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We formally analyze an epistemic bias we call interpretive blindness (IB), in which under certain conditions a learner will be incapable of

learning. IB is now common in our society, but it is a natural consequence of Bayesian inference and what we argue are mild assumptions

about the relation between belief and evidence. IB a special problem for learning from testimony, in which one acquires information

only from text or conversation. We show that IB follows from a codependence between background beliefs and interpretation in a

Bayesian setting and the nature of contemporary testimony. We argue that a particular characteristic of contemporary testimony,

argumentative completeness, can preclude learning in hierarchical Bayesian settings, even in the presence of constraints that are

designed to promote good epistemic practices.
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1 INTRODUCTION

In this paper, we describe and formally analyze a simple epistemic bias, in which people end up being unable to learn,

unable to shift their beliefs in the face of evidence. We call this bias interpretive blindness (IB). IB is now familiar and

all around us—people dying of Covid but refusing to believe that the disease exists despite the evidence, people who

believe elections are fraudulent in spite of overwhelming evidence to the contrary, the list goes on. IB is based on a

codependence between what beliefs we have and what evidence we use to update those beliefs; it then results from

exploiting simple rules of Bayesian inference in a dynamic, iterative process whereby a learner’s background beliefs

and biases lead her to update her beliefs based on a body of testimony 𝑇 , while biases inherent in 𝑇 come back to

reinforce her beliefs and her trust in 𝑇 , further biasing her towards accepting 𝑇 for future updates. We look at how

this codependence affects human agents whose beliefs are guided and shaped by testimony—perhaps the primary way

that most people acquire information nowadays. We show that an inability to learn can result, and we show how this

inability is enabled and exacerbated by modern machine learning algorithms that can govern what testimony we have

access to.

When learning through testimony, an agent acquires beliefs through conversations with other agents, or from books,

newspapers or social networks, and so on. Typically, such people lack direct access to the phenomena described via that

testimony or cannot analyze the phenomena themselves [Millgram 2015]. Typically too, humans only pay attention

to a restricted set of bodies of testimony from a limited number of sources for their information—which makes sense

in terms of an agent’s limited resources and attention span. These conditions are the fertile ground for the learning
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inability of IB. In IB, agents’ biases preclude learning when an agent tries to exploit new data that are incompatible with

or simply distinct from 𝑇 ; agents will discount any evidence that challenges their beliefs. IB is enabled and exacerbated

by algorithms that tailor the testimony they provide to that which the agent is already disposed to believe. Our paper

formally analyzes the strategic epistemic consequences of these algorithms and of IB. We use Wolpert’s 2018 extended

Bayesian framework to prove our results.

IB is not only problematic for first order Bayesian approaches but for hierarchical ones [Gelman et al. 2013] as well,

because testimony from sources like Facebook and other social media, 24/7 media outlets and web interest groups is

often argumentatively complete, a notion we analyze precisely in Section 4. In an argumentatively complete body of

testimony𝑇 , the authors of that testimony can respond to and undercut any doubts raised by other data or arguments in

a body 𝑇 ′
that might threaten 𝑇 ’s credibility. A skillful climate denier, for example, will always find a way to undercut

the most scientifically careful argument for climate change. Argumentatively complete testimony can undermine higher

order constraints and good epistemic practices that guide first order learning.

Our paper starts in Section 2 by introducing the codependence of belief and interpretation relative to testimony

and the hypotheses that support it. In Section 3 we formally show how IB can result in first-order Bayesian learning.

Section 4 shows how IB can come about in a hierarchical Bayesian learning setting. Section 5 discusses related work

while Section 6 develops a game theoretic setting to investigate the complexity of IB. We investigate whether IB is

rationally refutable; on certain commonly accepted epistemic assumptions, we conclude that it is not.

2 TESTIMONY AND SOURCES

IB arises in learning because of a codependence between beliefs and the interpretation of evidence, in this case written

or linguistically conveyed information. The interpretations we are interested in are judgments about the evidence’s

trustworthiness. In updating our beliefs with new evidence 𝐸, our beliefs, particularly about the reliability of 𝐸’s source,

color how we interpret 𝐸, how much in short we believe it. But new evidence 𝐸 ′ can update our beliefs about the

reliability of sources which in turn confer a possibly new degree of belief concerning 𝐸. This codependence between

evidence and belief dictates how we learn.

Let us look at this codependence more closely in conjunction with a body of testimony. A body of testimony 𝑇 is a

collection of information conveyed by one or more sources that may “promote” or vouch for certain descriptions of

events and cast doubt on or disparage others. The New York Times, Fox News, CNN, Facebook, 4Chan, all provide bodies

of testimony; their union is also a body of testimony. While such bodies may be consistent or inconsistent, we restrict

ourselves here to consistent 𝑇 . Importantly such bodies are also dynamic; they evolve over time as they are updated

with new descriptions of events. Dynamic bodies of testimony are ubiquitous in our communicative landscape: on-line,

24/7 news sources as well as particular groups on social media provide continuously evolving, updated coverage of new

events. To model this, we shall say that𝑇 comes in “stages”, where stages can be defined by times or even conversational

turns, and each stage 𝑇𝑖 is the body of evidence accumulated up to stage 𝑖 . 𝑇 = {𝑇1,𝑇2, ...,𝑇𝑛, ...} is the collection of all

the stages of a dynamic body of evidence. Thus, a body of evidence invites us to iteratively update our beliefs about the

trustworthiness of that very body.

Let T be a collection of (potentially conflicting) bodies of testimony 𝑇 about some phenomenon 𝑃 , and assume that

a learner
ˆ𝑓 does not have independent access to 𝑃 and can thus only learn about it via T . Learning from T will require

ˆ𝑓 to judge some body of testimony 𝑇 in T as credible or trustworthy. LetH be a set of evaluation hypotheses, where

each ℎ ∈ H evaluates the bodies of testimony 𝑇 in T . The hypotheses ℎ ∈ H—background beliefs that may take into

account 𝑇 ’s source, subject matter, past known accuracy, appeal, and perhaps other elements—define a conditional
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probability 𝑃 (𝑇 |ℎ) for each 𝑇 ∈ T , which we will sometimes write as ℎ(𝑇 ), where ℎ(𝑇 ) = 0 means 𝑇 is untrustworthy

according to ℎ, and ℎ(𝑇 ) = 1 means 𝑇 is trustworthy according to ℎ. Following Wolpert’s 2018 extended Bayesian

framework,
ˆ𝑓 determines his belief in 𝑇 relative toH .

Our learner
ˆ𝑓 also has a probability distribution over the evaluation hypotheses inH . Since the bodies of evidence𝑇

in T are dynamic,
ˆ𝑓 updates this distribution relative to the stages𝑇𝑖 of𝑇 as each𝑇 evolves. This is intuitive; testimony

𝑇 to which
ˆ𝑓 attends should be relevant to how

ˆ𝑓 updates its beliefs about the trustworthiness of 𝑇 . The collection T is

also most likely restricted, which is intuitive too: most if not all of us acquire new information from a restricted set of

bodies of evidence—a reasonable choice given the balance rational agents need to find between exploiting an already

acquired body of evidence and gathering data from other bodies of evidence. And finally, because we restrict ourselves

to consistent bodies of evidence 𝑇 , each 𝑇 will push a particular point of view on events.

But as the probabilities of the background beliefs, the evaluation hypotheses, are updated over the stages 𝑇𝑖 , so too

will
ˆ𝑓 update her belief in 𝑇 , using the updated probabilities for her evaluation hypotheses. This codependence can

lead to a problem in learning: when we rely on testimony to learn and we restrict the testimony we pay attention

to, the confirming evidence for the background beliefs, the evaluation hypotheses and the testimony 𝑇 they support

mutually confirm each other to form a barrier to learning about events that are not mentioned in 𝑇 . Algorithms of the

sort used in social media to build testimony for agents are optimized to continue the themes and ultimately the content

of what those agents have previously consulted by exploiting the agent’s history of choices that reveal her likes. We will

formalize this in terms of a relation between the algorithm’s choices and the presence of certain evaluation hypotheses.

Such algorithms naturally accelerate the process of what we call below bias hardening and IB in the presence of iterated

Bayesian updating, despite our learner’s rational epistemic practices. We turn to this in the next section.

3 IB IN A FIRST ORDER BAYESIAN SETTING

To formalize IB and its consequences, we first present a simple experiment to show how the codependence of interpreta-

tion and belief leads to bias hardening.1 To illustrate, suppose that
ˆ𝑓 considers a consistent dynamic body of testimony

𝑇 = {𝑇1,𝑇2, ...,𝑇𝑛, ...} and has two evaluation hypotheses ℎ1, ℎ2, where the prior probabilities assigned to ℎ1 and ℎ2 by

ˆ𝑓 are:

𝑃 (ℎ1) = .6, 𝑃 (ℎ2) = .4 (1)

and the evaluation hypotheses assign probabilities to 𝑇 as it evolves through stages 𝑇𝑖 as follows:

𝑃 (𝑇𝑖 |ℎ1) = .8, 𝑃 (𝑇𝑖 |ℎ2) = .2 for all i (2)

We can now calculate the probability of𝑇1 using the general rule for marginal probabilities in 3. Let B be
ˆ𝑓 ’s background

beliefs; and let the set of all ℎ𝑖 , the alternative hypotheses that are consistent with or assigned non-zero conditional

probability relative to B [L Griffiths et al. 2008; Lampinen and Vehtari 2001; Tenenbaum et al. 2006, 2011], be the set of

evaluation hypotheses ℎ𝑖 (so {ℎ1, ℎ2}, in our example).

𝑃 (𝑥) =
𝑖=𝑘∑
𝑖=1

𝑃 (𝑥 |ℎ𝑖 ,B) .𝑃 (ℎ𝑖 ,B) (3)

Then using (1), (2), and (3), we have:

𝑃 (𝑇1) = 𝑃 (𝑇1 |ℎ1).𝑃 (ℎ1) + 𝑃 (𝑇1 |ℎ2) .𝑃 (ℎ2) = .56. (4)

1
[Kelly 2008] describes an informal description of this phenomenon.
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This is our estimation of our belief in the body of evidence 𝑇 based on what we have so far. We will continue to update

the probability of 𝑇 given new stages 𝑇𝑖 below by distinguishing prior probabilities 𝑃𝑝𝑟𝑖𝑜𝑟 and updated probabilities

𝑃𝑝𝑜𝑠𝑡 . Now suppose there is a new conversational turn in 𝑇 , a new stage of evidence 𝑇2. Given our assumptions,

𝑃 (𝑇2 |ℎ1) = .8, while 𝑃 (𝑇2 |ℎ2) = .2, 𝑇2 is supported by ℎ1 but not by ℎ2—ℎ1 and ℎ2 are consistent with their roles on 𝑇1.

Given the dependence of beliefs and interpretation of evidence,𝑇2 also leads us to re-evaluate our evaluation hypotheses

by adapting Bayes’ formula to our evaluation hypotheses:

𝑃 (ℎ𝑖 |𝑇𝑛+1) =
𝑃 (𝑇𝑛+1 |ℎ𝑖 ).𝑃𝑝𝑟𝑖𝑜𝑟 (ℎ𝑖 )

𝑃𝑝𝑜𝑠𝑡 (𝑇𝑛)
(5)

Given 𝑇2, whose initial probability we set to what the posterior calculated for 𝑇1—i.e., 𝑃𝑝𝑜𝑠𝑡 (𝑇1) = 𝑃𝑝𝑟𝑖𝑜𝑟 (𝑇2), we can
update our confidence in ℎ1 as follows:

𝑃 (ℎ1 |𝑇2) =
𝑃 (𝑇2 |ℎ1).𝑃𝑝𝑟𝑖𝑜𝑟 (ℎ1)

𝑃𝑝𝑜𝑠𝑡 (𝑇1)
≈ .86. (6)

Thus, we have posterior probabilities for our evaluation hypotheses as well as for stages of bodies of evidence. The

similarly updated probability for ℎ2 now drops to roughly .14. Using the updated values for ℎ1 and ℎ2, we see that 𝑇2,

which includes 𝑇1, is now even more believable: 𝑃𝑝𝑜𝑠𝑡 (𝑇2) = .74. Now suppose that a new bit of evidence, 𝑇3, is added

to 𝑇 . As before, we set 𝑃𝑝𝑜𝑠𝑡 (𝑇2) = 𝑃𝑝𝑟𝑖𝑜𝑟 (𝑇3). Given our assumptions about our source functions, 𝑃 (𝑇3 |ℎ1) = .8, we

have 𝑃 (ℎ1 |𝑇3) = .96, while 𝑃 (ℎ2 |𝑇3) ≈ 0.04, and confidence in 𝑇3 is also updated: 𝑃𝑝𝑜𝑠𝑡 (𝑇3) = .776 ≈ .78. Updating ℎ1’s

probability conditional on new evidence 𝑇4 now yields a value of .989 ≈ .99, while 𝑃 (ℎ2 |𝑇4) = 0.008 ≈ 0.01. By the

time we get to 𝑇5, the probability of ℎ1 will have gone to 1, while 𝑃 (ℎ2) = 0, and 𝑃 (𝑇5) = .8. In sum, as 𝑛 increases, the

updated probabilities of ℎ1 go to 1 and 𝑃 (𝑇𝑛) → 𝑃 (𝑇 |ℎ1), that is, to the strength of ℎ1’s support for 𝑇 .

Our codependence of belief and evidence suggests a loopy structure (cyclic graph) for updating. However, by exploiting

stages, we can disentangle such structures; and efficient approximations are possible in disentangled structures [Murphy

et al. 2013]. Proposition 1 below shows a convergence under certain assumptions. Let P𝑛 (ℎ𝑖 ) be the probability of ℎ𝑖

after conditionalizing on 𝑇𝑛 and P𝑛 (𝑇 ) the value of 𝑇 after n conditional updates as defined above.

Let’s now move to a more general setting. Let
ˆ𝑓 ’s evaluation hypothesesH

ˆ𝑓
, come with a probability distribution.

An agent could have, among the many evaluation hypotheses that she countenances, an evaluation hypothesis ℎ for

which the conditional probability of 𝑇 given ℎ increases as 𝑇 evolves. The support for 𝑇 might increase (or decrease) as

𝑇 gets more extended with more and more stages.

Definition 1. An evaluation hypothesis ℎ ∈ H
ˆ𝑓
is positive sensitive to𝑇 = {𝑇1,𝑇2, ...} iff 𝑃 (𝑇𝑛 |ℎ) > .5 and is monotone

increasing for all 𝑛.

How bodies of testimony are constituted for ordinary learners is not always clear. Learners can assemble their own

body of testimony, and typically, they must concentrate on some testimony to the exclusion of other testimony. What

are the criteria? Well, sometimes other actors can guide the acquisition of testimony. What we shall call Facebook-like

algorithms from our epistemic perspective are a way social media and news organizations can steer learners to a certain

body of testimony. Their role is to bring testimony to an agent’s attention that feeds and updates, in fact constructs, an

evaluation hypothesis that keeps the learner coming back to the same type of information, often the same set of sources

of information. More formally, the role of such an algorithm is to construct a positive sensitive evaluation hypothesis in

H
ˆ𝑓
.
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Definition 2. A Facebook-like (FB) algorithm 𝑔 for ˆ𝑓 constructs a body of testimony from a set of bodies of testimony

T that ˆ𝑓 uses to update her hypotheses and 𝑔(T ) = 𝑇 = {𝑇1,𝑇2, ...} with 𝑔𝑛 (T ) = 𝑇𝑛 iff there is an ℎ ∈ H
ˆ𝑓
such that: (i)

∃𝑛 𝑃 (𝑔𝑛 (T )|ℎ) > .5 and (ii) ∀𝑚 > 𝑛 ∃𝑘 (𝑃 (𝑔𝑘+𝑚 (T )|ℎ) > 𝑃 (𝑔𝑚 (T )|ℎ) as long as 𝑃 (𝑔𝑘+𝑚 (T )|ℎ) ≠ 1).

An FB algorithm 𝑔𝑛 (T ) at each stage 𝑛 provides information that does not decrease ℎ’s support for 𝑇 . Thus 𝑔 makes

ℎ positive sensitive to 𝑇 through a choice of stages 𝑇𝑛 . In addition, however, 𝑔 will eventually keep on increasing

the support of ℎ for 𝑔(T ). We assume that if 𝑔 is an FB algorithm for
ˆ𝑓 , then ˆ𝑓 updates her hypotheses based on the

testimony fed by 𝑔. We suspect that actual social media algorithms are FB though we do not have a proof of this. The

possibility, however, seems to us very real.

Proposition 1. Suppose testimony 𝑇 = {𝑇1,𝑇2, ...,𝑇𝑛, ...}, and with ℎ1 ∈ H positive sensitive to 𝑇 and with 𝑃 (ℎ1) ≠ 0,

while 𝑃 (𝑇𝑛 |ℎ 𝑗 ) < .5 and is monotone decreasing for all 𝑛 and for all ℎ 𝑗 ∈ H , ℎ 𝑗 ≠ ℎ1. Then:

As 𝑛 → ∞, P𝑛 (𝑇 ) → 𝑙𝑖𝑚𝑠𝑢𝑝 (𝑃 (𝑇𝑛 |ℎ1)),

P𝑛 (ℎ1) → 1 and P𝑛 (ℎ 𝑗 ) → 0 for 𝑗 ≠ 1

Given the calculations above and using standard updating rules for the probabilities 𝑃 assigned by
ˆ𝑓 , if 𝑃 (𝑇𝑖 |ℎ1) is

monotonic increasing with respect to 𝑖 and 𝑃 (𝑇𝑖 |ℎ 𝑗 ) for any 𝑗 ≠ 1 is monotonic decreasing, then the updates of 𝑃 (𝑇𝑖 ),
𝑃 (ℎ1 |𝑇𝑖 ) and 𝑃 (ℎ 𝑗 |𝑇𝑖 ) will follow the pattern of our experiment above and converge to the support of ℎ1, 1, and 0

respectively. □

Corollary 1. If ˆ𝑓 uses an FB algorithm and ℎ 𝑗 , 𝑗 ≠ 1 are as in Proposition 1

As 𝑛 → ∞, P𝑛 (𝑇 ) → 𝑙𝑖𝑚𝑠𝑢𝑝 (𝑃 (𝑇𝑛 |ℎ1)),

P𝑛 (ℎ1) → 1 and P𝑛 (ℎ 𝑗 ) → 0 for 𝑗 ≠ 1.

Given that an FB algorithm entails the existence of a positive sensitive hypothesis ℎ1 to 𝑇 and that ℎ1 must have non 0

probability, the result follows from Proposition 1 □.

We now introduce three important properties of evaluation hypotheses.

Definition 3. An evaluation hypothesis ℎ for a set of bodies of testimony T is consistent iff for 𝑇,𝑇 ′ ∈ T , if 𝑇 ∪𝑇 ′ is

inconsistent, then 𝑃 (𝑇 |ℎ) = 1 − 𝑃 (𝑇 ′ |ℎ). An evaluation hypothesis ℎ is probability-wise model complete (PWMC) for 𝑇

and some topic 𝑡 iff: for any putative piece of evidence 𝜙 on 𝑡 if for no stage 𝑇𝑖 𝑇𝑖 |= 𝜙 (𝜙 is not predicted or included in any

stage of 𝑇 ), then 𝑃 (𝜙 |ℎ) = 1 − 𝑃 (𝑇 |ℎ).

Definition 4. An evaluation hypothesis ℎ ∈ H makes 𝑇 potentially trustworthy (ℎ |= 𝑇 ), if as 𝑛 → ∞, 𝑃 (𝑇𝑛 |ℎ) → 1.

Proposition 2. Suppose 𝑔(T ) = 𝑇 and 𝑔 is an 𝐹𝐵 algorithm for ˆ𝑓 . Then there is an evaluation hypothesis ℎ such that

ℎ |= 𝑇 .

Let 𝑔 be an 𝐹𝐵 algorithm for
ˆ𝑓 . Then as we showed above, there is an ℎ that is positive sensitive to𝑇 and by the property

(ii) of Facebook algorithms, 𝑙𝑖𝑚𝑛→∞𝑃 (𝑇𝑛 |ℎ) = 1. □

While consistency seems a basic requirement of evaluation hypotheses, a potentially trustworthy evaluation hypothesis

is a kind of “soundness” or accuracy assumption about a body of evidence. For an agent who remains wedded to a body

of testimony, such an assumption also seems rational.
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PWMC hypotheses generalize consistent hypotheses, but what is their rationale? FB algorithms by themselves don’t

lead to PWMC. But they do facilitate it. As 𝑔 feeds testimony to
ˆ𝑓 that lends more and more support to an eventually

trustworthy hypothesis ℎ, a natural thought is for ˆ𝑓 to assume that 𝑇𝑖+1 provides a more complete coverage of the

pertinent facts than 𝑇𝑖 . So elements 𝜙 that are not mentioned in any 𝑇𝑖 or are in some way incompatible with 𝑇 are

either not relevant, or just false. The PWMC condition codifies this for evaluation hypotheses in terms of an operation

akin to negation as failure in Prolog; if ℎ makes𝑇 probability wise model complete, then if given some newsworthy and

relevant topic 𝑡 and𝑇 doesn’t mention 𝜙 , then ℎ supports ¬𝜙 to the extent that ℎ supports 𝑇 . For simplicity, we will

assume that the topic parameter is constant in our discussions below and drop it from the formalism.

Proposition 3. Let T be a set of consistent bodies of testimony and let 𝑔 be a FB algorithm for ˆ𝑓 with 𝑔(T ) = 𝑇 with

ℎ1 ∈ H
ˆ𝑓
the entailed positive sensitive hypothesis to 𝑇 . Let the priors on ℎ𝑖 ∈ H , ℎ𝑖 ≠ ℎ1 be as in Proposition 1 Then:

As 𝑛 → ∞, P𝑛 (𝑇 ) → 1. (1)

Suppose in addition, ℎ1 is PWMC for 𝑇 and 𝑇 ̸ |= 𝑇 ′. Then:

As 𝑛 → ∞, P𝑛 (𝑇 ′) → 0 (2)

To show (1), note that 𝑃 (𝑇1 |ℎ1) > .5 and since as 𝑛 → ∞, P𝑛 (ℎ1) → 1, after a certain point 𝑃 (𝑇𝑛 |ℎ1) is monotone

increasing. Then by Proposition 1, P𝑛 (𝑇 ) → 𝑃 (𝑇𝑛 |ℎ1). Since ℎ1 makes 𝑇 potentially trustworthy, as 𝑛 → ∞, P𝑛 (𝑇 ) = 1.

To show (2), suppose ℎ1 is PWMC for 𝑇 . Given that 𝑇 ̸ |= 𝑇 ′
, ℎ𝑖 (𝑇 ′

𝑖
) = 1 − ℎ𝑖 (𝑇𝑖 ) for each 𝑖 , and the expected probability

of 𝑇 ′
will decrease strictly monotonically over n, as P𝑛 (ℎ1) → 1. So as 𝑛 → ∞, P𝑛 (𝑇 ′) = 0. □

Corollary 2. Let the priors on ℎ𝑖 ∈ H , ℎ𝑖 ≠ ℎ1 be as in Proposition 1. Suppose in addition, 𝑇 |= ¬𝑇 ′, then:

As 𝑛 → ∞, P𝑛 (𝑇 ′) → 0 (2)

Note that our agent may have many evaluation hypotheses and the result of Proposition 3 is unchanged. Crucially
ˆ𝑓

has updated his beliefs only on 𝑇 due to 𝑔. This matches our intuitions about what agents actually do. As long as the

codependence between background beliefs and bodies of evidence holds and certain bodies of evidence are supported

more than others, belief in some bodies of evidence 𝑇 ∈ T will be strengthened, while belief in bodies of evidence in

conflict with 𝑇 or just different from 𝑇 will be weakened. Importantly, this can happen merely by 𝑇𝑖 repeating content

already in𝑇𝑘 for 𝑖 > 𝑘 . Such repetitions of content are commonplace on social media sites and news sites that broadcast

continuously. In addition, the assumption of a PWMC evaluation hypothesis is rather mild; it reflects an agent’s mistrust

of bodies of evidence other than the ones he relies on—a rather common situation.

Proposition 3 impacts the marginalization of new data, because if its assumptions are met, as P𝑛 (𝑇 ′) → 0,
ˆ𝑓 discounts

evidence from 𝑇 ′
, despite the presence of evaluation hypotheses supporting 𝑇 ′

.

Proposition 4. Suppose evidence 𝜙 such that 𝑇 ′ |= 𝜙 , 𝑇 ̸ |= 𝜙 and 𝑇,𝑇 ′, and ˆ𝑓 ’s evaluation hypotheses are as in

Proposition 3 and ˆ𝑓 conforms to Bayesian learning. Then:

As 𝑛 → ∞, P𝑛 (𝜙) → 0.

Since
ˆ𝑓 conforms to Bayesian learning, the marginal probability for 𝜙 is based on Equation 3 and the set of hypotheses

ℎ𝑖 in Equation 3 is the setH that for
ˆ𝑓 pronounce on testimony that mentions or asserts 𝜙 . By Proposition 1, as 𝑛 → ∞,
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P𝑛 (ℎ1) → 1. By Proposition 3, P𝑛 ((𝑇 ′ℎ1) → 0. But for all other ℎ𝑘 such that ℎ𝑘 (𝑇 ′) ≠ 0, by Proposition 1 again, as

𝑛 → ∞, P𝑛 (ℎ𝑘 ) → 0. But then P𝑛 (𝜙 |ℎ𝑖 ,B) → 0 for all relevant ℎ𝑖 . Given Equation 3, the result follows. □

In this situation,
ˆ𝑓 assigns no credence to 𝜙 . The prior beliefs of ˆ𝑓 may so limit the alternative hypotheses ℎ𝑖 such that

even an actual fact 𝜙 will have a marginal probability of 0;
ˆ𝑓 will discount 𝜙 completely.

Now consider general learning in this situation, defined in Wolpert’s 2018 extended Bayesian framework via Bayes’s

formula.

𝑃 (ℎ |𝑥,B) = 𝑃 (𝑥 |ℎ,B) .𝑃 (ℎ |B)∑𝑖=𝑘
𝑖=1 𝑃 (𝑥 |ℎ𝑖 ,B) .𝑃 (ℎ𝑖 |B)

(7)

To learn a hypothesis 𝜓 about some event 𝑒 , ˆ𝑓 ’s estimation of 𝜓 at some stage 𝑃𝑛 (𝜓 ) based on her evidence should

be closer to the objective or ideal assignment (posterior)𝜓𝑝 , than to her prior probability for𝜓 , 𝑃0 (𝜓 ). Similarly for

marginal probabilities: P𝑛 (𝑥) should track 𝑥𝑝 , the posterior of 𝑥 , given a random sampling of 𝑋 . We consider loss

functions L(P𝑛 (𝜓 ),𝜓𝑝 ) and L(P𝑛 (𝑥), 𝑥𝑝 ). The greater divergence between the ideal posterior probability and the

Bayesian subjective estimation of that probability, the worse will be the score for
ˆ𝑓 ’s learning. We say that

ˆ𝑓 cannot

learn𝜓 if her updates do not eventually decrease loss; i.e. we cannot show 𝑙𝑖𝑚𝑛→∞L(P𝑛 (𝜓 ),𝜓𝑝 ) < L(P0 (𝜓 ),𝜓𝑝 ).

Proposition 5. Suppose ˆ𝑓 is a Bayesian learner with evaluation hypotheses and testimony𝑇 ,𝑇 ′ as in Proposition 3. Let

𝜓 be a new hypothesis with all evidence 𝑒 confirming𝜓 such that 𝑇 ′ |= 𝑒 . Then ˆ𝑓 is incapable of learning𝜓 .

Consider 𝑒 such that 𝑇 ′ |= 𝑒 and e confirms𝜓 . So the true posterior 𝑃𝑝 (𝜓 |𝑒) > 𝑃 (𝜓 ), with 𝑃 (𝜓 ) the prior on𝜓 . Suppose
ˆ𝑓 ’s evaluation hypotheses and probabilities have been updated via 𝑇 as in Proposition 3 and let that give the “prior”

probability for the new hypothesis 𝜓 . By Proposition 4, as 𝑛 → ∞, P𝑛 (𝑒) → 0. In the limit, Bayesian learning as

specified by equation (4) simply isn’t defined when P𝑛 (𝑒) = 0. So assuming 𝑒 is discounted as evidence in updating, we

set 𝑃 (𝜓 |𝑒,𝑇𝑛) = 𝑃 (𝜓 |𝑇𝑛). But this is just 𝑃0 (𝜓 ), ˆ𝑓 ’s prior on𝜓 . It follows that as 𝑙𝑖𝑚𝑛→∞ L(P𝑛 (𝜓 ),𝜓𝑝 ) ≮ L(P0 (𝜓 ),𝜓𝑝 ).
□

Proposition 5 is a formal statement of IB in a first order setting. It shows that under certain conditions,
ˆ𝑓 will be

incapable of learning any hypothesis that involves a dependence on testimony not in 𝑇 , upon which
ˆ𝑓 has formed his

beliefs.
ˆ𝑓 is interpretively blind to any possibilities outside of 𝑇 .

4 IB IN HIERARCHICAL BAYESIAN LEARNING

It’s not unreasonable to rule out new evidence from unreliable testimony, provided the assignment of one’s evaluation

hypotheses to the testimony is reasonable. But nothing in our discussion above forces the evaluation hypotheses to be

be reasonable. Without any constraints,
ˆ𝑓 ’s evaluation hypotheses may rule out evidence that is completely grounded

in reality and comes from testimony that an ideal rational agent would trust.

To solve this problem, we need to correct the background beliefs B. Ideally, a rational agent should control for

the biases in testimony by consulting several different bodies of testimony. However, B cannot be corrected itself by

evidence, because that evidence is already discounted if it conflicts with B. Very clearly, background beliefs can be a

source of bad epistemic biases, and they can prevent straightforward corrections to improve one’s beliefs as Bayesian

learning would have us do.

Hierarchical Bayesian models were designed to address this problem [Gelman et al. 2013]. In hierarchical Bayesian

models, a Bayesian learning model like the one we have discussed in Section 3 has certain parameters; the one parameter

we have is our evaluation hypotheses providing the reliability of testimony. At a second level of the hierarchy, we could

have a Bayesian learning model concerning evaluation hypotheses, in which we could detail factors that would allow

7
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us to estimate reliably the accuracy of an evaluation hypothesis. Abstractly, we would have evaluation hypotheses

about evaluation hypotheses that would discuss factors like the consistency or the predictive accuracy of a testimony

source, or the extent to which testimony from other sources agrees with its content. One could also require a longer or

more thorough exploration of the data about the phenomenon before the agent’s restricting himself to a small subset

for exploitation (once again an application of the work in [Cesa-Bianchi and Lugosi 2006]). All of these ideas and more

have been proposed.

Simply requiring evaluation hypotheses that obey exogenous constraints, however, begs the question of why
ˆ𝑓

should accept them. In fact, the interdependence of testimony, new information and background beliefs can make the

resort to higher order parameters to resolve IB a failure because a body of dynamic testimony 𝑇 , when directed by

a conversational agent for the purposes of persuading and keeping his audience, can react to and attack not only a

conflicting body of testimony 𝑇 ′
but also sources supporting it. This behavior provides arguments for or against not

only first order evaluation hypotheses, as we’ve seen with the notion of consistency, but also for higher order functions

and in fact sequences of evaluation hypotheses.

To formalize this picture, we assume a hierarchy of sets of evaluation hypotheses where,

ℎ𝑛+1 : ℎ𝑛 → [0, 1], for ℎ𝑛+1 ∈ H𝑛+1 .

Hypotheses at level 𝑛 + 1 are related to evaluation hypotheses at level 𝑛 via rationality.

Definition 5. A set of sets of evaluation hypotheses H = {H1, H2, ...,H𝑛} is rational iff for all𝑚 < 𝑛, ℎ𝑚
𝑘

∈ H𝑚 ,

𝑃 (ℎ𝑚
𝑘
) = 𝜆

∑
ℎ 𝑗 ∈H𝑚+1 𝑃 (ℎ𝑚+1

𝑗
) .𝑃 (ℎ𝑚

𝑘
|ℎ𝑚+1

𝑗
) for some normalizing factor 𝜆.

A rational set of sets of evaluation hypotheses is one in which the probability of evaluation hypotheses at one level

reflects what higher levels say about it. We will assume rationality ofH .

Given rationalH = {H1,H2, ...,H𝑛}, we now lift our notions of support to sequences. We define aH𝑛
sequence

𝜎 ∈ ∏𝑛
𝑖=1H 𝑖

of consistent evaluation hypotheses to support 𝑇 (𝜎 |≈𝑇 ) (or that make 𝑇 potentially trustworthy—𝜎 |= 𝑇 )

iff the H1
element ℎ1𝜎 of 𝜎 is positive sensitive to 𝑇 (makes 𝑇 potentially trustworthy) and every element of 𝜎 has

non-0 probability given H . Conversely, we say that 𝑇 |≈𝜎 iff for each element ℎ𝑖𝜎 of 𝜎 𝑃 (ℎ𝑖𝜎 |𝑇𝑗 ) is eventually monotone

increasing for all stages 𝑇𝑗 . We note that 𝜎 |≈𝑇 → 𝑇 |≈𝜎 .
Let 𝜎𝑘 be the subsequence of 𝜎 such that 𝜎𝑘 = 𝜎 ↾ (∏𝑛

𝑖=𝑘
H 𝑖 ). For ℎ1 ∈ H1, 𝜎2 (ℎ1) signifies the support ℎ1 receives

from the higher order functions in 𝜎 via Definition 5.

Definition 6. AnH𝑛 sequence 𝜎1 undercuts 𝑇 iff for any 𝜎𝑖 ∈ H 𝑖 , if 𝜎𝑖 |≈𝑇 , then 𝜎𝑖+1
1

(ℎ𝑖𝜎 ) = 1 − 𝑃 (𝑇 |ℎ1𝜎 )

Definition 7. 𝜙 disagrees with 𝑇 ′ just in case 𝑃 (𝑇 |𝜙) < 𝑃 (𝑇 ).

Definition 8. Given H = {H1,H2, ...,H𝑛} 𝑇 attacks 𝑇 ′ iff (i) if 𝜎 |≈𝑇 , then 𝑃 (𝑇 ′ |ℎ1𝜎 ) = 1 − 𝑃 (𝑇 |ℎ1𝜎 ) and (ii) for any
H𝑚 sequence 𝜎𝑚 ,𝑚 < 𝑛 if 𝜎𝑚 |≈𝑇 ′, ∃ℎ𝑚+1 ∈ H𝑚+1 such that (𝑃 (ℎ𝑚+1 |𝑇 ) > .5 and ℎ𝑚+1 (𝜎) = 0).

Definition 9. 𝑇 is argumentatively complete iff:

(i) (𝑇 ′ |= 𝜙 and Disagree(𝜙,𝑇 )) → Attack(𝑇,𝑇 ′); (ii) If 𝑇𝑛 ̸ |= 𝜙 but 𝑃 (𝑇𝑛 |𝜙) ≥ 𝑃 (𝑇𝑛), then 𝑇𝑛+1 |= 𝜙 . (iii) for any T

undercutting sequence 𝜎𝑚, ∃ℎ𝑚+1 ∈ H𝑚+1 such that (𝑃 (ℎ𝑚+1 |𝑇 ) > .5, ℎ𝑚+1 (ℎ𝑚𝜎 ) = 0) (iv) ∃H𝑛 sequence 𝜎 such that

𝜎 |= 𝑇 .

Proposition 6. If 𝑇 is argumentatively complete, then there is an ℎ such that ℎ is PWMC for 𝑇 .
8
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Assume that 𝑇 is argumentatively complete. Then ∃𝜎 ∈ H𝑛 such that 𝜎 |= 𝑇 . Since 𝜎 |= 𝑇 , 𝜎 |≈𝑇 . Now assume 𝑇𝑛 ̸ |= 𝜙

for some 𝜙 for all stages 𝑛. But then 𝑃 (𝑇𝑛 |𝜙) < 𝑃 (𝑇𝑛) for each stage𝑇𝑛 of𝑇 . But then𝑇 and 𝜙 disagree and so𝑇 attacks

𝜙 . By the definition of attack, 𝑃 (𝜙 |ℎ1𝜎 ) = 1 − 𝑃 (𝑇 |ℎ1𝜎 ). So ℎ1𝜎 is PWMC. □

Proposition 7. Let𝑇 be argumentatively complete with a rational set of evaluation hypothesesH with
∑
ℎ1∈H1 𝑃 (ℎ1) ≠

0 and probabilities updated on 𝑇 .

As 𝑛 → ∞, P𝑛 (𝑇 ) → 1. (1)

In addition suppose there is a 𝑇 ′ ⊈ 𝑇 .

As 𝑛 → ∞, P𝑛 (𝑇 ′) → 0. (2)

We first show (1). Since 𝑇 is argumentatively complete, ∃𝜎 ∈ H such that ℎ1𝜎 |= 𝑇 . We need to show that for some

such ℎ1𝜎 , 𝑃 (ℎ1𝜎 ) ≠ 0 relative to H . Suppose that 𝑃 (ℎ1𝜎 ) = 0, for all ℎ1𝜎 such that ℎ1𝜎 |= 𝑇 . By rationality, for each such ℎ1𝜎 ,

𝑃 (ℎ1𝜎 ) = 𝜆
∑
ℎ 𝑗 ∈H2 𝑃 (ℎ2𝑗 ).𝑃 (ℎ

1

𝜎 |ℎ2𝑗 ) = 0. Thus, all the non-0 probability mass of H falls on 𝑇 undercutting sequences 𝜎𝑖 .

But for each such𝑇 undercutting 𝜎𝑖 of length𝑚, since𝑇 is argumentatively complete, there is an evaluation hypothesis

ℎ𝑚+1
supported by𝑇 such that 𝑃 (𝜎𝑖 |ℎ𝑚+1) = 0. SinceH has only finitely many levels, at some level 𝑘 all T undercutting

sequences 𝜎 𝑗 get 0 probability. This, together with the fact that

∑
ℎ1∈H1 𝑃 (ℎ1) ≠ 0, contradicts the assumption that

𝑃 (ℎ1𝜎 ) = 0. Since𝑇 is argumentatively complete, any sequence supporting any ℎ1 where 𝑃 (𝑇 |ℎ1) < 𝑃 (𝑇 ) will eventually
get probability 0; so

∑
{ℎ1

:𝑃 (𝑇 |ℎ1) ≥𝑃 (𝑇 ) } 𝑃 (ℎ1) =
∑
ℎ1∈H1 𝑃 (ℎ1). Moreover, as P𝑛 gets updated, as 𝑛 → ∞, the ℎ1 such

that P𝑛 (𝑇 |ℎ1) ≥ P𝑛 (𝑇 ) turn out to be such that ℎ1 |= 𝑇 . The conditions on first order evaluation hypotheses inH of

Proposition 1 are now met. By Propositions 1 and 3, as 𝑛 → ∞, P𝑛 (ℎ1𝜎 ) → 1, P𝑛 (ℎ1𝑖 ) → 0 for 𝑖 ≠ 1. By Proposition 3,

P𝑛 (𝑇 ) → 1.

To show (2), by Proposition 6, ℎ1𝜎 is also PWMC for 𝑇 . As 𝑛 → ∞, since P𝑛 (ℎ1𝜎 ) → 1, P𝑛 (𝑇 ′) → 0. □

Proposition 8. Suppose 𝑇 is argumentatively complete. Let ˆ𝑓 be a hierarchical Bayesian learner whose evaluation

hypotheses are rational and are updated on 𝑇 . If 𝑇 ′ ⊊ 𝑇 such confirms a hypothesis ℎ that 𝑇 does not, then ˆ𝑓 is incapable

of learning ℎ.

Claim 2 of Proposition 7 shows that P𝑛 (𝑇 ′) → 0. Then apply Proposition 5. □

Argumentatively complete testimony reduces the case of higher order Bayesian frameworks to our first order setting

for IB. What is troubling about IB is that our learner
ˆ𝑓 may hold onto an argumentatively complete 𝑇 regardless of how

inadequate it is in the eyes of others or standard epistemic criteria; an argumentatively complete theory will always

eventually find a reply to any attack or any doubt
ˆ𝑓 might acquire.

Argumentatively complete testimony isn’t just an abstract concept; many social media and news sites already

approximate this condition. Outlets like NewsMax or One Amercan News Network that have a particular political bias

will attack the credibility of stories from other bodies of testimony that have gone against a narrative they were and

are promoting; darker conspiracy spinning websites like those promoting QAnon will attack arguments against their

theories once they become aware of them.
2
In anecdotal support of our claims, consider Michelle Goldberg’s “It’s

Marjorie Taylor Greene’s Party Now" New York Times, 2/2/2021) description of a group in IB: “American conservatism

— particularly its evangelical strain — has fostered derangement in its ranks for decades, insisting that no source of

information outside its own self-reinforcing ideological bubble is trustworthy.”

A crucial component of argumentatively complete testimony 𝑇 is that it promotes evaluation hypotheses that both

make 𝑇 eventually trustworthy but also PWMC for 𝑇 . Sources like the New York Times embody this in their slogan all
2
See Stuart A. Thompson, “Three Weeks Inside a Pro-Trump QAnon Chat Room” NY Times, Jan 26, 2021).
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the news that’s fit to print, but there’s a commercial reason for this outcome; news sites and social media are out to

capture market share and so they naturally promote themselves as accurate and complete at least in a certain domain.

The nature of contemporary testimony leads agents naturally to a situation where IB occurs.

But how does argumentative completeness relate to FB algorithms? We suspect that FB algorithms don’t entail

argumentative completeness, but they facilitate it like they do for PWMC. An FB algorithm 𝑔’s choosing testimony 𝑇𝑗

for
ˆ𝑓 should ideally detract from other possible additions to

ˆ𝑓 ’s evidence that might lead
ˆ𝑓 to find other testimony

besides that provided by 𝑔. Since the goal of providing 𝑔 is to reinforce𝑇 and the evaluation hypotheses supporting it, a

possible consequence is for 𝑔 to provide testimony that not only supports 𝑇 but attacks any evidence that might detract

from 𝑇 .

5 COMPARISONS TO PRIORWORK

IB is an epistemological bias that we briefly described in a preliminary abstract [Asher and Hunter 2021]. IB is clearly

related to confirmation bias [Lord et al. 1979; Nickerson 1998; Oswald and Grosjean 2004], in which agents interpret new

evidence in a way that confirms their beliefs, and to the framing biases of [Tversky and Kahneman 1975, 1985]. People

tend to see in the evidence what they believe. These forms of bias, however, concern how beliefs and bias influence

interpretation, painting only part of the picture of IB. [Asher and Paul 2018] shows a codependence between beliefs

and the interpretation of ambiguous or underspecified elements in a text and postulates a similar circular structure to

that which we have exploited for belief and interpretation of evidence in analyzing IB. Further, unlike much of the

psychological and philosophical literature which either claims that biases like IB arise from bad epistemic practices

or aren’t really beliefs at all, or finds epistemologically exogenous justifications for it [Cassam 2016; Dardenne and

Leyens 1995; Ichino and Räikkä 2020], we show how IB is a natural outcome of Bayesian updating, rational resource

management and the belief interpretation codependence.

IB is also related to what [Jamieson and Cappella 2008; Nguyen 2020] have called echo chambers and epistemic

bubbles. Epistemic bubbles are the sort of epistemic structures that result from Proposition 1. Contrary to what [Nguyen

2020] claims, we show that they are not so easy to get rid of. Once the potentially trustworthy hypothesis is sufficiently

entrenched, which can happen very quickly as we show in Section 3, simply bringing evidence inconsistent with an

accepted body of evidence will not liberate the learner from his IB predicament. Evidence inconsistent with the primary

source of our learner’s beliefs will be simply rejected, as we show formally in Corollary 2. Following [Jamieson and

Cappella 2008], [Nguyen 2020] claims that echo chambers are much more problematic epistemically. We have shown

this rigorously via Proposition 3 as well as in Propositions in Section 4. As we show below in Section 6 (see Proposition

10), there is no escape from these echo chambers, once certain epistemic principles are admitted to. We have also shown

conceptual and formal links between epistemic bubbles and echo chambers. In fact epistemic bubbles lead naturally to

echo chambers, as we show in Sections 3 and 4.

IB is also related to so called epistemic bootstrapping [Douven and Kelp 2013; Vogel 2008; Weisberg 2010]. Epistemic

bootstrapping is a phenomenon in which an agent 𝐴 exploits a hypothesis ℎ she is interested in confirming in the very

process of confirming ℎ. IB is somewhat different. In IB, 𝐴 has a hypothesis ℎ that confers a certain probability on

evidence 𝐸. Suppose ℎ assigns a relatively high probability to 𝐸. As more evidence 𝐸 ′ comes in, however, and 𝐸 ′ tends

to confirm 𝐸, then 𝐴’s confidence in ℎ should increase. And 𝐴 doesn’t just exploit one hypothesis but other hypotheses

that may be opposed and that would tend to disconconfirm ℎ. As [Douven and Kelp 2013] argues, bootstrapping is

not in itself bad; in fact this is just what scientists do. What matters is whether the process involved in confirming ℎ

could disconfirm ℎ. So in principle, the inductive practices that lead to IB aren’t easily criticizable as instances of bad
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epistemic bootstrapping. Most likely unbeknownst to 𝐴, however, the epistemic deck is stacked against her, when an

FB algorithm is used to feed her testimony. In principle this is quite a different situation epistemically from a case of

bad epistemic bootstrapping.

One can also see IB as a concrete application of work on determining an optimal allocation of resources to the

exploration and exploitation of sources [Auer et al. 2002; Banks and Sundaram 1994; Burnetas and Katehakis 1997;

Cesa-Bianchi and Lugosi 2006; Garivier and Cappé 2011; Lai and Robbins 1985; Whittle 1980]. It is also related to

work on generalization in machine learning. Epistemic biases affect generalization and learning capacity in ways that

are still not fully understood [Kawaguchi et al. 2017; Lampinen and Vehtari 2001; Neyshabur et al. 2017; Zhang et al.

2016]. [Zhang et al. 2016] show that standard techniques in machine learning for promoting good epistemic biases and

generalization—training error minimization, regularization techniques like weight decay or dropout, or complexity

measures used to minimize generalization error (the difference between training error and test error)—do not necessarily

lead to good generalization and test performance. Argumentatively complete testimony 𝑇 incorporates an adversarial

attack mechanism against any good epistemic practices that might discount 𝑇 . It’s this mechanism that guarantees IB.

The argumentation literature [Amgoud and Demolombe 2014; Dung 1995] is also relevant to IB. If testimony 𝑇 is

argumentatively complete, then 𝑇 always provides a counterargument to an attack against 𝑇–much like an acceptable

argument in [Dung 1995]. In addition, however, an argumentatively complete 𝑇 also supports higher order evaluation

hypotheses that support hypotheses that support 𝑇 . There are also important connections to the literature on trust

[Castelfranchi and Falcone 2010]; in our set up learning agents trust certain sources over others, and our higher order

setting invokes a hierarchy of reasons. Nevertheless, the argumentation and trust-based work of which we are aware is

complementary to our approach. An argumentation framework takes a possibly inconsistent belief base and imposes

a static constraint on inference in such a setting. Similarly, trust is typically modeled in some sort of static modal

framework. By contrast, ME learning games and the whole Bayesian framework are dynamic, with beliefs evolving

under evidence and game strategies evolving under agent interaction. It is this dynamic evolution that is crucial to our

approach and, we think, to modeling agents and learning. In sum, we are not looking at the problem of consistency, but

rather the problems of entrenchment and bias.

6 THE COMPLEXITY OF IB

IB is a result about learning. IB is a suboptimal but natural outcome of the way contemporary bodies of evidence are set

up and how humans interpret them. Given our set up, everything turns on what body of evidence on which to update

and with which evaluation hypotheses.

If IB is suboptimal, its effects are still more worrisome, because agents in the grip of IB are often unwilling or

incapable of changing their beliefs so as to be able to learn. Of course, our learner might just be happy with 𝑇 ; perhaps

he needs no more accurate or more truthful body of testimony. He may not be interested in learning anything beyond

what 𝑇 presents him with. In this section, however, we assume a learner who might be interested in learning but has

difficulting escaping his IB prison. We assume a rational learner
ˆ𝑓 who updates according to his evaluation hypotheses;

so if he has an evaluation hypothesis that confers a high probability on some 𝑇 , he will update on 𝑇 . We’ve seen that
ˆ𝑓

can get IB when he unduly restricts the bodies of evidence which serve as the basis of update or when he attends to an

argumentatively complete testimony. So key to removing IB is to get
ˆ𝑓 to change his hypotheses and consider other

evidence that that to which he is wedded.
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Anecdotally, we have a lot of evidence that IB is hard to escape
3
In general, however, we lack a precise analysis of its

difficulty. In this section, we introduce a game theoretic method that shows IB is not only hard to defeat but it can even

be hard to detect (leading to self-deception). We will see that the choice of epistemic paradigms is important.

To motivate our approach, consider how an actual conversation might go between our learner
ˆ𝑓 in the grip of IB

and a person 𝐸 who wants to correct his problem. 𝐸 might question
ˆ𝑓 ’s reasons for believing some proposition 𝜙 ; she

might try getting
ˆ𝑓 to consider different bodies of evidence 𝑇 ′

that might disconfirm 𝜙 . ˆ𝑓 might accept 𝑇 ′
or he might

argue against it—by providing, for example, reasons why 𝑇 ′
is not trustworthy or why the arguments supporting 𝑇 ′

are faulty. 𝐸 might attack those arguments or provide new evaluation hypotheses for consideration. Our ME games

formalize this interaction.

In an ME learning game G = (𝑉∞,Win), the two players, our investigator 𝐸 and our Bayesian learner
ˆ𝑓 , construct a

larger "conversation" by consecutively playing finite strings from the vocabulary𝑉 .Win specifies the winning condition

of 𝐸. The vocabulary 𝑉 of an ME learning game G consists of sequences of evaluation hypotheses (with some abuse of

notation, we’ll take a single ℎ𝑛
𝑗
to be a one place sequence) and a predicate ACCEPT. ACCEPT means that

ˆ𝑓 accepts the

last suggestion by 𝐸 and confers upon it a non zero probability mass. Our ME learning games are subject to several

constraints.

A. Knowledge first [Williamson 2002]: this is a constraint from formal epistemology;
ˆ𝑓 only adds a sequence 𝜎 to∏𝑛

1
H 𝑖

ˆ𝑓
forH 𝑖

ˆ𝑓
𝑖-th level evaluation hypotheses in H

ˆ𝑓
if he has no argument that attacks 𝜎—in other words no

evaluation hypothesis ℎ𝑛+1 ∈ H𝑛+1
ˆ𝑓

such that ℎ𝑛+1 (𝜎) = 0.

B. The Jury in an ME learning game is epistemologically competent; i.e. it sanctions only evaluation hypotheses

that advance learning.

C. 𝐸 may only add sequences of evaluation hypotheses sanctioned by the Jury. We assume this to be a finite set H𝐽 .

D. Both players may only propose consistent and rational sequences.

E.
ˆ𝑓 has learned from some body of evidence 𝑇 , which is common knowledge.

F.
ˆ𝑓 may only not accept a proposal 𝜎 of 𝐸, if he has a reason to do so—i.e., if he has an evaluation hypothesis

ℎ𝑛+1 ∈ H𝑛+1
ˆ𝑓

such that ℎ𝑛+1 (𝜎) = 0.

We say a sequence 𝜎 ∈ ∏𝑛
1
H 𝑖

to be positive if for each element ℎ𝑚+1
and ℎ𝑚 of 𝜎 ℎ𝑚+1 (ℎ𝑚) >> 0. A sequence

𝜎 nullifies a sequence 𝜎1, if for all𝑚 and for ℎ𝑚
1

of 𝜎1, the ℎ
𝑚+1

of 𝜎 is such that ℎ𝑚+1 (ℎ𝑚
1
) = 0. We can have two

sequences each one nullifying the other. This formally represents an 𝑛 round argument, with each round 𝑗 + 1 offering

a counterargument to the argument of round 𝑗 . We will say that a hypothesis ℎ1 is 𝑇 positive if ℎ1 is positive and

𝑃 (𝑇 |ℎ1) = 1

We now define the moves of a game G, in which we suppose a body of evidence 𝑇 that
ˆ𝑓 has attended to and a

body of evidence 𝑇 ′
inconsistent with 𝑇 . 𝐸 plays first, then

ˆ𝑓 then replies. The game ends if
ˆ𝑓 plays ACCEPT, which

implies that he adds a hypothesis ℎ1∗ to H1

ˆ𝑓
, with a non-0 probability mass and with with high 𝑃 (𝑇 ′ |ℎ1∗), where 𝑇 ′ ∪𝑇

is inconsistent.

(m1) 𝐸 proposes 𝑇 ′
-positive ℎ1 ∈ H1

𝐽
to be added to H1

ˆ𝑓
.

(m2) Suppose at round 𝑘 ≥ 1 of 𝜌 in G 𝐸 has proposed a 𝑇 ′
positive ℎ1. At 𝑘 + 1

ˆ𝑓 may play ACCEPT.

(m3) Suppose at round 𝑘 of 𝜌 in G 𝐸 has proposed a a 𝑇 ′
positive ℎ1. At 𝑘 + 1

ˆ𝑓 may play a nullifying ℎ2 ∈ H1

ˆ𝑓
such

that ℎ2 (ℎ1) = 0, if there exists such ℎ2 ∈ H2

ˆ𝑓
.

3
See Thompson, cited in note 2.
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(m4) Suppose 𝐸 has proposed a positive sequence 𝜎 of length𝑚 and with ℎ1𝜎 𝑇 ′
positive at round 𝑘 of 𝜌 in G. At round

𝑘 + 1
ˆ𝑓 may respond with sequence of length𝑚 + 1 nullifying 𝜎 .

(m5) Suppose at round 𝑘 of 𝜌 of G, ˆ𝑓 has proposed an m-length sequence 𝜎 nullifying a positive 𝜎∗ proposed by 𝐸,

with 𝑇 ′
positive ℎ1𝜎∗ . 𝐸 may respond at round 𝑘 + 1 of 𝜌 with a positive𝑚 + 1 length sequence ℎ𝑚+1

∗ .𝜎∗, with

ℎ𝑚+1
1

(ℎ𝑚) ≠ 1 for ℎ𝑚 in 𝜎 .

(m6) Suppose at round 𝑘 of 𝜌 in G, 𝐸 has proposed a positive sequence 𝜎 of length𝑚 and with ℎ1𝜎 𝑇 ′
positive. At

round 𝑘 + 1
ˆ𝑓 may play ACCEPT, which implies that he adds 𝜎 to

∏𝑛
1
H 𝑖

ˆ𝑓
.

We note that if move (m6) occurs,
ˆ𝑓 assigns ℎ1∗ and𝑇

′
a non-0 probability mass and updates with evidence𝑇 ′

, which

makes the ACCEPT move coherent.

Suppose that in an ME learning game G, 𝐸’s winning condition is simply to discover that
ˆ𝑓 is interpretively blind, if

he is. Call this condition 𝐼𝐵. We establish the complexity of 𝐸’s attempt to achieve 𝐼𝐵. The first order case with a finite

H where the game is restricted to moves m1,m2,m3, is rather trivial. More interesting is the case of an ME learning

game G = (𝑉∞,Win) with Win = 𝐼𝐵 and in which 𝐸 and
ˆ𝑓 play higher order evaluation hypotheses.

Proposition 9. Suppose an ME learning game G = (𝑉∞,Win) with Win = 𝐼𝐵 in which ˆ𝑓 plays moves described in

(m4)- (m7). Then ˆ𝑓 is not interpretively blind iff play stops at some finite ordinal 𝑛.

Suppose that in the play of G, ˆ𝑓 accepts at some level 𝑛 to add the sequence of evaluation hypotheses proposed by 𝐸.

Then by the construction of the sequence and the requirement of coherence (constraint D), this confers upon some

evaluation hypothesis 𝑠∗1 a non zero probability such that 𝑃 (𝑇 ′ |ℎ1∗) = 1, where 𝑇 ′
is incompatible with the body of

evidence 𝑇 . By accepting,
ˆ𝑓 will have an evaluation hypothesis ℎ1∗ with non zero probability such that 𝑃 (𝑇 ′ |ℎ1∗) = 1,

where 𝑇 ′
is incompatible with the body of evidence 𝑇 , which ˆ𝑓 has proposed as a source of learning (constraint E).

Now when
ˆ𝑓 updates his belief in 𝑇 he must do so with respect to ℎ1∗, and he must now update his confidence in his

evaluation hypotheses with respect not only to 𝑇 but also 𝑇 ′
. In that case, 𝑃 (ℎ1∗ |𝑇𝑛,𝑇 ′

𝑛) ↛ 0 and P𝑛 (𝑇 ′) ↛ 0. As a

result,
ˆ𝑓 will be able to learn from 𝑇 ′

, and so he is not interpretively blind with respect to 𝑇 .

If there is no stopping point at any finite ordinal, then 𝐸’s is never able to get
ˆ𝑓 to accept a 𝑇 ′

positive hypothesis. In

which case,
ˆ𝑓 continues to only update on 𝑇 and by Propositions 7 8,

ˆ𝑓 is interpretively blind. □

Suppose 𝐸’s winning condition for an ME learning G, is to get
ˆ𝑓 to accept a 𝑇 ′

positive evaluation hypothesis. Call

this winning condition for 𝐸 P (for persuasion).

Corollary 3. Suppose that in an ME learning game G withWin = P. The complexity ofWin is an R.E. set. IfWin = 𝐼𝐵

then Win is co-r.e. or Π1 in the Borel Hierarchy.

Proposition 10. Suppose an ME learning game G withWin = P and ˆ𝑓 as described in Proposition 7. Then 𝐸 has no

winning strategy in G.

Proposition 8 implies
ˆ𝑓 ’s evaluation hypotheses are updated on an argumentatively complete body of evidence𝑇 . When

implemented via an ME game G, the sequence of evaluation hypotheses in Proposition 7 provide a winning strategy

for
ˆ𝑓 . Suppose 𝐸 proposes an ℎ1 supporting 𝑒 that is inconsistent with 𝑇 . Even if 𝐸 generates a suitable sequence of

higher order𝑇 ′
positive evaluation hypotheses ℎ1, ℎ2, ℎ3, . . ., given Constraint A above,

ˆ𝑓 will only accept an evaluation

hypothesis if he has no argument against it. But as 𝑇 will eventually supply such an argument,
ˆ𝑓 can always counter

𝐸’s proposals. So she has no winning strategy. □

Not only is IB computationally complex (Corollary 3 shows it is not computable), Proposition 10 shows formally that

even if 𝐸 has rationally compelling arguments to show that
ˆ𝑓 is better off (his payoff or reward is higher) in accepting

13
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her proposed sequence of evaluation hypotheses,
ˆ𝑓 can rationally resort to 𝑇 to counter her argument. Extracting

someone from higher order IB is thus impossible by purely epistemic means. There is no way of getting someone, even

a rational agent, out of higher order IB by purely epistemic arguments, given our assumptions. This pessimistic is borne

out empirically: some people in the grip of right wing conspiracy theories in the US were dying of Covid19 in December

of 2020 and January 2021 but continued to refuse to believe that it was that disease that was killing them—despite all the

evidence and arguments they were given, they refused to let go of an obviously faulty but argumentatively complete 𝑇 .

Of course, people sometimes do change their minds and do escape the grip of argumentatively complete theories,

many times for epistemically exogenous reasons.
4
But by challenging one of our assumptions, rational agents can

of course also reject IB. The weak link in our argument is assumption 𝐴, the "knowledge first" assumption. Perhaps

ˆ𝑓 should accept evaluation hypotheses even if 𝑇 attacks them. More likely,
ˆ𝑓 should not accept all attacks equally.

Probably, he should be skeptical of any body of evidence 𝑇 that promotes PWMC for 𝑇 and 𝑇 eventually trustworthy

evaluation hypotheses while attacking any point of view at variance with it.

We now explore the play between 𝐸 and
ˆ𝑓 in an ME learning game G whereWin = P before

ˆ𝑓 has accepted enough of

the argumentatively complete 𝑇 to close off learning from alternative bodies of evidence. Suppose 𝑇 is argumentatively

complete but comes in stages; if 𝑇 ′
𝑖
attacks 𝑇𝑖 , then 𝑇𝑖+1 but not 𝑇𝑖 attacks 𝑇 ′

𝑖
. That is, an argumentatively complete 𝑇

reacts to attacks but does not forsee all attacks in advance. Suppose a set of consistent first order evaluation hypotheses

H1 = {ℎ1
1
, ℎ1

2
, ...}, with 𝑃 (ℎ1

1
) = .6, 𝑃 (ℎ1

2
) = .4, and 𝑃 (𝑇𝑖 | (ℎ1) = 1 = 𝑃 (𝑇 ′

𝑖
|ℎ2). Now suppose 𝑇 ′

1
∪𝑇1 is inconsistent and

𝐸 proposes ℎ1
2
since ℎ1

2
|= 𝑇 ′

𝑖
. Since the ℎ1

𝑖
are consistent, 𝑃 (𝑇1 |ℎ1

2
) = 0 = 𝑃 (𝑇 ′

2
|ℎ1
1
). At this point, ˆ𝑓 could accept 𝐸’s

proposal under constraint (A), G ends and 𝐸 wins.
ˆ𝑓 will continue to update over stages 𝑇 and 𝑇 ′

with the marginal

probabilities 𝑃 (𝑇𝑖 ) = .6 and 𝑃 (𝑇 ′
𝑖
) = .4 remaining stationary.

On the other hand,
ˆ𝑓 may decide to wait to see what the next stage 𝑇2 of 𝑇 brings. As 𝑇 is argumentatively complete,

𝑇2 will attack 𝑇
′
2
, and add a nullifying ℎ2 ∈ H2

supported by 𝑇2. Should ˆ𝑓 accept ℎ2, the probability of ℎ1
2
will go to

0 in H . But now suppose we have a constraint, Discount, that discounts any nullifying sequence from 𝑇 . It would

be unreasonable for
ˆ𝑓 to wipe out alternatives in the face of this level of uncertainty; at this stage, 𝑃 (𝑇2) = .6 and

𝑃 (𝑇 ′
2
) = .4. Summarizing:

Proposition 11. Suppose an ME learning game G with constraint 𝐴 replaced by Discount and with Win = P and ˆ𝑓 as

described in Proposition 7. 𝐸 then has a winning strategy in 𝐺 , and IB does not arise for ˆ𝑓 .

7 CONCLUSIONS

Interpretive blindness results from a dynamic, iterative process whereby a learner’s background beliefs and biases lead

her to update her beliefs based on a body of testimony 𝑇 , and then biases inherent in 𝑇 come back to reinforce her

beliefs and her trust in 𝑇 ’s source(s), further biasing her towards these sources for future updates. We have introduced

and formally characterized IB. We have shown that IB can prevent learning even in higher order Bayesian frameworks

for learning from argumentatively complete testimony, despite the presence of constraints designed to promote good

epistemic practices. We also shown that IB is computationally complex as a co-r.e. set via a game theoretic analysis, and

that an agent may rationally remain in IB in the face of epistemic arguments. Our game theoretic analysis can also be

extended to cases where the agent falls out of IB but then is a recidivist and becomse a prisoner once more. We leave

that for future work.

4
For instance, the satisfaction they derived from belonging to a particular community supported by a particular body of testimony might and does

wane.
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How general are the results in Propositions 7 and 8? PAC, Statistical Physics Framework, VC, and supervised Bayesian

learning are four different instantiations of Wolpert’s extended Bayesian formalism that we use [Wolpert 2018]. Thus

our results should hold for other frameworks.

Investigating IB alas is not just an academic enterprise. IB really does happen, with sometimes tragic or dangerous

results. We think a careful formal analysis is urgent for society. Finally, we note that while we have focused on IB as a

problem for learning from testimony, the problem it raises for learning extends to any case in which we do not have

unmediated access to ground truth and our data is “theory laden” [Hanson 1958].
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