
HAL Id: hal-03873826
https://hal.science/hal-03873826v1

Submitted on 27 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tractable Explanations for d-DNNF Classifiers
Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, Martin Cooper, Nicholas

Asher, Joao Marques-Silva

To cite this version:
Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, Martin Cooper, Nicholas Asher, et al.. Tractable
Explanations for d-DNNF Classifiers. 36th AAAI Conference on Artificial Intelligence (AAAI 2022),
AAAI: American Association for Artificial Intelligence, Feb 2022, Seattle (virtual), United States.
pp.5719-5728, �10.1609/aaai.v36i5.20514�. �hal-03873826�

https://hal.science/hal-03873826v1
https://hal.archives-ouvertes.fr

Tractable Explanations for d-DNNF Classifiers
Xuanxiang Huang1, Yacine Izza1, Alexey Ignatiev2,

Martin Cooper3, Nicholas Asher4, Joao Marques-Silva4

1 University of Toulouse, France
2 Monash University, Melbourne, Australia

3 IRIT, CNRS, Univ. Paul Sabatier, Toulouse, France
4 IRIT, CNRS, Toulouse, France

xuanxiang.huang@univ-toulouse.fr, yacine.izza@univ-toulouse.fr, alexey.ignatiev@monash.edu,
martin.cooper@irit.fr, nicholas.asher@irit.fr, joao.marques-silva@irit.fr

Abstract

Compilation into propositional languages finds a growing
number of practical uses, including in constraint program-
ming, diagnosis and machine learning (ML), among others.
One concrete example is the use of propositional languages
as classifiers, and one natural question is how to explain the
predictions made. This paper shows that for classifiers repre-
sented with some of the best-known propositional languages,
different kinds of explanations can be computed in polyno-
mial time. These languages include deterministic decompos-
able negation normal form (d-DNNF), and so any proposi-
tional language that is strictly less succinct than d-DNNF.
Furthermore, the paper describes optimizations, specific to
Sentential Decision Diagrams (SDDs), which are shown to
yield more efficient algorithms in practice.

1 Introduction
The growing use of machine learning (ML) models in prac-
tical applications raises a number of concerns related with
fairness, robustness, but also explainability (Lipton 2018;
Weld and Bansal 2019; Monroe 2021). Recent years have
witnessed a number of works on computing explanations for
the predictions made by ML models1. Approaches to com-
puting explanations can be broadly categorized as heuris-
tic (Ribeiro, Singh, and Guestrin 2016; Lundberg and Lee
2017; Ribeiro, Singh, and Guestrin 2018), which offer no
formal guarantees of rigor, and non-heuristic (Shih, Choi,
and Darwiche 2018; Ignatiev, Narodytska, and Marques-
Silva 2019a; Darwiche and Hirth 2020; Audemard, Ko-
riche, and Marquis 2020), which in contrast offer strong
guarantees of rigor. Non-heuristic explanation approaches
can be further categorized into compilation-based (Shih,
Choi, and Darwiche 2018, 2019; Darwiche and Hirth 2020)
and oracle-based (Ignatiev, Narodytska, and Marques-Silva
2019a; Malfa et al. 2021).

Compilation-based approaches (Shih, Choi, and Dar-
wiche 2018, 2019) compile the decision function associ-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1There is a fast growing body of work on the explainability
of ML models. Example references include (Guidotti et al. 2019;
Samek et al. 2019; Samek and Müller 2019; Miller 2019b,a; An-
jomshoae et al. 2019; Mittelstadt, Russell, and Wachter 2019; Xu
et al. 2019; Mueller et al. 2019).

ated with an ML classifier into some propositional lan-
guage (among those covered by the knowledge compilation
map (Darwiche and Marquis 2002)). As a result, more recent
work studied such propositional languages from the per-
spective of explainability, with the purpose of understand-
ing the complexity of computing explanations (Audemard,
Koriche, and Marquis 2020; Barceló et al. 2020; Audemard
et al. 2021), but also with the goal of identifying exam-
ples of queries of interest (Audemard, Koriche, and Mar-
quis 2020; Audemard et al. 2021). Furthermore, although
recent work (Audemard, Koriche, and Marquis 2020; Bar-
celó et al. 2020) analyzed the complexity of explainabil-
ity queries for classifiers represented with different proposi-
tional languages, it is also the case that it is unknown which
propositional languages allow the expressible functions to
be explained efficiently, and which do not. On the one hand,
(Audemard, Koriche, and Marquis 2020) proposes condi-
tions not met by most propositional languages. On the other
hand (Barceló et al. 2020) studies restricted cases of propo-
sitional languages, but focusing on smallest PI-explanations.
Also, since one key motivation for the use of propositional
languages is the efficiency of reasoning, namely with respect
to specific queries and transformations (Darwiche and Mar-
quis 2002), a natural question is whether similar results can
be obtained in the setting of explainability.

This paper studies the computational complexity of com-
puting PI-explanations (Shih, Choi, and Darwiche 2018)
and contrastive explanations (Miller 2019b) for classifiers
represented with well-known propositional languages. Con-
cretely, the paper shows that for any propositional language
that implements in polynomial time the queries of consis-
tency (CO) and validity (VA), and the transformation of con-
ditioning (CD), then one PI-explanation or one contrastive
explanation can be computed in polynomial time. This re-
quirement is strictly less stringent than another one proposed
in earlier work (Audemard, Koriche, and Marquis 2020),
thus proving that explanations can be computed in polyno-
mial time for a larger range of propositional languages. Con-
cretely, the paper shows that for classifiers represented with
several propositional languages, that include d-DNNF, one
PI-explanation or one contrastive explanation can be com-
puted in polynomial time. The result immediately general-
izes to propositional languages less succinct than d-DNNF,
e.g. OBDD, SDD, to name a few. Moreover, for the concrete

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

5719

case of SDDs, the paper shows that practical optimizations
lead to clear performance gains. Besides computing one ex-
planation, one is often interested in obtaining multiple ex-
planations, thus allowing a decision maker to get a better un-
derstanding of the reasons supporting a decision. As a result,
the paper also outlines a MARCO-like (Liffiton et al. 2016)
algorithm for the enumeration of both AXps and CXps. Fur-
thermore, the paper studies the computational complexity
of explaining generalizations of decision sets (Lakkaraju,
Bach, and Leskovec 2016), and proposes conditions under
which explanations can be computed in polynomial time.

The paper is organized as follows. Section 2 introduces
the definitions and notation used throughout the paper. Sec-
tion 3 shows that for several classes of propositional lan-
guages, one PI-explanation and one contrastive explanation
can be computed in polynomial time. In addition, Section 3
shows how to enumerate explanations requiring one NP or-
acle call (in fact a SAT reasoner call) for each computed
explanation. Section 4 investigates a number of generalized
classifiers, which can be built from propositional languages
used as building blocks. Section 5 assesses the computation
of explanations of d-DNNF’s and SDDs in practical settings.
Section 7 concludes the paper.

2 Preliminaries
Classification problems & formal explanations. This
paper considers classification problems, which are defined
on a set of features (or attributes) F = {1, . . . ,m} and a
set of classes K = {c1, c2, . . . , cK}. Each feature i ∈ F
takes values from a domain Di. In general, domains can be
boolean, integer or real-valued, but in this paper we restrict
Di = {0, 1} and K = {0, 1}. (In the context of proposi-
tional languages, we will replace 0 by ⊥ and 1 by >. This
applies to domains and classes.) Feature space is defined as
F = D1 × D2 × . . . × Dm = {0, 1}m. The notation x =
(x1, . . . , xm) denotes an arbitrary point in feature space,
where each xi is a variable taking values from Di. The set
of variables associated with features is X = {x1, . . . , xm}.
Moreover, the notation v = (v1, . . . , vm) represents a spe-
cific point in feature space, where each vi is a constant rep-
resenting one concrete value from Di = {0, 1}. An instance
(or example) denotes a pair (v, c), where v ∈ F and c ∈ K.
(We also use the term instance to refer to v, leaving c im-
plicit.) An ML classifier C is characterized by a classifi-
cation function κ that maps feature space F into the set of
classes K, i.e. κ : F → K. (It is assumed throughout that κ
is not constant, i.e. there are at least two points v1 and v2 in
feature space, where κ(v1) 6= κ(v2).)

We now define formal explanations. Prime implicant (PI)
explanations (Shih, Choi, and Darwiche 2018) denote a min-
imal set of literals (relating a feature value xi and a constant
vi ∈ Di) that are sufficient for the prediction2. Formally,
given v = (v1, . . . , vm) ∈ F with κ(v) = c, a weak (or non-

2PI-explanations are related with abduction, and so are also re-
ferred to as abductive explanations (AXp) (Ignatiev, Narodytska,
and Marques-Silva 2019a). More recently, PI-explanations have
been studied from a knowledge compilation perspective (Aude-
mard, Koriche, and Marquis 2020; Audemard et al. 2021).

minimal) abductive explanation (weak AXp) is any subset
X ⊆ F such that,

∀(x ∈ F).
[∧

i∈X
(xi = vi)

]
→(κ(x) = c) (1)

Any subset-minimal weak AXp is referred to as an AXp.
AXps can be viewed as answering a ‘Why?’ question, i.e.
why is some prediction made given some point in fea-
ture space. A different view of explanations is a contrastive
explanation (Miller 2019b), which answers a ‘Why Not?’
question, i.e. which features can be changed to change the
prediction. A formal definition of contrastive explanation
(CXp) is proposed in recent work (Ignatiev et al. 2020b).
Given v = (v1, . . . , vm) ∈ F with κ(v) = c, a weak (or
non-minimal) CXp is any subset Y ⊆ F such that,

∃(x ∈ F).
∧

j∈F\Y
(xj = vj) ∧ (κ(x) 6= c) (2)

Any subset-minimal weak CXp is referred to as a CXp. (For
simplicity, except specifically indicated, in the rest of the
paper AXp will be used to denote the subset-minimal weak
AXp, the same for CXp.) Building on the results of R. Re-
iter in model-based diagnosis (Reiter 1987), (Ignatiev et al.
2020b) proves a minimal hitting set (MHS) duality relation
between AXps and CXps, i.e. AXps are MHSes of CXps
and vice-versa.

Propositional languages. Following earlier work (Dar-
wiche 2001; Darwiche and Marquis 2002; Huang and Dar-
wiche 2007), we define negated normal form (NNF), de-
composable NNF (DNNF), deterministic DNNF (d-DNNF),
decision DNNF (dec-DNNF), and also smooth d-DNNF
(sd-DNNF).

Definition 1 (Propositional languages (Darwiche and Mar-
quis 2002)). The following propositional languages are
studied in the paper:
• Negation normal form (NNF) is the set of all directed

acyclic graphs where each leaf node is labeled with ei-
ther >, ⊥, xi or ¬xi, for xi ∈ X . Each internal node is
labeled with either ∧ (or AND) or ∨ (or OR).

• Decomposable NNF (DNNF) is the set of all NNFs where
for every node labeled with ∧, α = α1 ∧ · · · ∧ αk, no
variables are shared between the conjuncts αj .

• A d-DNNF is a DNNF where for every node labeled with
∨, β = β1 ∨ · · · ∨ βk, each pair βp, βq , with p 6= q, is
inconsistent, i.e. βp ∧ βq �⊥.

• A dec-DNNF (or decision-DNNF) is a DNNF, where ev-
ery node labeled with ∨ is given by (xi ∧α)∨ (¬xi ∧β).

• An sd-DNNF is a d-DNNF where for every node labeled
with ∨, β = β1 ∨ · · · ∨ βk, each pair βp, βq is defined on
the same set of variables.

The paper establishes explainability results for classifiers
represented with d-DNNF. However, for simplicity of algo-
rithms, sd-DNNF is often considered (Darwiche 2001). Fur-
thermore, sentential decision diagrams (SDDs) represent a
well-known subset of the d-DNNF (Darwiche 2011; Van den
Broeck and Darwiche 2015; Bova 2016). SDDs are based
on a strongly deterministic decomposition (Darwiche 2011),
which is used to decompose a Boolean function into the

5720

∧

∨

∧

x1 x4

∧

¬x1

∨

x3 ∧

¬x3 x2

Figure 1: A d-DNNF used as a running example

form: (p1 ∧ s1) ∨ · · · ∨ (pn ∧ sn), where each pi is called
a prime and each si is called a sub (both primes and subs
are sub-functions). Furthermore, the process of decomposi-
tion is governed by a variable tree (vtree) which stipulates
the variable order (Darwiche 2011).

Throughout the paper, a term ρ denotes a conjunction of
literals. A term ρ is consistent (ρ2⊥) if the term is satisfied
in at least one point in feature space.

This paper considers exclusively the queries CO and VA,
and the transformation CD, which are defined next. Let L
denote a subset of NNF. Hence, we have the following stan-
dard definitions.

Definition 2 (Conditioning (Darwiche and Marquis 2002)).
Let ∆ represent a propositional formula and let ρ denote
a consistent term. The conditioning of ∆ on ρ, i.e. ∆|ρ, is
the formula obtained by replacing each variable xi by >
(resp.⊥) if xi (resp. ¬xi) is a positive (resp. negative) literal
of ρ.

Definition 3 (Queries & transformations (Darwiche and
Marquis 2002)). The following queries and transformations
are used throughout with respect to a propositional lan-
guage L3:
• L satisfies the consistency (validity) query CO (VA) iff

there exists a polynomial-time algorithm that maps every
formula ∆ from L to 1 if ∆ is consistent (valid), and to 0
otherwise.

• L satisfies the conditioning transformation CD iff there
exists a polynomial-time algorithm that maps every for-
mula ∆ from L and every consistent term ρ into a for-
mula that is logically equivalent to ∆|ρ.

Example 1. Figure 1 shows the running example
used throughout the paper. F = {1, 2, 3, 4}, X =
{x1, x2, x3, x4}, and κ((x1, x2, x3, x4)) = ((x1 ∧ x4) ∨
(¬x1 ∧ x4))∧ (x3 ∨ (¬x3 ∧ x2)). Moreover, the paper con-
siders the concrete instance (v, c) = ((0, 0, 0, 0), 0).

3There are additional queries and transformations of inter-
est (Darwiche and Marquis 2002), but these are omitted for suc-
cinctness.

Algorithm 1: Finding one AXp given starting seed S
Input: Classifier κ, Seed Set S , Instance v,

Class c, Conditioner ςA
Output: AXp S

1: procedure findAXp(κ,S,v, c, ςA)
2: for all i ∈ S do
3: κ|s,v ← ςA(κ,S \ {i},v)
4: if [c = > ∧ isValid(κ|s,v)] or

[c = ⊥ ∧ not isConsistent(κ|s,v)] then
5: S ← S \ {i}
6: return S

3 Explanations for d-DNNF
As will be shown in this section, there is a tight connection
between the definitions of AXp and CXp (see (1) and (2))
and the queries VA, CO and the transformation CD. Indeed,
for (1) and (2), CD can serve to impose that the values of
some features (i, represented by variable xi) are fixed to
some value vi. In addition, VA (resp. CO) is used to decide
(1), after conditioning, when c = 1 (resp. c = 0). Similarly,
VA (resp. CO) is used to decide (2), again after condition-
ing, when c = 1 (resp. c = 0). Thus, for languages respect-
ing the (poly-time) queries VA and CO and the (poly-time)
transformation CD, one can compute one AXp and one CXp
in polynomial time. This is detailed in the rest of this section.

Finding one AXp. We start by detailing an algorithm to
find one AXp. We identify any S ⊆ {1, . . . ,m} with its
corresponding bit-vector s = (s1, . . . , sm) where si = 1⇔
i ∈ S . Given vectors x,v, s, we can construct the vector
xs,v (in which s is a selector between the two vectors x and
v) such that

xs,vi = (xi ∧ si) ∨ (vi ∧ si) (3)

To find an AXp, i.e. a subset-minimal weak AXp, Algo-
rithm 1 is used. (For now, seed S is set to F .) (Algorithm 1
is a general greedy algorithm that is well-known and used
in a wide range of settings, e.g. minimal unsatisfiable core
extraction in CSPs (Chinneck and Dravnieks 1991; Bakker
et al. 1993), but which is also present in the seminal work of
Valiant (Valiant 1984). The novelty is the use of the same
algorithm for finding AXps (and also CXps) of proposi-
tional languages that respect concrete transformations and
queries of the knowledge compilation map. Possible alter-
natives would include the QuickXplain (Junker 2004) or
the Progression (Marques-Silva, Janota, and Belov 2013) al-
gorithms, among other options (Marques-Silva, Janota, and
Mencı́a 2017).)

Considering s and v as constants, when c = 1, κ(xs,v)
is valid iff S is a weak AXp of κ(v) = c. Furthermore,
when c = 0, κ(xs,v) is inconsistent iff S is a weak AXp of
κ(v) = c. We therefore have the following proposition.
Proposition 1. For a classifier implemented with some
propositional language L, finding one AXp is polynomial-
time provided the following three operations can be per-
formed in polynomial time:
1. construction of κ(xs,v) from κ, s and v.

5721

∧

∨

∧

∨

∧

s1 ⊥

∧

¬s1 x1

∨

∧

s4 ⊥

∧

¬s4 x4

∧

∨

∧

s1 >

∧

¬s1 ¬x1

. . .

Figure 2: Partial d-DNNF for κ(xs,v), with v = (0, 0, 0, 0)

2. testing validity of κ(xs,v).
3. testing consistency of κ(xs,v).

Corollary 1. Finding one AXp of a decision taken by a d-
DNNF is polynomial-time.

Proof. It is sufficient to show that d-DNNF’s satisfy the
conditions of Proposition 1. Consistency and validity on d-
DNNF’s is well-known to be decided in polynomial time
(Darwiche and Marquis 2002). To transform a d-DNNF
calculating κ(v) into a d-DNNF calculating κ(xs,v), we
need to replace each leaf labelled xi by a leaf labelled
(xi∧si)∨(vi∧si) and each leaf labelled xi by a leaf labelled
(xi ∧ si) ∨ (vi ∧ si). Note that s and v are constants during
this construction. Thus, we simplify these formulas to obtain
either a literal or a constant according to the different cases:
• si = 0: label (xi ∧ si) ∨ (vi ∧ si) is xi and label (xi ∧
si) ∨ (vi ∧ si) is xi. In other words, the label of the leaf
node is unchanged.

• si = 1: label (xi ∧ si)∨ (vi ∧ si) is the (constant) value
of vi and label (xi∧ si)∨ (vi∧ si) is the (constant) value
of vi.

Indeed, this is just conditioning (CD, i.e. fixing a subset of
the variables xi, given by the set S, to vi) and it is well
known that CD is a polytime operation on d-DNNFs (Dar-
wiche and Marquis 2002).

Figure 2 illustrates the proposed transformation for part
of the d-DNNF of Figure 1.

Example 2. The operation of the algorithm for comput-
ing one AXp is illustrated for the modified d-DNNF shown
in Figure 2 for the instance (v, c) = ((0, 0, 0, 0), 0). By in-
spection, we can observe that the value computed by the d-
DNNF will be 0 as long as s4 = 1, i.e. as long as 4 is part of
the weak AXp. If removed from the weak AXp, one can find
an assignment to x, which sets κ(xs,v) = 1. The computed
AXp is S = {4}.

Algorithm 2: Finding one CXp given starting seed S
Input: Classifier κ, Seed Set S , Instance v,

Class c, Conditioner ςC
Output: CXp S

1: procedure findCXp(κ,S,v, c, ςC)
2: for all i ∈ S do
3: κ|s,v ← ςC(κ,S \ {i},v)
4: if [c = > ∧ not isValid(κ|s,v)] or

[c = ⊥ ∧ isConsistent(κ|s,v)] then
5: S ← S \ {i}
6: return S

Finding one CXp. To compute one CXp, (2) is used. In
this case, we identify any S ⊆ {1, . . . ,m} with its corre-
sponding bit-vector s where si = 1 ⇔ i ∈ F \ S . More-
over, we adapt the approach used for computing one AXp,
as shown in Algorithm 2. (As in the case of Algorithm 1,
seed S is set to F , for now.) (Observe that the main differ-
ence is the relationship between S and s, and the test for a
weak CXp. Also, recall from Section 2 that κ is assumed not
to be constant, and so a CXp can always be computed.)
Proposition 2. For a classifier implemented with some
propositional language L, finding one CXp is polynomial-
time provided the operations of Proposition 1 can be per-
formed in polynomial time.
Corollary 2. Finding one AXp/CXp of a decision taken by a
classifier is polynomial-time if the classifier is given in one
of the following languages: d-DNNF (Darwiche and Mar-
quis 2002), SDD (Darwiche 2011), OBDD (Darwiche and
Marquis 2002), PI (Darwiche and Marquis 2002), IP (Dar-
wiche and Marquis 2002), renH-C (Fargier and Marquis
2008), AFF (Fargier and Marquis 2008), dFSD (Niveau,
Fargier, and Pralet 2011), and EADT (Koriche et al. 2013).

Proof. It suffices to observe that the languages listed above
satisfy the conditions of Propositions 1 and 2.

Example 3. The operation of the algorithm for comput-
ing one CXp is illustrated for the modified d-DNNF shown
in Figure 2 for the instance (v, c) = ((0, 0, 0, 0), 0). By in-
spection, we can observe that the value computed by the d-
DNNF can be changed to 1 as long as s3 = 0∧s4 = 0, i.e. as
long as {3, 4} are part of the weak CXp. If removed from the
weak CXp, one no longer can find an assignment to x that
sets κ(xs,v) = 1. Thus, the computed CXp is S = {3, 4}.
Enumerating AXps/CXps. Finally, we outline a
MARCO-like algorithm (Liffiton et al. 2016) for on-
demand enumeration of AXps and CXps. For that, we use
Algorithm 1 and Algorithm 2, but now allow for some
initial set of features (i.e. a seed) to be specified. The seed
is used for computing the next AXp or CXp, and it is
picked such that repetition of explanations is disallowed.
As argued below, the algorithm’s organization ensures that
computed explanations are not repeated. Moreover, since
the algorithms for computing one AXp or one CXp run
in polynomial time, then the enumeration algorithm is
guaranteed to require exactly one call to an NP oracle for

5722

Algorithm 3: Enumeration algorithm
Input: Feature Set F , Classifier κ, Instance v,

Class c, Conditioners ςA, ςC
1: procedure Enumerate(F , κ,v, c, ςA, ςC)
2: H ← ∅ //H defined on set P = {p1, . . . , pm}
3: repeat
4: (outc,p)← SAT(H)
5: if outc = true then
6: S ← {i ∈ F | pi = 1}
7: κ|s,v ← ςA(κ,S,v)
8: if [c = > ∧ isValid(κ|s,v)] or

[c = ⊥ ∧ not isConsistent(κ|s,v)] then
9: X ← findAXp(κ,S,v, c, ςA)

10: reportAXp(X)
11: H ← H∪ {(∨i∈X¬pi)}
12: else
13: X ← findCXp(κ,F \ S,v, c, ςC)
14: reportCXp(X)
15: H ← H∪ {(∨i∈Xpi)}
16: until outc = false

each computed explanation, in addition to procedures that
run in polynomial time.

The main building blocks of the enumeration algorithm
are: (1) finding one AXp given a seed (see Algorithm 1);
(2) finding one CXp given a seed (see Algorithm 2); and
(3) a top-level algorithm that ensures that previously com-
puted explanations are not repeated (see Algorithm 3). The
top level-algorithm invokes a SAT oracle to identify the seed
which will determine whether a fresh AXp or CXp will be
computed in the next iteration. As argued earlier, the algo-
rithms for computing one AXp and one CXp use one trans-
formation, specifically conditioning (CD, see line 3) and
two queries, namely consistency and validity (CO/VA, see
line 4). In the case of computing one AXp, if the predic-
tion is>, we need to check validity, i.e. for all (conditioned)
assignments, the prediction is also >. In contrast, if the pre-
diction is⊥, then we need to check that consistency does not
hold, i.e. for all (conditioned) assignments, the prediction is
also ⊥. In contrast, in the case of computing one CXp, we
need to change the tests that are executed, since we seek to
change the value of the prediction. It should be noted that, by
changing the conditioning operation, different propositional
languages can be explained. Finally, Algorithm 3 shows the
proposed approach for enumerating AXps and CXps, which
adapts the basic MARCO algorithm for enumerating mini-
mal unsatisfiable cores (Liffiton et al. 2016). From the def-
initions, we can see that for any S ⊆ F , either S is a weak
AXp or F \ S is a weak CXp. Every set S calculated at line
6 of Algorithm 3 has the property that it is not a superset of
any previously found AXp (due to the clauses added toH at
line 11) and that F \ S is not a superset of any previously
found CXp (due to the clauses added at line 15).

Example 4. Table 1 summarizes the main steps of enumer-
ating the AXps and CXps of the running example (see Fig-
ure 1). It is easy to confirm that after four explanations are
computed, H becomes inconsistent, and so the algorithm

terminates. Also, one can confirm the hitting set duality be-
tween AXps and CXps (Ignatiev et al. 2020b).

4 Generalizations
This section generalizes earlier results by considering multi-
class classification, i.e. the set of classes is now K =
{c1, . . . , cK}.
Explanations for generalized decision functions. First,
we consider that each class cj ∈ K is associated with a total
function κj : F → {0, 1}, such that the class cj is picked
iff κj(v) = 1. For example, decision sets (Lakkaraju, Bach,
and Leskovec 2016) represent one such example of multi-
class classification, where each function κj is represented by
a DNF, and a default rule is used to pick some class for the
points v in feature space for which all κj(v) = 0. Moreover,
decision sets may exhibit overlap (Ignatiev et al. 2018), i.e.
the existence of points v in feature space such that there exist
j1 6= j2 and κj1(v) = κj2(v) = 1. In practice, the existence
of overlap can be addressed by randomly picking one of the
classes for which κj(v) = 1. Alternatively, DS learning can
ensure that overlap is non-existing (Ignatiev et al. 2018).

Here, we consider generalized versions of DSes, by re-
moving the restriction that each class is computed with
a DNF. Hence, a generalized decision function (GDF) is
such that each function κj is allowed to be an arbitrary
boolean function. Furthermore, the following two properties
of GDFs are considered:
Definition 4 (Binding GDF). A GDF is binding if,

∀(x ∈ F).
∨

1≤j≤K
κj(x) (4)

(Thus, a binding GDF requires no default rule, since for
any point x in feature space, there is at least one κj such that
κj(x) holds.)
Definition 5 (Non-overlapping GDF). A GDF is non-
overlapping if,

∀(x ∈ F).
∧

1≤j1,j2≤K,j1 6=j2
(¬κj1(x) ∨ ¬κj2(x)) (5)

(Thus, a binding, non-overlapping GDF computes a to-
tal multi-class classification function.) Furthermore, we can
establish conditions for a GDF to be binding and non-
overlapping:
Proposition 3. A GDF is binding and non-overlapping iff
the following formula is inconsistent:

∃(x ∈ F).κ1(x) + . . .+ κK(x) 6= 1 (6)

Proof. Given Definition 4 and Definition 5,
1. Clearly, there exists a point v ∈ F such that κ1(v)+. . .+
κK(v) = 0 iff the GDF is non-binding;

2. Clearly, there exists v ∈ F such that κ1(v) + . . . +
κK(v) ≥ 2 iff the GDF is overlapping.

Thus, the result follows.

Remark 1. For a GDF where each function is represented
by a boolean circuit, deciding whether a GDF is binding and
non-overlapping is in coNP. In practice, checking whether a
GDF is binding and non-overlapping can be decided with a
call to an NP oracle.

5723

H SAT(H) p
AXp(1),
CXp(0)? S AXp CXp Block

∅ 1 (1, 1, 1, 1) 1 {1, 2, 3, 4} {4} — b1 = (¬p4)
{b1} 1 (1, 1, 1, 0) 1 {1, 2, 3} {2, 3} — b2 = (¬p2 ∨ ¬p3)

{b1, b2} 1 (1, 0, 1, 0) 0 {1, 3} — {2, 4} b3 = (p2 ∨ p4)
{b1, b2, b3} 1 (1, 1, 0, 0) 0 {1, 2} — {3, 4} b4 = (p3 ∨ p4)

{b1, b2, b3, b4} 0 — — — — — —

Table 1: Example of AXp/CXp enumeration, using Algorithm 3

Proposition 4. For a binding and non-overlapping GDF,
such that each classification function is represented by a sen-
tence of a propositional language satisfying the query CO
and the transformation CD, then one AXp or one CXp can
be computed in polynomial time. Furthermore, enumeration
of AXps/CXps can be achieved with one call to an NP oracle
per computed explanation.

Proof sketch. For computing one AXp of class cp, one can
iteratively check consistency on the remaining literals of the
other functions q 6= p. Conditioning is used to reflect, in the
classifiers, the choices made, i.e. which literals are included
or not in the AXp. For a CXp a similar approach can be used.
For enumeration, we can once again exploit a MARCO-like
algorithm.

Corollary 3. For a binding non-overlapping GDF, where
each κj is represented by a DNNF, one AXp and one CXp
can be computed in polynomial time. Furthermore, enumer-
ation of AXps/CXps can be achieved with one call to an NP
oracle per computed explanation.

Thus, for GDFs that are both binding and non-
overlapping, even if each function is represented by the
fairly succinct DNNF, one can still compute AXps and
CXps efficiently. As clarified by Proposition 4, VA is unnec-
essary to find an AXp/CXp; for any GDF implemented with
propositional languages satisfying the query CO and the
transformation CD, an AXp/CXp can be computed in poly-
nomial time. In addition, a MARCO-like algorithm (Liffiton
et al. 2016) can be used for enumerating AXps and CXps.
The results above can be generalized to the case of multi-
valued classification, where binarization (one-hot-encoding)
can serve for representing multi-valued (non-continuous)
features.

Total congruent classifiers. We can build on the condi-
tions for GDFs to devise relaxed conditions for poly-time
explainability.

Definition 6 (Total Classifier). A classification function is
total if for any point v ∈ F, there is a prediction κ(v) = c,
with c ∈ K.

Definition 7 (Congruent Classifier). A classifier is congru-
ent if the tractability (i.e. whether or not solvable in poly-
nomial time) of deciding the consistency of κ(x) = c is the
same for any c ∈ K.

Similarly, we can define a total congruent proposition
language, for which the query CO is satisfied iff deciding

κ(v) = c is in polynomial time for any c ∈ K. Thus, the
same argument used for GDFs, can be used to prove that,
Proposition 5. For a total congruent propositional lan-
guage, which satisfies the operations of CO and CD, one
AXp and one CXp can be computed in polynomial time. Fur-
thermore, enumeration of AXps/CXps can be achieved with
one call to an NP oracle per computed explanation.

5 Experimental Results
In this section, we present the experiments carried out to
assess the practical effectiveness of the proposed approach.
The assessment is performed on the computation of AXps
and CXps for d-DNNFs and SDDs.

Experimental setup. The experiments consider a selec-
tion of 19 binary classification datasets that are publicly
available and originate from the Penn Machine Learning
Benchmarks (Olson et al. 2017) and the UCI Machine
Learning Repository (Dua and Graff 2017). 8 datasets are
fully binary and the remaining 11 datasets comprise categor-
ical/binary features. Then, categorical features are binarized
using the well-known one-hot-encoding. (We note that the
explanations are computed with respect to the new (one-hot-
encoded) features, and not with respect to the original fea-
tures.) To learn d-DNNFs (resp. SDDs), we first train Read-
Once Decision Tree (RODT) models on the given datasets
using Orange3 (Demšar et al. 2013) and then compile the
obtained RODTs into d-DNNFs (resp. SDDs). (A RODT is
a free BDD (FBDD) whose underlying graph is a tree (Bar-
celó et al. 2020; Wegener 2000), where FBDD is defined as
a BDD that satisfies the read-once property: each variable is
encountered at most once on each path from the root to a leaf
node.) The compilation of RODTs to d-DNNFs can be eas-
ily done by direct mapping, since RODT is a special case of
FBDDs, and FBDDs is a subset of d-DNNFs (Darwiche and
Marquis 2002). To compile SDDs, we use the PySDD pack-
age4, which is implemented in Python and Cython. PySDD
wraps the well-known SDD package5 which offers canoni-
cal SDDs6. Employing canonical SDDs allows performing
consistency and validity checking in a constant time (If the
canonical SDD is inconsistent (resp. valid) then it is a single

4https://github.com/wannesm/PySDD
5http://reasoning.cs.ucla.edu/sdd/
6Since PySDD offers canonical SDDs, the CD transformation

is not implemented in worst-case polynomial time (Van den Broeck
and Darwiche 2015). However, in practice, this was never an issue
in our experiments.

5724

node labeled with ⊥ (resp. >) (Darwiche 2011)), so in prac-
tice it may improve the efficiency of explaining SDD classi-
fiers. Moreover, all presented algorithms are implemented in
Python 7. In addition, the PySAT toolkit (Ignatiev, Morgado,
and Marques-Silva 2018) is used to instrument incremen-
tal SAT oracle calls to enumerate AXp/CXp. As a baseline
comparison, we also include in this evaluation an heuristic
explainer Anchor (Ribeiro, Singh, and Guestrin 2018) to as-
sess the runtime performance of our approach. Lastly, we
run the experiments on a MacBook Pro with a 6-Core Intel
Core i7 2.6 GHz processor with 16 GByte RAM, running
macOS Big Sur.

Results. Table 2 summarizes the obtained results of ex-
plaining d-DNNFs and SDDs. (Note that, for each dataset,
the compiled d-DNNF and SDD represent the same decision
function of the learned RODT. Hence, the computed expla-
nations are the same as well. The size of the d-DNNF is on
average twice as large as the corresponding SDD. Also note
that compilation time is not included in the runtimes shown
in the table, since these are not directly related with the com-
putation of explanations.) Performance-wise, the maximum
runtime to enumerate XPs is less than 1.0 sec for all the d-
DNNFs, and less than 0.2 sec for all the SDDs. On average,
total enumeration of XPs takes at most 0.4 sec for d-DNNFs;
and for SDDs at most 0.05 sec. Thus the overall cost of the
SAT oracle calls performed by Algorithm 3 is negligible.
Given the results, one can conclude that the SAT calls do
not constitute a bottleneck for enumerating the AXps/CXps
of the classifiers represented as d-DNNFs or SDDs. How-
ever, in settings where the total number of explanations is
much larger (i.e. exponentially large on the number of fea-
tures), the cost of SAT calls could become dominant. Apart
from the runtime, one observation is that the total number of
AXps and CXps per instance is relatively small. Moreover, if
compared with the number of features, the average length of
an AXp/CXp is also relatively small. Despite that runtimes
reported in Table 2 are small for AXp and CXp, one might
not argue that the explanation problems studied in this paper
are fairly easy. In fact, as can be observed Anchor’s runtimes
can exceed the running times of the d-DNNF non-heuristic
explainer by several orders of magnitude.

To conclude, for the concrete case of classifiers that can be
represented efficiently using d-DNNF and SDD, the experi-
mental results confirm that, if a classifier can be represented
with a propositional language that implements polynomial-
time CO and VA queries as well as the CD transformation,
then the computation and enumeration of explanations is not
only practical, but substantially more efficient than alterna-
tive heuristic approaches. Regarding the limitations of pro-
posed approach, these are the same as for all compilation-
based methods: the off-line compilation phase may theoret-
ically be very expensive in time and space. This limitation
has not prevented compilation being used in large-scale in-
dustrial applications.

7All the materials for replicating the experiments are available
at https://github.com/XuanxiangHuang/Xddnnf-experiments

6 Related Work

Although recent years have witnessed a growing interest in
finding explanations of machine learning (ML) models (Lip-
ton 2018; Guidotti et al. 2019; Weld and Bansal 2019; Mon-
roe 2021), explanations have been studied from different
perspectives and in different branches of AI at least since
the 80s (Shanahan 1989; Falappa, Kern-Isberner, and Simari
2002; Pérez and Uzcátegui 2003), including more recently
in constraint programming (Amilhastre, Fargier, and Mar-
quis 2002; Bogaerts et al. 2020; Gamba, Bogaerts, and Guns
2021). In the case of ML models, non-heuristic explana-
tions have been studied in recent years (Shih, Choi, and
Darwiche 2018; Ignatiev, Narodytska, and Marques-Silva
2019a; Shih, Choi, and Darwiche 2019; Narodytska et al.
2019; Ignatiev, Narodytska, and Marques-Silva 2019b,c;
Darwiche and Hirth 2020; Ignatiev et al. 2020a; Ignatiev
2020; Audemard, Koriche, and Marquis 2020; Marques-
Silva et al. 2020; Barceló et al. 2020; Ignatiev et al. 2020b;
Izza, Ignatiev, and Marques-Silva 2020; Wäldchen et al.
2021; Izza and Marques-Silva 2021; Malfa et al. 2021; Ig-
natiev and Marques-Silva 2021; Cooper and Marques-Silva
2021; Huang et al. 2021; Audemard et al. 2021; Marques-
Silva and Ignatiev 2022; Ignatiev et al. 2022; Shrotri et al.
2022). Some of these earlier works studied explanations for
classifiers represented with propositional languages, namely
those covered by the knowledge compilation map (Shih,
Choi, and Darwiche 2018, 2019; Darwiche and Hirth 2020;
Audemard, Koriche, and Marquis 2020; Barceló et al. 2020;
Huang et al. 2021; Audemard et al. 2021). However, results
on the efficient computation of explanations for classifiers
represented with propositional languages are scarce. For ex-
ample, (Shih, Choi, and Darwiche 2018, 2019; Darwiche
and Hirth 2020) propose compilation algorithms (which
are worst-case exponential) to generate the PI-explanations
from OBDDs. Concretely, a classifier is compiled into an
OBDD, which is then compiled into an OBDD representing
the PI-explanations of the original classifier. Moreover, (Au-
demard, Koriche, and Marquis 2020) proves that, in the con-
text of multi-class classification, if a propositional language
satisfies CD, FO, and IM, then one PI-explanation can
be computed in polynomial time. Our results in Section 4
consider multi-class classification with multiple classifiers.
(Barceló et al. 2020) studies the computation complexity of
computing smallest PI-explanations. Explanation enumera-
tion based on the MARCO algorithm (Liffiton et al. 2016)
was investigated in recent work (e.g. (Marques-Silva et al.
2021)). The main difference in Algorithm 3 is the explicit
use of transformation and queries from the knowledge com-
pilation map. Perhaps more importantly, the computation of
AXp’s and CXp’s for a classifier represented as a d-DNNF
circuit is fairly orthogonal to earlier work on the computa-
tion of explanations for propagators operating on d-DNNF
circuits (Gange and Stuckey 2012). Indeed, in the case of
propagators, the d-DNNF encodes valid assignments to a
constraint, and explanations are always computed against a
valuation of 1 of the d-DNNF, i.e. the allowed assignments
to the constraint.

5725

Dataset (#F #S) Model XPs AXp CXp d-DNNF SDD Anchor

%A #ND #NS avg M avg %L M avg %L M avg M avg avg
chess∗ (38 320) 99 88 54 7 9 2 12 12 4 5 0.053 0.013 0.007 0.002 3.07
compas∗ (46 617) 67 300 149 22 34 11 15 25 11 5 0.914 0.309 0.127 0.037 5.63
corral (6 16) 100 35 12 4 2 1 34 4 2 22 0.002 0.001 0.000 0.000 0.41
kr vs kp∗ (38 320) 98 89 60 7 9 2 13 11 5 5 0.043 0.012 0.007 0.002 3.15
Mammographic (13 96) 79 129 51 13 12 6 41 12 7 16 0.083 0.040 0.004 0.002 1.38
mofn 3 7 10 (10 132) 97 107 47 11 19 4 33 27 6 23 0.065 0.013 0.002 0.001 1.10
monk1∗ (15 56) 98 93 40 6 4 2 27 9 4 11 0.022 0.009 0.001 0.001 3.77
monk2∗ (15 17) 64 156 100 15 24 7 45 12 8 12 0.161 0.058 0.016 0.006 7.93
monk3∗ (15 55) 99 17 9 4 4 2 14 3 2 9 0.001 0.001 0.000 0.000 0.54
mux6 (6 13) 92 58 23 5 4 2 54 5 3 22 0.005 0.002 0.000 0.000 0.56
parity5+5 (10 112) 86 427 101 10 8 3 67 15 8 15 0.175 0.056 0.003 0.001 18.64
postoperative∗ (22 9) 66 84 55 11 6 4 24 9 7 8 0.022 0.017 0.004 0.003 4.01
primary-tumor∗ (17 34) 64 117 75 11 15 5 25 11 6 13 0.091 0.031 0.009 0.004 2.35
promoters∗ (334 11) 81 38 24 5 4 2 1 5 3 1 0.005 0.003 0.001 0.001 57.72
spect (22 27) 77 114 61 10 14 5 18 12 5 10 0.080 0.025 0.004 0.002 1.41
threeOf9 (9 51) 100 87 36 7 12 3 36 9 4 18 0.022 0.007 0.001 0.000 1.10
tic tac toe∗ (27 96) 94 179 109 15 33 7 25 17 8 8 0.384 0.096 0.142 0.034 7.38
vote∗ (48 43) 94 38 28 4 5 1 5 6 2 4 0.006 0.002 0.001 0.000 1.91
xd6 (9 97) 99 88 32 7 18 4 34 26 3 20 0.031 0.009 0.003 0.001 1.51

Table 2: Listing all AXp’s/CXp’s for d-DNNFs and SDDs. (Observe that the dataset names with an asterisk, i.e. DATANAME∗,
represent those that originally contained categorical data, and which we binarized using the one hot encoding (OHE). As a
result, for these binarized datasets, computed explanations are defined with respect to the binarized (OHE) features and not
with respect to the original features.) Columns #F and #S report, resp. the number of features and the number of tested samples
(instances) in the dataset. (The number of tested samples #S represents 10% of the data, selected randomly.) Sub-Column %A
reports the (test) accuracy of the model and #ND (resp. #NS) shows the total number of nodes in the compiled d-DNNF (resp.
SDD). Column XPs reports the average number of total explanations (AXp’s and CXp’s). Sub-columns M and avg of column
AXp (resp. CXp) show, resp., the maximum and average number of explanations. The average length (in percentage of #F) of
an AXp/CXp is given as %L. Sub-columns M and avg of column d-DNNF (resp. SDD) report, resp., maximum and average
runtime (in seconds) to list all XPs of all tested instances. Finally, the average runtimes to compute Anchor explanations for the
d-DNNFs is shown in the last column.

7 Conclusions
This paper proves that for any classifier that can be repre-
sented with a d-DNNF, both one AXp and one CXp can be
computed in polynomial time on the size of the d-DNNF.
Furthermore, the paper shows that enumeration of AXps and
CXps can be implemented with one NP oracle call per ex-
planation. The experimental evidence confirms that for small
numbers of explanations, the cost of enumeration is negligi-
ble. In addition, the paper proposes conditions for general-
ized decision functions to be explained in polynomial time.
Concretely, the paper develops conditions which allow gen-
eralized decision functions represented with DNNFs to be
explainable in polynomial time. Finally, the paper proposes
general conditions for a classifier to be explained in polyno-
mial time. The experimental results validate the scability of
the polynomial time algorithms and, more importantly, the
scalability of oracle-based enumeration.

Acknowledgments
We are grateful to the anonymous referees for their con-
structive input. This work was supported by the AI Inter-
disciplinary Institute ANITI, funded by the French program
“Investing for the Future – PIA3” under Grant agreement
no. ANR-19-PI3A-0004, and by the H2020-ICT38 project

COALA “Cognitive Assisted agile manufacturing for a La-
bor force supported by trustworthy Artificial intelligence”.

References
Amilhastre, J.; Fargier, H.; and Marquis, P. 2002. Consis-
tency restoration and explanations in dynamic CSPs Appli-
cation to configuration. Artif. Intell., 135(1-2): 199–234.

Anjomshoae, S.; Najjar, A.; Calvaresi, D.; and Främling, K.
2019. Explainable Agents and Robots: Results from a Sys-
tematic Literature Review. In AAMAS, 1078–1088.

Audemard, G.; Bellart, S.; Bounia, L.; Koriche, F.; Lagniez,
J.; and Marquis, P. 2021. On the Computational Intelligibil-
ity of Boolean Classifiers. In KR, 74–86.

Audemard, G.; Koriche, F.; and Marquis, P. 2020. On
Tractable XAI Queries based on Compiled Representations.
In KR, 838–849.

Bakker, R. R.; Dikker, F.; Tempelman, F.; and Wognum,
P. M. 1993. Diagnosing and Solving Over-Determined Con-
straint Satisfaction Problems. In IJCAI, 276–281.

Barceló, P.; Monet, M.; Pérez, J.; and Subercaseaux, B.
2020. Model Interpretability through the lens of Compu-
tational Complexity. In NeurIPS.

5726

Bogaerts, B.; Gamba, E.; Claes, J.; and Guns, T. 2020. Step-
Wise Explanations of Constraint Satisfaction Problems. In
ECAI, 640–647.
Bova, S. 2016. SDDs Are Exponentially More Succinct than
OBDDs. In AAAI, 929–935.
Chinneck, J. W.; and Dravnieks, E. W. 1991. Locating Min-
imal Infeasible Constraint Sets in Linear Programs. IN-
FORMS J. Comput., 3(2): 157–168.
Cooper, M. C.; and Marques-Silva, J. 2021. On the
Tractability of Explaining Decisions of Classifiers. In
Michel, L. D., ed., CP, 21:1–21:18.
Darwiche, A. 2001. On the Tractable Counting of Theory
Models and its Application to Truth Maintenance and Belief
Revision. J. Appl. Non Class. Logics, 11(1-2): 11–34.
Darwiche, A. 2011. SDD: A New Canonical Representation
of Propositional Knowledge Bases. In IJCAI, 819–826.
Darwiche, A.; and Hirth, A. 2020. On the Reasons Behind
Decisions. In ECAI, 712–720.
Darwiche, A.; and Marquis, P. 2002. A Knowledge Compi-
lation Map. J. Artif. Intell. Res., 17: 229–264.

Demšar, J.; Curk, T.; Erjavec, A.; Črt Gorup; Hočevar, T.;
Milutinovič, M.; Možina, M.; Polajnar, M.; Toplak, M.;
Starič, A.; Štajdohar, M.; Umek, L.; Žagar, L.; Žbontar, J.;
Žitnik, M.; and Zupan, B. 2013. Orange: Data Mining Tool-
box in Python. Journal of Machine Learning Research, 14:
2349–2353.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory. http://archive.ics.uci.edu/ml.
Falappa, M. A.; Kern-Isberner, G.; and Simari, G. R. 2002.
Explanations, belief revision and defeasible reasoning. Artif.
Intell., 141(1/2): 1–28.
Fargier, H.; and Marquis, P. 2008. Extending the Knowl-
edge Compilation Map: Krom, Horn, Affine and Beyond. In
AAAI, 442–447.
Gamba, E.; Bogaerts, B.; and Guns, T. 2021. Efficiently
Explaining CSPs with Unsatisfiable Subset Optimization. In
IJCAI, 1381–1388.
Gange, G.; and Stuckey, P. J. 2012. Explaining Propagators
for s-DNNF Circuits. In CPAIOR, 195–210.
Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F.; Gian-
notti, F.; and Pedreschi, D. 2019. A Survey of Methods for
Explaining Black Box Models. ACM Comput. Surv., 51(5):
93:1–93:42.
Huang, J.; and Darwiche, A. 2007. The Language of Search.
J. Artif. Intell. Res., 29: 191–219.
Huang, X.; Izza, Y.; Ignatiev, A.; and Marques-Silva, J.
2021. On Efficiently Explaining Graph-Based Classifiers.
In KR, 356–367.
Ignatiev, A. 2020. Towards Trustable Explainable AI. In
IJCAI, 5154–5158.
Ignatiev, A.; Cooper, M. C.; Siala, M.; Hebrard, E.; and
Marques-Silva, J. 2020a. Towards Formal Fairness in Ma-
chine Learning. In CP, 846–867.

Ignatiev, A.; Izza, Y.; Stuckey, P.; and Marques-Silva, J.
2022. Using MaxSAT for Efficient Explanations of Tree En-
sembles. In AAAI.
Ignatiev, A.; and Marques-Silva, J. 2021. SAT-Based Rigor-
ous Explanations for Decision Lists. In SAT, 251–269.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Oracles.
In SAT, 428–437.
Ignatiev, A.; Narodytska, N.; Asher, N.; and Marques-Silva,
J. 2020b. From Contrastive to Abductive Explanations and
Back Again. In AIxIA, 335–355.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019a.
Abduction-Based Explanations for Machine Learning Mod-
els. In AAAI, 1511–1519.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019b.
On Relating Explanations and Adversarial Examples. In
NeurIPS, 15857–15867.
Ignatiev, A.; Narodytska, N.; and Marques-Silva, J. 2019c.
On Validating, Repairing and Refining Heuristic ML Expla-
nations. CoRR, abs/1907.02509.
Ignatiev, A.; Pereira, F.; Narodytska, N.; and Marques-Silva,
J. 2018. A SAT-Based Approach to Learn Explainable De-
cision Sets. In IJCAR, 627–645.
Izza, Y.; Ignatiev, A.; and Marques-Silva, J. 2020. On Ex-
plaining Decision Trees. CoRR, abs/2010.11034.
Izza, Y.; and Marques-Silva, J. 2021. On Explaining Ran-
dom Forests with SAT. In IJCAI, 2584–2591.
Junker, U. 2004. QUICKXPLAIN: Preferred Explanations
and Relaxations for Over-Constrained Problems. In AAAI,
167–172.
Koriche, F.; Lagniez, J.; Marquis, P.; and Thomas, S. 2013.
Knowledge Compilation for Model Counting: Affine Deci-
sion Trees. In IJCAI, 947–953.
Lakkaraju, H.; Bach, S. H.; and Leskovec, J. 2016. Inter-
pretable Decision Sets: A Joint Framework for Description
and Prediction. In KDD, 1675–1684.
Liffiton, M. H.; Previti, A.; Malik, A.; and Marques-Silva, J.
2016. Fast, flexible MUS enumeration. Constraints An Int.
J., 21(2): 223–250.
Lipton, Z. C. 2018. The mythos of model interpretability.
Commun. ACM, 61(10): 36–43.
Lundberg, S. M.; and Lee, S. 2017. A Unified Approach to
Interpreting Model Predictions. In NeurIPS, 4765–4774.
Malfa, E. L.; Zbrzezny, A.; Michelmore, R.; Paoletti, N.; and
Kwiatkowska, M. 2021. On Guaranteed Optimal Robust Ex-
planations for NLP Models. In IJCAI, 2658–2665.
Marques-Silva, J.; Gerspacher, T.; Cooper, M. C.; Ignatiev,
A.; and Narodytska, N. 2020. Explaining Naive Bayes and
Other Linear Classifiers with Polynomial Time and Delay.
In NeurIPS.
Marques-Silva, J.; Gerspacher, T.; Cooper, M. C.; Ignatiev,
A.; and Narodytska, N. 2021. Explanations for Monotonic
Classifiers. In ICML, 7469–7479.
Marques-Silva, J.; and Ignatiev, A. 2022. Delivering Trust-
worthy AI through formal XAI. In AAAI.

5727

Marques-Silva, J.; Janota, M.; and Belov, A. 2013. Mini-
mal Sets over Monotone Predicates in Boolean Formulae.
In CAV, 592–607.
Marques-Silva, J.; Janota, M.; and Mencı́a, C. 2017. Min-
imal sets on propositional formulae. Problems and reduc-
tions. Artif. Intell., 252: 22–50.
Miller, T. 2019a. ”But why?” Understanding explainable
artificial intelligence. ACM Crossroads, 25(3): 20–25.
Miller, T. 2019b. Explanation in artificial intelligence: In-
sights from the social sciences. Artif. Intell., 267: 1–38.
Mittelstadt, B. D.; Russell, C.; and Wachter, S. 2019. Ex-
plaining Explanations in AI. In FAT, 279–288.
Monroe, D. 2021. Deceiving AI. Commun. ACM, 64.
Mueller, S. T.; Hoffman, R. R.; Clancey, W. J.; Emrey,
A.; and Klein, G. 2019. Explanation in Human-AI Sys-
tems: A Literature Meta-Review, Synopsis of Key Ideas and
Publications, and Bibliography for Explainable AI. CoRR,
abs/1902.01876.
Narodytska, N.; Shrotri, A. A.; Meel, K. S.; Ignatiev, A.;
and Marques-Silva, J. 2019. Assessing Heuristic Machine
Learning Explanations with Model Counting. In SAT, 267–
278.
Niveau, A.; Fargier, H.; and Pralet, C. 2011. Representing
CSPs with Set-Labeled Diagrams: A Compilation Map. In
GKR, 137–171.
Olson, R. S.; La Cava, W.; Orzechowski, P.; Urbanowicz,
R. J.; and Moore, J. H. 2017. PMLB: a large benchmark
suite for machine learning evaluation and comparison. Bio-
Data Mining, 10(1): 36.
Pérez, R. P.; and Uzcátegui, C. 2003. Preferences and expla-
nations. Artif. Intell., 149(1): 1–30.
Reiter, R. 1987. A Theory of Diagnosis from First Princi-
ples. Artif. Intell., 32(1): 57–95.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”Why
Should I Trust You?”: Explaining the Predictions of Any
Classifier. In KDD, 1135–1144.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2018. Anchors:
High-Precision Model-Agnostic Explanations. In AAAI,
1527–1535.
Samek, W.; Montavon, G.; Vedaldi, A.; Hansen, L. K.; and
Müller, K., eds. 2019. Explainable AI: Interpreting, Ex-
plaining and Visualizing Deep Learning. Springer. ISBN
978-3-030-28953-9.
Samek, W.; and Müller, K. 2019. Towards Explainable Ar-
tificial Intelligence. In (Samek et al. 2019), 5–22.
Shanahan, M. 1989. Prediction is Deduction but Explanation
is Abduction. In IJCAI, 1055–1060.
Shih, A.; Choi, A.; and Darwiche, A. 2018. A Symbolic
Approach to Explaining Bayesian Network Classifiers. In
IJCAI, 5103–5111.
Shih, A.; Choi, A.; and Darwiche, A. 2019. Compiling
Bayesian Network Classifiers into Decision Graphs. In
AAAI, 7966–7974.
Shrotri, A. A.; Narodytska, N.; Ignatiev, A.; Meel, K.;
Marques-Silva, J.; and Vardi, M. 2022. Constraint-Driven
Explanations of Black-Box ML Models. In AAAI.

Valiant, L. G. 1984. A Theory of the Learnable. Commun.
ACM, 27(11): 1134–1142.
Van den Broeck, G.; and Darwiche, A. 2015. On the Role
of Canonicity in Knowledge Compilation. In AAAI, 1641–
1648.
Wäldchen, S.; MacDonald, J.; Hauch, S.; and Kutyniok, G.
2021. The Computational Complexity of Understanding Bi-
nary Classifier Decisions. J. Artif. Intell. Res., 70: 351–387.
Wegener, I. 2000. Branching Programs and Binary Decision
Diagrams. SIAM. ISBN 0-89871-458-3.
Weld, D. S.; and Bansal, G. 2019. The challenge of crafting
intelligible intelligence. Commun. ACM, 62(6): 70–79.
Xu, F.; Uszkoreit, H.; Du, Y.; Fan, W.; Zhao, D.; and Zhu, J.
2019. Explainable AI: A Brief Survey on History, Research
Areas, Approaches and Challenges. In NLPCC, 563–574.

5728

