cell. As
a result, a sand heap forms that grows from the closed
vertical wall to the open wall, as depicted in Fig. 1(a).
The input flux Fin is obtained by processing images taken
with a camera at a capture rate of 30 fps and a resolu-
tion of 1024× 768 pixels: the total pile area is computed
in each frame and Fin is determined as the slope of its
dependence with time. Fin is defined as Qin/w, where
Qin is the volumetric input flux. We used sand with a
high content of silicon oxide and an average grain size of
d = 100 µm from Santa Teresa (Pinar del Ŕıo, Cuba)
[7, 27, 28].

A feature that distinguishes this setup from most ones
reported in the literature is the fact that the distance
between the point of delivery of the sand and the upper
part of the heap, h, can be held constant in time (within
a range from 1 cm to 15 cm) due to the vertical movement
of the sand container, see Fig. 1 (b). This is particularly
important for growing heaps since this distance changes
during the experiments if the point of delivery is fixed,
which is not the case in the commonly studied stationary
heaps. The control of the deposition height is achieved
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FIG. 2. Quantifying the continuous to intermittent flow tran-
sition. The gray continuous line corresponds to the temporal
evolution of the average slope of the pile, while the black con-
tinuous line represents its horizontal length very near the bot-
tom of the Hele-Shaw cell. The light gray line (dashed) is a fit

following the law x ∼ t1/2. The transition occurs at Xc ≈ 10.3
cm, tc ≈ 20 s and with a repose angle of θs ≈ 33.5◦, as clearly
seen in the zoom shown in the inset. The data represented
in the graphs correspond to a fixed input flux of Fin = 2.68
cm2/s and a constant deposition height of h ≈ 1.5 cm.

thanks to a feedback system: when a laser light is inter-
rupted by the growing tip of the heap, a signal is sent to
a motor that rises the position of the sand container until
a new laser beam detection [30, 31]. The constancy of h
is illustrated in the spatial-temporal diagram shown in
Fig. 1(b) taken along a vertical line near the taller side
of the heap. If the container is kept at a fixed height rela-
tive to the laboratory, the heap grows in a “conventional
way”, i.e., with h decreasing as the height of the pile in-
creases, which may be more interesting for engineering
applications.

III. RESULTS AND DISCUSSION

A. Presentation of the continuous to intermittent
transition

As the piles grow, a transition between continuous to
intermittent behavior is observed. From the time the
first grains hit the floor of the Hele-Shaw cell, up to a
certain horizontal length Xc of the bottom of the heap,
the flow of grains is continuous: grains flow down the
heap forming a fluid layer next to the free surface of the
pile, which is approximately straight. As the horizontal
length of the pile grows above Xc, an intermittent regime
is reached: an “avalanche” of grains slides down the hill
from the upper side of the pile all the way to the lower
side, and stops, forming a step-front that moves uphill
as new grains are fed into the pile. Once the uphill step-
front is within a few inches of the top of the pile, a new
downhill avalanche takes place, and so on. The continu-
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ous to intermittent flow transition occurring at X = Xc

was originally reported for experiments in which h was
not controlled [28], and has been recently seen by us for
controlled height experiments [31].

For all combinations of deposition heights and fluxes
studied, the transition can be visualized as in Fig. 2,
which is based on a measurement using a fixed input flux
of 2.68 cm2/s and a constant deposition height h ≈ 1.5
cm. The first quantity plotted is the length of the base
along the horizontal axis near the bottom of the Hele-
Shaw cell [32] as time goes by. We have also plotted the
temporal evolution of the average angle of the free surface
relative to the horizontal. Both curves complement each
other in order to extract the transition coordinates, as
the vertical dashed line suggests.

The horizontal length of the pile grows as mass conser-
vation dictates and stops for the first time after reaching
a value of about 10.3 cm, from which it continues as steps.
On the other hand, the average slope of the pile describes
a similar behavior: it grows in time and then starts to
oscillate around an average angle of approximately 33.5
degrees. Note that shortly before the onset of the oscil-
lations the average slope has some noisy oscillations with
relative small amplitude that may be associated with a
transient in which spontaneous transitions occur between
both regimes as observed in rotating drums [29]. Both
changes in behavior occur about 20 s after the beginning
of the experiment (see vertical dashed line). That is just
the moment when the growth of the horizontal length
of the heap goes from a continuum to an intermittent
regime: the horizontal steps correspond to the time in-
tervals during which a step-front climbs uphill after each
downhill avalanche, keeping constant the length of the
pile. This feature is also seen in the curve of the an-
gle where an increase in its value represents the climb of
the step-front while a decrease represents the occurrence
of one avalanche. Notice that after t ≈ 110 s the pile
bottom reaches the outlet, turning into a system widely
studied in the literature –a stationary heap– which we do
not discuss here.

B. Dependence of the transition coordinates on the
input flux and deposition height

Fig. 3 shows the dependence of the pile transition
lengths (Xc) on the input flux (Fin) and the deposition
heights (h). Fig. 3(a) indicates that the dependence on
the transition length is linear with the input flux. On the
other hand, Fig. 3(b) shows that the transition length
scales as the square root of the deposition height. These
dependencies can be understood by means of a simple
model of the growing heap explained in detail in the Ap-
pendix, see Fig. 7. Fig. 7(a) shows an image that reveals
the geometry of the flowing layer during the continuous
regime. The experiment was performed on silica sand

with average diameter 1.5 mm, and a video was taken
with a fast camera at 1000 fps. Note that, differently
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FIG. 3. Dependencies of the transition length on the input
flux and deposition height. Transition length as a function of
(a) the input flux, for different deposition heights and (b) the
deposition height, for different input fluxes. Symbols repre-
sent experimental data while the lines the theoretical expres-
sion proposed in (3). Note that the bottom of the cell has a
finite size of 28 cm, thus for certain parameter values the base
of the pile reaches the open edge of the cell before transition
occurs. This leads to some curves shown having fewer data
points than others.

from the case of stationary heaps, the flowing layer is
wedge-shaped in growing piles, where the wedge point is
at the lower end of the pile. Fig. 7(b) shows a schematic
based on the observed geometry, showing all the param-
eters used in our model.

Let us consider a flow of incompressible grains (ρ =
constant) on the free surface of a growing heap during the
continuous regime. Inside a control volume that moves
with velocity v⊥ to include only the fluid layer, the equa-
tions of mass and linear momentum (in the x-direction)
conservation of the flowing grains are as follows:
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ρ
∂δ

∂t
+ v‖

∂δ

∂x
= −v⊥

ρ
∂
(
v‖δ
)

∂t
+ ρv2

‖
∂δ

∂x
= −∂ (δτxx)

∂x
+ τyx + τzx

δ

w
+ ρgδ sin θ + (ρvxv⊥)|y=0

(1)

In these equations δ is the thickness of the flowing layer

of grains, and w its width,v‖ = 1
δw

∫ w
0

∫ δ
0
vxdzdy is the

averaged velocity down the heap, where vx is considered
constant along the fluid layer as it is suggested by exper-
imental measurements [21, 26]. τxx is the normal stress
while τyx and τzx are the shear stresses at the interface
between the flowing and static layers, and at the walls,
respectively.

We make some other assumptions in order to simplify
equations in (1). The normal stress τxx is considered
as the dynamic pressure, equal to 1

2ρv
2
‖, and its varia-

tion in the flow direction (x) is neglected since changes
in the layer thickness are small. The shear stresses
τyx = ρgδ cos θ tan θs and τzx = µwρgδ cos θ are assumed
as Coulomb’s frictional stresses where tan θs is the static
friction of the pile µs and µw the dynamic friction co-
efficient of the grains with the walls. τzx is taken as
suggested in [21]. vx|y=0 is expected to be equal or close
to 0, so, ρvxv⊥ is neglected. The quasi-steady solution of
the obtained equations, the one in which a quasi-steady
flow is considered where the time variations of δ and v‖
are approximately equal to 0, gives (See Appendix A for
details),

Lx =
3Qinα

√
2gh

2gδ̄ cos θ
(
− tan θ + µw

δ̄
w + tan θs

)
w

(2)

Here δ̄ = (1/Lx)
∫ Lx

0
δdx and Q⊥ = Qin = v⊥Lxw,

where Lx = X
cos θ is the length of the interface between the

flowing and static layers, and v‖ = αvin = α
√

2gh sin θ,
being vin the velocity of the incoming grains (free fall)
and α < 1 a dimensionless constant that accounts for the
energy loss after the impact on the tip of the pile of the
grains coming from the container.

At the transition (θ → θs) the thickness of the fluid
layer reaches a minimum δ̄ = δstop, after which the flow-
ing grains cannot “continually cover” the whole surface
of the pile, therefore intermittency starts [20, 21, 26]. At
this point, Eq. (2) transforms into the following:

Xc =
3αw sin θs√
2gµwδ2

stop

Finh
1/2 (3)

Fig. 4 shows indeed that P = Xc/(Fin
√
h), which is

the prefactor of Eq. (3), is roughly constant with no sys-
tematic dependence on the control parameters Fin and h.
There is only a weak dependence observed for the lowest
flux Fin = 0.42 cm2/s for which this quantity slightly
rises with h up to a value around 6 s/cm3/2. Thus, Eq.
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FIG. 4. Quantitative comparison between experiments and
model. Dependence with the input flux (a) and with the de-
position height (b) of the proportionality constant in Eq. (3),

P . Black dashed lines represent the value of P = Xc/(Fin
√
h)

used in our model to reproduce the experimental data and the
height of the gray rectangles represents its standard error.
Pmodel = 3.27± 0.65 s/cm3/2.

(3) explains the general shape of the dependencies dis-
played in Fig. 3(a) and (b). These laws can be repro-
duced quantitatively using values shown in Table I, that
correspond to a prefactor value of P = Xc/(Fin

√
h) =

3.27 ± 0.65 s/cm3/2. θs is taken from the experimental
data while µw and δstop are taken from the literature
typical values of these quantities. That gives a value of
α = 0.30 which is our free parameter and suggests that
the 70 % percent of the potential energy of the grains is
dissipated due to the impact at the tip of the pile.

The agreement between the theoretical expression and
the experimental measurements of Xc is satisfactory for
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Magnitude Value

θs 33.5°
µw 0.18 [21]

δstop 15 d = 0.15 cm [26]

α 0.30

TABLE I. Values of the quantities in eq. (3)
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FIG. 5. Transition time dependency on the deposition height.
Transition time as a function of deposition height for different
input fluxes.

all values of Fin and h tested, as seen on Fig. 3(a) and
3(b), comparing the theoretical expressions (lines) and
experimental results (symbols). The only significant dis-
crepancy is for the lowest input flux, where the model
underestimates the value of Xc by a factor between 1.5
and 1.8. Apart from this outlying results at the lowest
flux, and a point at Fin = 1.7 cm2/s and h = 15 cm,
all other experimental values of Xc lie within 18% of the
theoretical value with fixed θs, µw, α and δstop.

Furthermore, taking into account that the conserva-
tion of mass imposes that the horizontal length of the
pile scales with time as t1/2 (see the fit displayed in
Fig. 2), Eq. (3) immediately explains (at least semi-
quantitatively) the experimental behavior illustrated in
Fig. 5. It also predicts the behavior of tc as function
of the input flux which, following the model, is given by
(see Appendix A),

tc =
9α2w2 sin2 θs tan θs

4gµ2
wδ

4
stop

Finh (4)

Here the agreement between experimental data and
theory is satisfactory as well, although less than for the
value of Xc. Note that, apart from the lowest flux and
two points with Fin = 1.7 cm2/s, one with h = 5 cm
and another with h = 15 cm, the experimental points lie
within 23% of the theoretical value.

C. Predicting the transition: from fixed-h to
variable-h piles
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FIG. 6. Equivalence between fixed-h and variable-h experi-
ments. The black solid lines show the deposition height for
a variable-h experiment versus (a) the pile length and (b)
the time, while the dashed increasing lines represent (a) a
quadratic fit and (b) a linear fit to the dependence between
the respective magnitudes at the transition for fixed-h exper-
iments (squares are experimental points). Gray solid lines
follow the law (a) h = 23.5 cm −0.67x and (b) h = 23.5 cm

−(0.99 cm·s−1/2)
√
t. The insets display the time evolution

of the pile horizontal length for variable-h experiments. (a)
Input flow of 2.43 cm2/s (b) Input flow of 0.75 cm2/s.

Differently from most of previous research, our experi-
ments show the CIT in a completely controlled way: not
only is the input flux controlled, but also the deposition
height is fixed. In typical situations where some gran-
ular material is poured to form a growing heap, it is
poured from a container without changing its position,
so h decreases as the upper side of the heap grows. That
behavior is showed for experiments we made with a fixed
container and represented by the solid, decreasing lines
in Fig. 6.

Fig. 6(a) shows how the deposition height decreases as
the length of the pile increases while Fig. 6(b) shows its
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temporal evolution. Both behaviors can be modeled by
applying the mass conservation principle, and approxi-
mating the pile as a triangular shape with fixed angle θs,
height Y and base X. Since Y + h = h0, Y = X tan θs,
and from mass conservation XY = 2Ft, one obtains that
h varies with the pile length as h0 −X tan θs and varies
in time as h0−

√
2tF tan θs, where h0 is the initial height

of the container over the bottom of the Hele-Shaw cell
and θs the critical angle of the pile surface. These ex-
pressions correspond to the two gray lines shown in Fig.
6 (a) and (b). Their agreement with the experimental
data, the black continuous line, is noticeable.

Dashed lines in Fig. (6) are constructed by fits to
the experimental data where Xc and tc were obtained
in different experiments controlling h (represented by
squares). Each point of these lines corresponds to (a)

X
hfix
c and (b) t

hfix
c for the different values of the fixed

deposition height hfix. The lines represent the interface
between the continuous and the intermittent regimes for
those input fluxes. Then, the length (time) at which
the two curves intercept should match the transition

length (time) for a free-h experiment, i.e., X
hfix
c = Xhvar

c

(t
hfix
c = thvar

c ). The insets, which correspond to piles
grown without controlling the deposition height, show
that our prediction is correct in each case. Furthermore,
using that idea it can be determined at which fixed-h the
transition occurs at the same length or time for both kind
of experiments, fixed-h and variable-h.

IV. CONCLUSIONS

We have performed a systematic study of the surface
flow on a granular heap where grains are added from a
controlled height, h. As the pile grows, the flow is first
continuous, and then intermittent: for small piles, the
free surface is smooth, but after reaching a horizontal
pile size Xc avalanches flow down the hill, and step-like
fronts then climb uphill until a new downhill avalanche
occurs. We have found that Xc grows linearly with the
input flux, Fin, and as h1/2 with the deposition height
h. We explain these facts based on a model where mass
and momentum are conserved taking into account the
basal friction of the flowing grains with the quasi-static
part of the heap as well as the friction with walls. Im-
portantly, the model assumes that the layer of flowing
grains is wedge-shaped in growing heaps, a fact that
we demonstrate experimentally. Moreover, by systemat-
ically comparing experiments with controlled h and with
non-controlled h (as typically reported in the literature)
we are able to predict the values of Xc and tc in the latter
case based on its values in the former.
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Appendix A: Deriving equations (3) and (4)

𝑣⊥(𝑡)

𝛿(𝑥)

𝜃(𝑡)

𝑣∥(𝑡)

ℎ

1

2
3

b

a

𝑌

𝑋

FIG. 7. (a) Flowing layer in a typical experiment during the
continuous regime. The image is obtained from the overlay
of 100 images (corresponding to 1/10 seconds) and then ap-
plying an edge detector. (b) Sketch used to derive the model
equations. The region indicated with dashed lines represents
the control volume (CV) while the solid white lines on top of
them represent the control surfaces (CS) through which there
is interchange of mass and momentum. The control volume
moves with velocity v⊥ to include only the fluid layer. The

velocity v‖ = 1
δw

∫ w
0

∫ δ
0
vxdzdy.

If we consider a flow of incompressible grains (ρ = con-
stant) of thickness δ and width w on the free surface of a
growing heap, using the Reynolds’ transport theorem we
can write the depth-averaged mass conservation equation
for a control volume (CV), as the one showed in Figure
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7. Here, ~v is measured relative to the control volume
(CV) and the velocity along the x-direction considered

constant ∂vx
∂x = 0 as it is suggested by experimental mea-

surements [21, 26].

dm

dt
=

∂

∂t

(∫
CV

ρ dV

)
+

∫
CS

ρ(~v · ~n) dA

0 =
∂

∂t
(ρwδdx)−

∫
ρv‖dA1 +

∫
ρv⊥dA2 +

∫
ρv‖dA3

0 = ρ
∂δ

∂t
+ ρv‖

∂δ

∂x
+ ρv⊥

(A1)

The quasi-steady state solution gives

v‖
∂δ

∂x
= −v⊥ (A2)

Now, doing the same analysis but for the linear momentum conservation,

d~p

dt
=

∂

∂t

(∫
CV

~vρ dV

)
+

∫
CS

~vρ(~v · ~n)dA (A3)

and writing its force balance equation for the x-direction, we get,∑
Fx = τxxδw −

(
(τxx +

∂τxx
∂x

dx)(δ +
∂δ

∂x
dx)w

)
+ τyxwdx+ 2τzxδdx+ ρg sin θδwdx

= wdx

(
−∂ (δτxx)

∂x
+ τyx + τzx

δ

w
+ ρgδ sin θ

) (A4)

In Eq. (A4) we take into account the normal and shear stresses in the x-direction on every control surface indicated
in Fig. 7 as well as the shear stress on the walls confining the flow. Now, looking at the momentum exchange through
the control surfaces,∑

Fx =
∂

∂t

(∫
CV

~vρdV

)
+

∫
CS

~vρ(~v · ~n)dA

=
∂
(
v‖ρwδdx

)
∂t

−
∫
v‖ρv‖dA1 +

∫
vxρv⊥dA2 +

∫
v‖ρv‖dA3

= wdx

(
ρ
∂
(
v‖δ
)

∂t

)
− ρv2

‖wδ − (ρvxv⊥)|y=0wdx+ ρv2
‖w

(
δ +

∂δ

∂x
dx

)

= wdx

(
ρ
∂
(
v‖δ
)

∂t
− (ρvxv⊥)|y=0 + ρv2

‖
∂δ

∂x

)
(A5)

Using Eq. A4 and A5,

ρ
∂
(
v‖δ
)

∂t
+ ρv2

‖
∂δ

∂x
= −∂ (δτxx)

∂x
+ τyx + τzx

δ

w
+ ρgδ sin θ + (ρvxv⊥)|y=0

(A6)

we get an expression for the momentum conservation in the (x) direction considering the interaction with the walls.
Its quasi-steady state solution gives,

ρv2
‖
∂δ

∂x
= −1

2
ρv2
‖
∂δ

∂x
− ρgδ cos θ tan θs − µwρgδ cos θ

δ

w
+ ρgδ sin θ

v‖
∂δ

∂x
=

2gδ cos θ
(
tan θ − µw δ

w − tan θs
)

3v‖

(A7)

The normal stress τxx is considered as the dynamic pressure, equal to 1
2ρv

2
‖, and its variation in the flow di-
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rection (x) is neglected since changes in the layer thick-
ness are small. The shear stresses τyx = ρgδ cos θ tan θs
and τzx = µwρgδ cos θ are assumed as Coulomb’s fric-
tional stresses where tan θs is the static friction of the
pile µs and µw the dynamic friction coefficient of the
grains with the walls. τzx is taken as suggested in [21].
vx|y=0 is expected to be equal or close to 0, so, ρvxv⊥ is
neglected. Combining equations (A2) and (A7),

Lx =
3Qinα

√
2gh

2gδ̄ cos θ
(
− tan θ + µw

δ̄
w + tan θs

)
w

(A8)

where δ̄ = (1/Lx)
∫ Lx

0
δdx. We have used the fact that

Q⊥ = Qin = v⊥Lxw, where Lx = X
cos θ is the length of

the interface between the the flowing and static layers,
and v‖ = αvin sin θ = α

√
2gh sin θ, being vin the velocity

of the incoming grains (free fall) and α < 1 a dimension-
less constant that accounts for the energy loss after the
impact on the tip of the pile of the grains coming from
the container.

At the transition (θ → θs) the thickness of the fluid

layer reaches a minimum δ̄ = δstop, after which the flow-
ing grains cannot “continually cover” the whole surface
of the pile, therefore intermittency starts [21, 26].

lim
θ→θs

Lx =
3α
√
hQin sin θs√

2gδstop cos θsµw
δstop
w w

(A9)

Xc =
3αw sin θs√
2gµwδ2

stop

Finh
1/2 (A10)

Assuming a triangular heap profile that grows with a
constant angle θs, and using the principle of mass con-
servation we can write the following expression for the
whole heap,

Fintc =
1

2
X2
c tan θs (A11)

Hence Eq. (4) can be obtained.
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[3] T. Le Pennec, K. J. Måløy, A. Hansen, M. Ammi,
D. Bideau, and X. Wu. Ticking hour glasses: Experimen-
tal analysis of intermittent flow. Phys. Rev. E, 53:2257–
2264, 1996.

[4] S. L. Conway, D. J. Goldfarb, T. Shinbrot, and B. J.
Glasser. Free surface waves in wall-bounded granular
flows. Phys. Rev. Lett., 90:074301, 2003.

[5] N. Taberlet, P. Richard, E. Henry, and R. Delannay. The
growth of a super stable heap: An experimental and nu-
merical study. Europhysics Letters (EPL), 68(4):515–521,
2004.

[6] H. Elbelrhiti, P. Claudin, and B. Andreotti. Field evi-
dence for surface-wave-induced instability of sand dunes.
Nature, 437:720–723, 2005.
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