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Introduction

Let ν be a rank one valuation on K[x]. For n ∈ N set

Ψ n = {Q ∈ K[x] | Q is a key polynomial for ν and deg(Q) = n}.
Suppose that Ψ n is non-empty and bounded (i.e., there exists a ∈ K[x] such that ν(a) > ν(Q) for every Q ∈ Ψ n ) and that ν(Ψ n ) does not have a maximum. Set

K[x] n = {a ∈ K[x] | deg(a) < n}. For each f ∈ K[x] and Q ∈ Ψ n the Q- expansion of f is the expression f = a 0 + a 1 Q + . . . + a r Q r = l(Q)
where l(X) ∈ K[x] n [X]. We denote the value r (which does not depend on the choice of Q ∈ Ψ n ) in the previous expression by deg X (f ). The truncation of ν on Q is given by ν

Q (f ) := min 0≤i≤r {ν(a i Q i )}. Let S n = {f ∈ K[x] | ν Q (f ) < ν(f ) for every Q ∈ Ψ n }.
A polynomial f is said to be Ψ n -stable if it does not belong to S n . A monic polynomial F ∈ K[x] is called a limit key polynomial for Ψ n if it belongs to S n and has the smallest degree among polynomials in S n .

In [START_REF] Kaplansky | Maximal fields with valuations I[END_REF], Kaplansky introduces the concept of pseudo-convergent sequences. These objects are strongly related to the set Ψ 1 . For a given such sequence a we can define what it means for a polynomial f ∈ K[x] to be fixed by a. Here, we generalize this concept for any of the sets Ψ n . We say that f = l(Q), l(X)

∈ K[x] n [X], is (Ψ n , Q)- fixed if there exists Q ′ ∈ Ψ n , ν(Q) < ν(Q ′ ) such that ν(f ) = ν(l(Q ′ -Q)).
Our first main result (Proposition 3.2) is that we can choose a suitable Q ∈ Ψ n such that for any f

∈ K[x] with deg X (f ) ≤ deg X (F ), we obtain that f is Ψ n -stable if and only if it is (Ψ n , Q)-fixed.
We will fix a suitable Q ∈ K[x] (see ( 2) and ( 3)). Then we fix a limit ordinal λ and any cofinal well-ordered (with respect to ν) subset

{Q ρ } ρ<λ ⊆ {Q ′ ∈ Ψ n | ǫ(Q) < ǫ(Q ′ )}. This means that if ρ < σ < λ, then ν(Q ρ ) < ν(Q σ ) and that for every Q ′ ∈ Ψ n , there exists ρ < λ such that ν(Q ′ ) < ν(Q ρ ). For each ρ < λ set h ρ := Q -Q ρ ∈ K[x] n and γ ρ = ν(Q ρ ).
It follows from the definition that {h ρ } ρ<λ is a pseudoconvergent sequence for ν. For simplicity, we will denote ν Qρ by ν ρ .

Let p = char(Kν) and I be the set of all non-negative powers of p. As an application of Proposition 3.2 we can prove the following.

Theorem 1.1. Let F be a limit key polynomial for Ψ n and write

F = L(Q) for some L(X) ∈ K[x] n [X].
Then we have the following.

(i): There exists σ < λ such that for every θ > σ the polynomial

F p = L(h θ ) + i∈I ∂ i L(h θ )Q i θ is a limit key polynomial for Ψ n . Here ∂ i L denotes the Hasse derivative of L(X) (as a polynomial in K(x)[X]) of order i. (ii): For each i ∈ I ∪ {0} there exists a i ∈ K[x] n such that F p = i∈I∪{0} a i Q i θ is a limit key polynomial for Ψ n .
Kaplansky proved the above result in the case n = 1. In that case, (ii) follows trivially from (i). Our proof of Theorem 1.1 follows Kaplansky's proof.

If n > 1, then (ii) was proven in [START_REF] Herrera Govantes | Key polynomials for simple extensions of valued fields[END_REF] (Proposition 8.2). An alternative proof of it was presented in [START_REF] Moraes | Limit key polynomials as p-polynomials[END_REF] (Theorem 1.2). The advantage of our proof is that it is much simpler and presents as algorithm on how to construct the limit key polynomial of this form (from a given limit key polynomial). Also, our proof does not require that are in the equicharacteristic case.

Preliminaries

Throughout this paper ν will denote a rank one valuation on K

[x]. For f ∈ K[x] we denote (1) ǫ(f ) = max 1≤b≤deg(f ) ν(f ) -ν(∂ b f ) b ,
where ∂ b f denotes the Hasse derivative of f of order b. We denote

I(f ) = b, 1 ≤ b ≤ deg(f ) | ǫ(f ) = ν(f ) -ν(∂ b f ) b .
A monic polynomial Q ∈ K[x] is said to be a key polynomial for ν if for every

f ∈ K[x], if ǫ(f ) ≥ ǫ(Q), then deg(f ) ≥ deg(Q). For a polynomial f ∈ K[x] let f = f 0 + f 1 Q + . . . + f r Q r be the Q-expansion of f . We set S Q (f ) = {i, 0 ≤ i ≤ r | ν Q (f ) = ν(f i Q i )} and δ Q (f ) = max S Q (f ).
Throughout this paper we will fix a limit key polynomial F for Ψ n and denote

d := deg X (F ). Set B = lim Q∈Ψn ν(Q) and B = lim Q∈Ψn ν Q (F ). Take Q 0 ∈ Ψ n and choose Q ∈ Ψ n such that (2) ǫ(Q) -ǫ(Q 0 ) > d(B -ν(Q))
and ( 3)

ǫ(Q) -ǫ(Q 0 ) > B -ν Q (F ). Write F = L(Q) for L(X) ∈ K[x] n [X].
The next result is well-known. We will reprove it here because we need this slightly stronger statement. Lemma 2.1. Let Q be a key polynomial and take f such that f = qQ + r with γ = max{ǫ(f ), ǫ(r)} < ǫ(Q). Then we have

ν Q (qQ) -(ǫ(Q) -γ) ≥ ν(f ) = ν(r). Proof. Take b ∈ I(qQ). Since ǫ(qQ) = max{ǫ(Q), ǫ(q)} ≥ ǫ(Q) (Corollary 4.4 of [1]) we have ν(qQ) -bǫ(Q) ≥ ν(∂ b (qQ)) ≥ min{ν(∂ b (f )), ν(∂ b (r))} ≥ min{ν(f ), ν(r)} -bγ. Consequently, ν(f ) = ν(r) and ν(qQ) -ν(f ) ≥ b(ǫ(Q) -γ) ≥ ǫ(Q) -γ.
Applying the above discussion to ν Q instead of ν we obtain the result.

Take f ∈ K[x] and Q ′ ∈ Ψ n with ǫ(Q) ≤ ǫ(Q ′ ) with ǫ(f ) < ǫ(Q 0 ) and write f = qQ ′ + r with deg(r) < deg(Q ′ ) = deg(Q 0 ). By (2), (3), Lemma 2.1 and the fact that ǫ(r) < ǫ(Q 0 ) we have (4) ν Q ′ (qQ ′ ) > ν(f ) + d(B -ν(Q))
and ( 5)

ν Q ′ (qQ ′ ) > ν(f ) + B -ν Q (F ).
The next result is a well-known result about key polynomials.

Lemma 2.2. Take Q, Q ′ ∈ Ψ n be such that ν(Q) < ν(Q ′ ). For f ∈ K[x] let f = r i=0 f i Q ′i be the Q ′ -expansion of f . Then ν Q (f ) = min 0≤i≤r {ν Q (f i Q ′i )}.
Proof. Since Q ′ is monic and has the smallest degree among all polynomials f such that ν Q (f ) < ν(f ), it is a (Mac Lane-Vaquié) key polynomial for ν Q (Theorem 31 of [START_REF] Decaup | Abstract key polynomials and comparison theorems with the key polynomials of Mac Lane-Vaquié[END_REF]). In particular, Q ′ is ν Q -minimal and the result follows from Proposition 2.3 of [START_REF] Nart | Key polynomials over valued fields[END_REF].

Lemma 2.3. Let Q ′ ∈ Ψ n such that ǫ(Q) < ǫ(Q ′ ). For any f ∈ K[x] let f = a 0 + a 1 Q + . . . + a r Q r and f = b 0 + b 1 Q ′ + . . . + b r Q ′r be the Q and Q ′ -expansions of f , respectively. For l = δ Q (f ) we have ν(a l -b l ) > ν(a l ).
In particular, ν(a l ) = ν(b l ).

Proof. Let h := Q -Q ′ so that Q = Q ′ + h. Then a i Q i = i j=0 i j a i h j Q ′i-j .
For each i, 0 ≤ i ≤ r, and j, 0

≤ j ≤ i, let (6) i j a i h j = a ij0 + a ij1 Q ′ + . . . + a ijn Q ′n be the Q ′ expansion of a i h j . Then b l = i-j+k=l a ijk .
For i, 0 ≤ i ≤ r, and j, 0 ≤ j ≤ i, if k := l + j -i > 0, then by (4), we have

ν(a ijk ) + kν(Q ′ ) > ν(a i h j ) + d(B -ν(Q)) ≥ ν(a i Q i ) + (j -i)ν(Q) + k(B -ν(Q)) ≥ ν(a l Q l ) + (j -i)ν(Q) + k(B -ν(Q)) ≥ ν(a l ) + (l + j -i)ν(Q) + k(B -ν(Q)) = ν(a l ) + kB. Since B > ν(Q ′ ) we have ν(a ijk ) > ν(a l ).
Suppose now that k := l+j-i = 0 (i.e., that i = l+j). If j = 0, then by definition

a ijk = a l . If j > 0, then i > l. Since l = δ Q (f ) we have ν(a i Q i ) > ν(a l Q l ).
Then by Lemma 2.2, applied to (6), we have

ν Q (a ijk Q ′k ) ≥ ν Q (a i h j ) = ν(a i Q i ) + (j -i)ν(Q) > ν(a l ) + (l + j -i)ν(Q). Since ν Q (Q ′ ) = ν(Q)
we obtain that ν(a ijk ) > ν(a l ) and the result follows.

For each ρ < λ and f

∈ K[x], let f = a ρ0 (f ) + a ρ1 (f )Q ρ + . . . + a ρr (f )Q r ρ
be the Q ρ -expansion of f . The value of a ρ0 (f ) will be very important in what follows.

Proposition 2.4.

For f ∈ K[x] with deg X (f ) ≤ d, write f = l(Q) for l(X) ∈ K[x] n [X].
For every ρ < λ we have

(7) ν ρ (l(h ρ )) ≥ ν ρ (f ).
Moreover, the equality holds in (7) if and only if

ν (a ρ0 (f )) = ν ρ (f ) = ν(l(h ρ )).
Proof. By definition

f = l(Q) = l(Q ρ + h ρ ) = Q ρ p(x) + l(h ρ ) for some p(x) ∈ K[x]. Hence a ρ0 (f ) = a ρ0 (l(h ρ )). Let (8) l(h ρ ) = a ρ0 (f ) + b 1 Q ρ + . . . + b l Q l ρ be the Q ρ -expansion of l(h ρ ). We will show that ν(b i Q i ρ ) > ν ρ (f ) for every i, 1 ≤ i ≤ l,
and this will imply our result.

Let f = a 0 + a 1 Q + . . . + a r Q r be the Q-expansion of f , so that (9) l(h ρ ) = a 0 + a 1 h ρ + . . . + a r h r ρ .

For each j, 1 ≤ j ≤ r, consider the Q ρ -expansion (10) a j h j ρ = a ρ0j + a ρ1j Q ρ + . . . + a ρlj Q l ρ of a j h j ρ . Comparing (8), ( 9) and (10), it is enough to show that ν a ρij Q i ρ > ν (a ρ0 (f )) for every i, j, 1 ≤ i ≤ l and 1 ≤ j ≤ r.

For a fixed j, 1 ≤ j ≤ r, by (4) applied to (10) we have

(11) ν a ρij Q j ρ > ν a j Q j + s(B -ν(Q)). Since ν(Q) = ν(h ρ ) = ν ρ (Q), if ν(a 0 ) < ν(a i Q i ) for every i, 1 ≤ i ≤ r, then ν ρ (f ) = ν(a 0 ) = ν(l(h ρ ))
and we are done. Suppose not and take l = δ Q (f ) > 0. By (11) and the fact that ν(a ρl (f )) = ν(a l ) (Lemma 2.3), we have

ν a ρij Q j ρ > ν(a j Q j ) + l(B -ν(Q)) ≥ ν(a l ) + lν(Q) + l(B -ν(Q)) = ν(a l ) + lB > ν(a l ) + lν(Q ρ ) ≥ ν ρ (f ).
This completes the proof. 

ν(l(h σ )) = ν(f ) = ν σ (f ) = ν(a σ0 (f ))
for every σ, ρ < σ < λ.

Proof. It is well-known that if f is Ψ n -stable, then there exists Q ′ ∈ Ψ n such that 0 ∈ S Q ′ (f ). The result follows immediately.

The Taylor expansion of a polynomial

We will consider the ring K(x)[X] where X is an indeterminate and let ∂ i denote the i-th Hasse derivative with respect to X. Then, for every l(X) ∈ K(x)[X] and a, b ∈ K[x] we have the Taylor expansion [START_REF] Kaplansky | Maximal fields with valuations I[END_REF]). Let Γ be an ordered abelian group, β 1 , . . . , β n ∈ Γ and {γ ρ } ρ<λ an increasing sequence in Γ, without a last element. If t 1 , . . . , t n are distinct positive integers, then there exist b, 1 ≤ b ≤ n, and ρ < λ, such that

l(b) = l(a) + deg X l i=1 ∂ i l(a)(b -a) i . Lemma 3.1 (Lemma 4 of
β i + t i γ σ > β b + t b γ σ for every i, 1 ≤ i ≤ n, i = b and σ > ρ. Proposition 3.2. Take f ∈ K[x] such that deg X (f ) ≤ d and write f = l(Q) for l(X) ∈ K[x] n [X].
Then there exists ρ < λ such that ν σ (f ) = ν(l(h σ )) for every σ, ρ < σ < λ.

In particular, f is Ψ n -stable if and only if it is (Ψ n , Q)-fixed.

Proof. Since for every j, 1 ≤ j ≤ deg X (l), we have deg(∂ j l(Q)) < deg(F ) we can use Corollary 2.5 to obtain ρ < λ such that (12) β j := ν σ (∂ j l(h σ )) = ν (∂ j l(h σ )) for every j, 1 ≤ j ≤ deg X (l) and ρ < σ. By Lemma 3.1, there exist b, 1 ≤ b ≤ deg X (l), and ρ < λ such that for every λ, ρ < σ < λ and i = b we have ( 13)

β b + bγ ρ < β i + iγ ρ and (12) is satisfied. For σ, ρ < σ < λ, since f -l(h σ ) = deg X (f ) i=1 ∂ i l(h σ )Q i σ we have (14) ν σ (f -l(h σ )) = β b + bγ σ and (15) ν (f -l(h σ )) = β b + bγ σ .
By Proposition 2.4 we have ν σ (l(h σ )) ≥ ν σ (f ). This and (14) imply that ( 16)

ν(l(h σ )) ≥ ν σ (l(h σ )) ≥ β b + bγ σ . If ν σ (f ) = ν(f ), then ν(l(h σ )) ≥ ν(f ).
Suppose, aiming for a contradiction, that ν(l(h σ )) > ν(f ). Then by (15) we have

ν(f ) = β b + bγ σ .
For any σ ′ > σ, by ( 16) we would obtain

ν(l(h σ ′ )) ≥ β b + bγ σ ′ > β b + bγ σ = ν(f )
and this contradicts (15) (with σ replaced by σ ′ ). Hence, ν(l

(h σ )) = ν(f ). Suppose now that ν σ (f ) < ν(f ). If ν σ (l(h σ )) > ν σ (f ), then by (14) we have ν σ (f ) = β b + bγ σ . Consequently, ν(f -l(h σ )) ≥ min{ν(f ), ν(l(h σ ))} > ν σ (f ) = β b + bγ σ ,
what is a contradiction to (15). Hence,

ν σ (l(h σ )) = ν σ (f ).
By the second part of Proposition 2.4 we obtain that ν σ (f ) = ν(l(h σ )). This, ( 14)-( 16) and the fact that ν σ (f ) < ν(f ) imply that

ν σ (f ) = ν(l(h σ )) = β b + bγ σ .
Remark 3.3. In the proof of Theorem 1.1 we will use the explicit calculation of ν(l(h σ )) obtained in the previous proposition.

Proof of Theorem 1.1

We will adapt the proof by Kaplansky in [START_REF] Kaplansky | Maximal fields with valuations I[END_REF]. For each i, 1 ≤ i ≤ d, the polynomial ∂ i L(Q) has degree smaller than deg(F ), hence by Corollary 2.5 there exists ρ 0 < λ such that (17)

β i := ν(∂ i L(Q)) = ν(∂ i L(h ρ ))
for every ρ, ρ 0 < ρ < λ.

Lemma 4.1. If i = p t and j = p t r with r > 1 and p ∤ r, then there exists ρ < λ such that

β i + iγ σ < β j + jγ σ for every σ, ρ < σ < λ.
Moreover, if C in the value group of ν is such that C > γ ρ for every ρ < λ, then

β i + iC < β j + jC.
Proof. From the Taylor formula (applied to ∂ i L) we have

∂ i L(h σ ) -∂ i L(h ρ ) = n-i k=1 ∂ k ∂ i L(h ρ )(h σ -h ρ ) k = n-i k=1 i + k i ∂ i+k L(h ρ )(h σ -h ρ ) k .
By Lemma 3.1, for ρ < σ large enough

(18) ν (∂ i L(h σ ) -∂ i L(h ρ )) = min 1≤k≤n-i ν i + k i ∂ i+k L(h ρ )(h σ -h ρ ) k .
In particular, taking k = j -i, this gives

(19) ν (∂ i L(h σ ) -∂ i L(h ρ )) ≤ ν j i ∂ j L(h ρ )(h σ -h ρ ) j-i
By ( 17) and ( 19) we have

β i ≤ ν(∂ i L(h σ ) -∂ i L(h ρ )) ≤ ν j i ∂ j L(h ρ )(h σ -h ρ ) j-i = ν j i + β j + (j -i)γ ρ .
Since p ∤ j i and char(Kν) = p we have ν j i = 0. Consequently,

β i ≤ β j + (j -i)γ ρ .
This means that for every σ, ρ < σ < λ, we have

β i + iγ σ < β j + jγ σ .
Take C > γ ρ for every ρ < λ. If β i + iC ≥ β j + jC, then

β i -β j ≥ (j -i)C > (j -i)γ σ for every ρ < λ
and this contradicts the first part.

The proof of the next result is very similar to the proof of Proposition 2.4.

Lemma 4.2. Fix θ < λ and for each i,

0 ≤ i ≤ r, set a i0 := a θ0 (∂ i L(h θ )). Then ν θ (∂ i L(h θ ) -a i0 ) + iν(Q θ ) > B. Proof. Since F = a 0 + a 1 Q + . . . + a r Q r we have ∂ 0 L(h θ ) = a 0 + a 1 h θ + . . . + a r h r θ ∂ 1 L(h θ ) = a 1 + . . . + ra r h r-1 θ . . . ∂ r L(h θ ) = a r . If we write ∂ i L(h θ ) = b i0 + b i1 h θ + . . . + b is h s θ , then ν b ij h j θ + iν(Q) ≥ ν(a i+j Q i+j ) ≥ ν Q (F ). For each j > 1, write b ij h j θ = a i0j + a i1j Q θ + . . . + a isj Q s θ .
For every i, j and k > 0, by [START_REF] Moraes | Limit key polynomials as p-polynomials[END_REF] we have

ν a ikj Q k θ + iν(Q θ ) > ν(b ij h j θ ) + B -ν Q (F ) + iν(Q θ ) > ν Q (F ) + B -ν Q (F ) = B.
For every i, we have

∂ i L(h θ ) -a i0 = k,j>0 a ikj Q j θ .
The result follows.

We proceed now with the proof of Theorem 1.1.

Proof of Theorem 1.1. For each i = p s with 1 ≤ i ≤ deg(F ) and j = p s r, with p ∤ r, by Lemma 4.1 we have (20) β i + iB < β j + jB for ρ large enough.

Then there exists ρ ij such that for every σ > ρ ij we have (21) β i + iγ ρ < β j + jγ σ for every ρ < λ.

Take σ such that (21) is satisfied for every i = p s and j = p s r, with p ∤ r. Write I = {l | 1 ≤ l ≤ d such that l = p i for some i ∈ N} and J := {1, . . . , d} \ I.

Then, for every j ∈ J there exists i ∈ I such that β i + iγ ρ < β j + jγ σ for every ρ < λ.

This means that for every ρ > σ we have In order to prove (i), take θ > σ and consider the polynomial

F p (x) = L(h θ ) + i∈I ∂ i L(h θ )(Q -h θ ) i =: L p (Q). Then L(h ρ ) -L p (h ρ ) = j∈J ∂ j L(h θ )(h ρ -h θ ) j .
Consequently, ν (L(h ρ ) -L p (h ρ )) > β b + bγ ρ = ν(L(h ρ )).

The last equality follows from the proof of Proposition 3.2 (as observed in Remark 3.3). Hence, ν(L p (h ρ )) = β b + bγ ρ .

If r / ∈ I, then deg X (F p ) < d so we apply Lemma 3.2 to obtain that F p ∈ S n . This is a contradiction to the minimality of the degree of F in S n . Hence, deg X (F p ) = d and F p is monic. Since deg X (F p ) ≤ d, by Lemma 3.2 we obtain that F p ∈ S n and so is a limit key polynomial for Ψ n .

In order to prove (ii), for each i ≥ 0 take

a i = a θ0 (∂ i L(h θ ))
and

F p := i∈I∪{0} a i Q i θ .
By Lemma 4.2 we have ρ F p -F p > B > ν ρ (F ) for every ρ, θ < ρ < λ.

As before, we conclude that F p is a limit key polynomial for Ψ n and this completes the proof.

Remark 4.3. One can prove (Proposition 3.5 of [START_REF] Moraes | Limit key polynomials as p-polynomials[END_REF]) that a r = 1 and in particular deg(F ) = n deg X (F ).

Corollary 2 . 5 .

 25 If deg(f ) < deg(F ), then there exists ρ such that

∂

  j L(h σ )(h ρ -h σ ) j   ≥ min j∈J {β j + jγ σ } > min i∈I {β i + iγ ρ } = β b + iγ b .
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