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Inroduction

A Randers metric is a deformation of a Riemannian or Finsler metric obtained by adding to its infinitesimal form a differential 1-form. In [START_REF] Miyachi | Tangent spaces of the Teichmüller space of the torus with Thurston's weak metric[END_REF], in the case where the surface is a torus, we exhibited a natural family of Randers metrics which connects the Teichmüller metric on the Teichmüller space of that surface to its Thurston asymmetric metric. It is natural to study now the same kind of deformation of the Teichmüller metric on theTeichmüller space T g,m of a general closed orientable surface Σ g,m of genus g with m punctures, and this is what we do in the present paper. It turns out that the metrics in this family are interesting to study in this general setting and this is what we propose to show in this paper.

In its original form given in [START_REF] Randers | On an asymmetrical metric in the fourspace of general relativity[END_REF], a Randers metric is associated with an n-dimensional Riemannian manifold (M, g) and a 1-form ω on M satisfying ω g < 1 at every point of M . In this situation, the associated Randers metric is a Finsler asymmetric metric on M defined infinitesimally by F (v) = g(v, v) 1/2 + ω(v). Randers metrics have applications in the physical world, and they been widely studied since their appearance. The same construction also works when the original metric is not Riemannian, but Finsler, like in the case we study here.

In this paper we study a Randers deformation of the Teichmüller metric κ on T g,m , which we call the Teichmüller-Randers metric associated with a real 1-form ω, defined using (1.1)

κ ω (x; v) = κ(x; v) + ω(v)
In a natural way, the lengths of differentiable arcs on T g,m can be defined using this metric, and the distance between two points is set to be the infimum of the lengths of arcs connecting them. The Teichmüller-Randers distance may take negative values for a general 1-form ω, but it gives a Finsler metric when the Teichmüller norm ω T (x) of ω at x, (i.e., the supremum of the value of ω on the tangent vectors at x with Teichmüller norm ≤ 1) is less than 1 at every point x of T g,m . The Teichmüller-Randers metric becomes a weak metric when the Teichmüller norm of ω is 1 (see Section 2.1).

We have already introduced and studied the Teichmüller-Randers metric in the case of torus. In [START_REF] Belkhirat | Thurston's weak metric on the Teichmüller space of the torus[END_REF], Belkhirat, Papadopoulos and Troyanov showed that Thurston's asymmetric metric coincides with the weak distance on the upper-half plane H defined by

(1.2) δ(ζ 1 , ζ 2 ) = log sup x∈R ζ 2 -x ζ 1 -x for ζ 1 , ζ 2 ∈
H if we identify the Teichmüller space of a torus T with the hyperbolic plane by choosing a generator system a, b of π 1 (T ), and consider normalized flat structures on T such that a has length 1. In [START_REF] Miyachi | Tangent spaces of the Teichmüller space of the torus with Thurston's weak metric[END_REF], we showed that this weak distance is indeed a Finsler metric and that it is also given by the formula (1.3)

ds hyp + 1 2 d log Im(ζ),
where ds hyp is the hyperbolic metric on H of constant curvature -4.

Since the Teichmüller metric coincides with the hyperbolic metric in this setting, the weak distance in Eq. (1.2) is nothing but the Teichmüller-Randers metric given by Eq. (1.3), that is, associated with the 1-form ω = -(1/2)d log Im(ζ) -1 . For 0 ≤ t ≤ 1, we define δ t be the weak metric defined by the Finsler norm ds hyp + t 2 d log Im(ζ). We also note that the

1-form ω = -(1/2)d log Im(ζ) -1
is exact and Im(ζ) -1 coincides with the extremal length of the isotopy class of simple closed curves corresponding to a.

We now turn to stating our main theorems. Before that, we recall that the Teichmüller distance is a uniquely geodesic metric, and that any geodesic extends to a holomorphic disc called a Teichmüller disc. Namely, for any two points in T g,m , there is a holomorphic (or anti-holomorphic) isometry (H, d hyp ) → (T g,m , d T ) whose image contains the two points, and this image is called a Teichmüller disc. A Teichmüller disc is determined by a holomorphic quadratic differential q, hence we denote it by D q (see Section 4.2).

For a measured foliation F on Σ g,m , we denote by Ext x (F ) the function on T g,m taking a point x to the extremal length of a measured foliation F at x, and by q F,x the Hubbard-Masur differential on x for F (see Section 2.2). We shall show the following three main theorems. (i) The (asymmetric) metric space (T g,m , δ tω T ) is a uniquely geodesic space such that the Teichmüller geodesics are the geodesics. (ii) For any x ∈ T g,m and for any 0 ≤ t ≤ 1, the Teichmüller disc defined by q F,x coincides with the image of an isometric embedding of (H, δ t ) into (T g,m , δ tω T ). Theorem 1.2 (Isometric discs). Suppose that there is an isometry

φ : (H, δ) → (T g,m , δ ω T )
where ω is exact and satisfies ω T ≤ 1 in a neighbourhood of the image of φ. Then, there is a measured foliation F on Σ g,m such that φ is a holomorphic or anti-holomorphic isometry onto the Teichmüller disc associated with q F,x with x = φ(i), and such that ω = -(1/2) d log Ext (•) (F ) holds on the image of that isometry.

From Theorem 1.1 and Theorem 1.2, for a fixed measured foliation F , we have a characteristic property of the geometry of the weak distance δ ω T with ω = -(1/2) d log Ext (•) (F ) on the Teichmüller disc defined by the Hubbard-Masur differential for F . Since, by Theorem 1.1, any Teichmüller disc is totally geodesic with respect to δ ω T , it is natural to ask how the weak distance δ ω T behaves on Teichmüller discs other than the one associated with q F,x . Theorem 1.3. Let F be a measured foliation on Σ g,m , and set ω = -(1/2) d log Ext (•) (F ).For any x ∈ T g,m and for any measured foliation G on Σ g,m , we have the following.

(1) If q G,x is not a complex constant multiple of q F,x , then the restriction of δ ω T to the Teichmüller disc D q G,x is a weak non-negative distance function which separates any two points.

(2) The following two conditions are equivalent:

i(F, G) = 0.

-The Teichmüller geodesic ray directed by q G,x has bounded length with respect to δ ω T . In particular, the restriction of δ ω T to every Teichmüller disc is incomplete. We note that the weak distance δ on H, which corresponds to the Teichmüller space of a torus, does not separate points. Theorem 1.3 gives a generalisation of this torus case. See Section 2.1 for more details.

As can been seen in the definition, our metric depends on the choice of the (projective class) of a measured foliation F . Because of this, our metric is not invariant under the entire mapping class group. Still if we consider the family of metrics making x and F vary, then the family is invariant under the action of the mapping class group.

Besides the theorems stated above, we shall also discuss the extension of the Hamilton-Krushkal condition (see Theorem 3.1), and the Teichmüller-Randers cometric on the cotangent space (see Theorem 3.3).

Preliminaries

2.1. Weak metric. A weak metric δ on a set X is a map δ : X × X → R satisfying the following.

(1) δ(x, x) = 0 for every x in X;

(2) δ(x, y) ≥ 0 for every x and y in X;

(3) δ(x, y) + δ(y, z) ≥ δ(x, z) for every x, y and z in X. A weak metric δ is said to separate points if δ(x 1 , x 2 ) = 0 for x 1 , x 2 ∈ X implies x 1 = x 2 , and to be complete if for any sequence (x n ) in X satisfying δ(x n , x n+m ) → 0 as n, m → ∞, the sequence (x n ) converges in X (see [3, I.1]). (Notice that since the metric is not symmetric, the order of the arguments in δ(x 1 , x 2 ) is important.)

In [START_REF] Belkhirat | Thurston's weak metric on the Teichmüller space of the torus[END_REF], the following weak metric was introduced on H. First, for

ζ 1 = ζ 2 ∈ H, we set M (ζ 1 , ζ 2 ) = sup x∈R ζ 2 -x ζ 1 -x . (2.1) For ζ 1 = ζ 2 , we set M (ζ 1 , ζ 2 ) = 1. We set δ(ζ 1 , ζ 2 ) = log M (ζ 1 , ζ 2 ) (ζ 1 , ζ 2 ∈ H).
Then, δ is an asymmetric weak metric on H. Furthermore, δ does not separate points of H. Indeed, when

ζ 1 = y 1 i, ζ 2 = y 2 i ∈ H with y 1 < y 2 , δ(ζ 1 , ζ 2 ) = 0.
In particular, δ is not complete (see [START_REF] Belkhirat | Thurston's weak metric on the Teichmüller space of the torus[END_REF]Proposition 1]). The distance between ζ 1 and ζ 2 ∈ H is explicitly given by

δ(ζ 1 , ζ 2 ) = log |ζ 2 -ζ 1 | + |ζ 2 -ζ 1 | |ζ 1 -ζ 1 |
(see [START_REF] Belkhirat | Thurston's weak metric on the Teichmüller space of the torus[END_REF]). Hence, any geodesic ray tending to R ⊂ ∂H has bounded length, and the length of a geodesic ray is infinite only if it goes upward in the vertical direction.

We note that when we identify H with the Teichmüller space of a torus, the ideal boundary ∂H is naturally thought of as the Thurston boundary, which is the space of projective measured foliations on the torus (see [START_REF] Fathi | Travaux de Thurston sur les surfaces[END_REF]). Using this identification, we see that the intersection number i(F x , F ∞ ) is zero if and only if x = ∞, where [F x ] is the projective measured foliation corresponding to an arbitrary x ∈ ∂H. This corresponds to the condition of Theorem 1.3 in the case of torus.

2.2. Teichmüller theory. We review some of Teichmüller theory. We refer the reader to [START_REF] Imayoshi | An introduction to Teichmüller spaces[END_REF] for more details.

2.2.1. Teichmüller space. Let Σ g,m be a closed orientable surface of type (g, m), that is, of genus g with m points deleted The integers g and m may take all nonnegative values except that if g = 0 we assume m ≥ 4 and if g = 1 we assume that m ≥ 1. A marked Riemann surface (X, f ) of type (g, m) is a pair of an analytically finite Riemann surface X of type (g, m) and an orientation-preserving homeomorphism f : Σ g,m → X. Two marked Riemann surfaces (X 1 , f 1 ) and (X 2 , f 2 ) are said to be Teichmüller equivalent if there is a conformal mapping h : X 1 → X 2 such that h • f 1 is homotopic to f 2 . The set T g,m of Teichmüller equivalence classes of marked Riemann surfaces of type (g, m) is called the Teichmüller space of analytically finite Riemann surfaces of type (g, m). The Teichmüller distance d T on T g,m is defined by

d T (x, y) = 1 2 log inf h K(h)
where h ranges over all quasi-conformal maps h :

X 1 → X 2 homotopic to f 2 • f -1
1 and where K(h) denotes the maximal quasiconformal dilatation of h. The Teichmüller space is known to be a complex manifold which is biholomorphically equivalent to a bounded domain in C 3g-3+m . Furthermore, the Teichmüller distance is complete, uniquely geodesic, and coincides with the Kobayashi distance.

2.2.2. Infinitesimal theory. For a Riemann surface X, let L ∞ (X) be the complex Banach space of bounded measurable (-1, 1)-forms µ = µ(z)(dz/dz) on X with the norm

µ ∞ = ess.sup{|µ(z)| | z ∈ X}. A form in L ∞ (X) is called a Beltrami differential.
Let A 2 (X) be the Banach space of holomorphic quadratic differentials ϕ = ϕ(z)dz 2 with the norm

ϕ 1 = X |ϕ(z)|dxdy.
There is a natural pairing between Beltrami differentials and holomorphic quadratic differentials as follows.

(2.2)

L ∞ (X) × A 2 (X) ∋ (µ, ϕ) → X µϕ.
Let N ∞ (X) ⊂ L ∞ (X) be the subspace orthogonal to A 2 (X) with respect to the pairing. Namely,

N ∞ (X) := µ ∈ L ∞ (X) | X µϕ = 0, ∀ϕ ∈ A 2 (X) .
Two Beltrami differentials µ and ν are infinitesimally Teichmüller equiv-

alent if µ -ν ∈ N ∞ (X). The (holomorphic) tangent space T x T g,m at x = (X, f ) ∈ T g,m is canonically identified with the quotient space L ∞ (X)/N ∞ (X). Hence, for x = (X, f ) ∈ T g,m , the non-degenerate pairing Eq. (2.
2) descends to a pairing

T x T g,m × A 2 (X) ∋ (v, ϕ) → v, ϕ = X µϕ where v = [µ] with µ ∈ L ∞ (X). From this observation, the space A 2 (X) is canonically identified with the (holomorphic) cotangent space T * x T g,m at x ∈ T g,m . A real 1-form ω is presented by ψ ∈ A 2 (X) at x = (X, f ) ∈ T g,m if ω(v) = Re v, ψ for all v ∈ T x T g,m .
Notice that in general any real 1-form on a complex manifold is the real part of a (1, 0)-form.

Teichmüller proved in [START_REF] Teichmüller | Extremale quasikonforme Abbildungen und quadratische Differentiale[END_REF][START_REF] Teichmüller | Extremal quasiconformal mappings and quadratic differentials[END_REF]Sec 25] that a Finsler distance is defined by a metric, called the Teichmüller metric, defined by

κ(x; v) = sup Re v, ϕ | ϕ ∈ A 2 (X), ϕ 1 = 1 for v ∈ T x T g,m .
This distance coincides with the Teichmüller distance defined above.

We call a Beltrami differential µ on X a Teichmüller differential when it has a form µ = cϕ/|ϕ for some ϕ ∈ A 2 (X) -{0}. It is known that when a Beltrami differential µ is infinitesimally extremal in the sense that µ ∞ = Re v, ϕ , then µ must be a Teichmüller differential. Fix a basepoint x 0 = (X 0 , f 0 ) in T g,m . For t ≥ 0 and ϕ ∈ A 2 (X 0 ), we denote by

F t : X 0 → X t = F t (X 0 ) a quasi-conformal map with the property that ∂F t = tanh(t)(ϕ/|ϕ|)∂F t . Then, a path r ϕ : [0, ∞) ∋ t → (X t , F t • f 0 ) ∈ T g,m
contitutes a geodesic ray with respect to d T . We call such a geodesic the Teichmüller geodesic ray emanating from x 0 . It is known that for any x ∈ T g,m -{x 0 }, there is a unique Teichmüller geodesic ray passing x and emanating from x 0 . Furthermore,

(0, ∞) × {ϕ ∈ A 2 (X 0 ) | ϕ = 1} ∋ (t, ϕ) → r ϕ (t) ∈ T g,m \ {x 0 } is a homeomorphism.
Unless (g, m) is either (1, 1) or (0, 4), the Teichmüller metric is not Riemannian. This was known to Teichmüller, but we can prove it just by using the fact that the group of linear isometries of a tangent (or cotangent) space of any Riemannan metric is a orthogonal group, whereas by [, the linear isometry group of a tangent/cotangent space with respect to the Teichmüller metric is a finite union of S 1 .

The following might be well known and follows from the discussion in the proof of Lemma 3 in [6, p. 173]. For completeness, we give a brief proof.

Lemma 2.1 (Derivative of the Teichmüller norm). Take x = (X, f ) ∈ T g,m and v 0 ∈ T x T g,m -{0}. Suppose that v 0 is represented by the Teichmüller differential βα 0 /|α 0 | ( α 0 = 1, β > 0). Then d dt t=0 κ(x; v 0 + tv) = Re v, α 0 for any v ∈ T x T g,m .
Proof. For t ∈ R, we take α t ∈ A 2 (X) with α t 1 = 1 such that κ(x; v 0 + tv) = Re v 0 + tv, α t .

We claim that R ∋ t → α t ∈ A 2 (X) is well defined and continuous. Indeed, by the Lebesgue dominated convergence theorem, the map

(2.3) L 1 : A 2 (X) ∋ α → ℓ α = A 2 (X) ∋ ϕ → α 1 X α |α| ϕ ∈ A 2 (X) *
is continuous with respect to the weak topology on A 2 (X) * . Since A 2 (X) is finite-dimensional, the weak topology on A 2 (X) * coincides with the topology derived from the dual norm (the operator norm). One can see that Re(ℓ α (ψ)) ≤ α 1 ψ 1 for all ψ ∈ A 2 (X), and Re(ℓ α (ϕ)) = α 1 ϕ 1 if and only if ϕ = α. Hence, α t is well defined for t ∈ R, and the map defined in Eq. (2.3) is injective and proper. Since A 2 (X) and A 2 (X) * are homeomorphic to the Euclidean space R 6g-6+2m , from the invariance of domains, Eq. (2.3) is homemorphic. Since (2.4)

L 2 : T x T g,m ∋ v → [ϕ → v, ϕ ] ∈ A 2 (X) *
is a complex linear isomorphism, and continuous with respect to the Teichmüller metric and the dual norm, we see that the map

R ∋ t → α t = L -1 1 • L 2 (v 0 + tv) ∈ A 2 (X) is continuous. Then, κ(x; v 0 + tv) -κ(x; v 0 ) = Re v 0 + tv, α t -Re v 0 , α 0 ≥ Re v 0 + tv, α 0 -Re v 0 , α 0 = t Re v, α 0 and κ(x; v 0 + tv) -κ(x; v 0 ) ≤ Re v 0 + tv, α t -Re v 0 , α t = tRe v, α 0 + tRe v, α t -α 0 = t Re v, α 0 + o(t)
as t → 0. Therefore,

|κ(x; v 0 + tv) -κ(x; v 0 ) -t Re v, α 0 | = o(t)
as t → 0. 

WS ∋ tα → [S ∋ β → t i(α, β)] ∈ R S ≥0 .
We equip the function space R S ≥0 with the pointwise convergence topology. The closure MF of the image of WS in R S ≥0 is called the space of measured foliations on Σ g,m . For F ∈ MF, we call the value F (α) the intersection number of F with α, and denote it by i(F, α). Set i(F, tα) = t i(F, α) for tα ∈ WS. It is known that the intersection number i(

• , • ) on MF × WS extends continuously to a function i( • , • ) on MF × MF which satisfies i(F, G) = i(G, F ) for F, G ∈ MF.
2.2.4. Hubbard-Masur differentials and Extremal length. Let x = (X, f ) be a point in T g,m . For q = q(z)dz 2 ∈ A 2 (X), we set

v(q)(α) = inf α ′ ∈f (α) α ′ |Re( q(z)dz)| for α ∈ S. Regarding v(q) as contained in R S
≥0 , we call it the vertical foliation of q. It is known that v(q) ∈ MF.

For x = (X, f ) ∈ T g,m and F ∈ MF, there is a unique quadratic differential q F,x ∈ A 2 (X) such that i(F, α) = v(q)(α) for all α ∈ S. We call the differential q F,x the Hubbard-Masur differential for F on x. The norm

Ext x (F ) = X |q F,x (z)|dxdy is called the extremal length of F on x. The extremal length function T g,m × MF ∋ (x, F ) → Ext x (F ) is continuous. When F ∈ MF is fixed, the extremal length function is of class C 1 .
The following formula, called the Gardiner formula, is known: [START_REF] Gardiner | Measured foliations and the minimal norm property for quadratic differentials[END_REF]). Notice that the minus sign in the right-hand side of Eq. (2.5) comes from the fact that q F,x has F as the vertical foliation, while Gardiner considers the horizontal foliations when he concludes the formula Eq. (2.5).

(2.5) d Ext • (F ) = -2Re X µq F,x for v = [µ] ∈ T x T g,m ∼ = L ∞ (X)/N ∞ (X) (cf.
2.3. Teichmüller-Randers metric. For a given n-dimensional Riemannian manifold (M, g) and a 1-form ω on M with ω g < 1 at every point of M , the associated Randers metric is a Finsler metric on M defined by

F (v) = g(v, v) 1/2 + ω(v).
Although in general literatures, Randers metrics refer to deformations of Riemannian metrics by 1-forms, we can think of such deformations for Finsler (symmetric) metrics in the same way. Furthermore, even in the case when ω g = 1, the Randers metric makes sense as a weak Finsler metric. In this paper, we study Randers-type deformations of the Teichmüller metric κ on T g,m which we explained in the previous subsection, by a 1-form ω as we presented in Introduction ;

(2.6)

κ ω (x; v) = κ(x; v) + ω(v).
As a 1-form ω, we shall consider in particular the form expressed as -1 2 d log Ext (•) (F ) for a measured foliation F on Σ g,m . This metric does depends on the choice of F , but only on the projective class of F since we are taking log in the second term. This metric can be regarded as a generalisation of the weak Finsler metric which we studied in [START_REF] Miyachi | Tangent spaces of the Teichmüller space of the torus with Thurston's weak metric[END_REF].

2.4.

References to background materials. We now give some references for background materials which we briefly explained in this section. The Teichmüller metric was introduced and studied thoroughly by Teichmüller in his paper [START_REF] Teichmüller | Extremale quasikonforme Abbildungen und quadratische Differentiale[END_REF] (see its English translation [START_REF] Teichmüller | Extremal quasiconformal mappings and quadratic differentials[END_REF]). In this paper there is a long section ( §25) on the Finsler nature of this metric. In the same section, Teichmüller introduced and studied what are now called Teichmüller discs (isometric images of the hyperbolic plane, defined by quadratic differentials), which he calls complex geodesics. As modern introductions to Teichmüller theory, we refer the to [START_REF] Gardiner | Teichmüller theory and quadratic differentials[END_REF] and [START_REF] Imayoshi | An introduction to Teichmüller spaces[END_REF]. For the theory of measured foliations and measured foliation spaces, we refer the reader to [START_REF] Fathi | Travaux de Thurston sur les surfaces[END_REF], and for a comprehensive introduction to extremal length [START_REF] Miyachi | Extremal length geometry[END_REF] for instance. For Randers' metric, we refer the reader to Rander's original paper [START_REF] Nag | The complex analytic theory of Teichmüller spaces[END_REF].

Extension of the Hamilton-Krushkal condition

In this section, we discuss the infinitesimal extremal property for our Teichmüller-Randers metric.

Let X be a Riemann surface, and fix ϕ 0 ∈ A 2 (X). We consider the following functional on the space L ∞ (X) of Beltrami differenitals:

(3.1) β(µ, ϕ 0 ) = sup X µϕ + Re X µϕ 0 | ϕ ∈ A 2 (X), ϕ 1 = 1.
for µ ∈ L ∞ (S). It immediately follows from the definition that

(3.2) β(µ, ϕ 0 ) ≤ µ ∞ + Re X µϕ 0 for all µ ∈ L ∞ (X). We say that a Beltrami differential µ is infinitesimally ϕ 0 -extremal if β(µ, ϕ 0 ) = µ ∞ + Re X µϕ 0 ,
and that µ satisfies the Hamilton condition if sup

X µϕ | ϕ ∈ A 2 (X), ϕ 1 ≤ 1 = µ ∞ . It is known that µ ∈ L ∞ (X) is infinitesimally Teichmüller extremal in the sense that µ -ν ∞ ≥ µ ∞ for all ν ∈ N ∞ (X)
if and only if it satisfies the Hamilton condition ( [START_REF] Hamilton | Extremal quasiconformal mappings with prescribed boundary values[END_REF] and [START_REF] Kruškal | On the theory of extremal quasiconformal mappings[END_REF]). Proof. [START_REF] Antonakoudis | Isometric disks are holomorphic[END_REF] The assumption that µ and ν are Teichmüller equivalent means by definition that X µϕ = X νϕ for all ϕ ∈ A 2 (X). Hence, we have

X µϕ + Re X µϕ 0 = X νϕ + Re X νϕ 0 for all ϕ ∈ A 2 (X), which implies β(µ, ϕ 0 ) = β(ν, ϕ 0 ).
(2) We only need to show the equivalence between conditions (a) and (b), for the equivalence of the condition (c) with (a) and (b) follows immediately then. Suppose that µ is infinitesimally ϕ 0 -extremal. Then for ν ∈ N ∞ (X), we have

µ ∞ + Re X µϕ 0 = β(µ, ϕ 0 ) = β(µ -ν, ϕ 0 ) ≤ µ -ν ∞ + Re X (µ -ν)ϕ 0 = µ -ν ∞ + Re X µϕ 0 ,
and hence µ ∞ ≤ µ -ν ∞ . This means that µ is infinitesimally Teichmüller extremal. Conversely, suppose that µ is infinitesimally Teichmüller extremal. Then, by definition, there exists a sequence (ϕ

n ) in A 2 (X) such that | X µϕ n | → µ ∞ . Therefore, µ ∞ + Re X µϕ 0 = lim n→∞ X µϕ n + Re X µϕ 0 ≤ β(µ, ϕ 0 ).
Combining this with Eq. (3.2), we see that µ is infinitesimally ϕ 0 -extremal.

In the case of analytically finite Riemann surfaces, an infinitesimally Teichmüller extremal Beltrami differential is a Teichmüller Beltrami differential, and vice versa. Hence we have the following. Corollary 3.2 (Analytically finite case). Let X be an analytically finite Riemann surface and ϕ 0 a holomorphic quadratic differential on X. Then, for µ ∈ L ∞ (X), the following two conditions are equivalent.

(a) µ is infinitesimally ϕ 0 -extremal; and (b) µ is a Teichmüller Beltrami differential. Namely, there are ψ ∈ A 2 (X) -{0} and c ≥ 0 such that µ = cψ/|ψ|.

3.1.

Teichmüller-Randers cometric. Let x = (X, f ) be a point in T g,m , and ω a 1-form on T g,m with ω T (x) ≤ 1. We define the Teichmüller-Randers cometric on the space of holomorphic quadratic differentials, which identified with the cotangent space as A 2 (X)

∼ = T * x T g,m , by G ω (ϕ) = sup κ ω (x;v)=1 | v, ϕ | = sup κ ω (x;v)=1
Re v, ϕ for ϕ ∈ A 2 (X). This is dual to the Randers -Teichmüller metric. When ω = 0, it is known that G 0 (ϕ) = ϕ 1 . Even if ω T (x) < 1, as we have seen above, G ω defines an (asymmetric) norm on A 2 (X), whereas G ω is not a norm then. Indeed, take a tangent vector v ∈ T x T g,m with κ(x; v) = 1 and ω(v) = -1. Then, κ ω (x; v) = 0 by definition of κ ω . Take α ∈ A 2 (X) such that Re v, α = α 1 = 1, and

{v n } ⊂ T x T g,m converging to v. Then, we have Re v n , α κ ω (x; v n ) → ∞
as n → ∞, which shows that G ω is not a norm. For this reason, when we discuss the dual G ω , we always assume that ω T (x) < 1.

Theorem 3.3 (Teichmüller-Randers cometric). Let x = (X, f ) be a point in teich g,m . Suppose that ω is represented by ψ ∈ A 2 (X) ∼ = T * x T g,m at x and that ω T (x) = ψ 1 < 1. Then,

(3.3) G ω (ϕ) = inf t > 0 | ϕ t -ψ 1 ≤ 1 .
In particular, if ϕ = 0, then we have

ϕ G ω (ϕ) -ψ 1 = 1.
Proof. By Corollary 3.2, for a Teichmüller Beltrami differential µ = α/|α| (α ∈ A 2 (X)), we have

(3.4) κ ω (x; [µ]) = 1 + Re X α |α| ψ.
We may assume that neither ϕ nor ψ is 0, for our claim evidently holds if one of them is 0. From the definition of G ω and Eq. (3.4), we have

(3.5) G ω (ϕ) = sup κ(x;v)=1 Re v, ϕ 1 + Re v, ψ .
If v is represented by the Teichmüller Beltrami differential ϕ/|ϕ|, the function in the supremum in the right-hand side of Eq. (3.5) is positive. Hence we have G ω (ϕ) > 0. Let v 0 be a tangent vector represented by a Teichmüller Beltrami differential α 0 /|α 0 | ( α 0 1 = 1) which attains the supremum in the right-hand side of Eq. (3.5). Then

G ω (ϕ) = Re v 0 , ϕ 1 + Re v 0 , ψ .
We note that Re v 0 , ϕ > 0 and

| v 0 , ψ | < 1 since G ω (ϕ) > 0 and ψ 1 < 1. For v ∈ T x T g,m , we can compute Re v 0 + tv, ϕ 1 + Re v 0 + tv, ψ = G ω (ϕ)+tG ω (ϕ)Re v, ϕ Re v 0 , ϕ - ψ 1 + Re v 0 , ψ +o(t)
as t → 0. As remarked above, G ω (ϕ) > 0. Since the left hand side of the above equality attains the supremum in {v | κ(x; v) = 1} at v 0 , by Lemma 2.1, we have

Re v, ϕ Re v 0 , ϕ - ψ 1 + Re v 0 , ψ = 0
for all v ∈ T x T g,m with Re v, α 0 = 0. This means that there exists

t ∈ R such that ϕ Re v 0 , ϕ - ψ 1 + Re v 0 , ψ = tα 0 .
By taking pairing with v 0 on both sides, we get Re

v 0 , ϕ Re v 0 , ϕ - Re v 0 , ψ 1 + Re v 0 , ψ = t α 0 1 = t, which means t = (1 + Re v 0 , ψ ) -1 . Thus we obtain ϕ G ω (ϕ) -ψ = 1 + Re v 0 , ψ Re v 0 , ϕ ϕ -ψ = α 0 ,
which implies the desired equalities.

3.2.

The case when ω is exact. Assume that ω is a continuous exact form, that is, ω = dF ω for some C 1 -function F ω on T g,m . Then, the length of any

C 1 -path γ : [a, b] → T g,m is expressed as b a κ ω (γ(t); γ(t))dt = b a (κ(γ(t); γ(t)) + ω( γ(t)))dt = b a κ(γ(t); γ(t))dt + F ω (γ(b)) -F ω (γ(a))
with respect to the Teichmüller-Randers metric κ ω . Therefore, taking the infimum on the lengths of paths connecting x 1 ∈ T g,m to x 2 ∈ T g,m , the weak metric δ ω T associated with the Teichmüller-Randers metric satisfies (3.6)

δ ω T (x 1 , x 2 ) = d T (x 1 , x 2 ) + F ω (x 2 ) -F ω (x 1
). This inequality implies the following proposition. Proposition 3.4. For any continuous exact form ω on T g,m , any Teichmüller geodesic is a unique geodesic with respect to the Teichmüller-Randers distance δ ω T . This gives a generalisation of Theorem 2.1 in [START_REF] Miyachi | Tangent spaces of the Teichmüller space of the torus with Thurston's weak metric[END_REF]. We also note that in the case when ω is exact, the symmetrisation of the weak metric associated with the Teichmüller-Randers metric coincides with the Teichmüller distance. Indeed, we have

S(δ ω T )(x 1 , x 2 ) = 1 2 (δ ω T (x 1 , x 2 ) + δ ω T (x 2 , x 1 )) = 1 2 (d T (x 1 , x 2 ) + (F ω (x 2 ) -F ω (x 1 )) + d T (x 2 , x 1 ) + (F ω (x 1 ) -F ω (x 2 ))) = 1 2 (d T (x 1 , x 2 ) + d T (x 2 , x 1 )) = d T (x 1 , x 2 ).
Proof of Proposition 3.4. By Eq. (3.6), we see immediately that every Teichmüller geodesic is also a geodesic with respect to δ ω T . It remains to check the uniqueness of geodesics. Let x 1 , x 2 ∈ T g,m and γ : [a, b] → T g,m be a C 1 -path connecting x 1 to x 2 . If γ is not a Teichmüller geodesic, by the uniqueness of Teichmüller geodesics, we have

d T (x 1 , x 2 ) + F ω (x 2 ) -F ω (x 1 ) < b a (κ(γ(t); γ(t))dt + F ω (x 2 ) -F ω (x 1 ) = b a κ ω (γ(t); γ(t))dt,
which implies that γ is not a geodesic with respect to δ ω T either.

Proof of theorems

4.1. Teichmüller discs. Let x = (X, f ) be a point in T g,m . For q ∈ A 2 (X) and λ ∈ H, we define

(4.1) µ λ,q := λ -i λ + i q |q| .
Let f λ,q be a quasi-conformal map on X with ∂f λ,q = µ λ,q ∂f λ,q , and set X λ,q to be the image of f λ,q . The Teichmüller disc associated with q, which is denoted by D q , is a holomorphic disc in T g,m defined by (4.2) φ q : H ∋ λ → x(λ, q) := (X λ,q , f λ,q ) ∈ T g,m .

The following lemma shows basic properties of Teichmüller discs.

Lemma 4.1. For x = (X, f ) ∈ T g,m and a measured foliation F on S, we have the following.

(a) The extremal length function satisfies

(4.3) Ext x(λ,q F,x ) (F ) = 1 Im(λ) Ext x (F ).
(b) For the Teichmüller disc defined as in Eq. (4.2) for q = q F,x , the image of any vertical geodesic line in H is the Teichmüller geodesic defined by holomorphic quadratic differentials whose vertical foliations are F . (c) For any measured foliation F on S and any λ ∈ H, the unit tangent vector

v λ = (φ q F,x ) * (2iIm(λ) ∂/∂λ) is represented by q F,φ(λ) /|q F,φ(λ) |.
Proof. The assertions follow from the discussion by Marden and Masur in [11, §1.3]. We review some details for the convenience of the reader. (a) We shall only show Eq. ( 4.3) for α ∈ S. Since the weighted simple closed curves are dense in MF and MF ∋ F → q F,x ∈ A 2 (X) is continuous, we can then conclude Eq. (4.3) for general measured foliations by taking limits.

One of the characterisations of the extremal length of α is that it is the reciprocal of the modulus of the 'characteristic annulus' of q α , that is, the maximal (open) annulus formed by closed leaves of the vertical trajectories of q α . (See also [18, §20.3]). By the discussion by Marden and Masur in [11, §1.3], the extremal length Ext x(λ,q F,x ) (α) satisfies

(4.4) Ext x(λ,q F,x ) (α) = 1 1 + Re(λ ′ ) Ext x (α)
where λ ′ is a complex number satisfying Re(λ ′ ) > -1 and

λ -i λ + i = λ ′ 2 + λ ′ . Since Re(λ ′ ) = Re (-1 -iλ) = -1 + Im(λ)
, we obtain Eq. (4.3) from Eq. (4.4) in the case when F = α ∈ S.

(b) Let A be the characteristic annulus of q α,x . The Teichmüller map f λ,q defined by µ λ,qα,x is expressed as a map h λ defined by

h λ (z) = z|z| -iλ-1 = z|z| Im(λ)-1-iRe(λ)
on the characteristic annulus A ∼ = {1 < |z| < r} with r = exp(2π/Ext x (α)). The image h λ ({1 < |z| < r}) = {1 < |z| < r Im(λ) } corresponds to the characteristic annulus of the terminal quadratic differential q α,x(λ,qα,x) . Therefore, the deformation along the vertical line in H passing through λ ∈ H is the Teichmüller geodesic associated with the differential q α,x(λ,qα,x) .

(c) Let v λ ∈ T x(λ,q F,x ) T g,m be the unit tangent vector in D q F,x at x(λ, q F,x ) as given in the statement (c). Then v λ is represented by a Teichmüller Beltrami differential ψ/|ψ| with ψ ∈ A 2 (X λ,q F,x ). From (a) above and the Gardiner formula Eq. (2.5), -Re

X λ,q F,x ψ |ψ| q F,x(λ,q F,x ) q F,x(λ,q F,x ) 1 = 1 2 d log Ext x(•,q F,x ) (F )[v λ ] = Re 2iIm(λ) d dλ log Ext x(•,q F,x ) (F ) = Re 2iIm(λ) • - 1 2iIm(λ) = -1,
which means that ψ = q F,x(λ,q F,x ) . 

δ ω T (x 1 , x 2 ) = b a (κ(φ(γ(s)); φ * • γ(t)) + ω(φ * • γ(t)))dt = d hyp (ζ 1 , ζ 2 ) - 1 2 φ(γ) d log Ext • (F ) = d hyp (ζ 1 , ζ 2 ) + 1 2 log Ext x 1 (F ) - 1 2 log Ext x 2 (F ) = d hyp (ζ 1 , ζ 2 ) + 1 2 log 1 Im(ζ 1 ) - 1 2 log 1 Im(ζ 2 ) = γ ds hyp + 1 2 d log Im(ζ) = δ(ζ 1 , ζ 2 ),
which implies the part (ii) of Theorem 1.1.

4.3.

Proof of Theorem 1.2. Let φ : H → T g,m be an isometry as in the statement. We may assume that ω is exact on T g,m by changing it outside a neighbourhood of φ(H). Then, there is a C 1 -function F ω on T g,m such that dF ω = ω. We set f ω = F ω • φ.

Take two points ζ 1 = ξ 1 + iη 1 and ζ 2 = ξ 2 + iη 2 ∈ H. Let γ : [0, s 0 ] → H be a hyperbolic geodesic connecting ζ 1 to ζ 2 . By Proposition 3.4, φ•γ : [0, s 0 ] → T g,m is a Teichmüller geodesic, and since φ is an isometry, we obtain 

d hyp (ζ 1 , ζ 2 ) + 1 2 log η 2 η 1 = δ(ζ 1 , ζ 2 ) = δ ω T (φ(ζ 1 ), φ(ζ 2 )) = s 0 0 (κ(φ(γ(t)); φ * • γ(t)) + ω(φ * • γ(t)))dt = d T (φ(ζ 1 ), φ(ζ 2 )) + f ω (ζ 2 ) -f ω (ζ 1
(F ξ ) = e -2d T (x(ξ+iη),x(ξ)) Ext x(ξ) (F ξ ) (η ≥ η 0 ) e 2d T (x(ξ+iη),x(ξ)) Ext x(ξ) (F ξ ) (η ≤ η 0 ).
Now, for any η, η ′ , take η 3 > 0 smaller than min{η, η ′ }. From Eq. (4.7), we can compute as follows:

γ ′ ω = f ω (ξ + iη ′ ) -f ω (ξ + iη) (4.9) = (f ω (ξ + iη 2 ) -f ω (ξ + iη 3 )) -(f ω (ξ + iη 1 ) -f ω (ξ + iη 3 )) = 1 2 log Ext x(ξ+iη 3 ) (F ξ ) Ext x(ξ+iη ′ ) (F ξ ) - 1 2 log Ext x(ξ+iη 3 ) (F ξ ) Ext x(ξ+iη) (F ξ ) = - 1 2 log Ext x(ξ+iη ′ ) (F ξ ) Ext x(ξ+iη) (F ξ ) = - 1 2 γ ′ d log Ext • (F ξ ),
where γ ′ is the image under φ of the vertical segment from ξ + iη to ξ + iη ′ in H. We note that by Eq. (4.8) or (c) of Lemma 4.1, the tangent vector v y ∈ T y T g,m along φ(L ξ ) at y ∈ φ(L ξ ) has unit length with respect to the Teichmüller metric, and is given by the Beltrami differential (4.10)

q F ξ ,x |q F ξ ,x | .
Hence we obtain

- 1 2 d log Ext • (F ξ )[v y ] = 1 2 • 2 q F,x Re X q F ξ ,x |q F ξ ,x | q F ξ ,x = 1.
Since ω T ≤ 1 on the image φ(H), from Eq. (4.9), we conclude that we have ( 

f ω (ζ 2 ) -f ω (ζ 1 ) = (f ω (ζ 2 ) -f ω (ζ 3 )) + (f ω (ζ 3 ) -f ω (ζ 1 )) = - 1 2 log Ext φ(ζ 2 ) (F ξ 2 ) + 1 2 log Ext φ(ζ 1 ) (F ξ 2 ) = - 1 2 log η 1 η 2 .
Then, from Eq. Hence, by the Gardiner formula Eq. (2.5), the derivative of the function

H ∋ ζ → - 1 2 log Ext φ(ζ) (F )
is also zero in the horizontal direction in H. As a consequence, by Eq. (4.11),

ω = - 1 2 d log Ext • (F )
on the image φ(H).

4.4.

Proof of Theorem 1.3. Let x be a point in T g,m , and G a measured foliation on S.

(1) Suppose that αq F,x = q G,x for any complex number α, and hence D q F,x ∩ D q G,x = {x}. Then we claim the following.

Claim 1. For any y ∈ D q G,x , we have D q F,y ∩ D q G,y = {y}.

Proof. Otherwise, there is y ∈ D q G,x such that D q F,y and D q G,y share at least two points. By the uniqueness of the Teichmüller geodesic, D q F,y and D q G,y share a common Teichmüller geodesic line passing through these two points. Since D q F,y and D q G,y are holomorphic discs, by the identity theorem, D q F,y = D q G,y . Since both x and y lie in D q G,x = D q F,y , from the discussion in Lemma 4.1 (or the discussion in [11, §1.3]), we have D q F,y = D q F,x and D q G,x = D q G,y . Therefore, we obtain D q G,x = D q G,y = D q F,y = D q F,x , which contradicts our assumption.

Let y be a point in D q G,x , and v y the unit tangent vector to D q G,x at y represented by q G,y /|q G,y | (cf. (c) of Lemma 4.1). We note that by Claim 1, q G,y is not a complex scalar multiple of q F,y . Hence,

- 1 2 d log Ext • (F )[v y ] = Re X λ,q G,y
q G,y |q G,y | q F,x(λ,q F,y ) q F,y 1 < 1.

Therefore, for any compact set K in D q G,x , there is a constant C K < 1 such that

- 1 2 d log Ext • (F )[v y ] ≤ C K
for all y ∈ K. Let x 1 and x 2 be distinct points on D q G,x , and γ ⊂ D q G,x the Teichmüller geodesic containing x 1 and x 2 . From the above discussion, we have 1 2 log Ext x 1 (F ) -

1 2 log Ext x 2 (F ) < d T (x 1 , x 2 )
and

δ ω T (x 1 , x 2 ) = d T (x 1 , x 2 ) + 1 2 log Ext x 1 (F ) - 1 2 log Ext x 2 (F ) > 0,
which implies that δ ω T separates two points in D q G,x . (2) Let r G = r G,x : [0, ∞) → T g,m be the Teichmüller geodesic ray defined by q G,x with arclength parameterisation. By [13, Lemma 1], the function [0, ∞) ∋ t → e -δ ω T (x,r G (t)) = e -t Ext r G (t) (F ) Ext x 0 (F )

1/2
is non-increasing and tends to E(F ) Ext x 0 (F ) 1/2 as t → ∞ where E is some continuous function defined on MF (see also [START_REF] Miyachi | Teichmüller rays and the Gardiner-Masur boundary of Teichmüller space[END_REF]Theorem 1.1]). Let G = G 1 + • • • + G m be the decomposition of G into indecomposable components (for detail, see [START_REF] Miyachi | Teichmüller rays and the Gardiner-Masur boundary of Teichmüller space[END_REF]). In [21, Corollary 1], Walsh showed that the limit function E is expressed as

E(H) = m i=1 i(G i , H) 2 i(G i , H(q G,x ))
for H ∈ MF, where H(q G,x ) is the horizontal foliation of q G,x . Therefore, E(H) = 0 if and only if i(G, H) = 0. This means that δ ω T (x, r G (t)) is uniformly bounded in terms of t ≥ 0 if and only if i(F, G) = 0.

Finally, we prove the incompleteness of the restriction of δ ω T to any Teichmüller disc. Let x be a point in T g,m and G a measured foliation on S. By [9, Theorem 2], the vertical foliation G θ of e iθ q G,x is uniquely ergodic for almost every θ. Therefore, i(F, G θ ) = 0 for almost every θ. It follows that almost all Teichmüller geodesic rays emanating from x in D q G,x have bounded length with respect to the distance δ ω T , and in particular, the restriction of δ ω T to D q G,x is incomplete. Email address: papadop@math.unistra.fr
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 112 Geodesics of the Teichmüller-Randers metric). Let F be a measured foliation on Σ g,m , and set ω = -1 log Ext (•) (F ). Then the following hold.
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 3112 Extension of the Hamilton-Krushkal condition). Let X be a Riemann surface and ϕ 0 a holomorphic quadratic differential on X.(If two Beltrami differentials µ, ν ∈ L ∞ (X)are infinitesimally Teichmüller equivalent, then β(µ, ϕ 0 ) = β(ν, ϕ 0 ). (For a Beltrami differential µ ∈ L ∞ (X), the following three conditions are equivalent: (a) µ is infinitesimally ϕ 0 -extremal; (b) µ is infinitesimally Teichmüller extremal; and (c) µ satisfies the Hamilton condition.
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 2 Proof of Theorem 1.1. The part (i) follows from Proposition 3.4. Let x be a point in T g,m and let φ : H → T g,m be the Teichmüller disc defined by q F,x with φ(i) = x. Since ω is exact, by Proposition 3.4, for any two points ζ 1 , ζ 2 ∈ H, the hyperbolic geodesic γ : [a, b] → H connecting ζ 1 to ζ 2 is mapped to a geodesic with respect to δ ω T connecting x 1 = φ(ζ 1 ) to x 2 = φ(ζ 2 ). From Eq. (1.3) and Lemma 4.1, we have

( 4 . 5 )

 45 , we conclude that d T (φ(ζ 1 ), φ(ζ 2 )) = d hyp (ζ 1 , ζ 2 ) for any ζ 1 , ζ 2 ∈ H. Hence, φ : (H, d hyp ) → (T g,m , d T ) is an isometry. [1, Theorem 1.1] shows that in this situation, φ is either holomorphic or anti-holomorphic, and the image is the Teichmüller disc. As shown in Lemma 4.1, F ξ 1 = F ξ 2 for all ξ 1 , ξ 2 ∈ R. Setting F = F ξ (ξ ∈ R), we see that the image φ(H) is the Teichmüller disc defined by the Hubbard-Masur differential for F . Consider ζ = ξ + iη ∈ H and L ξ defined above. By Eq. (4.6), the derivative of f ω at ζ in the horizontal direction is constantly zero. As shown in (c) of Lemma 4.1, the image v ∈ T φ(ζ) T g,m of the unit tangent vector 2iIm(ζ)(∂/∂ζ) ∈ T ζ H to L ξ at ζ is represented by the Teichmüller Beltrami differential q F,φ(ζ) |q F,φ(ζ) | .
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  Case 1.(horizontal lines) Suppose that η 1 = η 2 . Since both d hyp and d T are symmetric, from Eq. (4.5), we obtain(4.6) f ω (ζ 1 ) = f ω (ζ 2 ), and hence d T (φ(ζ 1 ), φ(ζ 2 )) = d hyp (ζ 1 , ζ 2 ).Case 2.(vertical lines) Suppose ξ 1 = ξ 2 and η 1 > η 2 . In this case, the geodesic γ is a vertical segment fromζ 1 to ζ 2 . Since δ(ζ 1 , ζ 2 )= 0 in this case, from Eq. (4.5), we have(4.7) f ω (ζ 1 ) -f ω (ζ 2 ) = d T (φ(ζ 1 ), φ(ζ 2 )). For x ∈ R, let L ξ = {ξ + ηi | η > 0}.Then by Eq. (4.7), we see that f (L ξ ) is a geodesic with respect to d T . Take a measured foliation F ξ on S such that φ(L ξ ) is the Teichmüller geodesic defined by the Hubbard-Masur differential for F ξ . To describe this more precisely, fix η 0 > 0 and set x(ξ) = φ(ξ + iη 0 ) ∈ T g,m . Let x(ξ + iη) be the image of the Teichmüller map from x(ξ) with the Betrami differenital 0}. By the Gardiner formula Eq. (2.5), Ext x(ξ+iη) (F ξ ) decreases as η increases. Hence, from the Kerckhoff formula, we have Ext x(ξ+iη)

	(4.5)		).
	(4.8)	tanh(t)	q F ξ ,x(ξ)

|q F ξ ,x(ξ) |

,

where t = t(η) satisfies |t| = d T (x(ξ + iη), x(ξ)), t > 0 if η > η 0 , and t ≤ 0 otherwise. Then we have φ(L ξ ) = {x(ξ + iη) | η >

  Ext φ(ξ+iη 2 ) (F ξ ) for all ξ ∈ R and η 1 , η 2 > 0, and Ext φ(ζ 3 ) (F ξ 2 ) = Ext φ(ζ 1 ) (F ξ 1 ). Combining this with the argument in Case 2, we have

	4.11)	ω = -	1 2	d log Ext (4.3) we have
	(4.12)	Ext φ(ξ+iη 1 ) (F ξ ) =	η 2 η 1

• (F ξ ). on L ξ . Case 3. (general case) We take ζ 1 = ξ 1 + iη 1 and ζ 2 = ξ 2 + iη 2 ∈ H to be arbitrary. Set ζ 3 = ξ 2 + iη 1 . By Eq.
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