

On stable and fixed polynomials

J. Novacoski, M. Spivakovsky

▶ To cite this version:

J. Novacoski, M. Spivakovsky. On stable and fixed polynomials. Journal of Pure and Applied Algebra, 2022, 227 (3), pp.107216. 10.1016/j.jpaa.2022.107216 . hal-03873675

HAL Id: hal-03873675 https://hal.science/hal-03873675

Submitted on 27 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON STABLE AND FIXED POLYNOMIALS

J. NOVACOSKI AND M. SPIVAKOVSKY

ABSTRACT. Let ν be a rank one valuation on K[x] and Ψ_n the set of key polynomials for ν of degree $n \in \mathbb{N}$. We discuss the concepts of being Ψ_n -stable and (Ψ_n, Q) -fixed. We discuss when these two concepts coincide. We use this discussion to present a simple proof of Proposition 8.2 of [3] and Theorem 1.2 of [5].

1. INTRODUCTION

Let ν be a rank one valuation on K[x]. For $n \in \mathbb{N}$ set

 $\Psi_n = \{ Q \in K[x] \mid Q \text{ is a key polynomial for } \nu \text{ and } \deg(Q) = n \}.$

Suppose that Ψ_n is non-empty and bounded (i.e., there exists $a \in K[x]$ such that $\nu(a) > \nu(Q)$ for every $Q \in \Psi_n$) and that $\nu(\Psi_n)$ does not have a maximum. Set $K[x]_n = \{a \in K[x] \mid \deg(a) < n\}$. For each $f \in K[x]$ and $Q \in \Psi_n$ the *Q*-expansion of f is the expression

$$f = a_0 + a_1Q + \ldots + a_rQ^r = l(Q)$$

where $l(X) \in K[x]_n[X]$. We denote the value r (which does not depend on the choice of $Q \in \Psi_n$) in the previous expression by $\deg_X(f)$. The truncation of ν on Q is given by

Let

$$S_n = \{ f \in K[x] \mid \nu_Q(f) < \nu(f) \text{ for every } Q \in \Psi_n \}.$$

 $\nu_Q(f) := \min_{0 \le i \le r} \{ \nu(a_i Q^i) \}.$

A polynomial f is said to be Ψ_n -stable if it does not belong to S_n . A monic polynomial $F \in K[x]$ is called a **limit key polynomial** for Ψ_n if it belongs to S_n and has the smallest degree among polynomials in S_n .

In [4], Kaplansky introduces the concept of *pseudo-convergent sequences*. These objects are strongly related to the set Ψ_1 . For a given such sequence \underline{a} we can define what it means for a polynomial $f \in K[x]$ to be fixed by \underline{a} . Here, we generalize this concept for any of the sets Ψ_n . We say that $f = l(Q), l(X) \in K[x]_n[X]$, is (Ψ_n, Q) -fixed if there exists $Q' \in \Psi_n, \nu(Q) < \nu(Q')$ such that $\nu(f) = \nu(l(Q' - Q))$.

²⁰¹⁰ Mathematics Subject Classification. Primary 13A18.

Key words and phrases. Key polynomials, stable polynomials, truncations of valuations, fixed polynomials.

During the realization of this project the first author was supported by a grant from Fundação de Amparo à Pesquisa do Estado de São Paulo (process number 2017/17835-9).

Our first main result (Proposition 3.2) is that we can choose a suitable $Q \in \Psi_n$ such that for any $f \in K[x]$ with $\deg_X(f) \leq \deg_X(F)$, we obtain that f is Ψ_n -stable if and only if it is (Ψ_n, Q) -fixed.

We will fix a suitable $Q \in K[x]$ (see (2) and (3)). Then we fix a limit ordinal λ and any cofinal well-ordered (with respect to ν) subset

$$\{Q_{\rho}\}_{\rho<\lambda}\subseteq \{Q'\in\Psi_n\mid \epsilon(Q)<\epsilon(Q')\}.$$

This means that if $\rho < \sigma < \lambda$, then $\nu(Q_{\rho}) < \nu(Q_{\sigma})$ and that for every $Q' \in \Psi_n$, there exists $\rho < \lambda$ such that $\nu(Q') < \nu(Q_{\rho})$. For each $\rho < \lambda$ set $h_{\rho} := Q - Q_{\rho} \in K[x]_n$ and $\gamma_{\rho} = \nu(Q_{\rho})$. It follows from the definition that $\{h_{\rho}\}_{\rho < \lambda}$ is a *pseudo*convergent sequence for ν . For simplicity, we will denote $\nu_{Q_{\rho}}$ by ν_{ρ} .

Let $p = char(K\nu)$ and I be the set of all non-negative powers of p. As an application of Proposition 3.2 we can prove the following.

Theorem 1.1. Let F be a limit key polynomial for Ψ_n and write F = L(Q) for some $L(X) \in K[x]_n[X]$. Then we have the following.

(i): There exists $\sigma < \lambda$ such that for every $\theta > \sigma$ the polynomial

$$F_p = L(h_\theta) + \sum_{i \in I} \partial_i L(h_\theta) Q_\theta^i$$

is a limit key polynomial for Ψ_n . Here $\partial_i L$ denotes the Hasse derivative of L(X) (as a polynomial in K(x)[X]) of order *i*.

(ii): For each $i \in I \cup \{0\}$ there exists $a_i \in K[x]_n$ such that

$$\overline{F}_p = \sum_{i \in I \cup \{0\}} a_i Q_0^i$$

is a limit key polynomial for Ψ_n .

Kaplansky proved the above result in the case n = 1. In that case, (ii) follows trivially from (i). Our proof of Theorem 1.1 follows Kaplansky's proof.

If n > 1, then (ii) was proven in [3] (Proposition 8.2). An alternative proof of it was presented in [5] (Theorem 1.2). The advantage of our proof is that it is much simpler and presents as algorithm on how to construct the limit key polynomial of this form (from a given limit key polynomial). Also, our proof does not require that are in the equicharacteristic case.

2. Preliminaries

Throughout this paper ν will denote a rank one valuation on K[x]. For $f \in K[x]$ we denote

(1)
$$\epsilon(f) = \max_{1 \le b \le \deg(f)} \left\{ \frac{\nu(f) - \nu(\partial_b f)}{b} \right\},$$

where $\partial_b f$ denotes the Hasse derivative of f of order b. We denote

$$I(f) = \left\{ b, 1 \le b \le \deg(f) \mid \epsilon(f) = \frac{\nu(f) - \nu(\partial_b f)}{b} \right\}.$$

A monic polynomial $Q \in K[x]$ is said to be a **key polynomial for** ν if for every $f \in K[x]$, if $\epsilon(f) \ge \epsilon(Q)$, then $\deg(f) \ge \deg(Q)$. For a polynomial $f \in K[x]$ let

$$f = f_0 + f_1 Q + \ldots + f_r Q^r$$

be the Q-expansion of f. We set

$$S_Q(f) = \{i, 0 \le i \le r \mid \nu_Q(f) = \nu(f_i Q^i)\} \text{ and } \delta_Q(f) = \max S_Q(f).$$

Throughout this paper we will fix a limit key polynomial F for Ψ_n and denote $d := \deg_X(F)$. Set

$$B = \lim_{Q \in \Psi_n} \nu(Q) \text{ and } \overline{B} = \lim_{Q \in \Psi_n} \nu_Q(F).$$

Take $Q_0 \in \Psi_n$ and choose $Q \in \Psi_n$ such that

(2)
$$\epsilon(Q) - \epsilon(Q_0) > d(B - \nu(Q))$$

and

(3)
$$\epsilon(Q) - \epsilon(Q_0) > \overline{B} - \nu_Q(F).$$

Write F = L(Q) for $L(X) \in K[x]_n[X]$.

The next result is well-known. We will reprove it here because we need this slightly stronger statement.

Lemma 2.1. Let Q be a key polynomial and take f such that f = qQ + r with $\gamma = \max{\epsilon(f), \epsilon(r)} < \epsilon(Q)$. Then we have

$$\nu_Q(qQ) - (\epsilon(Q) - \gamma) \ge \nu(f) = \nu(r).$$

Proof. Take $b \in I(qQ)$. Since $\epsilon(qQ) = \max\{\epsilon(Q), \epsilon(q)\} \ge \epsilon(Q)$ (Corollary 4.4 of [1]) we have

$$\nu(qQ) - b\epsilon(Q) \ge \nu(\partial_b(qQ)) \ge \min\{\nu(\partial_b(f)), \nu(\partial_b(r))\} \ge \min\{\nu(f), \nu(r)\} - b\gamma.$$

Consequently, $\nu(f) = \nu(r)$ and

$$\nu(qQ) - \nu(f) \ge b(\epsilon(Q) - \gamma) \ge \epsilon(Q) - \gamma.$$

Applying the above discussion to ν_Q instead of ν we obtain the result.

Take
$$f \in K[x]$$
 and $Q' \in \Psi_n$ with $\epsilon(Q) \leq \epsilon(Q')$ with $\epsilon(f) < \epsilon(Q_0)$ and write

$$f = qQ' + r$$
 with $\deg(r) < \deg(Q') = \deg(Q_0)$

By (2), (3), Lemma 2.1 and the fact that $\epsilon(r) < \epsilon(Q_0)$ we have

(4)
$$\nu_{Q'}(qQ') > \nu(f) + d(B - \nu(Q))$$

and

(5)
$$\nu_{Q'}(qQ') > \nu(f) + \overline{B} - \nu_Q(F).$$

The next result is a well-known result about key polynomials.

Lemma 2.2. Take $Q, Q' \in \Psi_n$ be such that $\nu(Q) < \nu(Q')$. For $f \in K[x]$ let $f = \sum_{i=0}^r f_i Q'^i$ be the Q'-expansion of f. Then

$$\nu_Q(f) = \min_{0 \le i \le r} \{ \nu_Q(f_i Q'^i) \}.$$

Proof. Since Q' is monic and has the smallest degree among all polynomials f such that $\nu_Q(f) < \nu(f)$, it is a (Mac Lane-Vaquié) key polynomial for ν_Q (Theorem 31 of [2]). In particular, Q' is ν_Q - minimal and the result follows from Proposition 2.3 of [6].

Lemma 2.3. Let $Q' \in \Psi_n$ such that $\epsilon(Q) < \epsilon(Q')$. For any $f \in K[x]$ let

$$f = a_0 + a_1 Q + \ldots + a_r Q^r$$
 and $f = b_0 + b_1 Q' + \ldots + b_r Q'^r$

be the Q and Q'-expansions of f, respectively. For $l = \delta_Q(f)$ we have

$$\nu(a_l - b_l) > \nu(a_l).$$

In particular, $\nu(a_l) = \nu(b_l)$.

Proof. Let h := Q - Q' so that Q = Q' + h. Then

$$a_i Q^i = \sum_{j=0}^i \binom{i}{j} a_i h^j Q'^{i-j}.$$

For each $i, 0 \le i \le r$, and $j, 0 \le j \le i$, let

(6)
$$\binom{i}{j}a_ih^j = a_{ij0} + a_{ij1}Q' + \ldots + a_{ijn}Q'^n$$

be the Q' expansion of $a_i h^j$. Then

$$b_l = \sum_{i-j+k=l} a_{ijk}.$$

For $i, 0 \le i \le r$, and $j, 0 \le j \le i$, if k := l + j - i > 0, then by (4), we have

$$\begin{split} \nu(a_{ijk}) + k\nu(Q') &> \nu(a_ih^j) + d(B - \nu(Q)) \\ &\geq \nu(a_iQ^i) + (j - i)\nu(Q) + k(B - \nu(Q)) \\ &\geq \nu(a_lQ^l) + (j - i)\nu(Q) + k(B - \nu(Q)) \\ &\geq \nu(a_l) + (l + j - i)\nu(Q) + k(B - \nu(Q)) = \nu(a_l) + kB. \end{split}$$

Since $B > \nu(Q')$ we have $\nu(a_{ijk}) > \nu(a_l)$.

Suppose now that k := l+j-i = 0 (i.e., that i = l+j). If j = 0, then by definition $a_{ijk} = a_l$. If j > 0, then i > l. Since $l = \delta_Q(f)$ we have $\nu(a_iQ^i) > \nu(a_lQ^l)$. Then by Lemma 2.2, applied to (6), we have

$$\nu_Q(a_{ijk}Q'^k) \ge \nu_Q(a_ih^j) = \nu(a_iQ^i) + (j-i)\nu(Q) > \nu(a_l) + (l+j-i)\nu(Q).$$

Since $\nu_Q(Q') = \nu(Q)$ we obtain that $\nu(a_{ijk}) > \nu(a_l)$ and the result follows. \Box

For each $\rho < \lambda$ and $f \in K[x]$, let

$$f = a_{\rho 0}(f) + a_{\rho 1}(f)Q_{\rho} + \ldots + a_{\rho r}(f)Q_{\rho}^{r}$$

be the Q_{ρ} -expansion of f. The value of $a_{\rho 0}(f)$ will be very important in what follows.

Proposition 2.4. For $f \in K[x]$ with $\deg_X(f) \leq d$, write f = l(Q) for $l(X) \in K[x]_n[X]$. For every $\rho < \lambda$ we have

(7)
$$\nu_{\rho}(l(h_{\rho})) \ge \nu_{\rho}(f)$$

Moreover, the equality holds in (7) if and only if

$$\nu(a_{\rho 0}(f)) = \nu_{\rho}(f) = \nu(l(h_{\rho})).$$

Proof. By definition

$$f = l(Q) = l(Q_{\rho} + h_{\rho}) = Q_{\rho}p(x) + l(h_{\rho}) \text{ for some } p(x) \in K[x].$$

Hence $a_{\rho 0}(f) = a_{\rho 0}(l(h_{\rho}))$. Let

(8)
$$l(h_{\rho}) = a_{\rho 0}(f) + b_1 Q_{\rho} + \ldots + b_l Q_{\rho}^l$$

be the Q_{ρ} -expansion of $l(h_{\rho})$. We will show that $\nu(b_i Q_{\rho}^i) > \nu_{\rho}(f)$ for every i, $1 \leq i \leq l$, and this will imply our result.

Let $f = a_0 + a_1Q + \ldots + a_rQ^r$ be the Q-expansion of f, so that

(9)
$$l(h_{\rho}) = a_0 + a_1 h_{\rho} + \ldots + a_r h_{\rho}^r$$

For each $j, 1 \leq j \leq r$, consider the Q_{ρ} -expansion

(10)
$$a_j h_{\rho}^j = a_{\rho 0j} + a_{\rho 1j} Q_{\rho} + \ldots + a_{\rho lj} Q_{\rho}^l$$

of $a_j h_{\rho}^j$. Comparing (8), (9) and (10), it is enough to show that

$$\nu\left(a_{\rho i j}Q_{\rho}^{i}\right) > \nu\left(a_{\rho 0}(f)\right)$$
 for every $i, j, 1 \leq i \leq l$ and $1 \leq j \leq r$.

For a fixed $j, 1 \le j \le r$, by (4) applied to (10) we have

(11)
$$\nu\left(a_{\rho i j} Q_{\rho}^{j}\right) > \nu\left(a_{j} Q^{j}\right) + s(B - \nu(Q)).$$

Since $\nu(Q) = \nu(h_{\rho}) = \nu_{\rho}(Q)$, if $\nu(a_0) < \nu(a_iQ^i)$ for every $i, 1 \le i \le r$, then

$$\nu_{\rho}(f) = \nu(a_0) = \nu(l(h_{\rho}))$$

and we are done. Suppose not and take $l = \delta_Q(f) > 0$. By (11) and the fact that $\nu(a_{\rho l}(f)) = \nu(a_l)$ (Lemma 2.3), we have

$$\nu \left(a_{\rho i j} Q_{\rho}^{j} \right) > \nu(a_{j} Q^{j}) + l(B - \nu(Q)) \ge \nu(a_{l}) + l\nu(Q) + l(B - \nu(Q)) \\
= \nu(a_{l}) + lB > \nu(a_{l}) + l\nu(Q_{\rho}) \ge \nu_{\rho}(f).$$

This completes the proof.

Corollary 2.5. If $\deg(f) < \deg(F)$, then there exists ρ such that

$$\nu(l(h_{\sigma})) = \nu(f) = \nu_{\sigma}(f) = \nu(a_{\sigma 0}(f))$$

for every σ , $\rho < \sigma < \lambda$.

Proof. It is well-known that if f is Ψ_n -stable, then there exists $Q' \in \Psi_n$ such that $0 \in S_{Q'}(f)$. The result follows immediately. \Box

3. The Taylor expansion of a polynomial

We will consider the ring K(x)[X] where X is an indeterminate and let ∂_i denote the *i*-th Hasse derivative with respect to X. Then, for every $l(X) \in K(x)[X]$ and $a, b \in K[x]$ we have the Taylor expansion

$$l(b) = l(a) + \sum_{i=1}^{\deg_X l} \partial_i l(a)(b-a)^i.$$

Lemma 3.1 (Lemma 4 of [4]). Let Γ be an ordered abelian group, $\beta_1, \ldots, \beta_n \in \Gamma$ and $\{\gamma_{\rho}\}_{\rho < \lambda}$ an increasing sequence in Γ , without a last element. If t_1, \ldots, t_n are distinct positive integers, then there exist b, $1 \leq b \leq n$, and $\rho < \lambda$, such that

$$\beta_i + t_i \gamma_\sigma > \beta_b + t_b \gamma_\sigma$$
 for every $i, 1 \le i \le n, i \ne b$ and $\sigma > \rho$.

Proposition 3.2. Take $f \in K[x]$ such that $\deg_X(f) \leq d$ and write f = l(Q) for $l(X) \in K[x]_n[X]$. Then there exists $\rho < \lambda$ such that

$$\nu_{\sigma}(f) = \nu(l(h_{\sigma}))$$
 for every $\sigma, \rho < \sigma < \lambda$.

In particular, f is Ψ_n -stable if and only if it is (Ψ_n, Q) -fixed.

Proof. Since for every $j, 1 \leq j \leq \deg_X(l)$, we have $\deg(\partial_j l(Q)) < \deg(F)$ we can use Corollary 2.5 to obtain $\rho < \lambda$ such that

(12)
$$\beta_j := \nu_\sigma \left(\partial_j l(h_\sigma)\right) = \nu \left(\partial_j l(h_\sigma)\right)$$
 for every $j, 1 \le j \le \deg_X(l)$ and $\rho < \sigma$.

By Lemma 3.1, there exist $b, 1 \leq b \leq \deg_X(l)$, and $\rho < \lambda$ such that for every λ , $\rho < \sigma < \lambda$ and $i \neq b$ we have

(13)
$$\beta_b + b\gamma_\rho < \beta_i + i\gamma_\rho$$
 and (12) is satisfied.

For σ , $\rho < \sigma < \lambda$, since

$$f - l(h_{\sigma}) = \sum_{i=1}^{\deg_X(f)} \partial_i l(h_{\sigma}) Q_{\sigma}^i$$

we have

(14)
$$\nu_{\sigma} \left(f - l(h_{\sigma}) \right) = \beta_b + b\gamma_{\sigma}$$

and

(15)
$$\nu \left(f - l(h_{\sigma}) \right) = \beta_b + b\gamma_{\sigma}.$$

By Proposition 2.4 we have $\nu_{\sigma}(l(h_{\sigma})) \geq \nu_{\sigma}(f)$. This and (14) imply that

(16)
$$\nu(l(h_{\sigma})) \ge \nu_{\sigma}(l(h_{\sigma})) \ge \beta_b + b\gamma_{\sigma}.$$

If $\nu_{\sigma}(f) = \nu(f)$, then $\nu(l(h_{\sigma})) \ge \nu(f)$. Suppose, aiming for a contradiction, that $\nu(l(h_{\sigma})) > \nu(f)$. Then by (15) we have

$$\nu(f) = \beta_b + b\gamma_\sigma.$$

For any $\sigma' > \sigma$, by (16) we would obtain

$$\nu(l(h_{\sigma'})) \ge \beta_b + b\gamma_{\sigma'} > \beta_b + b\gamma_{\sigma} = \nu(f)$$

and this contradicts (15) (with σ replaced by σ'). Hence, $\nu(l(h_{\sigma})) = \nu(f)$.

Suppose now that $\nu_{\sigma}(f) < \nu(f)$. If $\nu_{\sigma}(l(h_{\sigma})) > \nu_{\sigma}(f)$, then by (14) we have $\nu_{\sigma}(f) = \beta_b + b\gamma_{\sigma}$. Consequently,

$$\nu(f - l(h_{\sigma})) \ge \min\{\nu(f), \nu(l(h_{\sigma}))\} > \nu_{\sigma}(f) = \beta_b + b\gamma_{\sigma},$$

what is a contradiction to (15). Hence,

$$\nu_{\sigma}(l(h_{\sigma})) = \nu_{\sigma}(f).$$

By the second part of Proposition 2.4 we obtain that $\nu_{\sigma}(f) = \nu(l(h_{\sigma}))$. This, (14)–(16) and the fact that $\nu_{\sigma}(f) < \nu(f)$ imply that

$$\nu_{\sigma}(f) = \nu(l(h_{\sigma})) = \beta_b + b\gamma_{\sigma}.$$

Remark 3.3. In the proof of Theorem 1.1 we will use the explicit calculation of $\nu(l(h_{\sigma}))$ obtained in the previous proposition.

4. Proof of Theorem 1.1

We will adapt the proof by Kaplansky in [4]. For each $i, 1 \leq i \leq d$, the polynomial $\partial_i L(Q)$ has degree smaller than deg(F), hence by Corollary 2.5 there exists $\rho_0 < \lambda$ such that

(17)
$$\beta_i := \nu(\partial_i L(Q)) = \nu(\partial_i L(h_\rho))$$

for every ρ , $\rho_0 < \rho < \lambda$.

Lemma 4.1. If $i = p^t$ and $j = p^t r$ with r > 1 and $p \nmid r$, then there exists $\rho < \lambda$ such that

$$\beta_i + i\gamma_\sigma < \beta_j + j\gamma_\sigma$$
 for every $\sigma, \rho < \sigma < \lambda$.

Moreover, if C in the value group of ν is such that $C > \gamma_{\rho}$ for every $\rho < \lambda$, then

$$\beta_i + iC < \beta_j + jC.$$

Proof. From the Taylor formula (applied to $\partial_i L$) we have

$$\partial_i L(h_{\sigma}) - \partial_i L(h_{\rho}) = \sum_{k=1}^{n-i} \partial_k \partial_i L(h_{\rho}) (h_{\sigma} - h_{\rho})^k$$
$$= \sum_{k=1}^{n-i} {i+k \choose i} \partial_{i+k} L(h_{\rho}) (h_{\sigma} - h_{\rho})^k$$

By Lemma 3.1, for $\rho < \sigma$ large enough

(18)
$$\nu\left(\partial_{i}L(h_{\sigma}) - \partial_{i}L(h_{\rho})\right) = \min_{1 \le k \le n-i} \left\{ \nu\left(\binom{i+k}{i} \partial_{i+k}L(h_{\rho})(h_{\sigma} - h_{\rho})^{k}\right) \right\}.$$

In particular, taking k = j - i, this gives

(19)
$$\nu \left(\partial_i L(h_{\sigma}) - \partial_i L(h_{\rho})\right) \le \nu \left(\binom{j}{i} \partial_j L(h_{\rho})(h_{\sigma} - h_{\rho})^{j-i}\right)$$

By (17) and (19) we have

$$\beta_{i} \leq \nu(\partial_{i}L(h_{\sigma}) - \partial_{i}L(h_{\rho}))$$

$$\leq \nu\left(\binom{j}{i}\partial_{j}L(h_{\rho})(h_{\sigma} - h_{\rho})^{j-i}\right)$$

$$= \nu\left(\binom{j}{i}\right) + \beta_{j} + (j-i)\gamma_{\rho}.$$

Since $p \nmid \binom{j}{i}$ and char $(K\nu) = p$ we have $\nu \left(\binom{j}{i}\right) = 0$. Consequently, $\beta_i \leq \beta_j + (j-i)\gamma_{\rho}.$

This means that for every σ , $\rho < \sigma < \lambda$, we have

$$\beta_i + i\gamma_\sigma < \beta_j + j\gamma_\sigma.$$

Take $C > \gamma_{\rho}$ for every $\rho < \lambda$. If $\beta_i + iC \ge \beta_j + jC$, then

$$\beta_i - \beta_j \ge (j-i)C > (j-i)\gamma_\sigma$$
 for every $\rho < \lambda$

and this contradicts the first part.

The proof of the next result is very similar to the proof of Proposition 2.4.

Lemma 4.2. Fix $\theta < \lambda$ and for each $i, 0 \le i \le r$, set $a_{i0} := a_{\theta 0}(\partial_i L(h_{\theta}))$. Then $\nu_{\theta}(\partial_i L(h_{\theta}) - a_{i0}) + i\nu(Q_{\theta}) > \overline{B}.$

Proof. Since $F = a_0 + a_1Q + \ldots + a_rQ^r$ we have

$$\partial_0 L(h_\theta) = a_0 + a_1 h_\theta + \ldots + a_r h_\theta^r$$

$$\partial_1 L(h_\theta) = a_1 + \ldots + r a_r h_\theta^{r-1}$$

$$\vdots$$

$$\partial_r L(h_\theta) = a_r.$$

If we write

$$\partial_i L(h_\theta) = b_{i0} + b_{i1}h_\theta + \ldots + b_{is}h_\theta^s,$$

then

$$\nu\left(b_{ij}h_{\theta}^{j}\right) + i\nu(Q) \ge \nu(a_{i+j}Q^{i+j}) \ge \nu_Q(F).$$

For each j > 1, write

$$b_{ij}h_{\theta}^j = a_{i0j} + a_{i1j}Q_{\theta} + \ldots + a_{isj}Q_{\theta}^s.$$

For every i, j and k > 0, by (5) we have

$$\nu \left(a_{ikj} Q_{\theta}^{k} \right) + i\nu(Q_{\theta}) > \nu(b_{ij} h_{\theta}^{j}) + \overline{B} - \nu_{Q}(F) + i\nu(Q_{\theta})$$
$$> \nu_{Q}(F) + \overline{B} - \nu_{Q}(F) = \overline{B}.$$

For every i, we have

$$\partial_i L(h_\theta) - a_{i0} = \sum_{k,j>0} a_{ikj} Q_\theta^j.$$

The result follows.

We proceed now with the proof of Theorem 1.1.

Proof of Theorem 1.1. For each $i = p^s$ with $1 \le i \le \deg(F)$ and $j = p^s r$, with $p \nmid r$, by Lemma 4.1 we have

(20)
$$\beta_i + iB < \beta_j + jB$$
 for ρ large enough.

Then there exists ρ_{ij} such that for every $\sigma > \rho_{ij}$ we have

(21)
$$\beta_i + i\gamma_\rho < \beta_j + j\gamma_\sigma \text{ for every } \rho < \lambda.$$

Take σ such that (21) is satisfied for every $i = p^s$ and $j = p^s r$, with $p \nmid r$. Write

$$I = \{l \mid 1 \le l \le d \text{ such that } l = p^i \text{ for some } i \in \mathbb{N}\}$$

and

$$J := \{1, \ldots, d\} \setminus I.$$

Then, for every $j \in J$ there exists $i \in I$ such that

$$\beta_i + i\gamma_\rho < \beta_j + j\gamma_\sigma$$
 for every $\rho < \lambda$.

This means that for every $\rho > \sigma$ we have

(22)
$$\nu\left(\sum_{j\in J}\partial_j L(h_{\sigma})(h_{\rho}-h_{\sigma})^j\right) \ge \min_{j\in J}\{\beta_j+j\gamma_{\sigma}\} > \min_{i\in I}\{\beta_i+i\gamma_{\rho}\} = \beta_b+i\gamma_b.$$

In order to prove (i), take $\theta > \sigma$ and consider the polynomial

$$F_p(x) = L(h_\theta) + \sum_{i \in I} \partial_i L(h_\theta) (Q - h_\theta)^i =: L_p(Q).$$

Then

$$L(h_{\rho}) - L_{p}(h_{\rho}) = \sum_{j \in J} \partial_{j} L(h_{\theta})(h_{\rho} - h_{\theta})^{j}.$$

Consequently,

$$\nu\left(L(h_{\rho}) - L_{p}(h_{\rho})\right) > \beta_{b} + b\gamma_{\rho} = \nu(L(h_{\rho})).$$

The last equality follows from the proof of Proposition 3.2 (as observed in Remark 3.3). Hence,

$$\nu(L_p(h_\rho)) = \beta_b + b\gamma_\rho.$$

If $r \notin I$, then $\deg_X(F_p) < d$ so we apply Lemma 3.2 to obtain that $F_p \in S_n$. This is a contradiction to the minimality of the degree of F in S_n . Hence, $\deg_X(F_p) = d$ and F_p is monic. Since $\deg_X(F_p) \leq d$, by Lemma 3.2 we obtain that $F_p \in S_n$ and so is a limit key polynomial for Ψ_n .

In order to prove (ii), for each $i \ge 0$ take

$$a_i = a_{\theta 0} \left(\partial_i L(h_\theta) \right)$$

and

$$\overline{F}_p := \sum_{i \in I \cup \{0\}} a_i Q_\theta^i$$

By Lemma 4.2 we have

$$\nu_{\rho}\left(F_{p}-\overline{F}_{p}\right) > \overline{B} > \nu_{\rho}\left(F\right) \text{ for every } \rho, \theta < \rho < \lambda.$$

As before, we conclude that \overline{F}_p is a limit key polynomial for Ψ_n and this completes the proof.

Remark 4.3. One can prove (Proposition 3.5 of [5]) that $a_r = 1$ and in particular $\deg(F) = n \deg_X(F)$.

References

- M. dos S. Barnabé and J. Novacoski, *Generating sequences and key polynomials*, to appear in Michigan Mathematical Journal, arXiv:2007.12293, 2020.
- [2] J. Decaup, W. Mahboud and M. Spivakovsky, Abstract key polynomials and comparison theorems with the key polynomials of Mac Lane-Vaquié, Illinois Journal of Mathematics 62 (2018), 253–270.
- [3] F.J. Herrera Govantes, W. Mahboub, M.A. Olalla Acosta and M. Spivakovsky, Key polynomials for simple extensions of valued fields, arXiv:1406.0657, 2014.
- [4] I. Kaplansky, Maximal fields with valuations I, Duke Math. Journ. 9 (1942), 303 321.
- [5] M. Moraes and J. Novacoski, *Limit key polynomials as p-polynomials*, J. Algebra 579, 152– 173 (2021).
- [6] E. Nart, Key polynomials over valued fields, Publ. Mat. 64 (2020), 195-232.