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ON STABLE AND FIXED POLYNOMIALS

J. NOVACOSKI AND M. SPIVAKOVSKY

Abstract. Let ν be a rank one valuation on K[x] and Ψn the set of key

polynomials for ν of degree n ∈ N. We discuss the concepts of being Ψn-stable

and (Ψn, Q)-fixed. We discuss when these two concepts coincide. We use this

discussion to present a simple proof of Proposition 8.2 of [3] and Theorem 1.2

of [5].

1. Introduction

Let ν be a rank one valuation on K[x]. For n ∈ N set

Ψn = {Q ∈ K[x] | Q is a key polynomial for ν and deg(Q) = n}.

Suppose that Ψn is non-empty and bounded (i.e., there exists a ∈ K[x] such that

ν(a) > ν(Q) for every Q ∈ Ψn) and that ν(Ψn) does not have a maximum. Set

K[x]n = {a ∈ K[x] | deg(a) < n}. For each f ∈ K[x] and Q ∈ Ψn the Q-

expansion of f is the expression

f = a0 + a1Q+ . . .+ arQ
r = l(Q)

where l(X) ∈ K[x]n[X ]. We denote the value r (which does not depend on the

choice of Q ∈ Ψn) in the previous expression by degX(f). The truncation of ν on

Q is given by

νQ(f) := min
0≤i≤r

{ν(aiQ
i)}.

Let

Sn = {f ∈ K[x] | νQ(f) < ν(f) for every Q ∈ Ψn}.

A polynomial f is said to be Ψn-stable if it does not belong to Sn. A monic

polynomial F ∈ K[x] is called a limit key polynomial for Ψn if it belongs to Sn

and has the smallest degree among polynomials in Sn.

In [4], Kaplansky introduces the concept of pseudo-convergent sequences. These

objects are strongly related to the set Ψ1. For a given such sequence a we can define

what it means for a polynomial f ∈ K[x] to be fixed by a. Here, we generalize this

concept for any of the sets Ψn. We say that f = l(Q), l(X) ∈ K[x]n[X ], is (Ψn, Q)-

fixed if there exists Q′ ∈ Ψn, ν(Q) < ν(Q′) such that ν(f) = ν(l(Q′ −Q)).
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Our first main result (Proposition 3.2) is that we can choose a suitable Q ∈ Ψn

such that for any f ∈ K[x] with degX(f) ≤ degX(F ), we obtain that f is Ψn-stable

if and only if it is (Ψn, Q)-fixed.

We will fix a suitable Q ∈ K[x] (see (2) and (3)). Then we fix a limit ordinal λ

and any cofinal well-ordered (with respect to ν) subset

{Qρ}ρ<λ ⊆ {Q′ ∈ Ψn | ǫ(Q) < ǫ(Q′)}.

This means that if ρ < σ < λ, then ν(Qρ) < ν(Qσ) and that for every Q′ ∈ Ψn,

there exists ρ < λ such that ν(Q′) < ν(Qρ). For each ρ < λ set hρ := Q − Qρ ∈

K[x]n and γρ = ν(Qρ). It follows from the definition that {hρ}ρ<λ is a pseudo-

convergent sequence for ν. For simplicity, we will denote νQρ
by νρ.

Let p = char(Kν) and I be the set of all non-negative powers of p. As an

application of Proposition 3.2 we can prove the following.

Theorem 1.1. Let F be a limit key polynomial for Ψn and write F = L(Q) for

some L(X) ∈ K[x]n[X ]. Then we have the following.

(i): There exists σ < λ such that for every θ > σ the polynomial

Fp = L(hθ) +
∑

i∈I

∂iL(hθ)Q
i
θ

is a limit key polynomial for Ψn. Here ∂iL denotes the Hasse derivative of

L(X) (as a polynomial in K(x)[X ]) of order i.

(ii): For each i ∈ I ∪ {0} there exists ai ∈ K[x]n such that

F p =
∑

i∈I∪{0}

aiQ
i
θ

is a limit key polynomial for Ψn.

Kaplansky proved the above result in the case n = 1. In that case, (ii) follows

trivially from (i). Our proof of Theorem 1.1 follows Kaplansky’s proof.

If n > 1, then (ii) was proven in [3] (Proposition 8.2). An alternative proof of it

was presented in [5] (Theorem 1.2). The advantage of our proof is that it is much

simpler and presents as algorithm on how to construct the limit key polynomial

of this form (from a given limit key polynomial). Also, our proof does not require

that are in the equicharacteristic case.

2. Preliminaries

Throughout this paper ν will denote a rank one valuation on K[x]. For f ∈ K[x]

we denote

(1) ǫ(f) = max
1≤b≤deg(f)

{

ν(f)− ν(∂bf)

b

}

,

where ∂bf denotes the Hasse derivative of f of order b. We denote

I(f) =

{

b, 1 ≤ b ≤ deg(f) | ǫ(f) =
ν(f)− ν(∂bf)

b

}

.
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A monic polynomial Q ∈ K[x] is said to be a key polynomial for ν if for every

f ∈ K[x], if ǫ(f) ≥ ǫ(Q), then deg(f) ≥ deg(Q). For a polynomial f ∈ K[x] let

f = f0 + f1Q+ . . .+ frQ
r

be the Q-expansion of f . We set

SQ(f) = {i, 0 ≤ i ≤ r | νQ(f) = ν(fiQ
i)} and δQ(f) = maxSQ(f).

Throughout this paper we will fix a limit key polynomial F for Ψn and denote

d := degX(F ). Set

B = lim
Q∈Ψn

ν(Q) and B = lim
Q∈Ψn

νQ(F ).

Take Q0 ∈ Ψn and choose Q ∈ Ψn such that

(2) ǫ(Q)− ǫ(Q0) > d(B − ν(Q))

and

(3) ǫ(Q)− ǫ(Q0) > B − νQ(F ).

Write F = L(Q) for L(X) ∈ K[x]n[X ].

The next result is well-known. We will reprove it here because we need this

slightly stronger statement.

Lemma 2.1. Let Q be a key polynomial and take f such that f = qQ + r with

γ = max{ǫ(f), ǫ(r)} < ǫ(Q). Then we have

νQ(qQ)− (ǫ(Q)− γ) ≥ ν(f) = ν(r).

Proof. Take b ∈ I(qQ). Since ǫ(qQ) = max{ǫ(Q), ǫ(q)} ≥ ǫ(Q) (Corollary 4.4 of

[1]) we have

ν(qQ)− bǫ(Q) ≥ ν(∂b(qQ)) ≥ min{ν(∂b(f)), ν(∂b(r))} ≥ min{ν(f), ν(r)} − bγ.

Consequently, ν(f) = ν(r) and

ν(qQ)− ν(f) ≥ b(ǫ(Q)− γ) ≥ ǫ(Q)− γ.

Applying the above discussion to νQ instead of ν we obtain the result. �

Take f ∈ K[x] and Q′ ∈ Ψn with ǫ(Q) ≤ ǫ(Q′) with ǫ(f) < ǫ(Q0) and write

f = qQ′ + r with deg(r) < deg(Q′) = deg(Q0).

By (2), (3), Lemma 2.1 and the fact that ǫ(r) < ǫ(Q0) we have

(4) νQ′(qQ′) > ν(f) + d(B − ν(Q))

and

(5) νQ′(qQ′) > ν(f) +B − νQ(F ).

The next result is a well-known result about key polynomials.
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Lemma 2.2. Take Q,Q′ ∈ Ψn be such that ν(Q) < ν(Q′). For f ∈ K[x] let

f =

r
∑

i=0

fiQ
′i be the Q′-expansion of f . Then

νQ (f) = min
0≤i≤r

{νQ(fiQ
′i)}.

Proof. Since Q′ is monic and has the smallest degree among all polynomials f such

that νQ(f) < ν(f), it is a (Mac Lane-Vaquié) key polynomial for νQ (Theorem 31

of [2]). In particular, Q′ is νQ- minimal and the result follows from Proposition 2.3

of [6]. �

Lemma 2.3. Let Q′ ∈ Ψn such that ǫ(Q) < ǫ(Q′). For any f ∈ K[x] let

f = a0 + a1Q+ . . .+ arQ
r and f = b0 + b1Q

′ + . . .+ brQ
′r

be the Q and Q′-expansions of f , respectively. For l = δQ(f) we have

ν(al − bl) > ν(al).

In particular, ν(al) = ν(bl).

Proof. Let h := Q−Q′ so that Q = Q′ + h. Then

aiQ
i =

i
∑

j=0

(

i

j

)

aih
jQ′i−j .

For each i, 0 ≤ i ≤ r, and j, 0 ≤ j ≤ i, let

(6)

(

i

j

)

aih
j = aij0 + aij1Q

′ + . . .+ aijnQ
′n

be the Q′ expansion of aih
j . Then

bl =
∑

i−j+k=l

aijk.

For i, 0 ≤ i ≤ r, and j, 0 ≤ j ≤ i, if k := l + j − i > 0, then by (4), we have

ν(aijk) + kν(Q′) > ν(aih
j) + d(B − ν(Q))

≥ ν(aiQ
i) + (j − i)ν(Q) + k(B − ν(Q))

≥ ν(alQ
l) + (j − i)ν(Q) + k(B − ν(Q))

≥ ν(al) + (l + j − i)ν(Q) + k(B − ν(Q)) = ν(al) + kB.

Since B > ν(Q′) we have ν(aijk) > ν(al).

Suppose now that k := l+j−i = 0 (i.e., that i = l+j). If j = 0, then by definition

aijk = al. If j > 0, then i > l. Since l = δQ(f) we have ν(aiQ
i) > ν(alQ

l). Then

by Lemma 2.2, applied to (6), we have

νQ(aijkQ
′k) ≥ νQ(aih

j) = ν(aiQ
i) + (j − i)ν(Q) > ν(al) + (l + j − i)ν(Q).

Since νQ(Q
′) = ν(Q) we obtain that ν(aijk) > ν(al) and the result follows. �
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For each ρ < λ and f ∈ K[x], let

f = aρ0(f) + aρ1(f)Qρ + . . .+ aρr(f)Q
r
ρ

be the Qρ-expansion of f . The value of aρ0(f) will be very important in what

follows.

Proposition 2.4. For f ∈ K[x] with degX(f) ≤ d, write f = l(Q) for l(X) ∈

K[x]n[X ]. For every ρ < λ we have

(7) νρ(l(hρ)) ≥ νρ(f).

Moreover, the equality holds in (7) if and only if

ν (aρ0(f)) = νρ(f) = ν(l(hρ)).

Proof. By definition

f = l(Q) = l(Qρ + hρ) = Qρp(x) + l(hρ) for some p(x) ∈ K[x].

Hence aρ0(f) = aρ0(l(hρ)). Let

(8) l(hρ) = aρ0(f) + b1Qρ + . . .+ blQ
l
ρ

be the Qρ-expansion of l(hρ). We will show that ν(biQ
i
ρ) > νρ(f) for every i,

1 ≤ i ≤ l, and this will imply our result.

Let f = a0 + a1Q+ . . .+ arQ
r be the Q-expansion of f , so that

(9) l(hρ) = a0 + a1hρ + . . .+ arh
r
ρ.

For each j, 1 ≤ j ≤ r, consider the Qρ-expansion

(10) ajh
j
ρ = aρ0j + aρ1jQρ + . . .+ aρljQ

l
ρ

of ajh
j
ρ. Comparing (8), (9) and (10), it is enough to show that

ν
(

aρijQ
i
ρ

)

> ν (aρ0(f)) for every i, j, 1 ≤ i ≤ l and 1 ≤ j ≤ r.

For a fixed j, 1 ≤ j ≤ r, by (4) applied to (10) we have

(11) ν
(

aρijQ
j
ρ

)

> ν
(

ajQ
j
)

+ s(B − ν(Q)).

Since ν(Q) = ν(hρ) = νρ(Q), if ν(a0) < ν(aiQ
i) for every i, 1 ≤ i ≤ r, then

νρ(f) = ν(a0) = ν(l(hρ))

and we are done. Suppose not and take l = δQ(f) > 0. By (11) and the fact that

ν(aρl(f)) = ν(al) (Lemma 2.3), we have

ν
(

aρijQ
j
ρ

)

> ν(ajQ
j) + l(B − ν(Q)) ≥ ν(al) + lν(Q) + l(B − ν(Q))

= ν(al) + lB > ν(al) + lν(Qρ) ≥ νρ(f).

This completes the proof. �
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Corollary 2.5. If deg(f) < deg(F ), then there exists ρ such that

ν(l(hσ)) = ν(f) = νσ(f) = ν(aσ0(f))

for every σ, ρ < σ < λ.

Proof. It is well-known that if f is Ψn-stable, then there exists Q′ ∈ Ψn such that

0 ∈ SQ′(f). The result follows immediately. �

3. The Taylor expansion of a polynomial

We will consider the ring K(x)[X ] where X is an indeterminate and let ∂i denote

the i-th Hasse derivative with respect to X . Then, for every l(X) ∈ K(x)[X ] and

a, b ∈ K[x] we have the Taylor expansion

l(b) = l(a) +

degX l
∑

i=1

∂il(a)(b− a)i.

Lemma 3.1 (Lemma 4 of [4]). Let Γ be an ordered abelian group, β1, . . . , βn ∈ Γ

and {γρ}ρ<λ an increasing sequence in Γ, without a last element. If t1, . . . , tn are

distinct positive integers, then there exist b, 1 ≤ b ≤ n, and ρ < λ, such that

βi + tiγσ > βb + tbγσ for every i, 1 ≤ i ≤ n, i 6= b and σ > ρ.

Proposition 3.2. Take f ∈ K[x] such that degX(f) ≤ d and write f = l(Q) for

l(X) ∈ K[x]n[X ]. Then there exists ρ < λ such that

νσ(f) = ν(l(hσ)) for every σ, ρ < σ < λ.

In particular, f is Ψn-stable if and only if it is (Ψn, Q)-fixed.

Proof. Since for every j, 1 ≤ j ≤ degX(l), we have deg(∂j l(Q)) < deg(F ) we can

use Corollary 2.5 to obtain ρ < λ such that

(12) βj := νσ (∂j l(hσ)) = ν (∂j l(hσ)) for every j, 1 ≤ j ≤ degX(l) and ρ < σ.

By Lemma 3.1, there exist b, 1 ≤ b ≤ degX(l), and ρ < λ such that for every λ,

ρ < σ < λ and i 6= b we have

(13) βb + bγρ < βi + iγρ and (12) is satisfied.

For σ, ρ < σ < λ, since

f − l(hσ) =

degX(f)
∑

i=1

∂il(hσ)Q
i
σ

we have

(14) νσ (f − l(hσ)) = βb + bγσ

and

(15) ν (f − l(hσ)) = βb + bγσ.



ON STABLE AND FIXED POLYNOMIALS 7

By Proposition 2.4 we have νσ(l(hσ)) ≥ νσ(f). This and (14) imply that

(16) ν(l(hσ)) ≥ νσ(l(hσ)) ≥ βb + bγσ.

If νσ(f) = ν(f), then ν(l(hσ)) ≥ ν(f). Suppose, aiming for a contradiction, that

ν(l(hσ)) > ν(f). Then by (15) we have

ν(f) = βb + bγσ.

For any σ′ > σ, by (16) we would obtain

ν(l(hσ′)) ≥ βb + bγσ′ > βb + bγσ = ν(f)

and this contradicts (15) (with σ replaced by σ′). Hence, ν(l(hσ)) = ν(f).

Suppose now that νσ(f) < ν(f). If νσ(l(hσ)) > νσ(f), then by (14) we have

νσ(f) = βb + bγσ. Consequently,

ν(f − l(hσ)) ≥ min{ν(f), ν(l(hσ))} > νσ(f) = βb + bγσ,

what is a contradiction to (15). Hence,

νσ(l(hσ)) = νσ(f).

By the second part of Proposition 2.4 we obtain that νσ(f) = ν(l(hσ)). This,

(14)–(16) and the fact that νσ(f) < ν(f) imply that

νσ(f) = ν(l(hσ)) = βb + bγσ.

�

Remark 3.3. In the proof of Theorem 1.1 we will use the explicit calculation of

ν(l(hσ)) obtained in the previous proposition.

4. Proof of Theorem 1.1

We will adapt the proof by Kaplansky in [4]. For each i, 1 ≤ i ≤ d, the

polynomial ∂iL(Q) has degree smaller than deg(F ), hence by Corollary 2.5 there

exists ρ0 < λ such that

(17) βi := ν(∂iL(Q)) = ν(∂iL(hρ))

for every ρ, ρ0 < ρ < λ.

Lemma 4.1. If i = pt and j = ptr with r > 1 and p ∤ r, then there exists ρ < λ

such that

βi + iγσ < βj + jγσ for every σ, ρ < σ < λ.

Moreover, if C in the value group of ν is such that C > γρ for every ρ < λ, then

βi + iC < βj + jC.
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Proof. From the Taylor formula (applied to ∂iL) we have

∂iL(hσ)− ∂iL(hρ) =

n−i
∑

k=1

∂k∂iL(hρ)(hσ − hρ)
k

=

n−i
∑

k=1

(

i+ k

i

)

∂i+kL(hρ)(hσ − hρ)
k.

By Lemma 3.1, for ρ < σ large enough

(18) ν (∂iL(hσ)− ∂iL(hρ)) = min
1≤k≤n−i

{

ν

((

i+ k

i

)

∂i+kL(hρ)(hσ − hρ)
k

)}

.

In particular, taking k = j − i, this gives

(19) ν (∂iL(hσ)− ∂iL(hρ)) ≤ ν

((

j

i

)

∂jL(hρ)(hσ − hρ)
j−i

)

By (17) and (19) we have

βi ≤ ν(∂iL(hσ)− ∂iL(hρ))

≤ ν

((

j

i

)

∂jL(hρ)(hσ − hρ)
j−i

)

= ν

((

j

i

))

+ βj + (j − i)γρ.

Since p ∤

(

j

i

)

and char(Kν) = p we have ν

((

j

i

))

= 0. Consequently,

βi ≤ βj + (j − i)γρ.

This means that for every σ, ρ < σ < λ, we have

βi + iγσ < βj + jγσ.

Take C > γρ for every ρ < λ. If βi + iC ≥ βj + jC, then

βi − βj ≥ (j − i)C > (j − i)γσ for every ρ < λ

and this contradicts the first part. �

The proof of the next result is very similar to the proof of Proposition 2.4.

Lemma 4.2. Fix θ < λ and for each i, 0 ≤ i ≤ r, set ai0 := aθ0(∂iL(hθ)). Then

νθ(∂iL(hθ)− ai0) + iν(Qθ) > B.

Proof. Since F = a0 + a1Q+ . . .+ arQ
r we have

∂0L(hθ) = a0 + a1hθ + . . .+ arh
r
θ

∂1L(hθ) = a1 + . . .+ rarh
r−1
θ

...

∂rL(hθ) = ar.

If we write

∂iL(hθ) = bi0 + bi1hθ + . . .+ bish
s
θ,
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then

ν
(

bijh
j
θ

)

+ iν(Q) ≥ ν(ai+jQ
i+j) ≥ νQ(F ).

For each j > 1, write

bijh
j
θ = ai0j + ai1jQθ + . . .+ aisjQ

s
θ.

For every i, j and k > 0, by (5) we have

ν
(

aikjQ
k
θ

)

+ iν(Qθ) > ν(bijh
j
θ) +B − νQ(F ) + iν(Qθ)

> νQ(F ) +B − νQ(F ) = B.

For every i, we have

∂iL(hθ)− ai0 =
∑

k,j>0

aikjQ
j
θ.

The result follows. �

We proceed now with the proof of Theorem 1.1.

Proof of Theorem 1.1. For each i = ps with 1 ≤ i ≤ deg(F ) and j = psr, with p ∤ r,

by Lemma 4.1 we have

(20) βi + iB < βj + jB for ρ large enough.

Then there exists ρij such that for every σ > ρij we have

(21) βi + iγρ < βj + jγσ for every ρ < λ.

Take σ such that (21) is satisfied for every i = ps and j = psr, with p ∤ r. Write

I = {l | 1 ≤ l ≤ d such that l = pi for some i ∈ N}

and

J := {1, . . . , d} \ I.

Then, for every j ∈ J there exists i ∈ I such that

βi + iγρ < βj + jγσ for every ρ < λ.

This means that for every ρ > σ we have

(22) ν





∑

j∈J

∂jL(hσ)(hρ − hσ)
j



 ≥ min
j∈J

{βj + jγσ} > min
i∈I

{βi + iγρ} = βb + iγb.

In order to prove (i), take θ > σ and consider the polynomial

Fp(x) = L(hθ) +
∑

i∈I

∂iL(hθ)(Q− hθ)
i =: Lp(Q).

Then

L(hρ)− Lp(hρ) =
∑

j∈J

∂jL(hθ)(hρ − hθ)
j .

Consequently,

ν (L(hρ)− Lp(hρ)) > βb + bγρ = ν(L(hρ)).
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The last equality follows from the proof of Proposition 3.2 (as observed in Remark

3.3). Hence,

ν(Lp(hρ)) = βb + bγρ.

If r /∈ I, then degX(Fp) < d so we apply Lemma 3.2 to obtain that Fp ∈ Sn. This

is a contradiction to the minimality of the degree of F in Sn. Hence, degX(Fp) = d

and Fp is monic. Since degX(Fp) ≤ d, by Lemma 3.2 we obtain that Fp ∈ Sn and

so is a limit key polynomial for Ψn.

In order to prove (ii), for each i ≥ 0 take

ai = aθ0 (∂iL(hθ))

and

F p :=
∑

i∈I∪{0}

aiQ
i
θ.

By Lemma 4.2 we have

νρ
(

Fp − F p

)

> B > νρ (F ) for every ρ, θ < ρ < λ.

As before, we conclude that F p is a limit key polynomial for Ψn and this completes

the proof. �

Remark 4.3. One can prove (Proposition 3.5 of [5]) that ar = 1 and in particular

deg(F ) = n degX(F ).
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