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Abstract

In order to reliably design automotive structures, engineers need to determine and justify validation conditions and
levels. These must stem from a thorough knowledge of structural damage induced by service loading conditions.
From multi-input variable amplitude loading histories applied on a car’s wheel axles, we propose a multidimensional
pseudo-damage description for the design of car chassis weak points. We present a multivariate description of client
loading histories. We use it in a statistical analysis of a labelled measurement campaign to explain the heterogeneity
of car driver profiles. Finally, we explore the question of complex load damage reconstruction using proving ground
reference loads.

Keywords: Automotive fatigue design, Multi-input variable amplitude loads, Multiaxial fatigue, Structural damage,
Multivariate analysis, Statistical learning, Loading reconstruction

1. Introduction

Ensuring client safety, decreasing conception costs and reducing time-to-market are the three conflicting
objectives at play when choosing and building processes for structural durability assessment. Requirements
regarding the reliability of vehicle chassis parts seek to limit the probability (risk) of fatigue failure under
regular (service) use cases over a given lifetime goal. Test conditions seek to validate such requirements
when designing a new car model. They must be elaborated with respect to the uncertainties inherent to both
fatigue failure, automotive industrial process and targeted customer uses (Johannesson (2014) Chap. 1). The
choice of a design load must be accounted for. One method is to gather and compile real driving events, like
in Standard Loading Histories (Berger et al. (2002) or Heuler and Klätschke (2005)).

When designing a part or organ, the chosen loading level must be proven representative of the whole
population of in-service loads. Only thus can engineers control that the designed system’s probability of
facing failure in service lies below the maximum acceptable risk. This paradigm, opposed to maximalist
design, aims to reduce costly system overdesigns (Svensson and Johannesson (2013)). Risk of failure of
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a part in service is usually worked out using a stress-strength interference approach (Lipson et al. (1967)).
System failure (S > R) is associated to the idea that the load (Stress S) was too ”severe” for the designed
part, given its resistance (Strength R) to load level S. The historical approach (Thomas et al. (1999)) relies on
the limitation that both S and R are described by a scalar variable called severity. This stiffens the versatility
and robustness of our design models in our innovative and competitive industry. New car architectures
(smart cars), power technologies (EV/HEV), assisted driving services (car vision) or new use paradigms
(autonomous cars, carsharing) will modify the way cars are used and loaded in service, as well as the
stiffnesses and weaknesses of their structure, constantly questioning design choices and models.

Following Genet (2006) and Eryilmaz (2011), one way to overcome the limitations of scalar severity
lies in an enhanced description of the reliability of a complex structure submitted to multi-input mechanical
loads. Our intention is to develop the questions surrounding the choice of design loads for reliability
validation. We will explore this concept of ”severity”, lying in our definition of risk, by proposing a
multivariate description of client loads and multiple pseudo-damage variables, both inspired of Johannesson
(2014) Chap. 2 and 3.

We present a multidimensional damage characterization method applied to car chassis submitted to
multi-input loads in Sec. 2. We propose a multivariate description of client loads in Sec. 3. In the same
section, from a labelled client measurement campaign, we identify and quantify several different driver
profiles in terms of induced damage. We then elaborate on the reconstruction of client loads from proving
ground tracks in Sec. 4. From these discussions, we will develop questions and insights towards choosing
design loads in the article perspectives, Sec. 5.

2. Fatigue pseudo-damage

2.1. Global loading histories

We restrict our study to the design of car chassis parts (wheel axles, rear and front suspensions) and their
resistance to crack initiation and propagation under service mechanical loads on each wheel axle. These
multi-entry variable amplitude loads should contain all the information we need to quantify induced fatigue,
at each point of car chassis parts, by a car use. We denote any of such loading histories as

~F = (F j) j∈{1,nF } where F j =
[
F j(t), t ∈ [0,T ]

]
with j = {1 or 2... or 6; f or r; l or r} (1)

denoting f or r, l or r whether the effort (degrees of freedom 1 to 3) or moment (dof 4 to 6) is applied
to the front or rear axles, on the left or right wheel (e.g. FX, f ,l), and nF being the total number of load
components. X, Y , Z directions are associated respectively to deceleration, lateral and vertical solicitations.

2.2. Damage from multiaxial local stress

Fracture at a material point M can be predicted by calculating a fatigue variable from its local stress

history and comparing it to an adequate threshold. We denote
[
σ(M, t), t ∈ [0,T ]

]
the local stress history at

point M, where σ is the second-order Cauchy stress tensor. Under multiaxial cyclic loads, multiaxial fatigue
criteria determine such a fatigue variable τ for each stress cycle. The choice of τ determines the chosen
model of physical fatigue phenomena, see Weber (1999) Chap. 1 for different definitions of τ. Damage
models for variable amplitude loads (our concern) are a generalization of these cyclic fatigue criteria and
may exploit the same variable for fatigue prediction.

Methods based on Miner’s Law (Miner (1945)) allow to linearly cumulate damage from loading samples.
The most common signal decomposition technique used in cooperation with Miner’s Law is the rainflow
cycle counting method, see Rychlik (1987) for method generalities, and Pierron (2018) for an example of
experimental verification. Regardless of the order of its extrema, the rainflow counting of a scalar signal
[τ(M, t), t ∈ [0,T ]] returns nc rainflow cycles with amplitudes (∆τ)i and means µi. Following the examples
of Susmel and Lazzarin (2002) and Meggiolaro and de Castro (2012), marginal damage associated to each
rainflow cycle of the fatigue variable τ is modeled using a Basquin model of a Wöhler curve: S β

0 = N(∆τ)β.
This set of hypotheses leads to the following expression of local damage
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D
(
M,

[
σ(t), t ∈ [0,T ]]

])
=

nc∑
i

(∆τ)β(M)
i

S β
0(M)

(2)

2.3. Local stress on linear structures

We make the simplifying assumption that our structure’s answer is quasi-static under service loads. It
means that instantaneous local stress at each point of our structure depends only on instantaneous values of
~F. This quasi-static approximation is hindered by high frequency components such as pavements or large
spectrum obstacles like sidewalks or potholes. Other fatigue characterization methods may take into account
the effects of high frequency, see for instance Benasciutti et al. (2013).

We ignore the non-linear effects of elements like rubber joints or mechanical stops, on the structure’s
mechanical response. Local loads at each point of the structure are found using the principle of superposition

σ(M, t) =

nF∑
j

K
M, j

F j(t) (3)

denoting K
M, j

stress localization second-order tensors associated to each global load component.

We make the further assumption that the damage variable τ is a linear form τ = k f .σ.h f . Such a property
holds for damage variables like shear stress calculated on point M’s critical slip plane. From Eqs. 2 and 3,
damage at point M is

D(M, ~F) =

nc∑
i

1

S β
0(M)

∆
 nF∑

j

k f .KM, j
.h f F j)

β(M)

i

 (4)

2.4. Pseudo-damage

Choosing an adequate norm ‖.‖, let us rewrite

1
S 0(M)

nF∑
j

k f .KM, j
.h f F j = ‖~AM‖~eAM .~F (5)

We propose to use the canonic 2-norm in space RnF . The term ‖~AM‖2 is akin to stress magnification level
around the point M in the structure. It depends on the structure’s rigidity, the point’s location, its geometry
and its stress intensity factors. The unit vector ~eAM stems from privileged crack microscopic initiation and
propagation directions. Several points in a car chassis may have the same stress orientation ~eAM.

Thanks to the linearity of rainflow counting, we can define pseudo-damage D̂M(F) as

D(M, ~F) = ‖~AM‖
β(M)
2

nc∑
i

(
∆(~eAM .~F)

)β(M)

i
= ‖~AM‖

β(M)
2 D̂M(~eAM .~F) (6)

Eq. 6 is a generalization of pseudo-damage calculated from uniaxial load signals, presented in Johannesson
(2014) Chap. 3. In the rest of the article, this exponent will be considered to be unvariably equal to 4 for
the weak points to be designed. It is a conventional value for the Basquin exponent of weld beams’ fully
reversed (R=-1) traction Wöhler curves. Therefore, we can rewrite D̂M = D̂.

2.5. Chassis weak points and damages

Design experience helps to determine what kind of points one wants to design in a new car chassis. The
structure directs stress directions around them. Local loading at these points can be associated to specific
load cases, such as load cases presented in Fig. 1. Each load case’s induced damage is preponderant for
different sensible points in the structure. We can deduce a satisfying pseudo-damage characterization of all
validation points on a car chassis by picking a set of complementary load cases.
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Fig. 1. Car rear cross member under symetric and asymetrical vertical loads, inspired from Happian-Smith (2002) and Genet (2006)

To illustrate this restriction in our article, we consider a few load cases, made from simple combinations
of global load components, defined by

Fγ
X, f = cos(γ)FX, f ,l + sin(γ)FX, f ,r (7)

and likewise for directions Y and Z, denoting γ an angle of combination. For example, in Fig. 1 a),
F45

Z, f , being the sum of front-wheel vertical efforts, corresponds to the bending loading case. A difference in
vertical efforts causes both torsion and bending of the cross member and is represented by F135

Z, f , case b).
We consider that we want to design the weakest points under a number nd of load cases created using

Eq. 7. Let us define the pseudo-damage vector

~̂D(~F) =
(
D̂(Fγk

j )
)

j∈{1,nd}
(8)

containing pseudo-damages from Eq. 6 calculated using a single constant Basquin exponent β and
different indices j from Eq. 7. This pseudo-damage vector contains all the information we want to determine
the load’s induced damage.

2.6. On damage, load and severity
In the scalar case, damage and load descriptions were both scalar and simultaneously monotonous (see

Bignonnet and Thomas (2001)). Scalar variables are always ordered: a load A is more severe than a load
B if its description is higher than the other one. Severity was easily defined as an isomorphism of either
damage or load descriptions.

Under multi-input loads, given several damage dimensions (that is, several different design points at
the same time), damage and load description’s dimensions are independent and stem from engineering
decisions. Severity aims to compare loads to one another in terms of fatigue. We are unable to predict from
equations and mechanics alone how severity could be defined mathematically. We have to dive deeper into
the description of client uses to understand how severity arises from their diversity.

3. Measuring client damage

3.1. Client load description
In Sec. 2 we have described how to build pseudo-damage from any loading history on a car. We can

apply this calculation to client loading histories. First, we need to be more precise on our definition of a
client and of service loads.



E. Baroux et al. / Structural Integrity Procedia 00 (2021) 1–?? 5

A car service loading episode occurs while the car is used by a specific driver, over a specific path, with
a given payload (passengers and luggage) at a given time in a given region with its corresponding driving
legislation and cultural habits. The structure is therefore opposed to a specific trajectory and its mechanical
answer loads the car chassis. This defines a single client use case.

Driver D, trip T (path, road properties, legislation and traffic situations), payload M are the three
variables that determine load over one use case (see Fig. 2). The customer load distribution is multivariate
as per our model. We need to exploit different sources of information to characterize these three sources of
variability.

Fig. 2. Sources of variability in car service loadings (adapted from Johannesson (2014))

3.2. Client measurement campaign
To measure a population of target client uses, we can proceed using one of two types of sampling:

• Acquiring enough random samples to be representative of the whole population;

• A stratified selection procedure using labelled samples based on the decomposition in Fig. 2.

Developments to apply the former are presented in Chojnacki (2021). In this article, the second approach
is preferred. To control the effects of each source of variability - driver, trip and payload - labelled campaigns
may force some of these parameters. In our study, we use a specific kind of campaign in which we have
fixed variables T andM, called Fixed Trip & Payload India 2011 (I11).

In the campaign I11, 11 clients (C1 to C11) drove with the same vehicle on the same path, in India, one
client per day for 11 days. Efforts applied to each wheel axle of the car were measured over a distance of
220km for each client (moments were not measured). Said loadings are denoted ~Cc for c ∈ {1, 11}.

3.3. Client pseudo-damage
For the sake of illustration, we only keep the 6 efforts applied to the car’s two front wheel axles. We

calculate from them 12 scalar signal combinations (F j) j∈{1,nd} using Eq. 7 over the 3 directions (X,Y,Z) with
4 angles of combination γ ∈ (0, 45, 90, 135). Pseudo-damage was calculated using Eq. 6 with a Basquin
exponent β = 4. The rainflow counting on each load combination was performed on MATLAB using the
toolbox WAFO (Brodtkorb et al. (2000)) following the rules of ASTM E1049-85 (2017).

The Fig. 3 shows the values of pseudo-damage for a few outstanding clients and for each pseudo-damage
component’s mean. Each radius of this radar corresponds to one pseudo-damage component, individually
centered and reduced. Each 120-degree sector corresponds to the 4 pseudo-damages calculated over one
direction (X,Y,Z).

The larger circle in this figure shows an abstract client Ca whose pseudo-damages are equal to client
mean plus three standard deviations s j for all components. This client will be the example used in Sec. 4.4.

Clients C3, C5 and C9 stand out as dominating the rest of the campaign. We can see however that
these clients can not be ordered over all components at once. It means that they gather and maximize
pseudo-damage components respectively along the Z, X and Y directions. They induce more damage on the
structure from combinations of vertical, deceleration or lateral loads, compared to the other clients.
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Fig. 3. Pseudo-damage dispersion over I11 clients

This multidimensional description of client pseudo-damages helps us to compare clients on each component
of the vector. In the next paragraph, we will apply variable reduction methods to achieve a simpler and
sufficient description of client pseudo-damage vectors towards their statistical distribution.

3.4. Driving profile description

We perform a principal component analysis (PCA) to describe the variations of pseudo-damage vectors
using fewer dimensions (Husson et al. (2011)). The principal components (PC) (or principal axes) are linear
combinations of the pseudo-damages with maximum variance and are pairwise orthogonal. Here, the first
three components express 97.9% of data variability, see Table 1.

The Table 1 also shows the correlation of each PC to the pseudo-damage’s components. First component
PC1 is positively correlated to all pseudo-damages. This is called the size effect: a client with a high (resp.
low) coordinate on the PC1 axis has high (resp. low) pseudo-damages overall. The second component PC2
is positively correlated with the pseudo-damages induced from combinations of longitudinal and lateral
loads, and negatively correlated with the vertical ones. The third component PC3 is positively correlated
with the longitudinal pseudo-damages and negatively with the lateral ones.

Table 1. Principal component analysis: pseudo-damages correlations with the PCs.

D̂(F0
X) D̂(F90

X ) D̂(F0
Y ) D̂(F90

Y ) D̂(F0
Z) D̂(F90

Z )
Corr PC1(76.6%) 9.30 7.80 8.50 8.30 9.10 9.20
Corr PC2(13.8%) 2.20 4.00 3.70 4.20 -3.80 -3.70
Corr PC3(7.6%) 2.80 4.80 -3.70 -3.60 -0.20 -0.50

A client clusterization (Husson et al. (2011)) reveals five clusters. The projection of the clusters on
each PC allows us to describe them (see Fig. 4). The center (0, 0) of the cloud corresponds to mean
pseudo-damage behaviors. PC1 makes it possible to distinguish the clients according to their multiaxial
pseudo-damages. The cluster 1 includes clients with significantly lower than mean pseudo-damages. The
cluster 2 includes clients C4 and C6 having medium pseudo-damages. The remaining clusters singularize
clients C3, C5 and C9.

We have explored the question of client damage description. As mentioned in the introduction, we want
to question the choice of design loads from statistics on client loads. In the next section, we will discuss
the reconstruction of one or a group of these clients from reference proving grounds to further feed this
discussion.
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Fig. 4. PCA : clients scatterplot projection on plane PC1-PC2.

Table 2. Client characterization: the v-test is the value of the standardized difference between each cluster’s mean and the overall mean:
|v| > 1.96 indicates significant difference.

Client Client C3 Client C5 Client C9
Pseudo-damage D̂(F0

Y ) D̂(F90
Y ) D̂(F0

Z) D̂(F90
Z ) D̂(F0

X) D̂(F90
X ) D̂(F0

Y ) D̂(F90
Y )

v-test 1.58 1.43 2.58 2.54 1.96 2.33 1.90 2.08

4. Client reconstruction from proving grounds

4.1. Proving grounds

We have argued that a choice of design loads should be achieved and justified from knowledge of
client loads. Once this choice is made by load data engineers, a targeted load must be translated into
a reconstructed, repeatable test signal. A generic method to derive simpler loads from complex ones is
presented in Raoult and Delattre (2020). It uses damage equivalency in a damage reconstruction protocol.
That method relies on measurements realized on a vehicle driving on tracks, constitutive of proving grounds.

Historically, proving ground tracks were reproduced from real-life driving events. These samples were
kept as representative of damaging events in a car’s life, and as relevant, by experience, to design reliable
car structures. These events have controlled dimensions, they are repeatable and easily associated to real
life situations. The obstacles met, the tested car’s trajectory and the added mass are fixed. From Fig. 2, we
can say that proving ground conditions set both Driver, Trip and Payload for all vehicle models.

In this study, we consider a reference set of tracks performed with the very same car of I11. Their load
components are the same as in Eq. 1. Among these tracks, labelled T1 to T5, we respectively find emergency
braking, a sample of common driving events, potholes, pavements and short turns.

4.2. Track pseudo-damage

We can replicate our previous damage calculation on track loads T1 to T5 using Eq. 8. In order to
compare, on the same radar, heterogeneous track pseudo-damages to the client ones of Fig. 3, we need to
use the same graphical parameters and to inflate track pseudo-damages according to their duration.

The Fig. 5 b), c) and d) show the shapes of track pseudo-damage radars compared to our three severe
clients C3, C5 and C9. Each of these track involves an arbitrary repetition of a single kind of events.
Compared to real-life loads, they emphasize specific pseudo-damage components. But they allow the
engineer to put an emphasis on distinct kind of solicitations, namely, vertical, deceleration or lateral efforts.
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We also compare the client mean and tracks T1 and T2 in a). Tracks appear to be complementary in
explaining client pseudo-damages.

Fig. 5. Pseudo-damage shape comparison between tracks and: a) Client mean; b) Client C3; c) Client C5; d) Client C9

4.3. Construction of a target client from the customer base
We have seen from Sec. 3.4 that our client pseudo-damage population is heterogeneous. It is indeed

composed of core and extreme clients, each displaying a different profile. We cannot yet provide a relevant
representative client for our creation of a design load. In this section, we will simplify this problem and
pick an illustrative client having fixed pseudo-damages accumulated over 220km. A justified choice will
be presented in a later study. We choose a client load Cα, corresponding to a high quantile over all
pseudo-damage components, defined as

P
(
~̂D(C) � ~̂D(Cα)

)
≤ α (9)

where ~u � ~v implies that each component of ~u is greater than the corresponding one in ~v. C is a random
outcome from our client load population. This target client is a generalization of an α-quantile of a scalar
random variable.

If client pseudo-damage vectors are issued from a gaussian random variable, this target load’s damage is

~̂D(Cα) =

 µ0
X + z1−αs0

X
. . .

µ135
Z + z1−αs135

Z

 (10)

denoting µγX and sγX respectively the mean and standard deviation of pseudo-damage values D̂(~Fγ
X) over

our clients from I11, and same for Y and Z. And z1−α is the (1−α)-quantile of a standard normal distribution.
If α = 1%, z1−α ≈ 3 and Ca used in Fig. 3 verifies ~̂D(Cα) = ~̂D(Ca)

4.4. Reconstruction of a target client from the proving grounds
To reconstruct the pseudo-damages associated to client Ca, we look for a loading history composed of a

chaotic sequence of repetitions of tracks T1 to T5, inducing equivalent damage.
Using rainflow counting in Eq. 2 makes the order of concatenation irrelevant to damage calculation.

However, damage obtained from a rainflow counting on a chaotic concatenation of single loads is not equal
to the sum of damages calculated from rainflow countings on the single loads. Indeed, damage quantification
from rainflow counting is dependent on the processing of the rainflow residual terms (Marsh et al. (2016)).
Nevertheless, we make the hypothesis that the damage of a load C~n constructed from ne repetitions of each
track Te is the sum of the damages calculated from each track. The induced pseudo-damage is then

~̂D(C~n) =

5∑
e=1

ne
~̂D(Te) (11)

We look for C~n as close as possible to our target client in terms of induced pseudo-damage. We want to
solve the following constrained quadratic optimization
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min
~n
‖
~̂D(C~n) − ~̂D(Ca))‖22 with ~n � ~0 (12)

We used here a canonic 2-norm on space Rnd . Otherwise, a weighted norm would allow us to focus
on the precise reconstruction of specific pseudo-damage components. This choice may be motivated by
the diversity of driver profiles and its consequence on the variability of each pseudo-damage component. It
may also be motivated by the importance of each pseudo-damage component when it comes to designing
vehicle parts. The choice of the minimization criterion can be tricky, and a further study will be exclusively
dedicated to the search of equivalent loads towards the creation of design loads.

Table 3 shows the results of a constrained quadratic optimization on this problem using a global search
with default parameters from the R package QUADPROG (Goldfarb and Idnani (1983)).

Table 3. Optimal 2-norm mix of tracks to reconstruct client Ca

T1 T2 T3 T4 T5
Obstacle type Braking Common driving Pothole Pavement Turns
Optimal combination 176 11 0 0 2

Here only three tracks have been retained. Tracks are characterized as R12 damage vectors, and they
might be redundant if one track pseudo-damage vector can be reconstructed from a combination of other
ones. The completeness of a set of tracks will be discussed in a further study. Beside, we did not compute
a relevant score to judge our reconstructed load. The algorithm’s stopping criterion depends on the chosen
norm and on the convexity of our research space.

5. Conclusion and perspectives

In order to reliably design a car chassis, we need to characterize the fatigue induced by service loads and
to determine load conditions and levels that are representative of client uses. We have introduced a vectorial
description of the fatigue induced by multi-input variable amplitude loading histories on car chassis parts.
A further investigation should assess the prediction performances of our pseudo-damage characterization.

We have proposed a method to link weak points in our structure to specific pseudo-damage components
derived from global structural load cases. The choice of a set of such load cases must be motivated by
previous validation processes and experience.

Then, the variability of car loads in service was developed into a multivariate description of client
profiles. We distinguish the effects of the driver, the trip and the vehicle’s dynamics. Thus, we have proposed
a method to acquire statistical knowledge on the distribution of client loads using labelled measurement
campaigns.

From an example of such a campaign (I11), we have evaluated the effect of one source of variability: the
driver’s behavior. Using principal component analysis, we have found that the effect of the variable Driver
on induced damage can be described using a little number of variables. We have proposed an interpretation
of these variables by referring to simple load cases. The definitions and variety of trips and payloads over car
use cases, as well as the extrapolation from client samples to whole car lives, will be investigated in a further
study, compiling different campaigns. Thanks to innovations in sensor integration and Big Data methods
(Chojnacki (2021)), small-cost integration of measurement sensors and post-processing routines becomes
achievable in connected vehicles. A larger anonymous survey of client loads and uses will increase the
precision of our knowledge of client uses.

We also have isolated extreme client uses in our campaign I11 through client clustering. Pending the
further analysis of larger databases using extreme value statistics, we can only draw partial conclusions
on the distribution of all driver profiles over our client population. The existence and the specificity of
prominent driver profiles raise however the question of the desired representativeness of the design load
(Rockafellar and Royset (2015)). Its choice must account for the likelihood of all accepted uses in what we
have classified as service uses.
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Finally, we have proposed, for a given abstract client pseudo-damage vector, a method to reconstruct it
using simple and controlled track loads. The results obviously depend on the parameters and criteria used in
the optimization. Using track samples to elaborate test conditions has the advantage of managing realistic
and reproducible car loads, in accord with current customs in the automotive industry. We have raised the
questions of representativeness and redundancy of a set of tracks with respect to the variety of clients. This
comforts us towards handling a growing set of available tracks to build physical design loads.

We have argued that design conditions need to be representative of the whole population of service uses.
However, they must also be appropriate with respect to the definition of risk in project requirements to fully
adapt the SSI method to our validation needs.
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Raoult, I., Delattre, B., 2020. Equivalent fatigue load approach for fatigue design of uncertain structures. International Journal of

Fatigue .
Rockafellar, R.T., Royset, J.O., 2015. Engineering decisions under risk averseness. ASCE-ASME Journal of Risk and Uncertainty in

Engineering Systems, Part A: Civil Engineering 1.
Rychlik, I., 1987. A new definition of the rainflow cycle counting method. International Journal of Fatigue 9, 119–121.
Susmel, L., Lazzarin, P., 2002. A bi-parametric wöhler curve for high cycle multiaxial fatigue assessment. Fatigue and Fracture of

Engineering Materials and Structures 25, 63–78.
Svensson, T., Johannesson, P., 2013. Reliable fatigue design, by rigid rules, by magic or by enlightened engineering. Procedia

Engineering 66, 12–25.
Thomas, J., Perroud, G., Bignonnet, A., Monnet, D., 1999. Fatigue design and reliability in the automotive industry, in: Marquis, G.,

Solin, J. (Eds.), Fatigue Design and Reliability. Elsevier. volume 23 of European Structural Integrity Society, pp. 1–11.
Weber, B., 1999. Fatigue multiaxiale des structures industrielles sous chargement quelconque. Ph.D. thesis. Institut National des

Sciences Appliquées de Lyon.




