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Abstract: Recent efforts have uncovered various methods for providing explanations that can help
interpret the behavior of machine learning programs. Exact explanations with a rigorous logical
foundation provide valid and complete explanations, but they have an epistemological problem:
they are often too complex for humans to understand and too expensive to compute even with
automated reasoning methods. Interpretability requires good explanations that humans can grasp and
can compute. We take an important step toward specifying what good explanations are by analyzing
the epistemically accessible and pragmatic aspects of explanations. We characterize sufficiently
good, or fair and adequate, explanations in terms of counterfactuals and what we call the conundra
of the explainee, the agent that requested the explanation. We provide a correspondence between
logical and mathematical formulations for counterfactuals to examine the partiality of counterfactual
explanations that can hide biases; we define fair and adequate explanations in such a setting. We
provide formal results about the algorithmic complexity of fair and adequate explanations. We
then detail two sophisticated counterfactual models, one based on causal graphs, and one based on
transport theories. We show transport based models have several theoretical advantages over the
competition as explanation frameworks for machine learning algorithms.

Keywords: explainability; counterfactual models; transport theories

1. Introduction

Explaining the predictions of sophisticated machine-learning algorithms is an impor-
tant issue for the foundations of AI. Recent efforts [1–5] have proposed various methods
for providing explanations. Among these, model-based, logical approaches completely
characterise one aspect of the decision offer complete and valid explanations. “Model-free”
or model-agnostic, heuristic approaches like those in [1,2,6] cannot.

Model-based logical methods are thus a priori desirable, but they have an epistemo-
logical problem: they may be too complex for humans to understand or even to write
down in human-readable form. Interpretability requires epistemically accessible explanations,
explanations humans can grasp and compute. Yet what is a sufficiently complete and adequate
epistemically accessible explanation, a good explanation still needs analysis [7].

We address this open question and characterize sufficiently good, or fair and adequate,
explanations in terms of counterfactuals—explanations, that is that are framed in terms
of what would have happened had certain conditions (that do not obtain) been the case.
Counterfactual explanations, as we argue below, are a good place to start for finding
accessible explanations, because they are typically more compact than other forms of
explanation. While there have been many other counterfactual approaches, our approach
is novel in that it provides an explicit, logical model for counterfactual explanations and
links this model to techniques used to find counterfactual counterparts and explanations in
ML systems like heat or saliency maps [8] or adversarial examples [3,9].

Another novel element of our approach is that for us a fair and adequate explanation
must take into account the cognitive constraints and fairness requirements of an explainee
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E [10–12]. E asks for an explanation for why π when she wasn’t expecting π. Her not
expecting π follows from beliefs that must now be revised—how to specify this revision
is the conundrum of E . An adequate explanation is a pragmatic act that should solve the
conundrum that gave rise to the request for explanation; solving the conundrum makes the
explanation useful to E [13]. In addition, an adequate explanation must lay bare biases that
might be unfair or injurious to E (the fairness constraint).

More precisely, we frame the pragmatic component of explanations in terms of what
we call the conundrum and fairness requirements of the explainee, the person who requested
the explanation or for whom the explanation is intended). It is this conundrum that makes
the explainee request an explanation. This pragmatic act is naturally modelled in a game
theoretic setting in which the explainer must understand explainee E’s conundrum and
respond so as to resolve it. A cooperative explainer will provide an explanation in terms
of the type he assigns to E, as the type will encode the relevant portions of E’s cognitive
state. On the other hand the explainee will need to interpret the putative explanation in
light of her model of the explainer’s view of his type. Thus, both explainer and explainee
have strategies that exploit information about the other—naturally suggesting a game
theoretic framework for analysis. Our theory thus analyzes the important pragmatic
component of explanations and addresses a so far unsolved challenge for explanations
noted by [14], according to which good, counterfactual explanations should take into
account the explainee’s preferences and beliefs.

In an initial description of our view of fair and adequate explanations [15], we ex-
ploited both a logical theory of counterfactuals [16] and mathematical approaches for
adversarial perturbation techniques [5,8,9,14,17–21] to prove a novel and precise corre-
spondence between logical and mathematical formulations for counterfactuals. We then
formalized conundra to provide a novel pragmatic notion of fair and adequate explanations,
and we developed Explanation games for proving computational complexity results for
finding fair and adequate explanations in non cooperative settings.

In this paper, we review some of the results of [15] in the first four sections. Section 2
provides a background to our view of explanations; Section 3 analyzes counterfactual
explanations in more detail; Section 4 analyzes the pragmatic component of counterfactual
explanations; and Section 5 analyzes the computational complexity of fair and adequate
explanations. But in this paper, we have extended Section 3 to analyze the partiality
of counterfactual explanations and how many other approaches that use counterfactual
techniques often provide invalid explanations and hide possibly injurious biases. We have
extended Section 5 to show how to use Explanation games to investigate properties of
counterfactual models.

In addition, this paper has two sections with completely new work. In Section 6,
we set out certain desiderata for counterfactual models that are more sophisticated than
those in [15]. In Section 7, we propose two models of counterfactuals that are much more
sophisticated than the ones contemplated in our earlier work—counterfactual models based
on causal structural causal models or graphs, and counterfactual models based on transport
theories. These models present much more sophisticated views of counterfactual coun-
terparts. We extend our link between between logical and statistics based counterfactual
methods to these sophisticated models. This leads us to change the underlying logical
framework of counterfactuals by introducing probabilities explicitly into counterfactual
semantics. We show that transport based approaches are especially interesting because
they allow us to address in principle important challenges for applying counterfactual
models to ML cited by [14]: first, transport methods allow us to construct counterfactual
predictions based on partial data (when data about some features are missing). Second in
some cases. they yield a set of counterfactuals that are equivalent to those provided by a
causal theory. This means that we can have causally based counterfactuals in the absence of
a fully specified causal structural model. A third advantage and potentially revolutionary
advantage is that transport models form the basis of ML systems in which we can eliminate
adversarial examples where the change in prediction of the system is not intelligible to
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examples in which the change in prediction is clearly intelligible and a classic case of a
counterfactual counterpart [22].

As the reader will see, this is a theoretical paper. While we believe that experiments
using various systems on different data sets can yield insights, we also think there is an
important place for papers like this one that carve out a theoretical space. Our paper sets out
a formal and explicit analysis of counterfactual explainability. We show how counterfactual
models can address problems for ML systems at a theoretical level, and we address worst
cases computational costs for fair and adequate explanations in some counterfactual models.
In light of these developments, we think that the counterfactual approach has very rich
empirical applications, some of which are explored in [22]; but adding a discussion of these
applications would go far beyond this paper’s intended scope.

2. Background on Explanations

Following [10,11], we take explanations to be answers to why questions. Consider the
case where a bank, perhaps using a machine learning program, judges E ’s application for a
bank loan and E is turned down. E is in a position to ask a why question like,

(1) why was I turned down for a loan?

When her beliefs would not have predicted this. Her beliefs might not have been
sufficient to infer that she wouldn’t get a loan; or her beliefs might have been mistaken—
they might have led her to conclude that she would get the loan. In any case, E must now
revise her beliefs to accord with reality. Counterfactual explanations, explanations expressed
with counterfactual statements, help E do this by offering an incomplete list of relevant
factors that together with unstated properties of E entail the explanandum—the thing E
needs explained, in this case her not getting the loan. For instance, the bank might return
the following answer to (1):

(2) Your income is e50 K per year.

(3) If your income had been e100 K per year, you would have gotten the loan.

The counterfactual statement (3) states what, given all of E ’s other qualities, would
have been sufficient to get the loan. But since her income is in fact not e100 K per year,
the semantics of counterfactuals entails that E does not get the loan. (3) also proposes to
E how to revise her beliefs to make them accord with reality, in that it suggests that she
mistakenly thought that her actual salary was sufficient for getting the loan and that the
correct salary level is e100 K per year. Ref. [23] provides a superficially similar picture
to the pragmatic one we present, but their aim, to provide a semantics for argumentation
frameworks, is quite different from ours. For us the pragmatic aspect of explanations is
better explained via a game theoretic framework, as we shall see in Section 5.

Counterfactual explanations, we have seen, are partial, because they do not explicitly
specify logically sufficient conditions for the prediction. They are also local, because their
reliance on properties of a particular sample makes them valid typically only for that
sample. Had we considered a different individual, say D, the bank’s explanation for their
treatment of D might have differed. D might have had different, relevant properties from
E ; for instance, D might be just starting out on a promising career with a salary of e50 K
per year, while E is a retiree with a fixed income.

The partiality and locality of counterfactuals make them simpler and more epistem-
ically accessible than other forms of model-based logical explanations. Logical methods
often return rather long explanations even for relatively simple classifiers with large number
of features that makes the explanations hard for humans to understand [24]. Nevertheless,
the logical theory of counterfactuals enables us to move from a counterfactual to a complete
and logically valid explanation. So in principle counterfactual explanations can provide
both rigour and epistemic accessibility. But not just any partiality will do, since partiality
makes possible explanations that are misleading, that hide injurious or unfair biases.

To show how the partiality of counterfactual explanations can hide unfair biases,
consider the following scenario. The counterfactual in (2) might be true but it also might
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be misleading, hiding an unfair bias. (1) and (2) can be true while another, more morally
repugnant explanation that hinges on E ’s being female is also true. Had E been male, she
would have gotten the loan with her actual salary of e50 K per year. A fair and adequate
explanation should expose such biases.

We now move to a more abstract setting. Let f̂ : Xn → Y be a machine learning
algorithm, with Xn an n-dimensional feature space encoding data and Y the prediction
space. Concretely, we assume that f̂ is some sort of classifier. When f̂ = π, an explainee may
want an explanation, an answer to the question, “why π?” We will say that an explanation
is an event by an explainer, the provider of the explanation, directed towards the explainee
(the person requesting the explanation or to whom the explanation is directed) with a
conundrum. An explanation will consist of of an explanandum, the event or prediction to be
explained, an explanans, the information that is linked in some way to the explanandum
so as to resolve the explainee’s conundrum. When the explanation is about a particular
individual, we call that individual the focal point of the explanation.

Explanations have thus several parameters. The first is the scope of the explanation.
For a global explanation of f̂ , the explainee wants to know the behavior of f̂ over the
total space Xn. But such an explanation may be practically uncomputable; and for many
purposes, we might only want to know how f̂ behaves on a selection of data points of
interest or focal points, like E ’s bank profile in our example. Explanations that are restricted
to focal points are local explanations.

Explanations of program behavior also differ as to the nature of the explanans. In this
paper, we will be concerned with external explanations that involve an explanatory link
between an explanans consisting of features of the input or feature space X, and the output
in Y without considering any internal states of the learning mechanism [25]. These are
attractive epistemically, because unpacking the algorithms’ internal states and assigning
them a meaning can be a very complicated affair. Most explanations of complex ML systems
like those that appeal to heat maps for instance are also external explanations. Most ML
systems f̂ in effect are too complex or opaque for its behaviour to be analyzed statically.

Explanations are not only characterized by what sort of explanans they appeal to, a set
of features in our case; they must also make explicit åhow the explanans is derived. To derive
the explanans, we might have to appeal to the internal states of the learning mechanism.
Explanations that use heat maps and gradient descent [8,26,27] do this as well as logic
based explanations. These are all model = based types of explanation. On the other hand,
explanations based on approximations of the behavior of the learning mechanisms like [1,2]
do not use any internal states of the learning mechanism to find an explanans. The latter
are known as model free explanations.

A third pertinent aspect of explanations concerns the link between explanans and the
explanandum. Refs. [4,28,29] postulate a deductive or logical consequence link between
explanans and explanandum. Ref. [4] represent f̂ as a set of logic formulasM( f̂ ). By as-
suming features with finitely many values, an instance is then a set of literals that in which
values are assigned to every feature in the feature space; if the features are binary, we can
just have literals ` that such that ` represent the presence of a feature and ¬` the absence
of that feature. An abductive explanation of why π is a subset minimal set of literals I
such thatM( f̂ ), I |= π. Abductive explanations exploit universal generalizations and a
deductive consequence relation. They explain why any instance x̂ that has I is such that
f̂ (x̂) = π and hence are known as global explanations [30]. On the other hand, model-free
explanations typically don’t provide any explicit analysis of the relation between explanans
and explanandum.

Counterfactuals offer a natural way to provide epistemically accessible, partial ex-
planations of properties of individuals or focal points. The counterfactual in (3) gives a
sufficient reason for E ’s getting the loan, all other factors of her situation being equal or being
as equal as possible (ceteris paribus) given the assumption of a different salary for E . Such
explanations are often called local explanations [30,31], as they depend on the nature of the
focal point. Deductive explanations, on the other hand, are invariant with respect to the
choice of focal point.
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Counterfactual explanations are also partial [3], because the truth of the antecedent
of a counterfactual is not by itself logically sufficient to yield the truth of the formula in
the consequent. Model based counterfactual explanations instead derive logically sound
predictions via points that verify the antecedent of the counterfactual and are minimally
changed from the focal point. Because counterfactual explanations exploit ceteris paribus
conditions, factors that deductive explanations must mention can remain implicit in a
counterfactual explanation. Thus, counterfactual explanations are typically more compact
and thus in principle easier to understand (see [29] for some experimental evidence of this).
Counterfactuals are also intuitive vehicles for explanations as they also encode an analysis
of causation [32].

Counterfactual Explanations for Learning Algorithms

A counterfactual language L is a propositional language to which a two place modal
operator �→ is added. Its canonical semantics, as outlined in [16], for exploits a possible
worlds model for propositional logic, A = 〈W,≤, [[.]]〉, where: W is a non-empty set (of
worlds), ≤ is a ternary similarity relation (w′ ≤w w′′), and [[.]] : P→W → {0, 1} assigns to
elements in P, the set of proposition letters or atomic formulas of the logic, a function from
worlds to truth values or set of possible worlds. Then, where |= represents truth in such a
model, we define truth recursively as usual for formulas of ordinary propositional logic
and for counterfactuals ψ �→ φ, we have:

Definition 1. A, w |= ψ �→ φ just in case: ∀w′, if A, w′ |= ψ and ∀w′′(A, w′′ |= ψ → w′ ≤w
w′′), then: A, w′ |= φ.

What motivates this semantics with a similarity relation? We can find both epistemic
and metaphysical motivations. Epistemically, finding a closest or most similar world in
which the antecedent φ of the counterfactual φ �→ ψ is true to evaluate its consequent
ψ follows a principle of belief revision [33], according to which it is rational to make
minimal revisions to one’s epistemic state upon acquiring new conflicting information.
A metaphysical motivation comes from the link Lewis saw between counterfactuals and
causation; ¬φ �→ ¬ψ implies that if φ hadn’t been the case, ψ wouldn’t have been the case,
capturing much of the semantics of the statement φ caused ψ. The truth of such intuitive
causal statements, however, relies on the presence of a host of secondary or enabling
conditions. Intuitively the statement that if I had dropped this glass on the floor, it would
have broken is true; but in order for the consequent to hold after dropping the glass, there
are many elements that have to be the same in that counterfactual situation as in the
actual world—the floor needs to be hard, there needs to be a gravitational field around
the strength of the Earth’s that accelerates the glass towards the floor, and many other
conditions. In other words, in order for such ordinary statements to be true, the situation in
which one evaluates the consequent of a counterfactual has to resemble very closely the
actual world.

Though intuitive, as this logical definition of counterfactuals stands, it is not immedi-
ately obvious how to apply it to explanations of learning algorithm behavior. We need to
adapt it to a more analytical setting. We will do so by interpreting the similarity relation
appealed to in the semantics of counterfactuals as a distance function or norm as in [34]
over the feature space Xn, an n-dimensional space, used to describe data points. To fill out
our semantics for counterfactuals in this application, we identify instances in Xn as the
relevant “worlds” for the semantics of the counterfactuals.

We will fix a quantifier free counterfactual language L f̂ with a finite set of variables
{xi}i∈n for each dimension i of Xn. To each xi and for each element x̂ in Xn we will assign
a value; in effect our elements in Xn function like assignments. Our language will also
contain a set of constants {vj}j∈P that designate values P that elements can take in Xn. We
add to this a set of formulas Π that describe the predictions in Y of f̂ . Atomic formulae are
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of the form xi = vi and π ∈ Π and the language is closed under Boolean operations and
the counterfactual operator �→.

Notice that our learning function f̂ is itself not expressed in the language. Rather, it
informs the counterfactual model as we see from the following definition. In addition our
elements.

Definition 2. A counterfactual model CXn , f̂ forL f̂ with f̂ : Xn → Y is a structure 〈D, W, ‖.‖, [[.]]〉
with D a non empty set containing {0, 1}, W a set of worlds W = Xn, a norm ||.|| on Xn and
[[.]] : {vj}j∈P ∪Π→ D, and [[.]] : {xi}i∈n ×W → D.

We can now give the generic semantics for L f̂ .

Definition 3. Let CXn , f̂ be a counterfactual model for L f̂ with f̂ : Xn → Y.

• CXn , f̂ , w |= π iff f̂ (w) = [[π]]

• CXn , f̂ |= xi = vi iff [[xj]]w = [[vi]]w

• the usual clauses for ¬φ and φ ∧ ψ of L f̂

• CXn , f̂ |= ψ �→ φ just in case: ∀w′ if CXn , f̂ , w′ |= ψ and ∀w′′(CXn , f̂ , w′′ |= ψ → ‖w′ −
w‖ ≤ ‖w′′ − w‖), then: CXn , f̂ , w′ |= φ

Each instance in Xn has a finite theory that is a conjunction of atomic formulae of
L f̂ the form

∧
i∈n xi = vi where xi is a variable for dimension i and vi is its value. We

now need to specify a norm for Xn. A very simple norm assumes that each dimension
of Xn is orthogonal and has a Boolean set of values; in this case, Xn has a natural L1
norm or Manhattan or edit distance [35]. While this assumption commits us to the fact
that the dimensions of Xn capture all the causally relevant factors and that they are all
independent—both of which are false for typical instances of learning algorithms, it is
simple and makes our problem concrete. We will indicate below when our results depend
on this simplifying assumption. Otherwise, we will only assume a finite set of finitely
valued features through Section 5. In Sections 6 and 7, we will complicate our language.

A logic of counterfactuals can now exploit the link between logic formulas, features
of points in Xn, and a learning algorithm f̂ described in [4,36,37]. Suppose a focal point
x̂ is such that f̂ (x̂) = η. A counterfactual A �→ π that is true at the point x̂, where π is a
prediction incompatible with η, has an antecedent that is a conjunction of atomic formulae
that defines a sufficient and minimal shift in the features of x̂ to get the prediction π. Each
counterfactual that explains the behavior of f̂ around a focal point x̂ ∈ Xn thus defines a
minimal transformation of the features of x̂ to change the prediction. This transformation
can either be set valued or individual valued. Here we will consider them to be functions
on Xn for simplicity. We now define the transformations on Xn that counterfactuals induce.

Definition 4. Let {xi}i∈I⊂n be a set of variables designating values of dimensions I. A fixed
transformation ∆I is a function ∆I : Xn → Xn such that for x̂, ŷ ∈ Xn, if ∆I(x̂) = ŷ, then x̂ and
ŷ differ only on values assigned to xi. We write x̂ =I x̂′ to mean that x̂ and x̂′ agree on the values
assigned to {xi}i∈I . Given x ∈ Xn, and f̂ (x) = η and where ‖.‖Xn is a natural norm on Xn, we
shall be interested in the following types of transformations.

(i) ∆I(x) is appropriate if f̂ (∆I(x)) = π where η and π are two incompatible predictions in Y.
(ii) ∆I(x) is minimally appropriate if it is appropriate and in addition, ∀x′ ∈ X such that

∆I(x) =i x′ and f̂ (x′) = π, ‖x′ − x‖Xn ≥ ‖∆I(x)− x‖Xn .
(iii) ∆I(x) is sufficiently appropriate if it is appropriate and in addition, for any j ( i, ∆j(x) is

not appropriate.
(iv) ∆I(x) is sufficiently minimally appropriate if it is both sufficiently and minimally appropriate.

Note that when X is a space of Boolean features, then conditions (ii) and (iv) of Definition 4
trivially hold. Given a focal point x̂ in Xn, minimally appropriate transformations represent
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the minimal changes necessary to the features of x̂ to bring about a change in the value
predicted by f̂ .

Let f̂ : Xn → Y and consider now a counterfactual language L f̂ . Given a counterfac-
tual model CXn , f̂ for L f̂ with norm ||.|| on Xn, we say that ||.|| is L f̂ definable just in case for
any worlds w, w1 ∈ Xn there is a formula φ of L f̂ , which we call a separating formula, such
that for all w2 ‖w2 − w‖ < ‖w1 − w‖, CXn , f̂ , w1 |= φ and CXn , f̂ , w2 6|= φ.

Proposition 1. Let f̂ : Xn → Y and let CXn , f̂ be a counterfactual model for L f̂ with an L f̂

definable norm. Suppose also that f̂ (w) = η. Then:
CXn , f̂ , w |= φ �→ π, where π ∈ Π and φ is a separating formula that assigns values to

variables xi for i ∈ I iff there is a minimally appropriate transformation ∆I such that f̂ (∆I(w)) = π,
and CXn , f̂ , ∆I(w) |= φ.

Proposition 1 follows easily from Definitions 1, 2 and 4.
Proposition 1 is general and can apply to many different norms and languages. We

will sometimes be concerned here with a special and simple case:

Corollary 1. Let L f̂ be a propositional counterfactual language with a set P of propositional letters,
where P is the set of Boolean valued features of Xn, and let CXn , f̂ be a counterfactual model for L f̂
with an L1 norm. Then: CXn , f̂ , w |= ψ �→ π, where π ∈ Π and ψ is a conjunction of literals in
P iff there is a minimally appropriate transformation ∆I over the dimensions I fixed by ψ such that
f̂ (∆i(w)) = π, and CXn , f̂ , ∆i(w) |= ψ.

We can generate minimally appropriate transformations via efficient (poly-time) tech-
niques like optimal transport or diffeomorphic deformations [5,17–21] or techniques for
computing adversarial perturbations [9]. In effect all of these diverse methods yield counter-
factuals or sets of counterfactuals given Proposition 1. A typical definition of an adversarial
perturbation of an instance x, given a classifier, is that it is a smallest change to x such
that the classification changes. Essentially, this is a counterfactual by a different name.
Finding a closest possible world to x such that the classification changes is, under the right
choice of distance function, the same as finding the smallest change to x to get the classifier
to make a different prediction. Such minimal perturbations may not reflect the ground
truth, the causal facts that our machine learning algorithm is supposed to capture with its
predictions, as noted by [38]. We deal with this in Section 3.

Proposition 1 has two advantages. First it offers, as we shall see later, a way to define
various counterfactual models defined with increasingly sophisticated transformations. Sec-
ond, it marries efficient techniques to generate counterfactual explanations with the logical
semantics of counterfactuals that provides logically valid (LV) explanations from coun-
terfactual explanations, unlike heuristic, model-free methods [2,39]. Thus, counterfactual
explanations build a bridge between logical rigor and computational feasibility.

Proposition 2. A counterfactual explanation given by a minimally appropriate ∆i(x̂) in CXn , f̂ ,
with an L f̂ definable norm and Xn with finitely many values for each xi yields a minimal, LV
explanation in at worst a linear number of calls to an NP oracle.

Proof sketch. Recall that each “world” or point of evaluation is encoded as a conjunction of
literals

∧
i∈n xi = vi for some values vi (the variables xi representing features or dimensions

of Xn). Together with the logical representationM( f̂ ) of f̂ , this suffices to reconstruct the
atomic diagram of CXn , f̂ [40]. Further, given Corollary 1 and Definition 2, each minimally

appropriate ∆i defines a set of literals L∆i(x̂) describing ∆i(x̂) such that L∆i(x̂),M( f̂ ) |= π.
Refs. [4,29] provide an algorithm for finding a subset minimal set of literals E ⊆ L∆i(x̂)

with E ,M( f̂ ) |= π in a linear number relative to |L∆i (x̂)| of calls to an NP oracle [41].
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3. From Partial to More Complete Explanations

We have observed that counterfactual explanations are intuitively simpler than deduc-
tive ones, as they typically offer only a partial explanation. In fact there are three sorts of
partiality in a counterfactual explanation. First, a counterfactual explanation is deductively
incomplete; it doesn’t specify the ceteris paribus conditions and so doesn’t specify what is
necessary for a proof of the prediction π for a particular focal point. Second, counterfactual
explanations are also partial in the sense that they don’t specify all the sufficient conditions
that lead to π; they are hence globally incomplete. Finally, counterfactuals are partial in a
third sense; they are also locally incomplete. To explain this sense, we need the notion of
overdetermination.

Definition 5. A prediction π ∈ Y by f̂ : X → Y is overdetermined for a focal point x̂ ∈ X if the
set of minimally sufficiently appropriate transformations of x̂

O(x̂, π, f̂ ) = {∆i : ∆i(x̂) is minimally sufficiently appropriate}

contains at least two elements.

Locally incomplete explanations via counterfactuals can occur whenever f̂ ’s counter-
factual decisions are over-determined for a given focal point. Many real world applications
like our bank loan example will have this feature.

These different forms of partiality affect many heuristic forms of explanation and can
lead to bad explanations or interpretations of ML systems. Refs. [24,42] show that heuristic
counterfactual models like those proposed by [1,2,6] often give unsound explanations for a
classifier’s predictions. Moreover, heuristic approaches to explanation like Lime, Anchor
and Shap provide explanations unmoored from their underpinnings in counterfactual
semantics. Thus, the explanations they provide are naturally understood as simple premises
of a deductive explanation The problem is, for such approaches we can find two focal points
x̂ and x̂′ such that the approaches return the same explanans φ for the predictions f̂ (x̂) and
f̂ (x̂′) but f̂ (x̂) and f̂ (x̂′) are incompatible. And this is unsound: in a sound explanation φ
cannot serve as an explanans in a deductive explanation to both ψ and ¬ψ.

Given our framework, it is not hard to see why these heuristic frameworks do this;
they are in fact offering counterfactual explanations but without taking into account or
making explicit the fact that counterfactual explanations assume that certain ceteris paribus
conditions are assumed to hold. These ceteris paribus conditions make counterfactual
explanations deductively incomplete, and so when using explanations to verify or to
interpret a ML algorithm’s behavior, we have to take this partiality into account. Worse,
these systems are sometimes interpreted as providing globally valid explanations, which
ignores the second kind of incompleteness of counterfactual explanations. In the current
framework on the other hand, Proposition 2 shows exactly how to get a deductively valid,
global explanation from a counterfactual one, something which heuristic approaches to
counterfactual explanations are not able to do.

Finally, locally incomplete explanations can, given a particular ML modelM f̂ , hide

implicitly defined properties that show f̂ to be unacceptably biased in some way and so
pose a problem for fair and adequate explanations. Local incompleteness allows for several
explanatory counterfactuals with very different explanans to be simultaneously true. This
means that even with an explanation, f̂ may act in ways unknown to the agent E or the
public that is biased or unfair. Worse, the constructor or owner of f̂ will be able to conceal
this fact if the decision for E is overdetermined, by offering counterfactual explanations
using maps ∆ that don’t mention the biased feature.

Definition 6. A prejudicial factor P is a map, P : Xn → Xn and f̂ exhibits a biased dependency
on prejudicial factor P just in case for some i 6= 0, ∆i, and for some incompatible predictions η
and π,

f̂ (x̂) = f̂ (∆i(x̂)) = η and f̂ (P(x̂)) = f̂ (P(∆i(x̂))) = π
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Dimensions of the feature space that are atomic formulas in L f̂ can provide examples
of a prejudicial factor P. But prejudical factors P may be also implicitly definable in
a counterfactual model CXn , f̂ . Assume that .̂ is a map from real individuals x to their
representation as data points x̂ ∈ X. Recall that each point x̂ ∈ X is uniquely identified by
a formula φx̂ :=

∧
i∈n xi = vi for some values vi. Then:

Definition 7. Some exogenous property P is CXn , f̂ implicitly definable just in case for all x such

that x̂ ∈ X̂, x ∈ ‖P‖ iff for some boolean combination of atomic formulas, χ, CXn , f̂ |= χ↔ φx̂.

All in all, our analysis shows why forms of counterfactual explanations that do not take
into account the logical underpinnings of a counterfactual framework will give flawed re-
sults.

We’ve just described some pitfalls of locally incomplete counterfactual explanations.
Thanks to Proposition 1, however, our logic based and statistical counterfactual framework
shows how to move from a partial picture of the behavior of f̂ to a more complete one
using counterfactuals. Again this is a feature that heuristic approaches but also deductive
logical approaches do not have. Imagine that at a focal point x̂, f̂ (x̂) = η and we want to
know why not π.

Definition 8. In a counterfactual model CXn , f̂ with a set of Boolean valued features P, the collection
of counterfactuals SC,x̂,π = {φ �→ π : CXn , f̂ , x̂ |= φ �→ π with φ a Boolean combination of
values for atoms in P} true at x̂ gives the complete explanation for why π would have occurred at x̂.

Appropriate transformations ∆i on Xn in a counterfactual model CXn , f̂ to produce π

associated with counterfactuals via Proposition 1 can capture SC,x̂,π and permit us to plot
the local complete explanation of f̂ around a focal point x̂ with regard to prediction π.

Definition 9. BC,x̂,π = {∆i(x̂) : ∆i is a minimal appropriate transformation for some i ⊂ n}

Proposition 3. In a counterfactual model CXn , f̂ , BC,x̂,π = {y ∈ Xn : ∃ (φ �→ ψ) ∈ SC,x̂,π

such that y is a closest φ world to x̂ where CXn , f̂ , y |= ψ}.

We now fix a counterfactual model CXn , f̂ to simplify notation.
We are interested in the neighborhood or “similarity” spaceN f̂ ,x̂,π around x̂ with bound-

ary Bx̂,π and the targeted outcome space O verifying π the consequent of counterfactuals in
Sx̂,π .

Definition 10.

1. N f̂ ,x̂,π is the subspace of Xn such that (i) x̂ ∈ N f̂ ,x̂,π and (ii) N f̂ ,π,x̂ includes in its interior

all those points z for which f̂ (z) = f̂ (x̂) and (iii) the boundary of N f̂ ,x̂,π is given by Bx̂,π .

2. N d
f̂ ,π,x̂

is a subspace of N f̂ ,x̂,π with boundary Bd
x̂,π , where Bd

x̂,π = Bx̂,π ∩ Bd(x̂), where

Bd(x̂) = {y ∈ Xn : ‖y− x̂‖ ≤ d}.
3. Od

x̂,π = {y : ∃(φ �→ π) ∈ Sx̂,π ∧ CXn , f̂ , y |= π ∧ ‖y− x̂‖ ≤ d}.

The set Ox̂,π can have a complex or “gappy” structure in virtue of the presence of
ceteris paribus assumptions. Because strengthening of the antecedent fails in semantics
for counterfactuals, the counterfactuals in (4) relevant to our example of Section 2 are all
satisfiable at a world without forcing the antecedents of (4)b or (4)c to be inconsistent:

(4) a. If I were making e100 K euro, I would have gotten the loan.
b. If I were making e100 K or more but were convicted of a serious financial

fraud, I would not get the loan.
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c. If I were making e100 K or more and were convicted of a serious financial
fraud but then the conviction was overturned and I was awarded a medal, I
would get the loan.

The closest worlds in which I make e100 K do not include a world w in which I
make e100 K but am also convicted of fraud. Counterfactuals share this property with
other conditionals that have been studied in nonmonotonic reasoning [43,44]. However,
if the actual world turns out to be like w, then by weak centering (4)a turns out to be false,
because the ceteris paribus assumption in (4)a is that the actual world is one in which I’m
not convicted of fraud.

Figure 1 provides a visual rendering of Ox̂,π (in purple) and related concepts.

Figure 1. A counterfactual space around x̂.

Given Sx̂,π we can count how many times the value of the consequent changes of flips
as we move from one antecedent to a logically more specific one; e.g., does the prediction
flip from A to A ∧ C or from A ∧ C to A ∧ C ∧ D? For generality, we will also include in
the number of flips, the flips that happen when we change the Boolean value of a feature—
going from A to ¬A for example. We will call the number of flips the flip degree of Sx̂,π ,
as well as of Ox̂,π .

There is an important connection between the flip degree of Ox̂,π and the geometry
of N f̂ ,x̂,π . In a counterfactual model, the move from one antecedent φ1 of a counterfactual
c1 a to logically more specific antecedent φ2 of c2, with c1, c2 ∈ Ox̂,π will, given certain
assumptions about the underlying norm yield x̂ < y < z, with y being a closest to x̂ point
verifying φ1 and z a closest point verifying φ2. In fact we generalize this property of norms.

Definition 11. A norm ||.|| in a counterfactual model CXn , f̂ respects the logical specificity of the
model iff for any z ∈ Xn such that CXn , f̂ , z |= ψ and for counterfactual antecedents φ1, φ2, . . . , φn

describing features of Xn such that CXn , f̂ , z |= φ1�→ ¬ψ, φ2�→ ψ, . . . , φn�→ ¬ψ such that
φi+1 |= φi and φi 6|= φi+1, there are collinear x1, ...xn ∈ Xn such that for each i, xi is a closest
point to z such that CXn , f̂ , xi |= φi and ||xi+1 − z|| > ||xi − z||.

Remark 1. An L1 norm for a counterfactual model is a logical specificity respecting norm.

In addition, a flip (move from a point verifying φ1 to a point verifying φ2 corresponds
to a move from a transformation ∆i to a transformation ∆j with i ⊂ j. Thus, flips determine
a partial ordering under ⊆ over the shifted dimensions i: thus ∆i ≤ ∆j, if i ⊆ j. We are
interested in the behavior of f̂ with respect to the partial ordering on ∆i.

Definition 12. f̂ is nearly constant around x̂, if for every sufficiently minimally appropriate ∆i for
all ∆j ⊃ ∆i, f̂ (∆j(x̂)) = f̂ (∆i(x̂)).
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A nearly constant f̂ changes values only once for each combination of features/dimensions
di moving out from a focal point x̂. So at some distance d, nearly constant f̂ becomes
constant f̂ . For a nearly constant f̂ around x̂, Ox̂,π , has flip degree 1. A complete local
explanation for f̂ ’s prediction of π within d, Od

x̂,π , is a global explanation f̂ ’s behavior with
respect to π.

We can generalize this notion to define an n-shifting f̂ . If f̂ flips values n times moving
out from x̂, Ox̂,π has flip degree n.

Remark 2. If Ox̂,π , has flip degree 1, then a counterfactual explanation of f̂ ’s behavior with respect
to π is also a formally valid, abductive explanation.

Corollary 2. Let f̂ be any ML algorithm that is nearly constant around x̂ and with an associated
CXn , f̂ for which there is a polynomial procedure for finding a suitable minimal ∆i. Then we can find

an abductive explanation for f̂ ’s behavior at x̂ in polynomial time.

Proposition 4. Suppose A counterfactual model has a logical specificity respecting norm, then:
Ox̂,π , has a flip degree ≤ 2 iff N f̂ ,x̂,π forms a convex subspace of f̂ [X].

Proof sketch. Assume Ox̂,π has flip degree ≥ 3. Then Ox̂,π will contain counterfactuals
with antecedents φ, χ, δ such that φ |= χ |= δ but, say, φ and δ counterfactually support
π but not χ. As the underlying norm respects |=, there are collinear points x, y, and z,
where x is a closest point to x̂ where φ is true, y is a closest χ world, and z is a closest δ
world such that x̂ < z < y < x. But x̂, y ∈ N f̂ ,x̂,π , while x, z ∈ Bx̂,π and x, z 6∈ N f̂ ,x̂,π ,
which makes N f̂ ,x̂,π non convex. Conversely, suppose N f̂ ,x̂,π is non convex. Using the
construction of counterfactuals from the boundary Bx̂,π of N f̂ ,x̂,π will yield a set with flip
degree 3 or higher.

The flip degree of Ox̂,π gives a measure of the degree of non-convexity ofN f̂ ,x̂,π , and a

measure of the complexity of an explanation of f̂ ’s behavior. A low flip degree for Od
x̂,π

with minimal overdeterminations provides a more general and comprehensive explanation.
With Proposition 4, a low flip degree converts a local complete explanation into a global
explanation, which is a priori preferable. It is also arguably closer to our prior beliefs about
basic causal processes. The size of Od

x̂,π gives us a measure to evaluate f̂ itself; a large Od
x̂,π

doesn’t approximate very well a good scientific theory or the causal structures postulated
by science. Such a f̂ lacks generality; it has neither captured the sufficient nor the necessary
conditions for its predictions in a clear way. This could be due to a bad choice of features
determining f̂ ’s input Xn [20]; too low level or unintuitive features could lead to lack of
generality with high flip degrees and numerous overdeterminations. Thus, we can use
Od

x̂,π to evaluate f̂ and its input representation Xn.
Can we exploit flip degrees to have bounds on the confidence of our explanations? Yes,

perhaps we can. Let us suppose that exogenously given to us is a probability distribution
over the features of samples in Xn. We could calculate this distribution relative to Xn itself.
Let us suppose we have calculated joint probability distributions for all of the antecedents
φi of conditionals φi�→ ψ in Sd

x̂,π , where φi is the antecedent for the counterfactual that
gives Sd

x̂,π flip number i.

Proposition 5. Suppose that the flip degree of Ox̂,π = n, but that Argmax2iP(φ2i) ≤ α, for i > 1.
Then P(φ1) ≥ α that φ1 furnishes a formally valid, abductive explanation.

The flip degree of Ox̂,π and the topology of N f̂ ,x̂,π can also tell us about the relation
between counterfactual explanations based on some element in X and ground truth in-
stances provided during training. Our learning algorithm f̂ is trying to approximate or
learn some phenomenon, which we can represent as a function f : X → Y; the observed
pairs (z, f (z)) are ground truth points for f̂ . Ideally, f̂ should fit and converge to f —i.e.,
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with the number of data points N f̂ is trained on limN→∞ f̂ N → f ; in the limit explanations
of the behavior of f̂ will explain f , the phenomenon we want to understand. Given that
we generate counterfactual situations using techniques used to find adversarial examples,
however, counterfactual explanations may also be based on adversarial examples that have
little to no intuitive connection with the ground truth instances f̂ was trained on. While
these can serve to explain the behavior of f̂ and as such can be valuable, they typically
aren’t good explanations of the phenomenon f that f̂ is trying to model. Ref. [38] seek to
isolate good explanations of f from the behavior of f̂ and propose a criterion of topological
connectedness for good counterfactual explanations. This idea readily be implemented as a
constraint on N f̂ ,x̂,π : roughly, f̂ as an approximation of f will yield good counterfactual
explanations relative to a focal point x̂ only if for any point y outside of N f̂ ,x̂,π , there is

a region C where f̂ returns the same value and a path of points y1, . . . yn ∈ C between y
and a ground truth data point p such that f (p) = f̂ (p) = f̂ (yi) = f̂ (y). (We note that our
discussion and constraint make clear the distinction between f and f̂ which is implicit
in [13,38]).

4. Pragmatic Constraints on Explanations

While we have clarified the partiality of counterfactual explanations, AI applications
can encode data via hundreds even thousands of features. Even for our simple running
example of a bank loan program, the number of parameters might provide a substantial
set of counterfactuals in the complete local explanation given by Ox̂,π . This complete local
explanation might very well involve too many counterfactuals for humans to grasp. We still
to understand what counterfactual explanations are pragmatically relevant in a given case.

Pragmatic relevance relies on two observations. First, once we move out a certain
distance from the focal point, then the counterfactual shifts intuitively cease to be about the
focal point; they cease to be counterparts of x̂ and become a different case. Exactly what
that distance is, however, will depend on a variety of factors about the explainee E and
what the explainer believes about E . Second, appropriate explanations must respond to
the particular conundrum or cognitive problem that led E to ask for the explanation [10–12].
On our view, the explainee E requires an explanation when her beliefs do not lead her to
expect the observed prediction π. When E ’s beliefs suffice to predict f̂ (x̂) = π, she has a
priori an answer to the question Why did f̂ (x) = π? In our bank example from Section 2,
had E ’s beliefs been such that she did not expect a loan from the bank, she wouldn’t
have needed to ask, why did the bank not give me a loan? Of course, E might want to know
whether her beliefs matched the bank’s reasons for denying her a loan, but that’s a different
question—and in particular it’s not a why question).

The conundrum comes from a mismatch between E ’s understanding of what f̂ was
supposed to model (our function f ) and f̂ ’s actual predictions. So E , in requesting an
explanation of f̂ ’s behavior, might also want an explanation of f itself (see the previous
section for a discussion). Either E is mistaken about the nature of f̂ , or her grasp of f̂ is
incomplete (E could also be mistaken about or have an incomplete grasp of f ; she might
also be mistaken about how f̂ differs from f . But we will not pursue this here). More often
than not, E will have certain preconceptions about f̂ , and then many if not most of the
counterfactuals in Ox̂,π may be irrelevant to E . A relevant or fair and adequate explanation
for E should provide a set Cd

E of appropriate ∆i with ‖∆i(x̂)− x̂‖ ≤ d showing which of
E ’s assumptions were faulty or incomplete, thus solving her conundrum.

Suppose that the explainee E requests an explanation why f̂ (x̂) = η, and that x̂ is
decomposed into 〈x~d1

, x~d2
〉.

CI Suppose E ’s conundrum based on incompleteness; i.e., the conundrum arises from
the fact that for E f̂ only pays attention to the values of dimensions ~d1 in the sense
that for her f̂ (〈x~d1

, x~d2
〉) = f̂ (〈x~d1

, x′~d2
〉), for any values x′~d2

. Then there is a ∆ ∈ Cd
E

such that ∆(〈x~d1
, x~d2
〉) = 〈x~d1

, y~d2
〉 and f̂ (∆(x̂)) = f̂ (〈x~d1

, y~d2
〉) = π while f̂ (x̂) =

f̂ (〈x~d1
, x~d2
〉) = η.
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CM Suppose E ’s conundrum is based on a mistake. Then there is a ∆ ∈ Cd
E such that

∆(〈x~d1
, x~d2
〉) = 〈y~d1

, x~d2
〉 such that f̂ (〈y~d1

, x~d2
〉) = f̂ (∆(x̂)) = π. I.e., ∆ must resolve

E ’s conundrum by providing the values for the dimensions ~d2 of x̂ on which E is
mistaken.

A fair and adequate explanation must not only contain counterfactuals that resolve
the explainee’s conundrum. It must make clear the biases of the system which may account
for 0’s incomplete understanding of f̂ ; it must lay bare any prejudicial factors P that affect
the explainee and thus in effect all overdetermining factors as in Definition 5. An explainee
might reasonably want to know whether such biases resulted in a prediction concerning
her. E.g., the explanation in (3) might satisfy CM or CI, but still be misleading. Thus:

CB ∀ prejudicial factors P, there is a ∆ ∈ Cd
E such that f̂ (∆(x̂)) = π and P(∆(x̂)) = ∆(x̂).

In our bank loan example, if the bank is constrained to provide an explanation obeying CB,
then it must provide an explanation according to which being white and having E ’s salary
would have sufficed to get the loan.

Definition 13. A set of counterfactuals provides a fair and adequate explanation of f̂ for E at x̂
just in case they together satisfy CM, CI and CB within a certain distance d of x̂.

The counterfactuals in Cd
E jointly provide a fair and adequate explanation of f̂ for E ,

though individually they may not satisfy all of the constraints. We investigate how hard it
is to find an adequate local explanation in the next section.

5. The Algorithmic Complexity of Finding Fair and Adequate Explanations

In this section, we examine the computational complexity of finding a fair and ade-
quate explanation. To find an appropriate explanation, we imagine a game played, say,
between the bank and the would-be loan taker E in our example from Section 2, in which E
can ask questions of the bank (or owner/developer of the algorithm) about the algorithm’s
decisions. We propose to use a two player game, an explanation game to get appropriate
explanations for the explainee.

The pragmatic nature of explanations already motivates the use of a game theoretic
framework. We have argued fair and adequate explanations must obey pragmatic con-
straints; and in order to satisfy these in a cooperative game the explainer must understand
explainee E ’s conundrum and respond so as to resolve it. Providing an explanation is a
pragmatic act that takes into account an explainee’s cognitive state and the conundrum
it engenders for the particular fact that needs explaining. A cooperative explainer will
provide an explanation in terms of the type he assigns to E , as the type will encode the
relevant portions of E ’s cognitive state. On the other hand the explainee will need to
interpret the putative explanation in light of her model of the explainer’s view of his type.
Thus, both explainer and explainee naturally have strategies that exploit information about
the other. Signaling games [45] are a well-understood and natural formal framework in
which to explore the interactions between explainer and explainee; the game theoretic
machinery we develop below can be easily adapted into a signaling game between ex-
plainer and explainee where explanations succeed when their strategies coordinate on the
same outcome.

Rather than develop signaling games however for coordinating on successful expla-
nations, we look at non-cooperative scenarios where the explainer f̂ may attempt to hide
a good explanation. For instance, the bank in our running example might have encoded
directly or indirectly biases into its loan program that are prejudicial to E , and it might not
want to expose these biases. The games below provide a formal account of the difficulty
our explainee has in finding a winning strategy in such a setting.

To define an explanation game, we first fix a set of two players {E ,A}.
The moves or actions VE for explainee E are: playing an ACCEPT move—in which

E accepts a proposed ∆i if it partially solves her conundrum; playing an N-REQUEST
move—i.e., requesting a ∆j where j differs from all i such that ∆i has been proposed by A
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in prior play; playing a P-REQUEST move—i.e., for some particular i, requesting ∆i. E may
also play a CHALLENGE move, in which E claims that a set of features A1, . . . An of the
focal point that entails π in the counterfactual model associated with f̂ . We distinguish
three types of ME explanation games for E based on the types of moves she is allowed: the
Forcing ME explanation games, in which E may play ACCEPT, N-REQUEST, P-REQUEST;
the more restrictive Restriction ME explanation games, in which E may only play ACCEPT,
N-REQUEST; and finally Challenge ME explanation games in which CHALLENGE moves
are allowed.

Adversary A’s moves VA consists of the following: producing ∆i and computing
f̂ (∆i(x̂)) in response to N-REQUEST or P-REQUEST by E ; if G is a forcing game, Amust
play ∆i at move m in ρ, if E has played P-REQUEST ∆i at m− 1. In reacting to a N-REQUEST,
player Amay offer any new ∆i; if he is noncooperative, he will offer a new ∆i that is not
relevant to E ’s conundrum, unless he has no other choice. On the other hand, A must
react to a CHALLENGE move by E by playing a ∆i that either completes or corrects the
Challenge assumption. A CHALLENGE demands a cooperative response; and since it can
involve any implicitly definable prejudicial factor as in Definition 5, it can also establish
CB, as well as remedy CI or CM.

5.1. Generic Explanation Games

We now specify a win-lose, generic explanation game.

Definition 14. An Explanation game, G, concerning a polynomially computable function f̂ : Xn →
Y, where Xn is a space of boolean valued features for the data and Y a set of predictions, is a tuple
((VE ∪VA)∗, E ,A, f̂ : Xn → Y, x̂, d,Cd

E , Win) where:

i. Cd
E ⊆ Bd

x̂,π resolves E ’s conundrum and obeys CB.
ii. x̂ ∈ Xn is the starting position, d is the antecedently fixed distance parameter.
iii. A, but not E has access to the behavior of f̂ and a fortiori Cd

E .
iv. E opens G with a REQUEST or CHALLENGE move
v. A responds to E ’s requests by playing some ∆i, i ≤ d.
vi. E may either play ACCEPT, in which case the game ends or again play a REQUEST or

CHALLENGE move.
vii Win is the set of plays ρ that contain the ∆i sufficient to resolve Cd

E (resolve E ’s conundra)

The game terminates when (a) E has resolved Cd
E or gives up.

E always has a winning strategy in an explanation game. The real question is how
quickly E can compute her winning condition. An answer depends on what moves we
allow for E in the Explanation game; we can restrict E to playing a Restriction explanation
game, a Forcing game or a Forcing game with CHALLENGE moves.

Proposition 6. Suppose G is a forcing explanation game. Then the computation of E ’s winning
strategy in G is Polynomial Local Search complete (PLS) [46,47]. On the other hand if G is only a
Restriction game, then the worst case complexity for finding her strategy is exponential.

Proof sketch. Finding Cd
E is a search problem using f̂ . Cd

E is finite with, say, m elements.
These elements need not be unique; they just need jointly to solve the conundrum. This
search problem is PLS just in case every solution element is polynomially bounded in the
size of the input instance, f̂ is poly-time, the cost of the solution is poly-time and it is
possible to find the neighbors of any solution in poly-time. Let x̂ be the input instance.
By assumption, f̂ is polynomial; and given the bound d, the solutions y for f̂ (y) = π and
y ∈ Cd

E are polynomially bounded in the size of the description of x̂. Now, finding a point
y ∈ Cd

E that solves at least part of E ’s conundrum, as well as finding neighbors of y is
poly-time, since E can use P-REQUEST moves to direct the search. To determine the cost c
of finding Cd

E for |Cd
E | = m in poly-time: we set for y ∈ Cd

E the jth element of C computed
as c(y) = m− j; if y 6∈ C, c(y) = m. Finding Cd

E thus involves determining m local minima
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and is PLS. In addition, determining Cd
E encodes the PLS complete problem FLIP [46]: the

solutions y in G have the same edit distance as the solutions in FLIP, f̂ encodes a starting
position, and our cost function can be recoded over the values of the Boolean features
defining y to encode the cost function of FLIP and the function that compares solutions
in FLIP is also needed and constructible in G. So finding Cd

E is PLS complete in G as it
encodes FLIP.

The fact that forcing explanation games are PLS complete makes getting an appropriate
explanation computationally difficult. Worse, if G is a Restriction Explanation game, then
A can force E to enumerate all possible ∆i within radius d of x̂ to find Cd

E .

Proposition 7. Suppose G is a Challenge explanation game. Then E has a winning strategy in G
that is linear time computable, provided f̂ ’s values are already known.

Proof sketch. A must respond to E ’s CHALLENGE moves by correcting or completing
E ’s proposed list of features. E can determine Cd

E in a number of moves that is linear in the
size of Cd

E .

A Challenge explanation game mimics a coordination game where A has perfect
information about Cd

E , because it forces cooperativity and coordination on the part of A.
Suppose E in our bank example claims that her salary should be sufficient for a loan.
In response to the challenge, the bank could claim the salary is not sufficient; but that’s
not true—the salary is sufficient provided other conditions hold. That is, E ’s conundrum
is an instance of CI. Because of the constraint on CHALLENGE answers by the opponent,
the bank must complete the missing element: if you were white with a salary of e50 K,
. . . Proposition 7 shows that when investigating an f̂ in a challenge game, exploiting a
conundrum is a highly efficient strategy. Of course we’re here not counting the fact that
computing f̂ (∆i(x̂)) takes polynomial time since we have assumed that computing f̂ is
poly time.

The flip degree of Od
x̂,π and the number of overdetermining factors O(x, π) (Definition 5)

typically affect the size of C and thus the complexity of the conundrum and search for
fair and adequate explanations and their logical valid associates. More particularly, when
|O(π, x̂)| = n and the cost of the prediction is as in the proof of Proposition 6, E ’s conun-
drum and the explanations resolving it may require n local minima. When the flip degree
of Od

x̂,π is m, E may need to compute m local minima.
To develop practical algorithms for fair and adequate explanations for AI systems, we

need to isolate E ’s conundrum. This will enable us to exploit the efficiencies of Challenge
explanation games. Extending the framework to discover E ’s conundrum behind her
request for an explanation is something we plan to do using epistemic games from [48]
with more developed linguistic moves. In a more restricted setting where Challenge
games are not available, our game framework shows that clever search algorithms and
heuristics for PLS problems will be essential to providing users with relevant, and provably
fair and adequate counterfactual explanations. This is something current techniques like
enumeration or finding closest counterparts, which may not be relevant [4,29,37]—do
not do.

5.2. Exploring Counterfactual Models with Explanation Games

Explanation games can be used also to discover facts about f̂ and about the explana-
tory generalizability of an explanation for a prediction of f̂ at a particular focal point.
For instance, a Forcing game can be used to establish a degree of robustness of f̂ around a
focal point, in the sense that we can compute a radius d and a ball Bd

x̂ around x̂ such that
Bd

x̂, f̂
⊆ N d

f̂ ,xj
. In such a case we can say that f̂ has a local Lipschitz robustness of degree 0

in a ball of radius d around x̂, since for any points ŷ, ẑ in Bd
x̂, f̂

, f̂ (ẑ) = f̂ (ŷ). By calculating

d, we can establish the robustness also of our counterfactual explanation at x̂ in the sense
of [49]. The techniques used Proposition 6 can also be used to establish the extent of Bd

x̂, f̂
.
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In addition, techniques to generate adversarial examples can help us determine perhaps
more efficiently the radius of Bd

x̂, f̂
.

Another use for the sort of games we have introduced in this section is to find con-
founders. Consider our loan example in which f̂ is robust with respect to changes on a
particular variable xi for race (xi = 0 if x̂ is a disfavored minority and is 1 otherwise); that is,
f̂ (x̂) = f̂ (x̂1) where x̂ and x̂1 differ only on values for dimension i. But in fact f̂ varies on
variables for diet xd (xd = 0 if x̂′s diet is that of a disfavored minority) and home address
xh (xh = 1 if x̂′s home address is in an affluent neighborhood, 0 otherwise). It turns out that
there is a very strong correlation between xd = 0 ∧ xh = 0 and xi = 0; an overwhelming
number of disfavored minority class members represented in Xn are such that their theories
entail xd = 0 ∧ xh = 0 ∧ xi = 0. While the bank might claim that its algorithm is racially
insensitive by cherry-picking certain cases—namely those individuals y for which their
theories φy are such that φy |= xd = 1∧ xh = 1 and xi = 0, in either a Challenge or forcing
Explanation game E will be able to establish an implicit and unfair bias in f̂ by continuing
to ask for predictions on individuals for whom xd = 0 ∧ xh = 0. This is even possible if
race is not explicitly represented as a dimension in Xn, as long as it is implicitly definable in
the model. Note that this procedure to find confounders is also useful for showing whether
f̂ is biased for or against a particular group.

To formalize this search for confounders, we tweak the notion of an explanation game
to define an explanation investigation game. We do not need to rely on Boolean features for
the data; they can even be continuously valued.

Definition 15. An explanation investigation game, G, concerning a polynomially computable
function f̂ : Xn → Y, is a tuple ((VE ∪VA)∗, E ,A, f̂ , Win) where:

i. Suppose for some values v1, . . . , vm,
∧{xj1 = v1, . . . , xjm = vm} implicitly defines in CXn , f̂

a subset P of individuals where P̂ ⊂ Xn.
ii E has access to the implicit definition of φ in CXn , f̂

iii. A, but not E has access to the behavior of f̂ .
iv. E wins if she discovers a pair (x̂, x̂1) in (i); i.e., a play ρ ∈ Win iff it ends with an x̂1 = ∆i(x)

for some ∆i such that f̂ (x̂) 6= f̂ (x̂1) where x̂ =j1 ...jm x̂1 and x ∈ P.
iv. E opens G with a REQUEST move concerning some x̂ ∈ Xn

v. A responds to E ’s requests by playing some ∆i that applies to x̂.

Remark 3. Let G be a forcing explanation investigation game where f̂ (x̂) 6= f̂ (x̂1) for x̂ =j1 ...jm x̂1
and x ∈ P. Then E has a winning strategy in G in polynomial time.

We can strengthen Remark 3 by considering a stronger winning condition: suppose
P is finite and WinG is to find a sufficiently large sample of x̂, x̂1 pairs. In this case, if the
assumptions of Remark 3 are met, E also has a winning strategy in G with |P| calls to f̂ .
If |P| is large or if Xn is not sufficiently representative, then this strategy may not be feasible
to establish the presence of confounders or their absence. We need more information from
the counterfactual model to do this. In Section 7, we will see an example of a counterfactual
model that can help us.

More generally, a forcing explanation investigation game can detect dependencies
between features that may have gone unnoticed by the designers of f̂ . Just as we can find
implicit equivalences between Boolean combinations of feature value assignments and other
properties, so too will an explanation investigation game be able to detect equivalences
between two Boolean combinations of feature value assignments, incompatibilities or
independence. We can establish these relations either relative to some finite set P ⊂ Xn or
globally relative to all points in Xn by moving from the counterfactual model to the proof
theory that encodes f̂ and the input data.
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6. Generalizing towards More Sophisticated Counterfactual Models

While much of our exploration has been general, some results, in particular those of
the previous section, have relied on a particularly simple notion of norm or distance to
define counterfactual counterparts. In the remainder of the paper, we want to look at other
ways of defining more sophisticated counterfactual models. We look at three different
ways to generalize the simple models above: generalizing from very simple norms, adding
indeterminism, adding randomness, and providing counterfactual correlates that take
account of dependencies and distributions. We then look at two types of counterfactual
models, one based on causal graphs and another based on transport theories. We argue
that transport based counterfactual models should provide very relevant explanations of
an algorithm’s behavior.

6.1. Moving from an L1 Norm to More Sophisticated Ways of Determining
Counterfactual Correlates

Specifying a norm for our space of data Xn is crucial for building a counterfactual
model and specifying counterfactual correlates. But when we have specified a norm, it
has been a very simple one that assumes that each dimension of Xn is orthogonal and
has a Boolean set of values; in this case, Xn has a natural L1 norm or Manhattan or
edit distance [35]. But for this choice of norm to make sense we must assume that the
dimensions of Xn are all independent, and this assumption is not only manifestly false for
typical instances of learning algorithms but also gives very unintuitive results in concrete
cases [50].

For example, consider a set of data with dimensions for sex, weight and height; and
now consider the counterfactual assumption Nicholas is a woman. Assume that Nicholas is
slightly over average in weight and about average in height for men. But now consider his
counterfactual counterfactual female counterpart with the same weight and height as the
actual Nicholas. This counterpart would be an outlier in the distribution of females over
those dimensions, thus making the following counterfactual true. ex. If Nicholas were a
woman, she would be unusually heavy and unusually tall.

Intuitions differ here, but most people find such counterfactuals rather odd, if not false.
Much more acceptable would be a counterfactual where we explicitly restrict the counter-
factual counterpart to have exactly all of Nicholas’s current properties. ex. If Nicholas were
a woman and she had the same height and weight as Nicholas actually does, she would be
unusually heavy and unusually tall.

If one shares these intuitions, then it appears that we need to reframe a counterfactual
model in terms of a more sophisticated notion of counterfactual correlate. What we want is
a notion of counterfactual correlate where the dependencies between features are taken
into account.

6.2. Adding Indeterminism

Given Proposition 1, we can rewrite a counterfactual model in terms of a set of minimal
appropriate transformations and exploit this in the semantics of counterfactuals:

Definition 16. Counterfactual semantics with transformations:
CT

Xn , f̂
be a counterfactual model with transformations that extends a standard counterfactual

model CXn , f̂ for L f̂ with f̂ : Xn → Y with a set of minimal adequate transformations TI for each
set of variables {xi}i∈I .

Let ψ define a set of values for variables S = {xi}i∈I≤n. Then CXn , f̂ , w |= ψ �→ φ just in
case:

∃ minimal appropriate ∆S ⊆ ‖ψ‖ and CT
Xn , f̂ , ∆S(w) |= φ

The transformations now define the relevant counterfactual counterparts directly
for the semantics. Note that each standard counterfactual model obviously extends to a
counterfactual model with transformations in view of Proposition 1.
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Another restriction in the work in the previous sections is that our transformations so
far have been single valued functions. That is, if any element in x X has a counterfactual
element, it is unique. This forces our models to verify conditional excluded middle, which
could be unintuitive.

Definition 17. Conditional Excluded Middle: (φ �→ ψ) ∨ (φ �→ ¬ψ)

Consider, for example, the intervention on my salary where I make e100 k per year
instead of e60 k. Such an intervention does not determine all of my properties. In a
counterfactual situation where I make e100 K instead of e60 K, I might still have the same
bicycle that I go to work on. Or I might not. There doesn’t seem to be a set answer to the
question,

(5) Were Nicholas to make e100 K per year, would he still use the same bicycle he does
now to go to work?

But with conditional excluded middle, a counterfactual model must support one of

(6) (a.) Were Nicholas to make e100 K per year, he would use the same bicycle he
does now to go to work.

(b.) Were Nicholas to make e100 K per year, he not would use the same bicycle he
does now to go to work.

A counterfactual asks us to entertain a situtation different from the current one. In se-
mantic terms, the antecedent of a counterfactual introduces an “intervention” into the actual
circumstance of evaluation that shifts us away from that circumstance to a different one in
which the antecedent is true, thereby defining a counterfactual correlate. Our argument
of the previous paragraph indicates that such an intervention does not determine every
property of the correlate.

We can remedy this defect of our semantics by lifting our transformations to set valued
functions. i.e.,

Definition 18. Let i ⊂ n. A set valued fixed transformation ∆i is a function ∆i : Xn → P(Xn),
where P is the powerset operation, such that for x ∈ Xn and ∀y, if y ∈ ∆i(x), then x and y differ
in the dimensions i. Given x ∈ Xn, and f̂ (x) = η and where ‖.‖Xn is a natural norm on Xn,

(i) ∆i(x) is appropriate if ∀y ∈ ∆i(x) f̂ (y) = π with η, and π incompatible predictions in Y.
(ii) ∆i(x) is minimally appropriate if it is appropriate and, ∀x′ ∈ X ∀y ∈ ∆i(x)

y =i x′ and f̂ (x′) = π, ‖x′ − x‖Xn ≥ ‖y− x‖Xn .

With set valued transformations, we can build counterfactual models as before. The dif-
ference now is that conditional excluded middle is no longer valid.

Definition 19. Let ψ define a set of values for a set of variables S = {xj}j≤n and let CT
Xn , f̂

be a counterfactual model with a set D of minimal appropriate set valued transformations ∆S.
CT

Xn , f̂
, w |= ψ �→ φ just in case:

∃ minimal appropriate ∆S ∈ D ∆S ⊆ ‖ψ‖ and ∀w′ ∈ ∆S(w), CT
Xn , f̂ , w′ |= φ

6.3. Introducing Randomness and Probabilities

Using set valued transformations has introduced indeterminism into our counterfac-
tual models. With indeterminism, not every intervention described by the antecedent of a
counterfactual yields a unique outcome. In fact, this sort of indeterminism is a feature of
Lewisian counterfactuals [16], where counterfactual correlates may or may not have certain
properties. Once such indeterminism is introduced, however, it is also natural to take the
counterfactual correlates as more or less likely to have those properties. That is, it is natural
to add to our indeterministic picture a notion of probability, a probability distribution over
the properties that counterfactual correlates may exhibit.
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Consider again the intervention on my salary where I make 100e K instead of 60e K
euros. Such an intervention we’ve argued does not determine all of my properties. In a
counterfactual situation where I make 100e K instead of 60e K, I might still have the same
bicycle that I go to work on. Or I might not. That is, the counterfactuals in (6) repeated
below are plausibly both false.

(7) a. Were Nicholas to make 100e K euros per year, he would use the same bicycle
he does now to go to work.

b. Were Nicholas to make 100e K euros per year, he not would use the same
bicycle he does now to go to work.

On the other hand, a probabilistic statement like

(8) Were Nicholas to make 100e K euros per year, there is a 70% chance that he would
use the same bicycle he does now to go to work.

is plausible. We find this addition to the semantics of counterfactuals very appealing.
Adding probabilities to the logic of counterfactuals, however, takes us far beyond the
framework of Lewis’s semantics for counterfactuals. Ref. [51] argues that a logical semantics
for languages with probabilities comes in two types, because probabilities can be used to
represent two different kinds of information as [51–53] have argued. One sort of information
has to do with degrees of belief; that is, to what degree, for instance, does Nicholas believe
that he will use his bicycle to go to work? We can represent following [53] this degree of
belief as a probability measure of sets of possible worlds; on a very basic level, my degree
of belief is a function of the size of the set of worlds in which I take my bicycle to work
among all my doxastic counterparts (worlds compatible with my beliefs).

The other sort of information has to do with probabilistic quantifiers like 90% of the
schools as in

(9) 90% of the schools are closed due to Covid.

This is a statement about the actual world according to [52]. It doesn’t have to do with
anyone’s degree of belief. It requires a probabilistic quantifier to be properly expressed.
Refs. [51,54] provide complexity results for a first order logic of probability with both
sorts of probability measures. In general such logics are not even axiomatizable when
the consequence relation we have mind takes into account something like a domain char-
acterized by the theory of real closed fields. In finite domains of fixed size, such logics
remain axiomatizable and decidable, as one would expect, and in the case of propositional
logics with probability measures, we also have axiomatizability and decidability. Ref. [51]
argues that these two notions of probability should be kept distinct; degrees of belief go
with probability measures over worlds or points of evaluation, while statistical information
about our world has to do with a distribution over events or individuals in the actual world.
But does this ring true for our set up? Our “worlds” w are not doxastic or epistemic alter-
natives in the standard sense. They function like assignments and they are characterized as
types in the logical sense. Hence intuitively they represent types of individuals; e.g., the
instance w characterize individuals that are characterized by the feature value pairs in the
conjunction φw. If we assume that |Xn| is finite, it is hence natural to assign to each one of
these “individuals” in Xn a probability and a discrete probability measure over all of Xn.
In the case when Xn has the cardinality of the reals, we will define probabilities around
neighborhoods of x̂ ∈ Xn. We shall assume |Xn| < ω henceforth.

Departing from the semantics of [51,52], we will remain with a quantifier free language.
How do we use probability statements? It seems that they are operators similar to modal
operators. Consider the following:

(10) a. Necessarily φ
b. Possibly φ
c. Probably φ

Where φ could be a formula describing a particular data point or any set of data points.
For instance the set of females in Xn could be represented just by the formula xg = f where
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g is the dimension of gender. That is the set of females in the model are just those instances
that satisfy xg = f . Each such set should receive a probability measure.

This observation tells us in effect how to render a counterfactual logic distribution
aware. Given a counterfactual language L f̂ , we add sentential operators [α], 〈α〉 for α ∈ R.
[α]φ,< α > φ are formulas where φ is an L f̂ formula. Call this language LP, f̂ We may also
want to talk about the probability of a randomly chosen x ∈ Xn’s being a woman? One
option is to introduce quantifiers µ like Bacchus that range over elements of Xn. But this
makes our language more complex by introducing variables for our points of evaluation
into our language. Alternatively, we can evaluate formulas over subsets of Xn not just
elements, For instance, consider the formula xg = f . We can evaluate xg = f over sets of
assignments S to get the probability that a random x from S is a woman given that x is in S.
When S = Xn, we just have the probability of some x’s being a woman in the model.

To this end, we modify our notion of a counterfactual model. To a counterfactual
model CT

Xn , f̂
we add

• a countably additive measure P over the modal free L f̂ definable subsets D of Xn,
with P(W) = P(‖>‖) = 1, P(∅) = P(‖⊥‖) = 0. P is then a probability measure.
Recall that in our framework each element in Xn is defined by a conjunction of literals
of L. Thus, every element has a probability.

• PCT
Xn , f̂

(φ|w) = 1 iff CT
Xn , f̂

, w |= φ

We remark that all L f̂ definable sets are measurable sets. Relative to our background
probability measure P, we define for formulas χ of L f̂ the conditional distribution for
worlds and finite sets

Pχ(w) =
P({w} ∩ ‖χ‖)

P(‖χ‖) and Pχ(Z) =
P(Z ∩ ‖χ‖)

P(‖χ‖) (1)

For a probabilistic counterfactual language L f̂ ,P,we add to the clauses below. Note that
we both supply a truth value and a probability to the consequents of counterfactuals. We
note that the counterfactual here has a “dynamic” flavor in that the consequent is evaluated
relative to worlds that are modified from the input set via an update mechanism given by
the antecedent of the counterfactual. This will be particularly pertinent for evaluating the
probabilities of consequents of counterfactuals.

Definition 20. Let CT
Xn , f̂

be a counterfactual model with transformations and let Z ⊆ Xn, and let

Let ψ, φ be �→ free L f̂ formulas and ψ define a set of values for a set of variables S = {xj}j≤n

1. CT
Xn , f̂

, w |= [α]φ iff P(φ|w) ≤ α

2. CT
Xn , f̂

, Z |= φ iff ∀w ∈ ZCT
Xn , f̂

, w |= φ

3. ‖φ‖ = {w : CT
Xn , f̂

, w |= φ}
4. CT

Xn , f̂
, Z |= [α]φ iff P(φ|Z) ≤ α

5. CT
Xn , f̂

, w |= ψ �→ φ just in case:

∃ minimal appropriate ∆S ∈ D ∆S(w) ⊆ ‖ψ‖ and CT
Xn , f̂ , ∆S(w) |= φ

6. CT
Xn , f̂

, Z |= ψ �→ φ just in case:

∃ minimal appropriate ∆S ∈ D ∆S(Z) ⊆ ‖ψ‖ and CT
Xn , f̂ , ∆S(Z) |= φ

7. CT
Xn , f̂

, w |= [α]ψ �→ φ just in case:

∃ minimal appropriate ∆S ∈ D ∆S(w) ⊆ ‖ψ‖ and
Pψ(∆S(w) ∩ ‖φ‖)

Pψ(∆S(w))
≤ α
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8. CT
Xn , f̂

, Z |= [α]ψ �→ φ just in case:

∃ minimal appropriate ∆S ∈ D ∆S(Z) ⊆ ‖ψ‖ and
Pψ(∆S(Z) ∩ ‖φ‖)

Pψ(∆S(Z))
≤ α

We have defined both truth at an evaluation point in Xn and sets of evaluation points
and probabilities at both single points and sets of evaluation points. For computing
probabilities of simple sentences, we have simply exploited our assumption of a discrete
measure over a finite set of possibilities in Xn. For counterfactuals, we have in addition
exploited the internally dynamic aspect of these operators by looking at measures on sets
that have been shifted away from the original point of evaluation by the counterfactual
operation.

What about computing probabilities for consequents of counterfactuals—formulas of
the form ψ �→ [α]φ? To evaluate the truth of such a formula at w, we first exploit clause
6, and so we have ∆S(w) |= [α]φ. By clause 4, this holds iff ∑w∈∆S(w) P(φ|w).P(w) ≤ α,
which is equivalent to ∑w∈∆S(Z)∩‖φ‖) P(w).

7. Two Examples of Sophisticated Counterfactual Models and Their Relations

We’ve now introduced indeterminism and probability into our counterfactual models.
But we haven’t yet looked at how to go beyond the simple L1 view of a counterfactual
counterpart. Without this, our other sophistications won’t bring us the desired effects.
In this section, we look at two different ways to define counterfactual counterparts in a
sophisticated way.

7.1. Structural Causal Models

We can specify an appropriate transformation directly, and hence an appropriate norm
for Xn and a more sophisticated notion of a counterfactual correlate, by proposing a seman-
tics for counterfactuals in terms of an underlying structural causal model (SCM) [55,56].
An SCM is a graph over a set of endogenous (Xi) and exogenous (Ui) variable and whose
edges represent causal links. These links are specified via equations to determine quanti-
tative effects of changing values of the variables; these equations serve in effect to define
endogenous variables in the graph in terms of exogenous ones. With respect to the for-
malism before, the endogenous variables correspond to dimensions i of the input data
space Xn, while the exogenous variables are latent, hidden variables. Such a graph defines
the effects of changes on exogenous variables for the endogenous variables leaving the
rest constant.

Causal effects are the result of a change or a specification of some set of features or
dimensions of an input. Such a change on dimensions I is called a do-intervention on I.
Supposing that our SCM G is acyclic and that Ui is some exogenous variable in G then a do
intervention on I then defines a change on the other relevant dimensions of X represented
by variables that are its children in G. It tells us explicitly how an intervention affects which
properties that our focal point may have. In addition, the equations associated with the
edges in the SCM can specify probabilities for outcomes.

What is an intervention logically? Our atomic formulas are of the form xi = vi,
where xi is variable representing a dimension of Xn, and vi its value. Each instance in Xn

can described by an n-ary conjunction of atomic formulas specifying the values of each
dimension at that instance. In general, we are evaluating counterfactuals at instances like
’nicholas’ that have the form Had the values of gender been female, then the value of the loan
would have been 0, which is an approximation of Had Nicholas been female, he would not have
gotten the loan.

An L-definable intervention then is a pair of sets definable by a pair of conjunctions
of atomic formulae (χ, ψ) where ψ specifies values v′j for a subset {xj}j∈S ⊂ {xi}i∈n of
variables while χ specifies values vj. Note that χ is typically the formula that describes
the focal point or set of focal points used for evaluation and so it may set values for more
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variables than those in S Let (χ, ψ) be the pair of formulae representing an L-definable
intervention s 7→ s′ on S. The set ‖ψ‖represents the set of all those instances that have the
shifted values v′j; χ is another conjunctive formula whose interpretation represents the set
of all instances in Xn with original values vj.

In the AI literature, S is typically supposed to be a single variable. But this limits
the kinds of counterfactuals we can consider. Single valued interventions can handle
counterfactuals where we specify one shifted value like annual income,

(11) Had Nicholas earned e100 K per year (instead of e50 K), he would have gotten
the loan.

But it clearly also makes sense to think about and evaluate counterfactuals where we
change the values of more than one variable.

(12) Had Nicholas earned e100 K euros per year (instead of e50 K) but lives in a part of
the city with this zip code, he would not have gotten the loan.

Generally, then, we will think of an intervention as a shift in the value of any subset S of
variables of {xi}i∈n from their values at the point of evaluation or set of points of evaluation.
Given a complete SCM G, an intervention on SI defines a unique minimally appropriate
set valued ∆G

S as defined in Definition 19. Now that we’ve added indeterminism and
probability, An SCM G for a given intervention S generates not only a set valued ∆G

S
specifying truth conditions but also a probability distribution µG

S,w over the elements in
∆G

S (w).
We can then exploit these transformations along with the graphs and equations of

SCMs in a semantics of counterfactuals following Definition 16. We supply both a truth
value and a probability distribution for both individual evaluation points and sets for
counterfactuals.

Definition 21. Let ψ define a set of values for variables in S and let CG
Xn , f̂

be a counterfactual
model with transformations determined by an underlying SCM G. Then:

• CG
Xn , f̂

, w |= ψ �→ φ just in case:

∆G
S (w) ⊆ ‖ψ‖ and CG

Xn , f̂ , ∆G
S (w) |= φ

.
• CG

Xn , f̂
, w |= [α]ψ �→ φ just in case:

∆G
S (w) ⊆ ‖ψ‖ and µG

S,w(∆
G
S (w) ∩ ‖φ‖) ≤ α

• CG
Xn , f̂

, Z |= ψ �→ φ just in case:

∆G
S (Z) ⊆ ‖ψ‖ and ∆G

S (Z) |= φ

• CG
Xn , f̂

, Z |= [α]ψ �→ φ just in case:

∆G
S (Z) ⊆ ‖ψ‖ and µG

S,w(∆
G
S (Z) ∩ ‖φ‖) ≤ α

In case one has a complete SCM, then one has a theory of counterfactuals that captures
the full causal consequences of a do-intervention. A complete SCM for a given problem
would seem to provide an ideal explanatory counterfactual model, where counterfactuals
are directly tied to causal relations.

As we shall see in the next section, however, our intuitions about counterfactuals show
that there may be relevant counterfactuals that are true even when the antecedents do not
express variables that are causally operative on the variables expressed in the consequent of
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the counterfactual. So a causal model might not yield a completely satisfactory semantics
of counterfactual statements.

Of course, if we’re interested in explainability, a linguistically optimal theory of
counterfactual conditionals is secondary to the adequacy of the explanations provided.
And here a causal model seems arguably optimal. The problem is, we almost never have
complete SCMs for the problem investigated; and finding such SCMs from data is at least
NP hard. So while a counterfactual model based on an SCM might seem ideal it is difficult
to attain in practice. We can’t effectively build the model.

Let’s take a closer look at this problem in the case of explaining the behavior of an
ML algorithm f̂ . Can we just use data and consider f̂ as a black box? Yes, but in general
this gets us just statistical correlations. How can we test for hidden confounders or causal
dependencies when some of the variables in the full causal model are part of f̂ ? And
what do we mean by causal dependencies when it comes to an ML algorithm? Even
if f̂ is a sophisticated deep neural net, it is still a Turing machine with a logical theory
M f̂ . M f̂ encodes a succession of applications of functions, some of them non-linear,
to data. In this logical reconstructionM f̂ , the causal links between data and predictions

of f̂ become deductively valid relations or relations of logical consequence. So a full causal
model in the case of an ML algorithm f̂ must characterize the semantic consequences of
M f̂ together with, at the very least, elements from Xn. The SCM then that explains and

provides the cause of a prediction f̂ (x̂) is a matter of finding a provably valid relation
between a subset or minimal set of feature values xj = vj and the prediction. Namely,
we have to prove:

∧
xj = vj,M f̂ ` f̂ (x̂). But this problem is already NPPP hard when f̂

is a binary classifier [57]. This problem becomes completely insoluble when we have to
reason about probabilities, as the underlying logic used to encodeM f̂ becomes typically
non-axiomatizable [54]. We don’t see frankly how it’s plausible to suppose that one can
build a full SCM for a sophisticated ML algorithm.

Thus, the causal approach, attractive as it seems, is also difficult to implement. What
we need a notion of an intervention that gives us a sophisticated notion of counterfactual
counterparts but that is not tied to the presence of a complete SCM. This is what we shall
find in the next Section 7.2.

7.2. Transport Counterfactual Models

In this section we sketch a view of Transport theory that provides counterfactual mod-
els that remedy the problem we just mentioned. A transport based counterfactual model
can provide a sophisticated notion of counterfactual correlates and a fortiori interesting
transformations ∆S in the absence of an underlying SCM. Ref. [50] define what we shall
call a counterfactual operation (Ref. [50] call it a model but we will reserve this term for
the logical structure providing truth conditions we define below.) in terms of a coupling
of two distributions that itself depends on an intervention (‖χ‖, ‖ψ‖), where φ and ψ
specify values vj and v′j respectively of the variables in S, and we consider an intervention
sj 7→ s′j in S. Suppose we observe two different distributions µ‖χ‖, µ‖ψ‖, whose support
are the sets ‖ψ‖ and ‖φ‖We now seek to discover what are the “best” in some sense to
be determined counterfactual correlates y ∈ ‖φ‖ for x ∈ ‖ψ‖. Transport theory tells us
that a counterfactual counterpart in ψ of some element verifying φ should respect the
distributions µ‖χ‖, µ‖ψ‖ that ‖χ‖ and ‖ψ‖ support.

A coupling between two distributions P and P′ is a probability π on Xn × Xn whose
first projection is P and second projection is P′; i.e., π(A × Xn) = P(A) and π(Xn ×
B) = P′(B) for measurable sets A, B ⊆ Xn. Over finite sets, A, B, we can write P(A) =

∑x∈A P(x) and P′(B) = ∑x′∈B P′(x′). A coupling then in such a case must obey the
following constraint [58]:

∀x ∈ A ∑
x′∈B

π(x, x′) = P(x) and ∀x′ ∈ B ∑
x∈A

π(x, x′) = P′(x′) (2)
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Given this constraint, we see a coupling π as a matrix in the finite case over elements
in the finite sets A and B. Let Π(P, P′) be the set of such couplings. In some sense this is
the essence of the general problem of finding counterfactual counterparts.

But there are many such couplings. Which one should we choose? In the discrete
case, once we have a cost function for building the coupling c : A→ B, finding an optimal
transport plan requires solving this optimisation problem:

min{∑
x∈X

c(x, x′)π(x, x′) : π(x, y) ∈ Π(P, P′)} (3)

In the continuous case, Equation (3) becomes the optimisation problem as formulated
by Kantorovich:

min
π∈Π(P1,P2)

∫
Xn×Xn

c(x, x′)dπ(x, x′). (4)

Solutions to (3) and (4) are optimal transport plans between P1 and P2 with respect to
c. As long as c any non negative distance function on the space we are in effect minimiz-
ing something equivalent to a Wasserstein distance over distributions. Linking this to
counterfactual semantics brings a very different viewpoint to counterfactual correlates.
Nevertheless, we note that the choice of c will bring support different counterfactual theories.

Following [50], we link couplings to do-interventions in the following way. Suppose an
intervention (‖χ‖, ‖ψ‖), where χ specifies values vS and ψ specifies v′S for the variables in S,
and two observable distributions µ‖χ‖, µ‖ψ‖ with supports ‖χ‖ and ‖φ‖. A counterfactual
operation given such an intervention is a coupling πχ,ψ ∈ Π(µ‖χ‖, µ‖ψ‖) that pairs elements
x ∈ ‖χ‖ with elements x′ ∈ ‖ψ‖ such that the projection requirements for couplings are
preserved. Given an intervention (χ, ψ), πχ,ψ is a pairing of elements of Xn x, x′ with
x ∈ ‖χ‖, x′ ∈ ‖ψ‖, each with their own marginal probabilities that get a score.

Concretely, this means that if x has a property φ like a salary of 100e K euros per
year and the probability of having such a salary given that one is a χ is α—e.g., P(xs =
100k|χ) = α, then x′ should have a salary M such that P(xs = M|ψ) ≈ α. Moreover this
correspondence between x and x′ should be maximized for every property φ.

We are particularly interested in random couplings where x may have several coun-
terparts x′, each assigned a probability. Using a random coupling allows for multiple
counterfactual counterparts of a single instance, as in Lewis’s original semantics. It means
that the logic doesn’t verify conditional excluded middle, which we’ve argued is unintu-
itive when we consider situations in which an intervention only has a limited effect. We
will group together the counterparts x′ of x under the coupling πχ,ψ with the term πχ,ψ(x).
We use πχ,ψ(x) to build a semantics for counterfactuals [59].

The random couplings of two distributions that are solutions to (3) or (4) in effect
furnish the transport minimal adequate transformations for our model. In the finite case,
relative to an optimal tranport plan πχ,ψ we can define for w ∈ ‖χ‖

∆πχ,ψ(w) = {y : πχ,ψ(w, y) > 0} (5)

In other words, we collect all the elements in ψ that are paired via a non 0 probability
with a given w via the coupling.

How does the transformation we just defined in Equation (5) relate to our counterfac-
tual models CT

Xn , f̂
for f̂ ? In effect, Equation (5) defines just the counterfactual counterparts

and the appropriate transformations in a counterfactual model CXn , f̂ . In addition, however,
We can exploit the coupling and the intervention it is related to to give a more sophisticated
semantics for the probability of a counterfactual.

Definition 22. A transport counterfactual model CTr
Xn , f̂ ,T

extends a counterfactual model CT
Xn , f̂

with a set I of interventions or set of pairs of L definable sets (A, B), A, B ⊂ Xn, and a set of
couplings Π(µA, µB) with support A and B that are solutions to Equation (4) over distributions
µA, µB; i.e., Π(µA, µB) is a set of optimal transport plans.
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We will assume that (4) has a unique solution.

Definition 23. The transport semantics for counterfactuals:

• CTr
Xn , f̂

, w |= ψ �→ φ just in case:

(‖χ‖, ‖ψ‖) ∈ I ∧ w ∈ ‖χ‖ and CTr
Xn , f̂ , ∆πχ,ψ(w) |= φ

• CTr
Xn , f̂

, w |= [α](ψ �→ φ) just in case:

(‖χ‖, ‖ψ‖) ∈ I ∧ w ∈ ‖χ‖ and
πχ,ψ({w} × ‖φ‖)

µ‖χ‖(w)
≤ α

• CTr
Xn , f̂

, Z |= ψ �→ φ just in case:

(‖χ‖, ‖ψ‖) ∈ I ∧ w ∈ ‖χ‖ and CTr
Xn , f̂ , ∆πχ,ψ(Z) |= φ

• CTr
Xn , f̂

, Z |= [α](ψ �→ φ) just in case:

(‖χ‖, ‖ψ‖) ∈ I ∧ w ∈ ‖χ‖ and
πχ,ψ(Z× ‖φ‖)

µ‖χ‖(Z)
≤ α

Note that our semantics allows us to set a set of evaluation points Z to ‖χ‖ for instance.
We examine some more consequences of the counterfactual semantics from transport

models below.

7.2.1. Six Advantages of Transport Based Counterfactual Models

Transport plans are practically appealing and have been extensively exploited in many
applications involving data fusion, like the fusion of data from different sources. They
also have a number of advantages for a theory of counterfactuals and the explainability
of ML algorithms. Here we list six: the tractability of the model construction, increased
explanatory relevance, improving efficiency of finding relevant logically valid explanations,
providing explanations with partial or fragmentary data, testing for biases at a non local
level of the model, and increased robustness of the underlying classifier when transport
based methods are used.

Tractability of the model construction. Unlike the case of our models built on
causal SCMs, we can always build a counterfactual model based on a transport approach.
In addition, transport techniques work over sets of instances or subsets of Xn and so
in principle are more effective than constructing counterfactual models pointwise from
adversarial perturbations. In certain cases (where each coupling determines a unique
counterfactual counterpart for each instance), computing an optimal transport plan can
be found in polynomial time relative to the size of samplings on the distributions µP and
µQ [18,21,60,61]. Thus the models can be determined in polynomial time irrespective of the
size of the implementation of the learning architecture, though for very large dimensional
data sets the method may lead to complications. Even without the deterministic assumption,
there are also relatively efficient implementations for approximating optimal transport
plans and building a counterfactual model [62,63].

Increased explanatory relevance. Counterfactual transport-based models can not
only be reliably constructed but they are also more explanatorily relevant for explaining
ML behavior than our generic counterfactual models. Transport theories furnish, as [59]
pointed out, counterfactual correlates x′ given some intervention on an instance x that
match each other as closely as possible in terms of probability distributions. Compare this
to a counterfactual counterpart of x in which just one property is shifted without regard
to distributions. Given an intervention (χ, ψ), we’ve seen earlier in Section 6.1 a thought
experiment in which simply shifting one property of x who is a typical χ can yield a ψ a
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very atypical counterpart x′. We might expect our algorithm f̂ to be sensitive to atypicality;
f̂ ’s predictions about very atypical cases would typically be out of the domain distribution;
they might not even be physically possible in some extreme cases. And so we might expect
f̂ to provide unreliable results on such instances. In any case such atypical counterparts
seem far less relevant for an explanation of the behavior of f̂ on a typical, real life example
x than counterparts of x that are also typical. So, if we want to see whether a shift from χ
to ψ is explanatorily relevant to the behavior of f̂ at a typical χ x, we should first look at
how f̂ treats typical ψ instances x′. Thus, transport models should be extremely explanatorily
relevant for many queries about f̂ behavior.

More efficient searches for relevant, logically valid explanations. Transport based
counterfactual models allow us to be more efficient in providing logically valid explanations.
Why is this? First, we note:

Remark 4. Given CTr
Xn , w |= φ�→ ψ supported by a coupling πχ,φ, and where for w′ ∈ ∆πχ,ψ(w)

and φw′ is the theory or logic encoding of w′, we can effectively find a minimal subformula χ of φw′

s.th. χ |= φ offers a logically valid, abductive explanation in the sense of [4]).

Remark 4, whose proof just repeats that of Proposition 2, provides a logical guarantee
of the explanation provided by the counterfactual. That is, it allows us to transform a local,
partial, counterfactual explanation into a global, valid, deductive explanation.

Our transport based models endow counterfactuals with probabilities and allow us to
evaluate counterfactuals not only at the local level but at more global levels in the model,
relative to various sets of instances. This is something we have not seen at least explicitly
developed in other approaches to explainability in the literature. And because transport
models assign counterfactuals probabilities based on observed distributions, we can target
higher probability counterfactuals for logical investigation.

More precisely, since we can estimate the probabilities of counterfactual conditionals
over sets of instances in Xn, higher probability counterfactuals should be a priori more
relevant to the explainee; they are the ones that hold of a greater proportion of the data.
As such they are also more relevant for investigating the ML algorithm f̂ , as high probability
counterfactuals capture how f̂ performs over large parts of the data set. In addition, we can
further restrict our search for globally and logically valid explanations, i.e., the technique in
Proposition 4, to those with the highest global probability. Given that testing for logically
valid explanations is computationally expensive, restricting our search in this way can be
very useful. Using this probabilistic information can also help us restrict our search for
relevant counterfactuals in the pragmatic component of explanations that we dicussed in
Section 4.

Non local testing for biases and confounders. Another important advantage of
transport counterfactual models is that we can test for confounders and biases for or against
members of some subset P ⊂ Xm as in Remark 3 at a more global and representative level.
Once again, examining biases at a global level of an ML algorithm f̂ is important for
gauging the behavior of f̂ ; if f̂ is biased on certain outliers in Xn, outliers that may be
artifacts and not represent any real world cases, then that is less serious than if f̂ has biases
on typical members of P.

As in Remark 3, we want to know whether f̂ is sensitive to values of variables xji that
define, perhaps implicitly, a certain subset P of Xn, which we will represent by a Boolean
formula φP. We say that x̂ ∈ P iff CTr

Xn , f̂
, x̂ |= φP. Then:

Remark 5. Let G be a forcing explanation investigation game where WinG consists of those plays
in which E establishes whether f̂ (x̂) 6= f̂ (x̂1) for x̂ =j1...jm x̂1 and x ∈ P. Suppose in addition that
E has access to the distribution µφP in the transport counterfactual model CTr

Xn , f̂
and the coupling

πφP ,¬φP . Then E has a winning strategy in G in polynomial time.
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To establish Remark 3, we simply note that to establish a bias for or against P it is
necessary but also sufficient to look at representative examples of P. E can request those ∆i
that provide those representative examples by exploiting facts about µφP and πφP ,¬φP .

Providing explanations with partial or fragmentary data. A fifth advantage of trans-
port based counterfactual models is that their capability of set evaluation has important
consequences for explaining the behavior of ML models when we have only partial data.
(This could also apply to causally based models as we developed them in Section 7.1.)
Suppose we want to explain the predictions of an ML algorithm f̂ on certain individuals
predictions for whom we only have partial data. This means in effect that we want to
evaluate counterfactuals over sets of instances that verify the partial data entries we have.
Because our semantics allows for this—indeed transport approaches intuitively ask us to
do this—such counterfactual models are natural candidates to explore ML behavior in
cases of partial data.

Increased robustness. A last advantage of transport based models is that using
transport based models for ML can lead to more robust performance. Ref. [64] show that
one can use a variant of Equation (2) to train an ML classifier. That is, we can use the basis
of the transport based counterfactual model for the ML system itself. Ref. [22] show that
while such a classifier doesn’t perform very well, by adding constraints on the classifier
such that it must respect Lipschitz continuity properties and using a hinge loss one can
achieve a classifier that has state of the art performance but one that has very interesting
robustness properties. In particular, what they show is that adversarial attacks on such
a classifier f̂ only succeed if they provide counterfactual counterparts sanctioned by the
transport model. And this means that an attack a can only force f̂ (a(x̂)) 6= f̂ (x̂) if a(x̂)
obeys the distributions that one would expect of a typical member of the other class. Thus,
the attacks result in per se interpretable shifts of the behavior of f̂ . This point needs much
more exploration but potentially conveys a very exciting development for transport based
classifiers and their explanatory models.

7.2.2. Transport-Based Models, Counterfactual Conditionals and Salmon
Explanatory Relevance

In this section, we explore how transport based models affect predictions about
counterfactual conditionals. As far as we know, this paper is the first paper to link transport
based approaches to counterfactuals with semantic and logical approaches. This allows
us to investigate the semantic implications of transport based models. The semantics for
counterfactuals within transport based models bears many resemblances to the probabilistic
semantics we’ve already introduced. For instance, a transport counterfactual model with a
random coupling won’t necessarily support conditional excluded middle or the examples
given in example (6). But it could support:

(13) Had Nicholas chosen to work in industry, the chances that he would have had a salary
of 100e K would be much higher.

On the other hand, the assignment of probabilities and truth conditions to counter-
factuals in transport models is more sophisticated than in a generic probabilistic model
because it exploits the coupling of two distributions. The distance function used to compute
counterparts differs from any precisification of Lewisian similarity that proposed so far to
our knowledge, because it exploits not only the semantics of the antecedent of the counter-
factual but also the probability distribution that it supports and compares that distribution
to the one at the point of evaluation. What this means in practice is that, for instance, (7)
will be true at a world only if at the worlds coupled with x̂ the chances of having a salary of
100e K given that one works in industry are as close as possible to those of having having
a salary of 100e K given that one works in industry in the evaluation points (data points)
where we have data about industry workers. Moroever those chances should be far higher
than the chance of Nicholas having a salary of 100e K given his actual occupation. We find
these linguistic consequences of the model very plausible.
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Transport counterfactual models conform to our intuitions about distributions—namely,
that a counterfactual model based on an intervention should respect observed distributions
concerning that intervention. This also makes predictions about counterfactual statements.
Consider again the counterfactual assumption that I make 100e K euros a year instead of
60e K euros a year. My closest counterparts should take part in the distributions of 100e K
a year earners in as close a possible a way as I take part in the distributions 60e K a year
earners. This is what the transport semantics guarantees.

Transport models entail a kind of probabilistic inertia that enables them to capture
a wide variety of counterfactual conditionals. In particular it enables them to make true
causally supported counterfactuals. But it also makes other counterfactuals true as well.
Consider a typical confounder case: grey haired people are more likely to get heart attacks,
but of course grey hair is not a cause of heart attacks. Consider the intervention where we
change hair color. Grey haired people are on average much older than non grey haired
people, so a grey haired counterfactual counterpart of a brunette twenty five year old should
be considerably older under an optimal transport plan. In a transport counterfactual model,
we thus predict the truth of

(14) Were you to be grey haired, you would be more likely to have a heart attack.

Many people in fact accept the truth of (14), despite knowing that having grey hair
doesn’t cause heart attacks. This in itself shows that perhaps counterparts that are solely
based on causal graphs are not correct, since a causal theory would not draw a causal link
between having grey hair and having a heart attack; and thus, counterparts defined via an
SCM would not necessarily have a higher probability of having a heart attack and so such
a model would predict that (14) is false. If people object to (14) it may be because they have
another intervention in mind that the antecedent of (14) evokes. This is the intervention:
grey haired and same age—which a transport model also supports. In this case, we can
look at the rate of heart attacks across the grey haired say 25 to 50 year olds and the factual
distribution should tell us that are much lower than the rate of heart attacks across the grey
haired 50 to 80 year olds. On this intervention, (14) is not predicted to be true.

This points to a deeper connection between counterfactuals, explanations and distri-
bution preservation. Ref. [65] noted that while statistical relevance is a property that is
relevant to explanatory goodness, it’s not sufficient. Salmon argued that what we needed
for a good explanation for why for some b ∈ B b has A, was what he calls a homogeneous
partition of B:

Definition 24. {C1 . . . , Cn} is a homogeneous partition of B with respect to A iff

1. {C1 . . . , Cn} is a partition of B;
2. P(A|B ∧ Ci) 6= P(A|B ∧ Cj)

3. there is no finer partition of B meeting this condition.

A homogeneous partition of B relative to some property A {C1 . . . Cn} provides all the
statistically relevant factors for A. Salmon proposes the following definition of an adequate
explanation.

Definition 25. Cj is Salmon explanatorily relevant to why b in class B has property A iff:

1. there is a homogeneous partition (C1, . . . , Cn) of B with respect to A with b ∈ Cj

2. P(A|B ∧ Cj) >> P(A|B)
3. P(A|B ∧ Cj) > P(A|B ∧ Ci) for i 6= j.

We note that one can have several homogeneous partitions that meet the conditions in
Definition 25.

Let’s now explore how this links up to transport counterfactual models. The proba-
bilistic inertia of counterfactual models provides the information necessary to construct
homogeneous partitions and explanatory relevance. Recall our hair-color-change example
above. Interventions can lead to true counterfactuals supported only by statistical rele-
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vance, but other interventions, more specific interventions, where we control for other
important variables like age, can remove confounders to capture explanatory relevance and
approximate better the true causes of the observed distributions. This notion of specificity
is definable in our models:

Definition 26. An intervention (P1, Q1) is more specific than an intervention (P1, Q2) if Q1 ⊂ Q2.

This allows us to define straightforwardly homogeneous partitions in Salmon’s sense
and to capture explanatory relevance. Note that establishing that one intervention is more
specific than another can be determine in linear time in the worst case with respect to the
size of the description of the Qi sets.

Remark 6. Given CTr
Xn , f̂

, w |= φ�→ ψ with intervention (χ, φ), we can effectively check whether
φ�→ ψ is Salmon explanatorily relevant.

Similarly to the proof idea in Remark 4, we can check whether (χ, φ) is the most
specific intervention (specificity can be computed in linear time) that supports φ�→ ψ.
But in addition, where φj, φi are alternative instantiations for the variables in φ to φ, we
need to establish for explanatory relevance: P(‖ψ‖|‖φ‖) > P(‖ψ‖|‖φj‖) = P(‖ψ‖|‖φi‖).
Given that a transport model carries probability information for all measurable and so all
L definable sets in Xn, the complexity of establishing explanatory relevance is bounded by
the search for the appropriate distributions.

Finally, the fact that our semantics allows us to analyze counterfactuals supported by
sets of evaluation points and so, for example, a group whose counterfactual properties we
want to examine. This allows us to analyze sentences about groups like

(15) If members of a disfavored minority were treated like a favored minority, their chances
of getting loans would be far higher.

7.2.3. Transport and Causality

Transport counterfactual models show us a rich set of counterfactual relations. Some
relations are supported by statistical relevance; others by explanatory relevance, and still
others by causal mechanisms like those encoded in SCMs. To some extent this may be due
to the choice of the cost function c. Nevertheless, we think this is not simply a fortuitous
coincidence but rather a consequence of what an optimal transport plan should do.

Under certain assumptions, Ref. [50] show that the counterfactuals verified by trans-
port model are just those supported by a particular kind of SCM, thus providing a theoreti-
cal underpinning to [59] who empirically observed a close similarity between counterfactual
theories based on transport models to those based on causal models. While there are several
technical assumptions concerning the ground cost (c) in Equation (4) and on the distri-
butions involved in the transport, we look here at two assumptions on SCMs. The first
assumption is that the equations on the edges of the graph induce a one-to-one correspon-
dence between endogenous and exogenous variables. The second is a constraint they call
relative exogeneity (RE). To state this constraint, recall that we are interested in an SCM in a
set S of endogenous variables that we may exploit in an intervention and which are distinct
from the rest of the endogenous variables X of the SCM. Where US, UX are the exogenous
parents of S and X respectively and XEndo(S) is the set of endogenous variables that are
parents of S, RE requires: US ⊥⊥ UX and XEndo(S) = ∅ (Figure 2). This entails that there is
no hidden confounder between X and S and no variable in X is a direct cause of S. We note
that [50] also restrict S to a singleton set.
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Figure 2. Causal Graph satisfying RE.

RE rules out confounder cases like those that support counterfactuals like (14). Exam-
ple (14) holds because of the causal relation between the variable age and the probability of
heart attacks. If age is in X then it is a direct cause of a change in hair color (the S in that
example) and if it is not, it is a hidden confounder and so also ruled out.

Because a transport model links distributions across all measurable sets, an optimal
plan will make true counterfactuals that rely on statistical correlations due to confounders.
It will also be the case that a statistical correlation between the true cause and its true effect
will also be preserved by the coupling in the sense that we elucidated above. But what
about the counterfactuals involving those confounders? Does a coupling πχ,ψ supporting a
counterfactual ψ�→ φ have a natural relation to the coupling πχ,ζ ,where ζ is a confounder
of ψ?

The answer in general is “no”, because (ζ �→ ψ) ∧ (ψ �→ φ) doesn’t entail ζ �→ φ.
Counterfactuals don’t in general obey conditional transitivity. If we enforce conditional
transitivity in general, we threaten to make counterfactuals semantically equivalent to ma-
terial conditionals or strict conditionals, something that would vitiate the whole approach.
On the other hand, suppose we know that ζ is a necessary and sufficient cause of ψ; that is,
ζ is sufficient for producing ψ on its own, and ψ does not occur without ζ (meaning that ζ
is necessary for ψ).

Proposition 8. Suppose that ζ is a necessary and sufficient cause of ψ in CTr
Xn , f̂

. Then if CTr
Xn , f̂

, w |=
ψ �→ φ, then CTr

Xn , f̂
, w |= ζ�→ φ.

Proof. Let ζ be a necessary and sufficient cause of ψ. Formally, this means CTr
Xn , f̂

, Xn |=
ζ ↔ ψ, since ζ’s being a necessary cause of ψ in CTr

Xn , f̂
is defined by CTr

Xn , f̂
, Xn |= ψ→ ζ and

being a sufficient cause means CTr
Xn , f̂

, Xn |= ζ → ψ. Now suppose that we are interested

in prediction φ at a point w, we have CTr
Xn , f̂

, w |= ψ �→ φ. Given CTr
Xn , f̂

, Xn |= ζ ↔ ψ, this

means that every closest ψ world is also a closest ζ world. So if CTr
Xn , f̂

, w |= ψ �→ φ, then

CTr
Xn , f̂

, w |= ζ �→ φ.

If the conditions of Proposition 8 hold, then the causally grounded counterfactual
ζ�→ φ is supported along with ψ�→ φ. With transport models we are also conferring
probabilities on outcomes, however. So can we have a probabilistic counterpart of Propo-
sition 8? In addition, is there a cost function such that there is an optimal transport plan
meeting (4) that would yield such a result?

Remark 7. The set of counterfactuals made true at CTr
Xn , w in a transport counterfactual model

include causally relevant counterfactuals for all necessary and sufficient causes in the sense
of Proposition 8. When an SCM obeys RE, it generates a (not necessarily optimal) transport
counterfactual model that includes all counterfactuals supported by the SCM.

7.2.4. Some Thoughts on Logic and Probability in Transport Counterfactual Models

In the counterfactual models where formulas can be assigned probabilities as well
as truth values at evaluation points or sets of evaluation points, it is still nevertheless the
case that the logical or truth semantic and statistical inferencing mechanisms are separate.
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But they can also cooperate. We can use statistical techniques to estimate probabilities
of conditionals and to construct appropriate couplings and transport plans and then
investigate high probability counterfactual explanations for logical validity and examine
other properties of transport models with logic. We can also exploit the techniques of
Section 3 to investigate the flip degree of transport models.

Our approach contrasts with many neuro-symbolic proposals in which the logic is not
autonomous and there are no guarantees that logical consequence is preserved during the
operation of the system [66]. There are also problematic assumptions (independence) about
probabilities when imported into logical frameworks as in [66]. We do not derive logical
inferences from statistical ones nor statistical patterns of inference or assumptions about
the statistics from logical notions. Ref. [67]’s criterion that both systems work according to
their usual rules holds here. Nevertheless, they can cooperate as we have tried to show.
In effect the axioms for counterfactuals of [16] hold in our models as the transport plans are
used solely to determine counterfactual counterparts, if we only look at the Boolean values
for counterfactuals and ignore the probability assignments to them given by the couplings.
However, the transport coupling also confers a probability on counterfactuals. Given [54]’s
results, reasoning logically about probabilities in this framework remains unaxiomatizable.

8. Conclusions

We have shown that counterfactual explanations can deliver partial, but epistemi-
cally accessible and adequate explanations. We have also shown linked counterfactual
explanations to valid deductive explanations. We have also looked at a range of coun-
terfactual models—from one relying on a simple edit or Manhattan distance to compute
counterfactual counterparts, to models based on structural causal graphs, and finally to
sophisticated models that rely on theories of transport. We have argued that transport
models hold great promise for explanatory relevance, and as far as we know we are the
first to link transport based ideas to a logical theory of counterfactuals and its semantics.
This paper is also the first, we believe, to outline the many advantages of transport based
counterfactual models for the explainability of ML algorithms. We have enumerated six
advantages—the tractability of the model construction, increased explanatory relevance,
improving efficiency of finding relevant logically valid explanations, providing explana-
tions with partial or fragmentary data, testing for biases at a non local level of the model,
and increased robustness of the underlying classifier when transport based methods are
used. There are probably many more. In addition, we’ve seen how transport based models
can capture some causal information in the absence of an SCM.

Another important take-away message from this paper is that for all counterfactual
models, pragmatic factors are crucial. We have proved for the simplest counterfactual
models that pragmatic factors dramatically affect the complexity of finding adequate
explanations. We reviewed Explanation Games from [15], which allowed us to characterize
the problem of finding fair and adequate counterfactual explanations for a ML classifier
with Boolean valued features as a PLS complete search problem. In addition, we explored
how the complexity of the set of counterfactuals describing a local neighborhood around
a focal point can affect both the complexity of fair and adequate explanations and our
evaluation of the learning algorithm as a model. While these results are proved only for
the simplest of counterfactual models, we believe they set lower computational bounds
for finding fair and adequate explanations in the more complex models like transport
based ones.

Additionally in this paper, we have extended explanation games beyond previous
work to explore the counterfactual model itself. With the more sophisticated counterfactual
models, we have been able to explore the complexity of biases at a more global level of the
model, not just locally. And we have been able to formulate how to check for biases with
respect to representative samples of protected classes.

In future work we need to explore with experiments whether and if so how the
theoretical advantages we have outlined here for counterfactual explanations, in particular
those based on transport models, translate into empirical gains for explainability and for
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the efficiency of finding fair and adequate explanations. We will look at efficient heuristics
for this step. We will also look at how explanation games help us to formally explore
interactive machine learning, in particular “human in the loop” or interactive explainability
for machine learning function behavior [68,69]. Such game theoretic investigations may
have special relevance in medical domains [70].
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