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Abstract 12 

Context – In climate-smart landscapes people manage land use for integrating sustainable production, 13 

climate change adaptation and mitigation. The spatial dimension of this multifunctionality remains to 14 

be formalised to increase effectiveness of nature-based solutions. 15 

Objectives – We aimed to systematically analyse effects of fragmentation on multifunctionality and 16 

their interactions with land-use intensity responses. 17 

Methods – We generated virtual landscapes to model interactions among six ecosystem services (ES) 18 

of different spatial sensitivities. We simulated land-use patterns on topographies from plains to 19 

mountains. Four land-use intensity treatments departed from hypothesised optimal composition for 20 

biodiversity and ES with > 30% intensive, < 30% extensive or protected and > 40% intermediate 21 

intensity use. For each composition we generated landscapes with differing fragmentation. 22 

Results – Pixel- and landscape-level multifunctionality emerge from sensitivities of the six ES to 23 

landscape composition, fragmentation and their interactions. In heterogeneous landscapes of 24 

intermediate land-use intensity extensive grasslands and spatial complementarity supported multiple 25 

ES provision. Increasing land use intensity decreased multifunctionality by reducing all ES. However, 26 

greater fragmentation mitigated some of these effects because its benefits to nitrogen retention and 27 

pollination exceeded losses for recreation, especially in finer-grained landscapes. The five regulating 28 

ES were synergistic and showed trade-offs with recreation. Although interactions were most sensitive 29 

to intensity given its dominant effects on individual ES, fragmentation mediated interaction strength. 30 

Conclusions – Virtual simulations allow a systematic understanding of how interactions between land-31 

use intensity and fragmentation modulate multifunctionality. This constitutes an essential step to 32 

designing templates for climate smart-landscapes tailored to regional geographies, land-use allocation 33 

and ES priorities. 34 

 35 

Keywords : nature-based solutions, neutral landscape, multifunctionality, ecosystem service trade-off 36 

 37 
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Introduction 39 

Managing and restoring ecosystems can support climate adaptation by mitigating and buffering the 40 

detrimental impacts of climate change, and providing options for material and non-material benefits 41 

to livelihoods (Colloff et al. 2020; Lavorel et al. 2015), considered as ‘nature-based solutions’ (Cohen-42 

Shacham et al. 2019; Seddon et al. 2020). The conservation and restoration of native woody vegetation 43 

(Case et al. 2020; Valdés et al. 2020) or of extensive grasslands (Bardgett et al. 2021; Lavorel et al. 44 

2015) are such solutions. Much of the literature and practice has focused on nature-based solutions 45 

targeting a single contribution of nature to people (Chausson et al. 2020), yet land use decisions are 46 

made by negotiating trade-offs between multiple objectives (Ellis et al. 2019; Meyfroidt et al. 2018). 47 

Failing to consider this underpins several recognised impediments to the effectiveness of nature-based 48 

solutions, including lack of system-wide and cross-scale effects (Fedele et al. 2020; Seddon et al. 2020). 49 

Integrating multiple goals for climate adaptation must therefore be addressed under a 50 

‘multifunctionality’ framing (Lavorel et al. 2020; Mastrangelo et al. 2014). Landscapes are relevant and 51 

indispensable entities for integrating biodiversity dynamics and biophysical functioning that underpin 52 

the ecosystem service synergies and trade-offs which shape such multifunctionality (Lavorel et al. 53 

2015; Lavorel et al. 2020) and thereby landscape sustainability (Wu 2021). 54 

In climate-smart landscapes people manage and reconfigure land use for integrating multiple goals of 55 

climate mitigation, sustainable production and livelihoods (Harvey et al. 2014; Scherr et al. 2012). 56 

Climate-smart landscapes have been implemented in developing regions (Harvey et al. 2014; Sarker et 57 

al. 2019) and increasingly in Europe (Fusco et al. 2020) and Australasia (Gosnell et al. 2019; Heeb et al. 58 

2019). However the spatial dimension of the required multifunctionality has received insufficient 59 

attention (Bowditch et al. 2020; Prestele and Verburg 2020). While spatial configuration, for instance 60 

fragmentation, is not expected to have substantial impacts on carbon sequestration which tends to be 61 

proportional to area, it has essential effects on many regulating contributions that underpin 62 

sustainable production like pollination, pest control or regulation of water quality (Arroyo-Rodríguez 63 

et al. 2020, Jeanneret et al. 2021, Tscharntke et al. 2021), and on non-material contributions to 64 

people’s lives (Wartmann et al. 2021). 65 

Overall, mechanistic understanding is limited in studies of patterns of interactions among ecosystem 66 

services (Dade et al. 2019): systematic approaches to drivers of multifunctionality are urgently needed 67 

(Spake et al. 2017). Moreover, the pattern-oriented approach is heavily constrained by available data, 68 

and the lack of mechanistic understanding treats the influence of each land use as additive, when it is 69 

well understood that trade-offs and synergies make these effects non-additive. Landscape 70 

composition - the proportions of different land uses, is a key determinant of biodiversity, ecosystem 71 

functioning and services, and of their trade-offs (Arroyo-Rodríguez et al. 2020; Garibaldi et al. 2021; 72 
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Turkelboom et al. 2018). Additionally landscape spatial configuration influences individual ecosystem 73 

services (Qiu 2019) and their interactions (Cordingley et al. 2015; Qiu et al. 2021; Richards et al. 2018; 74 

Rieb and Bennett 2020). Climate adaptation actions and their consequences for biodiversity, 75 

ecosystem services and human well-being differ between landscapes where productive land uses and 76 

nature conservation coexist (land sharing) versus being spatially segregated (land sparing) (Burton et 77 

al. 2019; Finch et al. 2021; Fischer et al. 2018; Verkerk et al. 2018). However, the effects of landscape 78 

configuration on multifunctionality are not systematically understood due to lack of mechanistic 79 

approaches. This knowledge gap severely impedes the ability to prioritise land use interventions (Jones 80 

et al. 2013; Spake et al. 2019) and is a research priority (Wu 2021). 81 

Multifunctionality emerges from interactions between individual ecosystem services. Conceptual 82 

(Mitchell et al. 2015b; Seppelt et al. 2016), empirical (Arroyo-Rodríguez et al. 2020; Hertzog et al. 2019; 83 

Sirami et al. 2019; Valdés et al. 2020) and very few studies combining both approaches (Plas et al. 2019; 84 

Qiu et al. 2021; Rieb and Bennett 2020; Thomas et al. 2020) show that all ecosystem services (ES) 85 

respond to some degree to landscape pattern (composition and configuration) given its influence on 86 

ecological and social processes (Duarte et al. 2020). How landscape pattern affects ES pairwise 87 

interactions and ES multifunctionality is more complex to understand. 88 

Studies have explored the effects of landscape scenarios for ES by either manipulating current pattern 89 

(Cordingley et al. 2015; Richards et al. 2018) or simulating multiple fragmentation levels (Thomas et al. 90 

2020). Virtual landscape simulations which manipulate composition and configuration in controlled 91 

designs take this further as a powerful method for understanding how their combination effects 92 

ecosystem services (Langhammer et al. 2019). Without virtual landscapes, the analytical range of 93 

investigations is limited by real world landscapes. With virtual landscapes, topography and land use 94 

composition and configuration can be systematically varied within bounds realistic to actual 95 

landscapes. 96 

In this research we develop a virtual landscape modelling approach to advance mechanistic 97 

understanding of how land-use spatial patterns support climate-smart landscapes. We asked: which 98 

combinations of land use composition and spatial configuration support the multifunctionality 99 

required for climate-smart landscapes? Specifically, we aimed to reveal the effects of configuration 100 

(e.g. level of fragmentation) on multifunctionality and their interactions with well-documented effects 101 

of composition, that is the representation of different land uses, and especially functionally critical 102 

uses like intensive agriculture and native forest. We demonstrate how a landscape modelling 103 

environment developed to formally explore effects of landscape pattern on ES interactions and 104 

multifunctionality can generate the lacking generic, quantitative understanding of effects of landscape 105 

composition and configuration on ES interactions and multifunctionality. For this, we used virtual 106 
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landscapes to identify patterns and mechanisms of interactions among climate-adaptation relevant 107 

ecosystem services of different spatial sensitivities, depending on landscape composition and 108 

configuration. Our results demonstrate the usefulness of such simulations for exploring interactive 109 

effects of land use composition and pattern and their mechanisms. We discuss how virtual landscape 110 

experiments can advance the understanding and management of interactions between land use 111 

intensity and fragmentation, and thereby advance land sustainability science. 112 

 113 

Methods 114 

Virtual landscape creation 115 

We systematically considered virtual topographies for landscapes ranging from plains to mountains, 116 

upon which land use patterns were simulated. Our in silico experiment consisted in a factorial 117 

combination of landscape composition and fragmentation across three topographies. The virtual 118 

landscapes were created in Python using the NumPy (Harris et al. 2020), SciPy (Virtanen et al. 2020), 119 

scikit-(van der Walt et al. 2014), NetworkX (Hagberg et al. 2008), NLMpy (Etherington et al. 2015), 120 

GDAL (GDAL/OGR contributors 2021), and RichDEM (Barnes 2016a) packages. 121 

 122 

Topography 123 

Each landscape had dimensions of 2000 × 2000 cells with 25 m grain and therefore 50 × 50 km extent.  124 

The topography of each landscape was initialised with a randomly directed slope with an elevation 125 

range of 0-200 m.  Further topographic complexity was then added using the Perlin noise approach 126 

(Musgrave et al. 1989) to parameterise three types of topography: plains, hills, and mountains 127 

(Supplementary Table 1) each of which was replicated 10 times.  Topographic depressions were then 128 

filled (Barnes 2016b) to calculate slope (Horn 1981) and to identify river channels based on D8 drainage 129 

(O'Callaghan and Mark 1984) that drained at least 3.75 km2. 130 

 131 

Land cover 132 

To produce land cover distributions each landscape was first divided into patches by randomly 133 

selecting 5000 cells and then creating patches as discrete Voronoi polygons around the selected cells.  134 

The mean elevation and slope of each patch was calculated to determine the suitability of each patch 135 

for six land cover types (Table 1) based on New Zealand patterns from an analysis of the national land 136 

cover data base LCBD5 (Manaaki Whenua Landcare Research 2020). Proceeding in turn from the most 137 
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topographically limited to least topographically limited land cover type, several suitable patches were 138 

randomly selected to act as seed patches.  The distribution of land cover was then grown from these 139 

seed patches using an Eden growth process (Eden 1961) that randomly selected a suitable patch that 140 

neighboured an existing land cover patch.  If no neighbouring patches were suitable, a new seed patch 141 

would be randomly selected.  This land cover growth process continued until a land cover had reached 142 

its specified maximum proportion of the landscape.  Any patches that were not attributed to a land 143 

cover type were classified as bare ground. 144 

Knowledge syntheses have hypothesised optimal landscape compositions for biodiversity and 145 

therefore ES with no more than 30% intensive, no less than 30% extensive or protected (including 10% 146 

to 20% high quality habitat) and 40% intermediate intensity use (Arroyo-Rodríguez et al. 2020; 147 

Garibaldi et al. 2021; Smith et al. 2013). Intensive land use refers to cropping and intensively managed 148 

grasslands where resources and disturbance regimes are strongly modified by human inputs (Blüthgen 149 

et al. 2012), while intermediate intensity land uses comprise more moderate inputs as in extensively 150 

managed grasslands with a significant perennial grass component (McIntyre and Lavorel 2007). To 151 

examine the effects of changing land cover proportions, four different land cover treatments were 152 

specified (Table 1). Consistent with this ‘optimal’ template, we set reference land use at 30% intensive 153 

(intensive grassland and crops-horticulture), 40% extensive (extensively managed grasslands and 154 

exotic forestry) and 30% native (shrubland and forest), referred to as ‘intermediate – even’ henceforth. 155 

We then deviated from this baseline by modifying the proportion of land under intensive use to either 156 

10% in ‘extensive’ landscapes (reflecting the dominance of extensive grassland) or 40% in 157 

‘intermediate – intensive’ landscapes (to reflect the modest increase in intensive agriculture as 158 

compared to the baseline), keeping the relative contributions of intensive grassland and crops-159 

horticulture constant. For this, consistent with recent intensification in New Zealand and other 160 

livestock farming regions (Levers et al. 2016; MacLeod and Moller 2006; McIntyre and Lavorel 2007), 161 

we converted extensive grassland to intensive land use while keeping semi-natural cover at 30% (20% 162 

native forest, 10% shrubland) and total forest cover at 30% (20% native, 10% exotic). The fourth 163 

scenario pictured upper-end intensification with 60% intensive use, reduction of semi-natural 164 

vegetation to a total of 10% and total forest to 15% (intensive henceforth). These land cover scenarios 165 

were within actual variability in crop, intensive grassland and native forest cover in New Zealand 166 

catchments. For example, the intermediate - even treatment was similar to the Hurunui or the 167 

Rangitikei Districts; the Masterton and Selwyn Districts were reflected in the intermediate – intensive 168 

treatment. The extensive treatment was similar to the Mackenzie District, while the intensive 169 

treatment captured patterns in intensive dairy production regions like the Hauraki and Manuwatu 170 

Districts. 171 
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We then varied land use configuration to produce landscapes with differing degrees of fragmentation, 172 

expecting that in landscapes with suboptimal composition decreased fragmentation of extensive, 173 

native vegetation enables multifunctionality under greater proportions of intensive use (Tscharntke et 174 

al. 2012). To examine the effects of fragmentation, each land cover was grown from 5, 10, 50, 100, 175 

500, and 1000 seed patches – increasing the number of seed patches increased the fragmentation of 176 

the resulting land cover distributions. A factorial combination of six levels of seed patches and four 177 

different land cover proportions produced 24 different land covers for each of the 10 replications of 178 

the three topography types, a total of 240 simulated landscapes. 179 

 180 

Table 1 - Parameterisation for the six land cover types across composition treatments.  Each landscape 181 

had a topographic limit for suitability set as a function of both elevation and slope.  The maximum 182 

landscape proportion for each land cover type was varied across four different treatments. 183 

 184 

Land cover Patch 

maximum 

elevation 

Patch 

maximum 

slope 

Maximum proportion of landscape for composition 

treatments 

   Extensive Intermediate 

- even 

Intermediate 

- intensive 

Intensive 

Crops-

horticulture 

500 10 0.001 0.01 0.04 0.06 

Intensive 

grass 

1000 20 0.099 0.29 0.36 0.54 

Extensive 

grass 

2000 90 0.5 0.3 0.2 0.2 

Shrubland 1750 90 0.1 0.1 0.1 0.05 

Exotic forest 1250 50 0.1 0.1 0.1 0.1 

Native forest 1250 90 0.2 0.2 0.2 0.05 

 185 

 186 

Ecosystem service models 187 

We modelled six ecosystem services essential to nature-based climate adaptation and mitigation by 188 

climate-smart landscapes. Pollination, erosion and water quality regulation underpin sustainable, 189 

healthy and climate-resilient food production. Carbon sequestration and greenhouse gas mitigation 190 
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are essential for the climate mitigation dimension. Landscape attractiveness for recreation 191 

(‘recreation’ henceforth) was selected as a critical component of health, rural quality of life and of 192 

income from tourism, two important components of rural livelihoods. These ecosystem services also 193 

capture the diversity of spatial relationships of ecosystem services (Duarte et al. 2020). Spatially 194 

insensitive (e.g. carbon stocks), proximity-based (e.g. pollination, landscape aesthetic value) and flow-195 

based (e.g. regulation of erosion or water quality) ecological processes underpin ES supply. These 196 

combine with functions of social access and value delivery (Lavorel et al. 2020): non-spatial (e.g. 197 

climate mitigation), proximity- (e.g. pollination, recreation) or topographical flow-dependence (e.g. 198 

water quality regulation), and size thresholds. We modelled supply capacity for ES representing this 199 

range of sensitivities, parameterised with New Zealand data (Table 2). 200 

 201 

Table 2 – Ecosystem service models used and parameterisation. Constitutional sensitivities of ES 202 

models to different spatial components are indicated as dots. Terrain: models with a function of slope 203 

or topographic features like ridges; Gravity: models with a downhill flow component; Patch size: 204 

models with an explicit function of patch size; Distance: models with an explicit function of distance to 205 

certain land covers (the open dot for nitrogen retention and distance represents inherent spatial 206 

relationships between pollutant sources and regulating vegetation, which are not directly coded in the 207 

model as opposed to the pollination model). Colouring of model parameters for the 6 land cover types 208 

indicate low (red tones) to high (green tones) effects of respective ES supply potential. 209 

 210 

Landcover
Carbon 
stocks

GHG emissions Erosion Pollination Recreation

Model Look-up Look-up NZUSLE
Schulp et 
al. 2014

ROS

Terrain ● ●
Gravity

Patch size ●
Distance ●

Parameters
Carbon 
stocks 
(t/ha)

GHG emissions 
(kg e-CO2 ha yr)

U
N load 

(load_n)

N retention 
efficiency 

(eff_n)

Pollinator 
habitat

Attractivenes
s

Crops / 
Horticulture

5 1000 0.5 45 0.4 0 0

Intensive 
Grassland

10 8800 0.1 65 0.4 0 0.2

Extensive 
Grassland

18 1000 0.01 10 0.6 0.5 0.7

Shrubland 30 5 0.005 4 0.8 1 0.6
Exotic Forest 140 5 0.007 10 0.7 0.5 0.5
Native Forest 200 3 0.005 2 0.85 0.5 1

○

Nitrogen retention

InVESt

●
●
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Carbon stocks: The carbon stocks model is a look-up table relating the land cover type of each pixel to 211 

an estimated value of carbon stocks (Case and Ryan 2020; Mason et al. 2012; Thomas et al. 2021). The 212 

standardised landscape sum of carbon stocks across all pixels in each landscape was calculated and 213 

used for comparisons of carbon stocks between landscape fragmentation levels and proportions sets. 214 

Greenhouse gas emissions: Likewise, the greenhouse gas emission model is a look-up table relating the 215 

land cover value of each pixel in the landscape to an estimated annual value of greenhouse gas 216 

emissions. Values were based on crop/land-cover and animal type-based emission values from Thomas 217 

et al. (2021) and were further simplified (e.g. assuming uniform stocking-rates) and adapted, to reflect 218 

a range of different land-uses. The landscape sum of greenhouse gas emissions for all pixels in each 219 

landscape was calculated and used for comparisons of greenhouse gas emissions between landscape 220 

fragmentation levels and proportions sets. For analyses of multifunctionality and pairwise interactions, 221 

we considered the ES of avoided emissions, calculated as 1 minus the standardised emission value for 222 

each pixel. 223 

Erosion: We implemented a derivation of the Universal Soil Loss Equation model for New Zealand, 224 

NZUSLE (Dymond 2010). The NZUSLE model is the product of a precipitation factor (P), a slope gradient 225 

factor Z, a slope length factor L, a soil factor K, and a vegetation factor U with an equation of the 226 

following form where Es is the mean annual erosion rate due to surficial processes (in t km-2 yr-1). 227 

Es (x,y) = αP2(x,y) Z(x,y) L(x,y) K(x,y) U(x,y) 228 

α is a constant calibrated with published surficial erosion rates (1.2 × 10-3). The precipitation factor (P) 229 

requires an estimate of mean annual rainfall per pixel. This was estimated for our virtual landscapes 230 

with a sea surface level mean annual rainfall of 800mm for New Zealand. and a +1mm lapse per 1m 231 

increase in altitude. 232 

The slope gradient factor (Z) is calculated as: 233 

0.065+4.56(dz/dx)+65.41(dz/dx)2 234 

where dz/dx is the slope gradient. 235 

The slope length factor (L) is calculated as (λ/22)0.5 where λ is slope length in metres. 236 

The slope length λ was calculated from the landscape DEM as presented by Barriuso Mediavilla et al. 237 

(2017) and Bolton et al. (1995). 238 

We set the soil erodibility factor (K) to 0.2, a value corresponding to medium level erodibilty clay soil 239 

types in Dymond (2010) as soil types were not simulated for this study. 240 

Finally, values for the vegetation factor (U) were parameterised for the land cover types based on 241 

expert assessment of the relative ability of each land cover to retain surface soil particles. 242 
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The landscape sum of erosion for all pixels in each landscape was calculated and used for comparisons 243 

between landscape fragmentation levels and proportions sets. For analyses of multifunctionality and 244 

pairwise interactions, we considered the ES of avoided erosion, calculated as 1 minus the standardised 245 

erosion value for each pixel. 246 

Nitrogen retention was modelled using the nutrient delivery ratio model (NDR) of the InVEST 247 

ecosystem service modelling package (Sharp et al. 2020). This model uses a simple mass balance 248 

approach, describing the movement of a mass of nutrient through space and represents the long-term, 249 

steady-state flow of nutrients through empirical relationships. Sources of nutrient across the 250 

landscape, also called nutrient loads, are determined based on land covers and associated loading 251 

rates. Nutrients are then transported via surface flow (we chose to not model sub-surface flows). 252 

Delivery factors are computed for each pixel based on the properties of pixels belonging to the same 253 

flow path (in particular their slope and retention efficiency of the land cover). At the watershed level, 254 

the nutrient export is computed as the sum of the pixel-level contributions. The parameterised 255 

nitrogen loads and nitrogen retention efficiencies were determined by expert assessment of available 256 

data for each land cover (Davis 2014; Elliott et al. 2005; Ledgard 2014; Pärn et al. 2012; Sharp et al. 257 

2020). Total nitrogen retention for each landscape was calculated as the proportion between total 258 

landscape nitrogen load and total landscape nitrogen export. For analyses of multifunctionality and 259 

pairwise interactions, we calculated the standardised proportion of landscape nitrogen retained. 260 

Crop pollination: The pollination model defines land covers on the basis of their capacity to provide 261 

habitat for pollinators, and on their requirement for pollination (Maes et al. 2012; Schulp et al. 2014b). 262 

To simulate pollinator movement, a 500 m buffer is implemented around patches of land covers 263 

providing pollinator habitat, and the overlap between those areas requiring pollination and pollinator 264 

availability is calculated. Considering provisioning services of crop (e.g. rape, clover seeds etc.), 265 

horticultural (fruit, vegetable and horticultural seed production and honey production, we defined 266 

crops / horticulture and shrublands as land covers requiring pollination. For pollinator habitat, 267 

shrublands are assigned a pixel value of 1 (high quality pollinator habitat), extensive grasslands, exotic 268 

forests and native forests a value of 0.5 (medium quality pollinator habitat) and crops / horticulture 269 

and intensive grasslands a score of 0 (no pollinator habitat). After the extension of the buffer area 270 

around each land cover patch (buffer pixels taking the value of the origin patch), the degree of overlap 271 

between areas requiring pollination and areas of high and medium quality or no pollinator habitat are 272 

identified. As shrublands are both pollinator requiring and high quality pollinator habitat, these are 273 

always pollinated, and thus we considered the proportion of crops / horticulture pixels that are 274 

overlapped by the differing degree of pollinator availability that becomes the variable of interest. We 275 

calculated the % of crops without pollinators for comparisons of pollination availability between 276 
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landscape fragmentation levels and proportions sets. For analyses of multifunctionality and pairwise 277 

interactions, we considered the ES of the proportion of crops covered by pollinator habitat (either high 278 

or medium quality), calculated as 1 minus the standardised proportion of crops without pollinators for 279 

each landscape. 280 

Recreation: We focused on landscape attractiveness from the Recreation Opportunity Spectrum 281 

approach (Byczek et al. 2018). The recreation model comprises of 3 components of landscape 282 

attractiveness that are summed to provide a compound final raster of overall landscape attractiveness. 283 

The first component relevant to fishing, swimming, scenic value defines areas close to a watercourse 284 

(determined from the landscape DEM) as more attractive for recreation than areas distant from a 285 

watercourse. Buffers of 500-meter size are created around aquatic features in the landscape (rivers) 286 

and are classified as attractive for recreation (pixel value = 1), while the remainder of the landscape is 287 

classified 0. The second component classifies areas located in elevated areas of the landscape (hills, 288 

ridges) as being more attractive for recreation than non-elevated areas. Such areas are considered to 289 

provide scenic views attractive for recreation. A topographical position index is calculated for each 290 

DEM pixel using a circle of 200 meters diameter, and a breakpoint of 1.5 used to classify pixels as 291 

elevated (>1.5) or not (<1.5). Elevated pixels are given a score of 1, and non-elevated pixels a score of 292 

0. The third component weights each pixel depending on the attractiveness of its land cover and the 293 

size of patch of that land cover. Land covers such as native forests are considered as more attractive 294 

for recreation than, for example, intensive grasslands (Richards and Lavorel, unpubished). Larger 295 

contiguous areas of any given land cover are considered as more attractive for recreation than small, 296 

disjunct areas of that land cover (Cordingley et al. 2015; Wartmann et al. 2021). Each pixel is assigned 297 

a subjective recreation attractiveness score according to its land cover (Table 1). The model then 298 

calculates the proportion of the landscape occupied by each patch and multiplies the land cover 299 

attractiveness score of each pixel by the proportional size of the patch in which the pixel is found. 300 

Finally, the three components of landscape recreation attractiveness are summed to provide a 301 

compound score of recreation attractiveness. The mean of this value across each landscape is used for 302 

comparisons of recreation attractiveness between landscape fragmentation levels and proportions 303 

sets. For analyses of multifunctionality and pairwise interactions, we calculated the standardised value 304 

of the recreation attractiveness score. 305 

The six ES models were coded into a software pipeline using the Snakemake framework (Mölder et al. 306 

2021). Snakemake is a framework for linking together multiple models, originally programmed in 307 

different environments and languages, into an analysis workflow for making analyses reproducible and 308 

scalable (Mölder et al. 2021). In this case the workflow was used to process the large number of virtual 309 

landscapes that were simulated. The six ES models were programmed using Python and the Python 310 
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packages RasterStats (Perry 2021), Pandas (The pandas development team, 2021), SciPy (Virtanen et 311 

al. 2020), InVEST (Sharp et al. 2020), and Rasterio (Gillies et al. 2013); the R language and the R 312 

packages landscapemetrics (Hesselbarth et al. 2019), raster (Hijmans 2021), and dplyr (Wickham et al. 313 

2021); GDAL (GDAL/OGR contributors 2021); GRASS GIS (Neteler 2021); Docker and Debian Buster. 314 

 315 

Data analysis 316 

Landscape pattern was quantified using common spatial metrics. After screening for correlations we 317 

retained: mean and land cover specific patch number and mean patch size, nearest neighbour distance, 318 

connectivity and Shannon diversity for characterising individual landscapes (Rieb and Bennett 2020). 319 

Responses of individual ES to combinations of landscape composition and fragmentation were tested 320 

using General Linear Models with topography (3 types), and the combination of intensification level (4 321 

categorical land cover parameter sets) and mean patch size (continuous) as explanatory variables. 322 

We then related spatial pattern for each unique simulated landscape to multifunctionality indices and 323 

underpinning ES pairwise interactions. 324 

We selected four indicators to characterise different aspects of multifunctionality. We aimed to reflect 325 

the different ways in which multifunctionality can be provided; either by providing multiple functions 326 

everywhere across a landscape, or through providing different functions in areas where conditions are 327 

suitable (van der Plas et al 2019). Hence we selected indicators to reflect average multifunctionality 328 

and its variability at each of the landscape and pixel scales. The first two indicators consider the 329 

magnitude and evenness of provision by each landscape as a whole, while the second two consider 330 

within-landscape variation by comparing scores across different pixels. Multifunctionality is commonly 331 

quantified as the average or sum of all ecosystem service scores provided by a landscape, hence our 332 

two indicators of mean scaled provision at landscape and pixel scale (Hölting et al. 2019). The mean 333 

landscape-scale ecosystem service score indicates whether a landscape is providing a high total level 334 

of functionality, but can be susceptible to bias towards one ecosystem service, if the scores for that 335 

service are very high in some landscapes. To also characterise the extent to which a landscape provides 336 

multiple services, we quantified the evenness of provision of the selected ES (Richards et al. 2018). At 337 

the within-landscape (pixel) scale, it is important to understand whether the landscape is providing 338 

multifunctionality uniformly, or whether it exhibits spatial heterogeneity and complementarity across 339 

the landscape mosaic. We thus quantified the within-landscape heterogeneity in the sum of the scaled 340 

ES scores within each pixel (Lavorel et al. 2017b). 341 
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For the landscape scale indicators, each ES score for each landscape was scaled against the minimum 342 

and maximum values across all landscapes. For the pixel-level indicators, each ES score was scaled 343 

against the minimum and maximum values found in any one pixel across all virtual landscapes. Each 344 

indicator was calculated across the six ES, and then repeated only for the three configuration-sensitive 345 

ES (pollination, nitrogen retention and recreation) so as to focus on fragmentation effects and their 346 

interactions with configuration. 347 

We modelled all multifunctionality indicators as mixed-effects generalized linear models fitted using 348 

penalized quasi-likelihood and assuming a quasibinomial error structure. Models were fitted using the 349 

topography type factor as a random effect and the mean patch size and landscape composition 350 

treatment group as fixed effects. An interaction was fitted between the two fixed effects. Models were 351 

fitted using the glmmPQL R function (Venables and Ripley 2002). 352 

Trade-offs and synergies between pairs of ecosystem services are commonly analysed using a Pareto 353 

front approach, also known as a production-possibility front, or non-dominated sorting, approach 354 

(Seppelt et al. 2013; Vallet et al. 2018). Under this approach, the relationships between two or more 355 

ecosystem services are analysed by quantifying their provision across a range of different land cover 356 

scenarios (Vallet et al. 2018). The ecosystem services performance of the scenarios can be visualised 357 

by plotting the scores for one ecosystem service against another, and the shape of the resulting cloud 358 

of points can be informative in understanding the nature of trade-off or synergistic relationships 359 

between the services (Seppelt et al. 2013; Vallet et al. 2018). Several attributes of this cloud of points 360 

can be informative in understanding the nature of the relationships between two ecosystem services 361 

(Seppelt et al. 2013; Vallet et al. 2018). 362 

Here were analysed pairwise ecosystem service trade-offs following the method proposed by Vallet et 363 

al. (2018), which was previously used to analyse a cloud of points resulting from a series of iterative 364 

but not optimised scenarios – similar to our case. For each pair of ecosystem services, the scaled 365 

indicator scores for each virtual landscape (considered as a ‘scenario’) were plotted against each other, 366 

and we quantified three indicators of the trade-off or synergy relationship between the two services. 367 

First, we quantified the Pareto front of each pair of ecosystem services, to identify the virtual 368 

landscapes that were technically efficient in providing ecosystem services. Efficient scenarios are those 369 

in which the provision of one ecosystem service cannot be improved upon without degrading the 370 

provision of the second service (Seppelt et al. 2013). The efficient scenarios were found using non-371 

dominated sorting of the ecosystem service provision scores, after scaling the scores between zero 372 

and one based on the maximum and minimum scores recorded across all scenarios. The shape of the 373 

Pareto front is related to strength of the trade-off between two services (Richards et al. 2018). In 374 
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particular, cases where only one scenario makes up the Pareto front can be described as synergies, 375 

because there is one efficient scenario that maximises the provision of both services (Richards et al. 376 

2018; Vallet et al. 2018). Pareto fronts that contain multiple scenarios indicate a trade-off between 377 

maximising the two services. Second, for each pair of ecosystem services we quantified the overall 378 

shape of the bounding box enclosing the cloud of points. We characterised the shape of this cloud of 379 

points as the alpha-convex hull (Pateiro-Lopez and Rodriguez-Casal 2019), and quantified its shape 380 

using the shape index I, which characterises the “roundness” or “elongatedness” of the cloud (Vallet 381 

et al. 2018). Pairs of ecosystem services that show a round cloud of points (I values close to 1) show 382 

little relationship, while those that show an elongated cloud of points show a stronger relationship 383 

that may represent an indicative trade-off or synergy, depending on the direction of the elongation 384 

(Vallet et al. 2018). Third, we quantified the shape of and elongation in the cloud of points as the 385 

Pearson correlation coefficient r of the cloud of points (Vallet et al. 2018). Larger positive r values are 386 

indicative of a positive relationship – or synergy – between the two ecosystem services, while more 387 

negative values indicate a likely trade-off (Vallet et al. 2018). 388 

All statistical analyses were conducted in R version 4.0.4. (R Core Team, 2021).  389 
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Results 390 

Virtual landscape realisations 391 

Our simulations produced a range of landscapes ranging from highly segregated, large land cover 392 

patches to fine-grained mosaics (Figure 1; Supplementary Figure 1). Hereafter ‘fragmentation’ refers 393 

to increasing mean patch number (conversely decreasing mean patch size), which was retained the 394 

most parsimonious descriptor of spatial pattern. 395 

Overall, mean patch size was significantly greatest (with slightly fewer, more distant patches) in 396 

extensive, and especially less fragmented landscapes, while intensive landscapes had smaller patches 397 

in least fragmented landscapes and fewest patches at higher fragmentation levels. Contagion 398 

decreased as expected by design from least to more fragmented landscapes and was higher in either 399 

extensive or intensive landscapes than in the two intermediate composition treatments, creating the 400 

opposite pattern for Shannon diversity. These patterns reflect well-known phenomena near 401 

theoretical thresholds of 60% land cover where individual patches start to coalesce (Gardner et al. 402 

1987). 403 

While for plains and hills landscapes target proportions for individual land uses were always reached, 404 

in mountains constraints on allocation of intensive grassland and crops resulted in lower realised 405 

proportions than maximum targets (0.8% for crops; 34% rather than 36% for intermediate-intensive 406 

and 39% rather than 54% for intensive), and filling of available land by extensive grassland (40% rather 407 

than 20% in intensive landscapes, 25% rather than 20% intermediate-intensive). This resulted in fewer 408 

and much smaller patches of either intensive land cover than in plains or hills, especially for lower 409 

fragmentation treatments. Conversely there were much fewer, larger patches of extensive grassland 410 

than in plains or hills, especially in intensive as compared to intermediate landscapes, reflecting the 411 

coalescence of extensive grassland patches in less suitable landscape positions. This pattern is a 412 

realistic reflection of actual land use distribution in pastoral regions like New Zealand. 413 

  414 
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Figure 1 –Examples of landscape patterns for the intensive-even composition on plains (left), hills 415 

(middle) and mountains (right) for least (top row) and most (bottom row) fragmented configurations. 416 

Each landscape spans 50 x 50 km, with 25 x 25 m pixels. 417 

 418 

 419 

Initial data exploration showed the four composition treatments to best explain variations in modelled 420 

ES as compared to any single or simple combination of land covers. We therefore retained composition 421 

as a qualitative explanatory variable, depicting increasing land use intensities. 422 

In the following we first summarise interacting effects of landscape composition and fragmentation on 423 

individual ES. Secondly, we demonstrate how changes in fragmentation can mitigate the effects of 424 

increasing land use intensity on multifunctionality. Thirdly, we explore underpinning responses of 425 

pairwise ES interactions to landscape pattern. 426 

 427 

Effects of landscape pattern on individual ecosystem services 428 

Different ES showed a range of sensitivities to landscape composition, fragmentation and their 429 

interactions (Figure 2, Supplementary Table 2; Figure 3, Supplementary Figure 2). 430 

  431 
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Figure 2 - Variance partition across topography, land use intensity and patch size from the GLM 432 

analysis for the recreation, nitrogen retention and pollination models. Each segment represents the 433 

% variance explained in the GLM by topography, land use intensity (LUI), mean patch size and their 434 

interactions (LUI*PatchSize). Data from Supplementary Table 2. 435 

 436 

 437 

Figure 3 - Summary single ecosystem service responses to land use intensity (composition treatment) 438 

and fragmentation (mean patch size). Composition treatments are: E - extensive, IE - intermediate 439 

even, II -intermediate intensive, I - intensive. Data for each topography are presented in 440 

Supplementary Figure 2. 441 

 442 
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Our GLM analyses confirmed that, consistent with model specifications, carbon stock, GHG emissions 443 

and erosion were determined by landscape composition and not by any aspect of configuration. 444 

Emissions and erosion increased and carbon stocks decreased for increasing LU intensity, reflecting 445 

their respective land cover based parameters (Table 2). Carbon stocks decreased in intensive 446 

landscapes largely because of their lower total forest cover and were largely similar across other 447 

composition treatments. Similarly, mitigation of GHG emissions was markedly greater in extensive 448 

landscapes given strong reduction of intensive grassland cover. 449 

Recreation was equally sensitive to composition and fragmentation. Attractiveness was greatest for 450 

the extensive landscapes which contain more forests and native vegetation, followed by intensive 451 

landscapes. Greater mean patch size increased attractiveness, with the few larger forest or extensive 452 

grassland patches being most beneficial in intensive landscapes. Greater patches also increased 453 

attractiveness in extensive landscapes, reflecting the presence of multiple large forest and extensive 454 

grassland patches, especially in mountains. 455 

In contrast pollination and N retention decreased with intensification but were less sensitive to 456 

fragmentation (respectively 11% and 4% variance), which increased both ES. Fragmentation had 457 

strongest effects in intensive landscapes, especially for pollination. 458 

Topography was most influential for erosion and N retention through its effects on lateral water flows, 459 

highlighting the value of our novel incorporation of terrain and hydrological networks into virtual 460 

landscapes. Other significant (16% total variance for pollination) or minor effects (other ES) reflected 461 

the effects of topography on land cover allocation in mountains. 462 

 463 

  464 
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Effects of landscape pattern on multifunctionality 465 

Figure 4 – Graphic summary of effects of landscape composition and fragmentation on landscape-level 466 

multifunctionality. Plot columns show the effect of increasing land use intensity across composition 467 

treatments. Plot rows show the effect of increasing fragmentation from coarse-grained (highest mean 468 

patch size) to fine-grained (lowest mean patch size) landscape configuration. The overall size of each 469 

panel is proportional to the mean ES value. Within each panel, the area of a given ES is proportional to 470 

its standardised value, showing evenness across ES. The plot was generated using the R treemapify 471 

package (Wilkins and Rudis 2021). 472 

 473 

 474 

Figure 4 provides a graphic summary of combined effects of landscape composition and patch size (i.e. 475 

fragmentation) on the six ES and hence on multifunctionality. Increasing land use intensity decreased 476 

multifunctionality by reducing all ES (Figure 4, horizontal axis). However, greater fragmentation 477 

mitigated some of these effects because relative increases in nitrogen retention and pollination 478 

exceeded losses in recreation (Figure 4, vertical axis showing greater multifunctionality in fine-grained 479 

landscapes for a given land use intensity). Land use intensity and fragmentation influenced all 480 

multifunctionality indicators interactively. Pixel-level and landscape-scale multifunctionality or 481 

evenness indicators decreased with LU intensity (Figure 5; Supplementary Table 3a). Across all 482 

multifunctionality indicators increasing mean patch size had greatest effects in most fragmented 483 

landscapes (smallest mean patch sizes – left hand parts of response curves in Figures 5a-5d). 484 

Response of average pixel-level multifunctionality to fragmentation depended on LU intensity (Figure 485 

5a). Pixel-level multifunctionality was mostly insensitive to mean patch size for intermediate 486 

landscapes. In contrast, increasing mean patch size (i.e. decreasing fragmentation) had greatest 487 
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benefits to pixel-level multifunctionality in extensive landscapes, due to larger forest patches 488 

increasing attractiveness for recreation. Conversely pixel-level multifunctionality decreased with 489 

increasing patch size in intensive landscapes, where fragmentation mitigated negative land use 490 

impacts on pollination and N retention. 491 

These responses of average pixel-level multifunctionality were underpinned by varying levels of cross-492 

pixel heterogeneity (standard deviation of pixel-level scaled provision) (Figure 5b). Overall, in either 493 

intensive or extensive landscapes most pixels perform poorly (intensive) or very highly (extensive) 494 

across ES, whereas at intermediate intensities there is a more even mix of performance. As a result, 495 

cross-pixel heterogeneity was greatest in intermediate landscapes. It increased markedly with 496 

increasing mean patch size due to disproportional benefits of larger patches for recreation combined 497 

with losses in N retention or pollination. Conversely, spatial heterogeneity in multifunctionality was 498 

lowest for extensive landscapes, though increasing with increasing mean patch size, and slightly 499 

greater but less sensitive to fragmentation for intensive landscapes.  500 

Pixel-level responses scaled to losses in landscape-scale multifunctionality with LU intensity increasing 501 

with patch size (lower fragmentation), due to simultaneous losses for N retention and pollination 502 

(Figure 5c). The sensitivity of landscape-scale evenness in ES provision to fragmentation was limited, 503 

with a reduced evenness for greater patch size only in intensive landscapes (Figure 5d). 504 

To discount spatially insensitive ES (carbon, GHG, erosion) we now focus on multifunctionality for 505 

pollination, N-retention and recreation only (Figure 6; Supplementary Table 3b). Patterns of pixel-level 506 

multifunctionality (Figure 6a) were the same as when considering all six ES, confirming negative effects 507 

of increasing patch size at higher LU intensity and opposite effects in extensive landscapes. Likewise, 508 

heterogeneity of scaled provision across pixels (SD; Figure 6b) was greatest for intermediate 509 

landscapes and increased with patch size except for intensive land use. 510 

Landscape-scale multifunctionality decreased markedly with land use intensity as for the complete set 511 

of six ES, and decreased with increasing patch size, especially at highest fragmentation levels, except 512 

in extensive landscapes (Figure 6c). Focusing on the three configuration-sensitive ES as compared to 513 

the complete set of six ES (Figure 5d) revealed that, except for highest land use intensity, evenness 514 

increased rapidly with increasing patch size, especially in most fragmented landscapes (lowest mean 515 

patch sizes) (Figure 6d). This showed how benefits of increasingly large extensive grassland and forest 516 

patches for recreation offset losses in pollination and N retention.  517 

  518 
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Figure 5 – Multifunctionality indicators for the six ecosystem services considered at landscape (top 519 
row) or pixel (bottom row) scale depending on landscape mean patch size. (a) Mean pixel-scale 520 
provision; (b) Standard deviation of provision across pixels within each landscape; (c) Mean landscape-521 
scale provision; (d) Evenness of landscape-scale provision across the six services. All indicators are 522 
calculated using standardised values for each ecosystem service. 523 

 524 

Figure 6 - Multifunctionality indicators for nitrogen retention, pollination and recreation considered at 525 
landscape (top row) or pixel (bottom row) scale depending on landscape mean patch size. (a) Mean 526 
pixel-scale provision; (b) Standard deviation of provision across pixels within each landscape; (c) Mean 527 
landscape-scale provision; (d) Evenness of landscape-scale provision across the three services. All 528 
indicators are calculated using standardised values for each ecosystem service. 529 

 530 

  531 
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Pairwise ecosystem service interactions 532 

Pairwise ES interactions showed multiple synergistic effects among modelled regulating ES, and trade-533 

offs with recreation (Figure 7). Interaction patterns were consistent across the three topographies, 534 

though not for erosion regulation which was artificially high in plains with limited erosive flow 535 

(Supplementary Figure 3). 536 

GHG mitigation was synergistic with pollination, nitrogen retention and regulation of soil erosion due 537 

to their coinciding responses to landscape composition, and especially to proportion of intensive 538 

grassland. Given lack of sensitivity of GHG emissions to spatial pattern, so were interactions with other 539 

ES. Regulation of soil erosion was also synergistic with pollination and nitrogen retention. The apparent 540 

negative relationship between regulation of soil erosion and recreation was only driven by artificially 541 

high regulation values in those landscapes with low erosion flow (plains or extensive), and thus 542 

considered spurious. 543 

Pollination and N retention were synergistic, with fragmentation providing simultaneous large benefits 544 

to both, especially at high LU intensity. There was a strong trade-off between N retention and 545 

recreation attractiveness. At higher land use intensity increasing fragmentation benefits N retention 546 

but with strong costs to recreation. There was also a weak trade-off between pollination and 547 

recreation attractiveness, especially in mountains (Supplementary Figure 3). Modest increases in 548 

fragmentation mitigated the effects of land use intensity on pollination with relatively small costs to 549 

recreation. 550 

Interaction patterns were overall more sensitive to land use intensity (composition) than to 551 

fragmentation (Supplementary Figure 4), reflecting individual ES sensitivities (Figure 2). Overall, 552 

fragmentation did not change synergies to trade-offs (cloud shape) or conversely, but altered 553 

interaction strength (correlation coefficient). Consistent with individual ES sensitivities as well, 554 

interactions with recreation were most sensitive to fragmentation for cloud shape, though not for the 555 

strength of the correlation (correlation coefficient). Interactions between pollination and nitrogen 556 

retention had low sensitivity to either LU intensity or fragmentation given their similar individual 557 

responses.  558 

  559 
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Figure 7- Pairwise ecosystem service interactions among the six ecosystem services for the full set of 560 

topographies. This matrix is a symmetrical grid. The names of ecosystem services are labelled along 561 

the top of the columns and in the diagonal grid cells. Each cell above the diagonal shows a bivariate 562 

scatterplot for each pair of services. Within each bivariate scatterplot, each point plots the ecosystem 563 

performance of one virtual landscape, with respect to the two ecosystem services used as the x and y 564 

axes. The scores for each ecosystem service have been scaled and normalised between zero and one, 565 

such that the range of points is equivalent to the difference between the highest and lowest scores 566 

across all virtual landscapes. The solid black line or blue point shows the Pareto frontier, with a blue 567 

point indicating only one scenario and thus a synergy, and a black line indicating multiple scenarios 568 

that plot a trade-off. Above each plot, summary statistical measures for each bivariate comparison are 569 

included. The shape index I characterises the roundness of the cloud, with higher I values representing 570 

more elongated clouds and thus stronger interactions. The correlation coefficient r indicates the 571 

overall trend in the cloud of points, with more positive values indicating likely synergies and negative 572 

values indicating trade-offs. 573 

 574 
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  576 
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Discussion 577 

Our results showcase how a systematic exploration with virtual simulations of ES responses to land use 578 

composition and configuration within realistic topographic and land use constraints can advance 579 

mechanistic understanding of multifunctionality and underpinning ES trade-offs and synergies, as 580 

required for advancing landscape sustainability science (Wu 2021). This novel approach allowed us to 581 

show how knowledge of sensitivities of individual ES to landscape composition, fragmentation and 582 

their interactions can help explain their effects on pixel- and landscape-level multifunctionality. As 583 

expected, increasing land use intensity decreased all six ES relevant to climate mitigation (carbon 584 

stocks and GHG mitigation), sustainable production (erosion control, pollination and nitrogen 585 

retention) and local livelihoods (recreation), and thus multifunctionality at both landscape and pixel 586 

scales. However, the simulations revealed that greater fragmentation mitigated some of these effects 587 

because its benefits to nitrogen retention and pollination exceeded losses in landscape attractiveness 588 

for recreation, especially in finer-grained landscapes. Landscape pattern effects on multifunctionality 589 

were underpinned by ES pairwise interactions. The five regulating ES were synergistic and showed 590 

trade-offs with recreation. Although these interactions were most sensitive to intensity given its 591 

dominant effects on individual ES, fragmentation mediated interaction strength. Lastly our simulation 592 

design demonstrated the critical role of extensive grasslands and of spatial complementarity for 593 

achieving multifunctionality goals in climate-smart landscapes comprising no more than 30% intensive 594 

use, no less than 30% native shrubland and forest and 40% extensive grassland. 595 

 596 

Virtual land cover simulations 597 

Virtual landscape simulations allow a systematic understanding through a quasi-experimental 598 

approach. Neutral landscape models have been applied for understanding effects of landscape pattern 599 

on movements of single and interacting biota (Etherington 2016; With 1997), or on lateral processes 600 

like fire spread (Gardner and Urban 2007; Plotnick and Gardner 2002). Virtual landscapes offer an 601 

important approach to complement real landscape scenarios, which address potential changes in 602 

landscape composition (Ausseil et al. 2013; Lamarque et al. 2014; Mitchell et al. 2015a; Qiu et al. 2018; 603 

Schirpke et al. 2020) and configuration (Cordingley et al. 2015; Richards et al. 2018; van Strien et al. 604 

2016; With 2019). Our systematic generation of combined topography and land cover patterns also 605 

adds to simulations of changed patch sizes on actual topographies (Thomas et al. 2020). By capturing 606 

some of the main constraints to land use distribution and ecosystem service supply they allow a 607 

structured approach to understand and predict ES interactions and multifunctionality. With this 608 

approach we first described individual ES spatial distribution and responses to landscape composition 609 
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and fragmentation. Then, from this understanding of the relative sensitivities of individual ES and of 610 

their resulting interactions we could explain patterns of multifunctionality, which could not have been 611 

predicted a priori from basic model characteristics. 612 

For the first time in neutral landscape approaches we include topography and hydrological network, 613 

as a critical driver of land use distribution and ES physical flows (energy, matter e.g. water, nutrients 614 

and biota). However, fractal neutral landscape methods, such as the Perlin noise we used, produce 615 

topography with many depressions.  We filled these pits to produce hydrologically valid river networks, 616 

but this occasional resulted in unrealistically straight rivers crossing large depressions.  More 617 

hydrologically realistic landscape models could be developed either by extending the Perlin noise 618 

topography approach to include the application of hydrologic erosional process (Musgrave et al. 1989) 619 

or by exploring procedural modelling approaches from computer graphics that reverse the process by 620 

first generating a river network around which topography is then developed (Smelik et al. 2014). 621 

Our model was driven by the statistical distribution of land cover across New Zealand and appropriately 622 

reflected land use allocation especially in mountains where topography strongly constrained intensive 623 

land use. Simulations however produced simple landscapes as compared to actual patterns of land use 624 

distribution due to the even initial patch numbers across land covers. In actual landscapes intensive 625 

land uses are often clustered for infrastructure, labour and energy costs (Verburg et al. 2002), thus 626 

deviating from even, random spatial allocation. In extensive rural landscapes they can also form 627 

smaller patches than forest and successional shrubland, leading to uneven patch sizes across land 628 

cover types (Verburg et al. 2006). Lastly, we did not include soils as drivers of land use allocation 629 

because of their lack of statistical effects on land use distribution within New Zealand regions. This 630 

reflects the current ability for fertilisers and irrigation to substitute for soil quality as in the case of 631 

intensive dairy farming on stony soils of the Canterbury region. These would have obvious moderating 632 

effects on soil erosion, nutrient leaching and retention, carbon sequestration rates and GHG emissions 633 

and can in principle be incorporated into virtual landscape generation as long as statistical rules can 634 

support distribution modelling (Lilburne et al. 2020). 635 

 636 

Systematically exploring landscape effects on interactions of ecosystem services with set 637 

properties 638 

While spatial sensitivities of individual ES are broadly known (Qiu 2019), there are both context-specific 639 

(Lamy et al. 2016; Qiu et al. 2021; Rieb and Bennett 2020) and model-related (Verhagen et al. 2016) 640 

discrepancies in presence and magnitude of responses. Our observation that the relative contributions 641 

of composition and configuration vary significantly among ES (Lamy et al. 2016) is consistent with their 642 
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underpinning biophysical processes. Our set of replicable models enables a systematic exploration of 643 

spatial sensitivities by structured ES model comparisons across landscape properties (topography, 644 

composition, configuration) offering useful avenues for analysing sources of uncertainty (Lavorel et al. 645 

2017a; Schulp et al. 2014a).  646 

We used simple models for proof of concept, which could be substituted in any specific application by 647 

more complex phenomenological, trait-based or process-driven ES models (Lavorel et al. 2017a). Our 648 

selection incorporated realistic, commonly used models with known spatial sensitivities of relevant 649 

processes. This allowed us to conduct a structured exploration of interactions with outcomes easy to 650 

link to single ES model properties. Further developments could incorporate in a controlled and modular 651 

fashion greater representation of biogeochemical processes, hydrological, solute and particulate flows 652 

or animal movement ecology to capture more complex spatial effects including edge effects (Didham 653 

et al. 2015; Ziter et al. 2014) and legacies (Ziter et al. 2017). 654 

Effects of landscape fragmentation on individual ES have been formalised (Mitchell et al. 2015b), but 655 

effects of landscape configuration on pairwise interactions or multifunctionality have not been 656 

analysed systematically. Conceptualisations of landscape effects on ES interactions have addressed 657 

amount of land conversion and intensity of land use (Qiu et al. 2021; Seppelt et al. 2016), but 658 

considered effects of spatial pattern as uncertain (Seppelt et al. 2016). Furthermore, evidence for the 659 

effects of landscape pattern on ES interactions is scant, but confirms trade-offs and synergies can vary 660 

depending on composition (e.g. land use intensity) (Qiu et al. 2021) and fragmentation (Rieb and 661 

Bennett 2020). Our simulations showed that, although land use intensity is the main driver of 662 

interactions given its dominant effects on ES values, fragmentation interacts with composition in 663 

mediating interaction strength, though not direction (compare top and bottom rows in Figure 4). 664 

Hence, strongest trade-offs with recreation reflected primary differences in beneficial land covers 665 

(Table 2) combined with greatest and opposite responses to fragmentation as compared to pollination 666 

and N retention. Landscape diversity is considered essential for multifunctionality (Mastrangelo et al. 667 

2014; Stürck and Verburg 2017). Van der Plas et al. (2019) showed how in heterogenous landscapes 668 

spatial complementarity can support the provision of multiple ES. This mechanism for scaling 669 

multifunctionality from pixels to landscapes operated especially in our intermediate landscapes with 670 

higher Shannon diversity, where we observed higher spatial variability and evenness in supply of 671 

multiple ES. Yet van der Plas et al. (2019) did not consider the spatial grain of heterogeneity. Our 672 

simulations showed landscape-scale multifunctionality to decrease and both cross-pixel spatial 673 

heterogeneity and landscape-scale evenness to increase in coarser-grained landscapes (increasing 674 

mean patch size), due to increasing recreation attractiveness while pollination and N retention 675 

declined. This was consistent with expectations for greater landscape diversity with finer-grain 676 
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patterns to favour multifunctionality (and ES resilience) by supporting a variety of ecosystem services 677 

and greater species and genetic diversity (Lavorel et al. 2017b; Schippers et al. 2015; Tscharntke et al. 678 

2021). Due to our selection of ES that were rather favoured by fine-grained landscapes (pollination, N 679 

retention) and to not including habitat functions for forest biota our simulations were unable to 680 

confirm observations of multiple ES benefits of larger forest patches (Arroyo-Rodríguez et al. 2020; 681 

Valdés et al. 2020). Relationships between landscape diversity, spatial grain and multifunctionality do 682 

vary depending on specific ES considered and their respective spatial sensitivities (Stürck and Verburg 683 

2017). A priori understanding of individual ES sensitivities as supported by our set of models is thus 684 

essential to anticipate actual effects of spatial pattern. 685 

 686 

Developing templates for multifunctional climate-smart landscapes 687 

Knowledge syntheses have proposed based on empirical evidence and landscape ecological principles 688 

that optimal landscapes for biodiversity and therefore ES, especially linked to mobile biota, comprise 689 

no more than 30% intensive, no less than 30% extensive or protected (including 10% to 20% high 690 

quality habitat) and 40% intermediate intensity use (Arroyo-Rodríguez et al. 2020; Garibaldi et al. 2021; 691 

Smith et al. 2013). Such landscape composition templates (McIntyre et al. 2000) have however not 692 

been tested systematically for how they actually deliver on multiple ES. Our simulations support three 693 

mechanisms through which such templates effect multifunctionality. 694 

First, given spatial heterogeneity is a key mechanism supporting multifunctionality (see previous 695 

section) these land cover compositions are indeed those that provide greatest spatial diversity 696 

(Supplementary Figure 1). 697 

Secondly, we demonstrated the irreplaceable contribution of intermediate intensity land use, here 698 

extensive grasslands, to multifunctionality. To shift from extensive to intermediate landscape 699 

composition treatments, we increased intensive land uses (crops and intensive grassland) by 700 

substitution of dominant extensive grassland while keeping both total forest and native woody 701 

vegetation (shrubland and forest) constant. Such land use change scenarios are consistent with 702 

transitions to intensification in New Zealand and may other livestock production regions (Levers et al. 703 

2016; MacLeod and Moller 2006; McIntyre and Lavorel 2007). The decreased supply of individual ES 704 

and multifunctionality highlights that woody vegetation could not compensate for losses in extensive 705 

grasslands. This demonstrates the critical, yet under-recognised role of retaining or restoring 706 

substantial areas of ecosystems at intermediate management intensity like permanent grasslands or 707 

woodlands in supporting multifunctionality and climate adaptation (Bardgett et al. 2021; Cordingley 708 

et al. 2015; Lavorel et al. 2015; Valdés et al. 2020). Such benefits are recognised in future land use 709 
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scenarios with intermediate intensity land use mosaics (Burton et al. 2019; Hanspach et al. 2014; 710 

Martínez-Sastre et al. 2017; Verkerk et al. 2018). 711 

Thirdly, whilst proposed landscape templates include recommendations about patch sizes, e.g. 10% 712 

landscape area as large forest patches (Arroyo-Rodríguez et al. 2020), interactions between proposed 713 

land cover values and landscape fragmentation are not known. Part of the logics of landscape 714 

templates is embedded in understanding that 30-40% cover supports sufficient biotic connectivity in 715 

landscapes with contagious spatial patterns, e.g. fractal (Fahrig et al. 2019; With 2016). Indeed, our 716 

landscapes with intermediate intensity compositions had nearest neighbour distances similar to 717 

extensive landscapes (Supplementary Figure 1). Adding to these known effects of composition on 718 

connectivity, our simulations clearly showed that patch size influences the supply of multiple ES in rural 719 

landscapes. In most fragmented landscapes especially, modest increases in patch size resulted in 720 

significant trade-offs between those ES favoured by more scattered extensive grassland and woody 721 

patches (pollination, N retention) and gains from larger patches for landscape attractiveness. 722 

Management decisions towards slight increases or decreases in patch size are thus expected to have 723 

disproportional effects in multifunctionality outcomes. In particular, reduction in patch size through 724 

the planting or regeneration of small patches of woody vegetation will favour multiple regulating 725 

services in farmed landscapes (Case et al. 2020; Thomas et al. 2020; Tscharntke et al. 2021; Valdés et 726 

al. 2020). Conversely, small increases in patch size and hence connectivity disproportionately benefit 727 

services dependent on large habitat patches for valued species (Arroyo-Rodríguez et al. 2020; 728 

Kimberley et al. 2021) or cultural preferences (Cordingley et al. 2015; Sutherland et al. 2016). 729 

This understanding is essential to design climate-smart landscapes that support climate mitigation, 730 

sustainable and climate resilient production and fulfilling local livelihoods. Our simulations did not 731 

include food or timber production, given it would not be spatially sensitive and is largely proportional 732 

to our GHG parameterisation. Given the comparison between three and six ES we expect including 733 

production (yields per surface area), which is not sensitive to spatial configuration, would just decrease 734 

overall levels of multifunctionality – and hence also differences between proportion sets, without 735 

changing responses to fragmentation. 736 

 737 

We conclude that the understanding of interactions between landscape composition and especially 738 

level of intensification and spatial configuration gained from virtual simulations is an essential step to 739 

designing multifunctional, climate smart-landscapes tailored to regional geographies (e.g. 740 

topography), land use allocation and ES priorities. Our virtual simulation approach will support future 741 

developments for refining these contexts and producing hybrid studies for real landscapes. 742 
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