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ABSTRACT

Current physio-pathological data suggest that Parkinson’s
Disease (PD) symptoms are related to important alterations
in subcortical brain structures. However, structural changes
in these small regions remain difficult to detect for neuro-
radiologists, in particular, at the early stages of the disease
(de novo PD patients). The absence of a reliable ground truth
at the voxel level prevents the application of traditional su-
pervised deep learning techniques. In this work, we consider
instead an anomaly detection approach and show that auto-
encoders (AE) could provide an efficient anomaly scoring to
discriminate de novo PD patients using quantitative Magnetic
Resonance Imaging (MRI) data.

Index Terms— Brain, Anomaly detection, Autoencoder,
Diffusion Imaging, MRI

1. INTRODUCTION

Today, there is a pressing need for objective and reliable
biomarkers that allow the detection of Parkinson’s Disease
(PD) from its early stages. MRI has played a vital role in the
characterization of multiple neurological diseases like Mul-
tiple Sclerosis and brain cancer [1]. However, structural MR
images appear to be insufficient to detect the subtle changes
caused by PD, especially in the sub-cortical structures of the
brain [2]. This motivates the study of PD through quantitative
MRI techniques such as DTI (Diffusion Tensor Imaging) that
measures the displacement of water molecules in the brain.
Indeed, DTI has been useful in the study of Alzheimer’s
disease [1], making it very attractive for the study of PD.

In this work, we propose to implement an anomaly de-
tection framework to uncover alterations in the diffusion MR
images of newly diagnosed (i.e. de novo) patients.

While there exists numerous techniques for anomaly de-
tection [3], deep learning models have achieved remarkable
results in recent brain lesion classification challenges such
as BRATS, BrainLes and ISLES at MICCAI conferences
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(see for instance [4]). Nonetheless, these deep learning ap-
proaches for anomaly detection are often supervised, mean-
ing that the networks are trained with representatives of both
healthy and diseased voxels so as to learn their characteristics.
Seeing that the only information available for PD MR scans is
an indication of the global presence or absence of the disease,
we designed a semi-supervised framework employing three
different types of fully convolutional auto-encoders.

More specifically, we trained the auto-encoders to recon-
struct healthy diffusion MR scans with a healthy training
dataset. Since the network is learned only from healthy
subjects, there is no guarantee that it provides good recon-
structions outside this population. We therefore compared the
scan reconstruction errors of a healthy test data set with those
of a pathological data set to identify unusual patterns in the
sub-cortical structures of de novo PD patients.

We follow the work of [5], which demonstrated the advan-
tages of employing full MR slices as input for the network ar-
chitectures instead of down sampling and patch division that
result in important loss of spatial information.

2. INPUT DATA

We pooled our data from the PPMI (Parkinson Progression
Markers Initiative) database. The PPMI is a longitudinal
study that follows de novo PD patients of 35 centers for
five years. The database is openly available for researchers
and contains, among other clinical test results, structural and
diffusion MR images. To eliminate any additional sources
of bias, we only selected scans acquired with the same ac-
quisition parameters, notably magnetic field and scanner
manufacturer. As a result, we pooled 129 de novo patients
(age: 62 ± 9; sex: 48 F, 80 M) and 57 healthy controls (age:
61 ± 10; sex: 23 F, 34 M).

From this data, two features were extracted: mean diffu-
sivity (MD), accounting for the overall water displacement,
and fractional anisotropy (FA), an indication of diffusion ori-
entation. Values of FA and MD were normalized into the
range [0, 1]. Each volume was composed of 116 × 116 × 72
voxels. Forty coronal slices (116 × 72) were extracted from
the center of the brain encompassing the sub-cortical struc-
tures under study.

To avoid data leakage, the control dataset was divided into



a training dataset (42 MR volumes) and a testing dataset (15
MR volumes). Special care was taken to maintain similar
age and sex profiles in both datasets. In order to choose the
best network architecture and tune the corresponding hyper-
parameters, all models were trained and assessed with 7-fold
cross-validation, with 36 MR volumes used for training and
6 MR volumes for validation in each fold. Once the final
models were defined, they were retrained with the full control
training set (1680 slices) and evaluated with the PD dataset
(5160 slices) and the healthy control test set (600 slices).

3. ARCHITECTURE DESIGN

Three autoencoder-based models were developed and evalu-
ated: a spatial autoencoder (sAE), a spatial variational autoen-
coder (sVAE) and a dense variational autoencoder (dVAE).

As seen in Figure 1-A, all autoencoders come with two
parts, an encoder fφ and a decoder gθ. The encoder maps the
input images x to a lower dimensional latent representation z,
then the decoder maps the latent vector z to the reconstructed
output images x̂ ∈ RH×W×C :

z = fφ(x) x̂ = gθ(z) (1)

We extended the work of [5] by using multiple quantita-
tive MRI measures simultaneously as input. Thus, every input
can be expressed as x ∈ RH×W×C , where H is the height,
W the width and C the number of channels (FA and MD).

Depending on the network architecture, the latent code
may be a simple vector (z ∈ Rd) or a third-order tensor (z ∈
Rh×w×c). The former is referred as a dense bottleneck and
the latter as a spatial bottleneck.

All models were implemented using Python 3.6.8, Py-
Torch 1.0.1, CUDA 10.0.130 and trained on a NVIDIA
GeForce RTX 2080 Ti GPU with batches of 32 images. After
each convolutional layer, batch normalization [6] was applied
for its regularization properties. The nonlinear activation
function in each layer was the rectified linear unit (ReLU),
except for the last layer where a sigmoid was employed in
order to have output pixels normalized between [0, 1]. The
loss functions were optimized using Adam [7], a popular
optimization algorithm for training deep neural networks.

3.1. Spatial autoencoder (sAE)

The spatial autoencoder model is fully convolutional, 4 con-
volutional layers go from input to bottleneck and 4 transposed
convolutional layers from bottleneck to output. As depicted in
Figure 1-B, the output of the encoder network is directly the
latent vector z and loss function is simply the reconstruction
error:

L = ‖x− x̂‖1 (2)

This model was trained for 160 epochs, with a learning
rate of 10−3. 5× 5 kernels were convolved using padding of
1 pixel and a stride of (2, 2), and there were no pooling layers.

3.2. Spatial variational autoencoder (sVAE)

Our spatial variational autoencoder model is shown in Figure
1-C. Similar to sAE, the model is fully convolutional, how-
ever, the encoder generated the parameters of the approximate
posterior of the latent variable given the input, constrained to
follow a multivariate normal distribution. A sampling opera-
tion was needed to obtain an actual value for z.

Training lasted for 200 epochs using a learning rate of
0.3 × 10−3. A 5 × 5 kernel was chosen as filter, along with
a padding of 1 and stride of (2, 2). No pooling layers were
used. The loss function was computed as follows:

L = λ‖x− x̂‖1 + (1− λ)
[
− 1

2

J∑
j=1

(1 + log((σj)
2)− (µj)

2 − (σj)
2)
]

(3)
where µ and σ denote the mean and the variance of the

approximate posterior, J is the number of dimensions of the
latent space and λ controls the proportions between the two
terms. The first term is the reconstruction error and the sec-
ond term is the Kullback-Leibler (KL) divergence between
the approximate posterior and the prior of the latent variable,
for the Gaussian case [8]. To favor good reconstructions over
a Gaussian-like distribution of the latent variables, we put
more weight (90%) in the reconstruction term and less weight
(10%) in the KL divergence term.

3.3. Dense variational autoencoder (dVAE)

The main difference of the dense variational autoencoder
when compared to the sVAE is its dense bottleneck. Encoder
and decoder also have fully connected layers in addition to
the convolutional layers, as shown in Figure 1-D.

For regularization purposes, the dropout [9] technique
was used to turn off 30% of the units in fully-connected lay-
ers during training. This model was trained for 100 epochs
with a learning rate of 0.3 × 10−3. There were no pooling
layers. Kernels for all convolutional layers were 5 × 5, and
convolutions were performed with a padding of 1 and stride
of (2, 2). The dVAE shared the same loss function as the
sVAE and we kept the same 90/10 proportion between the
reconstruction term and the KL divergence term.

4. PD ANOMALY DETECTION

A reference model is learned from healthy MR images using
the autoencoder-based models presented in Section 3. Dur-
ing the training process the model parameters are tuned so as
to minimize a loss function that favors good reconstructions.
Since the network was solely trained on healthy subjects, we
hypothesized that the MR scans of the PD population would



Fig. 1. A) The general architecture of the implemented autoencoders with an unspecified bottleneck; B) sAE spatial bottleneck;
C) sVAE spatial bottleneck and D) fourth convolutional layer of the dVAE along with its fully connected layers and dense
bottleneck. µ and σ describe the approximate posterior of the latent variable, z is obtained by a sampling operation.

have greater reconstruction errors in some regions. The idea is
therefore to use the reconstruction error as an anomaly score.

The voxel-wise reconstruction errors in one image can be
computed as |xi − x̂i|. Seeing that our decoders output two
images (F̂A, M̂D), we defined the joint reconstruction error of
every voxel as:√

(FAi − ˆFAi)2 + (MDi − M̂Di)2 (4)

We identified four sources of reconstruction errors : 1)
noise in the input data, 2) loss of information due to dimen-
sion reduction in the latent space, 3) variability of healthy
controls not captured by the model and 4) finally real anoma-
lies caused by PD. Because we were only interested in the
latter, the best way to evaluate and compare the models is by
measuring their ability to discriminate between controls and
PD patients, based on the intensity and localization of the re-
construction errors.

To help evaluate the localization of anomalies, we em-
ployed the MNI PD25 atlas [10], specifically designed for PD
patient exploration. It contains 8 regions: substantia nigra
(SN), red nucleus (RN), subthalamic nucleus (STN), globus
pallidus interna and externa (GPi, GPe), thalamus, putamen
and caudate nucleus. In addition, we considered the superior
colliculus (SC) and the inferior colliculus (IC), where we re-
cently found functional deficits [11].

Regarding comparisons of reconstruction error intensities,
we investigated extreme reconstruction errors with the idea
that PD patients should exhibit very abnormal voxels in larger
quantities. Accordingly, we considered an extreme quantile
(eg. the 95% quantile) of the distribution of errors in the con-
trol population as possible threshold value to decide whether
or not a given voxel was considered as abnormal. For each

control or PD subject, we counted the number of extreme ab-
normalities detected in every structure. The idea being to clas-
sify a subject as PD or healthy when this number was above
a certain value. The critical choice of this value was investi-
gated using a ROC curve of sensitivity and specificity to ac-
count for class imbalance. We chose the AUC as our principal
indicator of discrimination performance.

5. RESULTS: RECONSTRUCTION ASSESSMENT

We used the reconstruction errors of every structure in ev-
ery subject to classify patients from controls as explained in
Section 4. Amongst the three models tested, we noticed that
dVAE detected the biggest reconstruction errors, as an exam-
ple the mean reconstruction error of the control’s subcortical
structures is of 0.075, 0.086 and 0.106 for the sAE, sVAE and
dVAE respectively. However, the absence of ground truth at a
voxel level prevented us from determining which model was
the most accurate relative to PD abnormalities.

The number of voxels over the 95% quantile abnormal-
ity threshold were generally superior in a patient than in a
healthy control. We employed the ROC curve as a perfor-
mance measurement for our classification problem, we were
able to measure the AUC to have an indication on the abil-
ity of the model to distinguish between patients and healthy
controls. The structures with the highest AUC were the Sub-
stantia Nigra, the Red Nucleus, the Thalamus and the com-
bination of all subcortical structures as seen in Table 1. This
was in accordance with the literature. The total white matter
present in the reconstructed slices obtained even better results
with an AUC of 0.83, 0.80 and 0.74 for the sAE, sVAE and
dVAE respectively.



sAE sVAE dVAE
Red Nucleus 0.75 0.76 0.65
Substantia Nigra 0.74 0.73 0.72
Sub-thalamic Nucleus 0.59 0.64 0.53
Caudates 0.70 0.64 0.61
Putamen 0.72 0.74 0.63
Globus Pallidus ext. 0.65 0.69 0.69
Globus Pallidus int. 0.69 0.69 0.71
Thalamus 0.71 0.73 0.72
Superior Colliculus 0.51 0.59 0.54
Inferior Colliculus 0.54 0.56 0.49
All subcortical structures 0.76 0.77 0.73
White Matter 0.83 0.80 0.74

Table 1. AUC values obtained in different structures when
counting the number of voxels above the 95% percentile to
discriminate between patients and controls

When assessing the reconstructions of FA and MD sep-
arately, FA obtained the highest ROC AUC for the caudates
and the putamen, whereas for the white matter and the red nu-
cleus MD was better. The substantia nigra and the ensemble
of all subcortical structures benefited from the joint measures
of FA and MD.

6. DISCUSSION AND CONCLUSION

Although preliminary, these results offer compelling evi-
dence that deep learning-based models are useful to identify
subtle anomalies in de novo PD patients, even when trained
with a moderate number of images and only two paramet-
ric maps as input. The good discriminative performances of
the sub-cortical structures are in accordance to our physio-
pathological knowledge of PD. The dopaminergic neuron
deficit in Substantia Nigra is known as critical in the develop-
ment of PD. What is more, the absence of motor symptoms
in the pre-clinical stages of PD may be the result of com-
pensation mechanisms involving the structures in the motor
coordination pathways of the brain such as the Thalamus and
the Red Nucleus [12].

We have shown that no structural changes, including in
the White Matter (WM), can be robustly observed from T1-
weighted images to automatically distinguish between con-
trols and de novo PD patients [2]. To explain the good per-
formances of autoencoders based on white matter voxels, we
may hypothesize that 1) diffusion parameters (FA an MD) are
more informative than grey levels from T1-weighted imag-
ing, or that 2) they dispose of more voxels, compared to sub-
cortical structures, to build a model that captures the variabil-
ity of healthy controls.

Undeniably, experiments on a larger cohort are necessary
to confirm our results. The control group available for our ex-
periments contained only 57 MRI volumes, with gender and

age imbalance. Although we were able to discriminate be-
tween healthy controls and individuals affected by PD with
good performances, we cannot rule out that other possible
causes of variability in brain properties, such as age and gen-
der, and other hidden parameters, might have influenced our
classification performance.

Similar anomaly detection frameworks could be of in-
terest for studying other neurological disorders where small
lesions are suspected and difficult to localize for a human
observer. In future work, it could be beneficial to include
other quantitative MR measures, such as perfusion and relax-
ation times, to encode a more complete picture of the patho-
physiology of the disease.
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