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Abstract 

One of the first steps to address palaeontological studies is the taxonomic identification of fossils 
according to their morphology. Geometric Morphometric techniques together with multivariate 
statistical analysis are known to be precise tools to achieve this goal. More recent alternative 
techniques such as Machine Learning are still rarely used in Palaeontology, although it has been 
shown in various examples that they can offer powerful alternative statistical approaches to analyse 
quantitative morphometric data. Here we show how Machine Learning applied to two-dimensional 
geometric morphometric data from the outline shape of the lower first molars of Mus spp. has 
proven useful to overcome taxonomic problems. We collated a photographic database of 303 lower 
first molars from modern populations of Mus musculus domesticus and Mus spretus from 
southwestern Europe and North Africa to compare the performance between classic multivariate 
statistics and Machine Learning algorithms in identifying the two species from their dental 
morphology. We also include Late Holocene Mus specimens from the Estrecho Cave (east-central 
Spain) to predict their specific status. Our results suggest that Machine Learning is more efficient 
than classical statistical analyses in taxonomic identification of Mus molars, reaching 100% of correct 
classification. The application of such techniques to fossil material showed that ensemble/stacking 
algorithms provided robust identification of both M. m. domesticus and M. spretus in the Estrecho 
Cave assemblage and confirmed that both species colonised the Iberian Peninsula at a time prior to 
the formation of the site. 
 
Keywords: Murinae, Rodentia, Western Mediterranean, Holocene, Geometric Morphometrics, 
Ensemble Learning. 
 
 
1. Introduction 
 

The study of Quaternary small mammals (Rodentia, Lagomorpha, Eulipotyphla, Chiroptera) has a 
special interest in vertebrate palaeontology. Among small mammals, rodents have a key role due to 
their great diversity, high speciation rate, and narrow ecological requirements of many of its species, 
making of them excellent biochronological and palaeoecological proxies (Andrews, 1995; Chaline et 
al., 1999; Avery, 2007; Cuenca-Besc_os et al., 2016). However, in more recent sites, particularly from 
the Middle Holocene onwards, the study of rodent and small mammal fossils in 
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archaeo/palaeontological sites decreases due to their comparative lower value as biochronological 
proxies, since alternative methods such as ceramics or numismatics can provide more precise relative 
ages (Domínguez García et al., 2019a, 2020; Laplana and Sevilla, 2013; L_opez García, 2011; 
Papayiannis, 2012). Therefore, it hinders the reconstruction of the recent dynamics of small mammal 
communities. 

This general problem applies in the Holocene biogeographic history of rodents in the western 
Mediterranean region, where the scarcity of data has obscured the reconstruction of the dispersal 
process of species of the genus Mus Linnaeus, 1758. At present, two species occur sympatrically in 
most of the Iberian Peninsula, Balearic Islands, Mediterranean France and North Africa (Wilson et al., 
2017): the western Mediterranean mouse (Mus spretus Lantz, 2013) and the western house mouse 
(Mus musculus domesticus Schwarz and Schwarz, 1943). According to recent studies (Domínguez 
García et al., 2019a; Lalis et al., 2019), M. spretus colonised Europe from the Maghreb during the 
Middle Holocene (Late Neolithic), whereas M. m. domesticus arrived later in the western 
Mediterranean region, both in Africa and in Europe, from the Levant during the Late Holocene (Iron 
Age) (Cucchi et al., 2005b; Bonhomme et al., 2011; Oueslati et al., 2020). These studies indicate that 
such dispersal processes may have been associated with accidental anthropogenic translocations 
through navigation routes in the Mediterranean Sea. However, many of the fossil occurrences of 
both species are taxonomically and/or chronologically imprecise, thus constraining the evidence for 
clarifying some details concerning the timing and mechanism involved in hese colonisations (Cucchi 
et al., 2005b; Domínguez García et al., 2019a; Lalis et al., 2019; Valenzuela-Lamas et al., 2011). 

Mus spp. Show very similar skeletal and dental morphology and size, hindering often species 
identification. Based on sufficient material, a set of craniodental morphometric criteria can allow to 
discriminate between M. spretus and M. m. domesticus (Darviche et al., 2006; Darviche and Orsini, 
1982; Gerasimov et al., 1990). However, given that many of these characters show a high 
intraspecific variability together with the fragmentary state in which the fossil material is usually 
preserved, taxonomic identification in palaeontological studies usually relies on the morphology of 
the first lower molar (m1) which is known to provide the most efficient criteria (Darviche et al., 2006; 
Darviche and Orsini, 1982). Thus, in M. spretus the anterior region of the m1 shows a tetralobate 
morphology whereas it is trilobate in the case of M. musculus. This difference has to do with the 
different development of the anterolabial tubercle (tE) in each species, which is well individualised in 
M. spretus and more reduced and not individualised in M. musculus. Additionally, an external 
cingular margin with a well-developed secondary cusp (c1) in the m1 is common in M. spretus, 
whereas it is infrequent or less developed in M. musculus (Darviche et al., 2006; Darviche and Orsini, 
1982). However, these comparative morphological criteria are subject to a high intraspecific 
variability and are also affected by tooth wear (Darviche and Orsini, 1982; Cucchi et al., 2002), finally 
involving a high degree of subjectivity in the process of their observation. 

Many efforts have been made to overcome these taxonomic difficulties by quantifying the shape 
differences in the m1 of Mus by means of Geometric Morphometrics (GMM). The approach in most 
of these studies involved the use of Elliptic Fourier Analysis (EFA) of the molar outline (Cucchi et al., 
2002, 2005a; Michaux et al., 2007; Stoetzel et al., 2013; Valenzuela-Lamas et al., 2011). More 
recently, landmark and semi-landmarks approaches to describe the molar outline have been 
employed (Cucchi et al., 2013, 2020; Weissbrod et al., 2017). All these studies have evidenced that 
GMM techniques,taking as reference the morphometric data obtained from modern populations, 
together with multivariate statistical analyses are powerful tools for intra- and interspecific 
discrimination of the genus Mus. Most of this research has applied the technique to material 
collected in sites from Southeastern Europe and Southwestern Asia, providing reliable taxonomic 
identifications and therefore a basis on which to build a clear picture of the biogeographic history of 
oriental taxa of the genus and to interpret how climatic and environmental variations or human 
activities have influenced in it (Cucchi et al., 2002, 2011, 2013, 2020; Cucchi, 2008; Cucchi and Vigne, 
2006; Weissbrod et al., 2017). In contrast, there are fewer studies with a similar approach dealing 
with the western Mediterranean Mus records (Stoetzel et al., 2013; Valenzuela-Lamas et al., 2011). 
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In recent times, the incorporation of Artificial Intelligence in different disciplines has improved 
significantly the results previously provided using classical Fisherian or Bayesian models. In the case 
of palaeontological research, these tools can be combined with the classical morphometric analyses 
in two ways: 1) using Convolutional Neural Networks (Krizhevsky et al., 2012; Kim and MacKinnon, 
2018; Tan and Le, 2020) that can be used to classify taxa through the analysis of images containing 
relevant taxonomic information (Miele et al., 2020; Norouzzadeh et al., 2018; Romero et al., 2020; 
Sevillano et al., 2020; Villon et al., 2018); or 2) a combination of Artificial Intelligence methods and 
GMM using Machine Learning (ML) algorithms instead of the classical statistical approach with Linear 
Discriminant Analyses or Canonical Variance Analyses (Bellin et al., 2021; Courtenay et al., 2019; 
Cucchi et al., 2020; Herranz-Rodrigo et al., 2021; Monson et al., 2018; Quenu et al., 2020; Wills et al., 
2021). 

The first type of approximation (i.e. Convolutional Neural Networks) is probably the future for 
some different scientific disciplines, especially Palaeontology. However, the computational 
requirements of these methods and the high number of images needed to train the models lead us 
to consider that, at least nowadays, they are not useful tools to perform palaeontological studies. A 
good example of this type of approximation has been the differentiation between Mus musculus and 
Apodemus sylvaticus using Convolutional Neural Networks, which provided a perfect classification of 
these genera, otherwise easily differentiable by a traditional morphometric analysis (Miele et al., 
2020).  

Here we have tried an improved use of GMM for the taxonomic discrimination between recent M. 
m. domesticus and M. spretus by combining it with ML procedures, as an exploratory approach to 
test the effectiveness of this method when applied to isolated fossil teeth. Thus, we are pursuing to 
find the most accurate model to differentiate between both species using Machine Learning 
algorithms. For this purpose we employed some algorithm considered to be some of the most 
powerful methods in Machine Learning (Lantz, 2013), and subsequently applied Ensemble and 
Stacking methods in order to improve the classification rate of the base learners. 

These methods were then used in order to classify the Mus materials from the Holocene small 
mammal assemblage of Estrecho Cave (Spain) where both species where previously proposed as 
probably identified (Domínguez García et al., 2019b, 2020). 
 
2. Small mammal assemblage of the Estrecho Cave 
 

The Estrecho Cave is located in the central-eastern area of the Iberian Peninsula (Villares del Saz, 
Cuenca) (Fig. 1) and is part of the karst system of Villares del Saz with other caves such as Cueva de 
las Monedas, Cueva de las Palomas or Cueva del Camino (Ortega Martínez and Martín Merino, 1992). 
The archaeological record documented has provided evidence of a funerary human activity inside the 
cave during the Bronze Age (Guisado Di Monti and Bern_andez G_omez, 2016). 

The studies performed by Domínguez Gerasimov et al. (1990, 2019b)have revealed the 
palaeontological interest of this site where a rich small mammal assemblage of Late Holocene age 
was identified in the sedimentary deposits located at the eastern part of the current entrance to the 
cave. This assemblage is characterized by its high richness, both in the number of remains and in the 
number of taxa of rodents, lagomorphs, eulipotyphlans and chiropterans (Table 1). Its richness is 
probably a consequence of the fact that at least part of the micromammal assemblage is clearly 
related to the activity of a small to medium-sized mammal carnivore (Domínguez García et al., 
2019b). Besides its richness, the assemblage is also relevant for having provided the earliest reliable 
record of Suncus etruscus in southwestern Europe (Domínguez García et al., 2020). 

The 14C dating obtained from an Arvicola sapidus humerus provided two intervals of calibrated 
age: 2310e2290 (10.70%) and 2272e2149 (82.80%) years cal BP (Domínguez García et al., 2019b, 
2020) for the small mammal assemblage. In this sense, it must be noted that the anthropic use of the 
cave was older than the accumulation of the small mammal remains, since the archaeological record 
documented in separate deposits inside the cave is clearly related to the Early Bronze Age (Guisado 
Di Monti and Bern_andez G_omez, 2016), whereas the radiocarbon age obtained place the small 
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mammal assemblage between the end of the Iron Age and the beginning of the Roman Period in 
Iberia. 

This small mammal material is still under study, with several matters that remain to be cleared. 
For instance, solving some taxonomic issues such as reaching species level in the determination of 
several rodent pair of species (Microtus arvalis-agrestis, Microtus duodecimcostatus-lusitanicus, 
Apodemus sylvaticus-flavicollis, Mus spretus-musculus e Table 1), which would be of interest for 
environmental reconstructions or biogeographical purposes. However, the discrimination between 
these species that belong to the same genus is complicated due to their similar morphology and size 
overlap. Thus, we aim to search for methods to overcome this issue involves using more complex and 
modern techniques than those used by traditional taxonomy. 

Within this context, we present here the results obtained after using a combination of ML and 
GMM methods with the aim of obtaining reliable taxonomic identifications that distinguish between 
Iberian specimens of the genus Mus (M. m. domesticus, M. spretus) and reply to the question of the 
potential co-occurrence of two Mus species in the site. 
 
3. Material and methods 
 
3.1. Fossil and modern samples 
 

The fossil material of the genus Mus used for this study comes from the sampling carried out in 
the Estrecho Cave during 2016 at the uppermost level (CE-SE) of the sedimentary package located at 
the eastern side of the entrance to the cave. A water-screening system with two superimposed 
sieves of mesh sizes 2 and 0.5 mm was employed to retrieve all the microvertebrate remains. Among 
these, a total of 143 remains belonging to Mus were identified, of which 48 first lower molars (m1) 
were selected for this study. Fragmented and/or digested molars, or those that showed an advanced 
tooth wear stage were excluded. 

The modern reference sample consisted of 303 m1 (belonging 157 to Mus musculus and 146 to 
Mus spretus) coming from different Spanish regions (Iberian Peninsula, Canary Islands and Mallorca), 
as well as some specimens from France, Algeria and Morocco (Table 2). This material belongs to the 
collections housed in the Estaci_on Biol_ogica de Do~nana (EBD), the Institut des Sciences de 
l’Evolution de Montpellier (ISEM), Museo Nacional de Ciencias Naturales (MNCN) and specimens 
captured during field campaigns carried out by the team of the French ANR project MOdern Human 
installation in Morocco, Influence on the small terrestrial vertebrate biodiversity and Evolution 
(MOHMIE). The specimens from the ISEM and MOHMIE are genotyped, whereas the taxonomic 
assignations of the EBD and MNCN specimens were checked according to the set of cranial criteria 
currently used to distinguish between both species (Darviche et al., 2006; Darviche and Orsini, 1982; 
Gerasimov et al., 1990); together with the relative length of the tail, measured on their preserved 
skins, which is always shorter than the length of the head þ body in M. spretus and longer in M. m. 
domesticus (Britton et al., 1976). The detailed information of each specimen, including catalogue 
numbers and repositories, are provided in Supplementary File 1. 
 
3.2. Geometric Morphometric Analysis (GMM) 
 

The skeletal morphometric similarities between Mus sibling species (Darviche et al., 2006; 
Darviche and Orsini, 1982; Gerasimov et al., 1990) has triggered the application of GMM techniques 
in order to discriminate between both species, due to the differentiation of them using only 
morphological criteria is extremely difficult. Here, shape analysis of the first lower molar (m1) outline 
was carried out following Cucchi et al. (2020, 2013). 

GMM data for the m1 outline analysis were obtained using 2D images of the occlusal view from 
photos taken of each m1 included in this study, keeping special care that all had the same orientation 
(occlusal surface horizontal), since changes in the tooth orientation may lead to alterations in outline 
morphology and therefore in landmark and semi-landmarks position (Fox et al., 2020). Teeth of 
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modern samples were grouped together independently of their age and sex since these factors have 
no significant influence on the molar outline in murids (Renaud, 2005; Valenzuela-Lamas et al., 2011). 
Right teeth of modern specimens were used whenever possible; however, all the fossil teeth were 
measured whether right or left. Following Renaud (1999) and Stoetzel et al. (2013), left specimens 
were mirrored. 

We used the “landmark and sliding semi-landmarks” approach following Cucchi et al. (2013) to 
obtain the outline data. Accordingly, one landmark was positioned at the furthest point of the 
anterior lobe of the tooth, and 63 equally spaced semi-landmarks along the crown's external outline 
(Fig. 2) using tpsUtil v.1.76 (Rohlf, 2018) and tpsDig v.2.32 (Rohlf, 2010). 

We have employed a Bending Energy Minimization (BEM) method for semi-landmark alignment 
applied on outlines defined by one landmark and 63 sliding semi-landmarks, since this has been 
demonstrated to be the most efficient GMM approach to capture the taxonomic signal for the genus 
Mus (Cucchi et al., 2020). 

To standardise the position, orientation and scaling information of each specimen, a Generalized 
Procrustes Analysis (GPA) was conducted using tpsRelw v. 1.70 (Rohlf, 2019). By this procedure the 
BEM method was applied, where semi-landmarks are constrained to slide along an estimated 
tangent at each sliding point (Bookstein, 1997). With this methodology, we obtained the Procrustes 
coordinates which are the molar-shape variables set. With the Procrustescoordinates of each 
specimen, we performed two Principal Components Analysis (PCA) on the covariance matrix, one 
applied to the modern samples and the other to both the modern and fossil samples. The PC scores 
obtained were used as shape variables in the subsequent analysis. 

Once the PCAs were calculated, a Linear Discriminant Analysis (LDA) was applied. This test has 
been performed to classify the specimens with the standard classic method in order to check if other 
Machine Learning models provide more accurate results than the classical methods. The LDA was 
also performed using a leaveone- out cross-validation method (LOOCV). LDA were calculated using 
the library ‘MASS’ (Ripley et al., 2020) of R (R Core Team, 2022). The performance of the LDA was 
developed using training and testing datasets in the sameway as for the other ML algorithms (see 
below). 

In order to identify the best way to analyse the modern data we conducted the Linear 
Discriminant Analysis with four different approaches: 1) including 82 PC scores; 2) including 7 PC 
scores; 3) including 14 PC scores and 4) including 27 PC scores. This selection of PC scores is based on 
the percentage of the variance obtained for each sample. In the case of the 14 PC scores, they 
contain the 95% of the variance, while in the case of the 27 PC scores they contain the 99% of the 
variance. The selection of 82 PC scores is related to the fact that 82 is the maximum number of PC 
that can be used when a LDA is performed (if all PC scores are used, a statistical error appears 
because from PC 83, the variables appear to be constant [i.e., co-linear] within groups). The last case 
(7 PC scores) is related to the application of a broken stick test which indicated that the optimum 
number of PC scores is 7 (see Results section). 
 
3.3. Machine Learning Analysis (ML) 
 

ML algorithms are one of the most powerful statistical methods currently available (Lantz, 2013). 
This type of statistical approach allows the classification and prediction of labelled categories within 
analytical samples using a powerful system of data evaluation (Kuhn and Johnson, 2013). 

A standard procedure in this type of predictive models is to improve the sample size using 
bootstrapping (Abell_an et al., 2022; Mocl_an et al., 2019, 2020) or even Generative Adversarial 
Networks (Courtenay and Gonz_alez-Aguilera, 2020). However, we have not applied this type of 
methods here since the sample size is large enough to carry out the study without the need of 
enlarging virtually the number of cases. Furthermore, this decision is supported on our previous 
experience dealing with GMM Mus species identifications, in which the accuracy rate was high 
although sample size improvement was not used (Stoetzel et al., 2013; Valenzuela-Lamas et al., 
2011). 
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In all performed ML analyses, we have evaluated the accuracy values as the estimator of the best 
models. The accuracy refers to the percentage of success in the classification of cases by the 
algorithm, varying between 0 and 1. Zero corresponds to a null classification and 1 being a perfect 
classification of the entire sample. However, Kappa statistic has been used in combination with 
accuracy in order to determine which model is the most accurate in any case. The Kappa statistic 
ranges from _1 to 1, with values of 0.80e1 providing “very good agreement” (Lantz, 2013). 

We also calculated the sensitivity, the specificity and the balanced accuracy of all models in order 
to evaluate the performance of each algorithm. The sensitivity of a model measures the proportion 
of positive samples that were correctly classified, in contrast with specificity where the proportion of 
negative samples that were correctly classified is quantified. As Lantz (2013) points out these can be 
understood as “the true positive rate” and “the true negative rate”. Finally, balanced accuracy 
corrects this by averaging  the results of the sensitivity and the specificity (Domínguez-Rodrigo, 
2019). 

In this paper, we have used a series of 11 algorithms that are considered a selection of the best 
available methods (Lantz, 2013). The selection is composed of different types of algorithms which 
evaluate the data in different ways. This aspect allows us the possibility of testing extremely different 
mathematically methods to analyse the same sample and discover the best way to obtain a correct 
taxonomic assignment of the fossil specimens. What's more, the application of Ensemble and 
Stacking methods needs the use of really different algorithms in order to improve the quality of the 
models (see below). 

The specific algorithms we have used here are: Neural Networks (NNET), Linear Support Vector 
Machines (SVMl), Radial Support Vector Machines (SVMr), k-nearest neighbour (kNN), Logistic 
Regresion (LG), Decision Trees using the 5.0 algorithm (DTC5.0), Random Forest (RF), Gradient 
Boosting (GB), Naïve Bayes (NB), Linear Discriminant Analysis (LDA) and Partial Least Squares (PLS). 

The different ML algorithms were trained in the same way. First, the sample (PC scores provided 
by the previous performing of PCA) was divided into two different parts: training (70% of the sample) 
and testing (30% of the sample). This methodology is used to check the reliability of a model, 
observing whether the tested model leads to the correct classification not only of the specimens in 
the studied sample, but also of additional unknown samples. This approach is similar to the approach 
performed with the ‘classical’ Linear Discriminant Analysis. In order to overcome the possible 
overfitting provided by the model, we added cross-validation methods (10-fold CV; repeats ¼ 10). In 
this way, we used the typical combination of training/cross-validation/testing in order to create 
accurate models. 

All these methods have been developed using the ‘caret’ (Kuhn et al., 2020) and ‘caretEnsemble’ 
(Deane-Mayer, 2019; Deane-Mayer and Knowles, 2019) R libraries (R Core Team, 2022). These 
libraries allow us to perform the hyper-parameter configuration easily with the ‘tuneLength’ function 
used to generate 20 different models per algorithm. After ‘tuneLength’ application, accuracy and 
Kappa values were used to select the most accurate hyperparameter configuration. In addition to the 
previous procedures, we must point out that the performance of the models through the 
visualization of AUC-ROC curves developed using the ‘MLeval’ R library (John, 2020) were also 
evaluated. 

‘caretEnsemble’ is a powerful library oriented to performing Ensemble Learning (Deane-Mayer, 
2019; Deane-Mayer and Knowles, 2019). It contains methods that generate metaalgorithms that 
combine the classification of all the base learners previously trained. These techniques are used 
because they usually produce a better performance analysis because they give the opportunity to 
combine different algorithms that build classifications in clearly different ways (Dietterich, 2000; 
Opitz and Maclin, 1999; Rokach, 2010; Sagi and Rokach, 2018). To take advantage of these methods, 
it is important to know previously if there is no correlation between the classifications obtained using 
the different base learners. Here we have used the function ‘modelCor’ of the ‘caret’ library (Kuhn et 
al., 2020) to identify the existence of a possible correlation between the models. 

For ensemble learning we have used the ‘caretEnsemble’ library (Deane-Mayer, 2019; Deane-
Mayer and Knowles, 2019) since it provides an easier way to train the meta-learner from ‘caret’ 
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models. Its only disadvantage is that it cannot provide classifications of three or more categories 
(Deane-Mayer and Knowles, 2019). For our aims here, however, this is not an issue because we are 
dealing only with two different species (i.e., Mus musculus domesticus and Mus spretus). Thus, we 
have used the ‘caretEnsemble’ function to create an ensemble algorithm that works using a 
Generalized Linear Model (GLM). Furthermore, we have used the function ‘caretStack” to train three 
stacked models: a Neural Network, a Random Forest and a Gradient Boosting algorithm. The reason 
for this choice of algorithms to perform the stacked model was the high power of resolution that 
they have solving different types of ML problems and because they admit the highest number of 
hyperparameter combinations in ‘caretEnsemble’ library. 

It must be pointed out that in the case of the ensembled models we have used an 11-fold CV 
method. The reason is that if the same cross-validation value is used for the preparation of the basic 
algorithms and the meta-algorithms, an error can be generated by the library ‘caretEnsemble’ 
(Deane-Mayer, 2019). 

All the above-mentioned methods were applied to the modern sample in order to find the most 
accurate model possible (see Results section). 

As in the case of the LDA all analyses were performed four times: 1) including 82 PC Scores; 2) 
including 7 PC scores; 3) including 14 PC scores and 4) including 27 PC scores. 

Additionally, once the modern samples had been tested, we repeated all the analyses adding the 
data provided by the Mus material of the Estrecho Cave. Subsequently, once all the possible issues 
had been clarified, the ML results of the most accurate models were used to identify the presence of 
Mus musculus domesticus and Mus spretus of the palaeontological sample. To evaluate the strength 
of the classification obtained, the posterior probability values (p) of belonging to one of the two 
species was calculated for each fossil m1. According to Cucchi et al. (2013), specimens classified with 
posterior probabilities above 0.9 are considered reliable taxonomic identifications. All four ensemble 
models were finally used together in the process of classifying the fossil specimens considering the 
posterior probabilities. A RStudio script is included in the supplementary material to show the 
different codes that were used to develop the ML analysis (Supplementary File 2). 
 
4. Results 
 
4.1. Analysis of the modern dataset (experimental approximation) 
 

After calculating the GPA, a PCA was applied to the modern samples in order to create the new 
variables: PC scores. We performed a first approximation to the PCA by plotting the first two PC 
scores (Fig. 3). As can be seen in Fig. 3, both species are mainly separated by the x-axis, being the M. 
spretus sample mainly in the negative part of the axis whereas the M. m. domesticus are found 
mostly in the positive area. However, this plot shows a high degree of overlapping for both species 
and only explains 59.4% of the variance. 

The application of the classical Linear Discriminant Analysis (i.e. non-ML analysis) to the PC scores 
of the modern dataset shows high accuracy values (Table 3), but it is clear that the use of control 
methods (i.e. LOOCV) and analysis of the testing dataset affects the results in a negative way (i.e. 
accuracy of the models decreases). 

When 7 PC scores are used, the classification of the training and testing datasets are extremely 
similar, with a low reduction of 0.4% of the accuracy when the ‘normal’ LDA is applied and with an 
increase of 0.1% of the accuracy when LOOCV is applied. However, it must be noted that the 
accuracy values are lower than those provided by other number of PC scores analyses when LOOCV is 
not used and when the training dataset is classified with LOOCV. 

If 14 PC scores are analysed, a better performance is generally shown by the LDA, except for the 
classification of the testing dataset with LOOCV, which provided an accuracy value of 0.933. This last 
result is especially interesting because it has been reduced by 3.4% from the accuracy of the training 
dataset with LOOCV. 
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The sample with 27 PC scores gave its best performance with a ‘classic’ LDA method. Although the 
classification of the testing sample has been reduced from the previous classification of the training 
sample, the classification of the testing with LOOCV gave an accuracy value of 0.955. 

The case of 82 PC scores is especially interesting due to the different performance shown by the 
‘classical’ LDA and the samples with LOOCV. When LOOCV is not used, the accuracy between the 
classification of the training and the testing datasets goes down 2.9%. However, if LOOCV is applied, 
the difference between both datasets is extremely pronounced (the classification of the testing 
sample having undergone a loss of accuracy of 19%). 

The ML analysis on the other hand, provided highly accurate models with most of the algorithms 
used. First of all, when the AUC-ROC values were calculated (Table 4) all the algorithms provided 
values between 0.90 and 0.99 if 82 PC scores were used, between 0.95 and 0.99 with 7 PC scores, 
between 0.94 and 1 with 14 PC scores, and between 0.94 and 1 if 27 PC scores were used. As shown 
further below, other values also showed high confidence results (e.g. accuracy, kappa). 

If the presence of non-correlation is used to test the performance of the analyses, the datasets 
with 82 and 27 PC scores must be considered the best options to create ensemble models. 

When 82 PC scores were analysed, high algorithmic performance is obtained (Table 6). In the case 
of the ML algorithms the best performance is obtained by LDA (accuracy ¼ 0.989; Kappa ¼ 0.978) 
while the least are shown by NB (accuracy ¼ 0.822; Kappa ¼ 0.644). However, these results which are 
quite similar to those obtained previously with the Linear Discriminant Analysis, are highly improved 
using stacking methods with a Neural Network algorithm. This last approximation provides a perfect 
classification of the modern data (accuracy ¼ 1; Kappa ¼ 1). 

When the analyses are done using 7 PC scores, the performance is similar to that provided by the 
analysis of 82 PC scores (Table 7). In this case, the lowest accuracy value provided by the algorithms 
is 0.944 (DTC5.0; kappa ¼ 0.888) while the highest accuracy value has been shown by SVMr and NB 
(accuracy ¼ 0.989; kappa ¼ 0.978). In this case, two ensemble models (NNET and GB) have provided 
a perfect classification (i.e., accuracy/kappa ¼ 1). When the analyses were calculated using 14 PC, the 
results obtained differed significantly from those from the previous mentioned ones (Table 8). In the 
first place, it is important remark that the best performance was obtained using the non-ensemble 
model. In this case, Ensemble Learning failed to get better results than those obtained after using the 
first series of algorithms. Now the most accurate models show an accuracy value of 0.978 and a 
kappa value of 0.955 (kNN). 

Finally, when 27 PC scores were used to train the algorithms, the best performance was obtained 
by PLS and LG (accuracy ¼ 0.989; Kappa ¼ 0.978; Table 9). As in the former case, the ensemble 
models here failed in the attempt to improve the performance of the base learners (accuracy ¼ 
0.978; kappa ¼ 0.955). 

The hyperparameter configuration of the best performance models is shown in Table 10. 
 
4.2. Analysis of the material from the Estrecho Cave 
 

The performing of the Principal Component Analysis (Fig. 4) of all samples (both modern and 
Estrecho Cave Mus samples) has shown again an overall differential position of M. spretus and M. m. 
domesticus, which appear mostly standing apart on both sides of the x-axis, nevertheless showing a 
high degree of overlap. 

From what is seen in the plot in which the sample from the Estrecho Cavewas included, most part 
of the fossil specimens seem to be closer to the M. spretus sample. Nevertheless, some specimens 
appear within the area occupied by the M. m. domesticus confidence interval, indicating that 
probably both species are represented in the sample. 

As could be seen in the previous section, the best performance obtained classifying the modern 
sampleswas obtained with the use of 82 and 7 PC scores using ML algorithms. However, an 
important difference exists between these different samples. 

Although in both cases, stacking techniques have provided accuracy values of 1, when 7 PC scores 
were used, there are strong correlations between base learners and this situation can generate 
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overfitting when the stacked model is performed. For this reason, here we decided to approach the 
classification of the fossil data only using 82 PC scores, excluding the classical LDA and analyses with 
the ML methods of the samples of 7, 14 and 27 PC scores. 

It must be noted that the application of ensemble techniques is probably useful due to the 
general absence of pairwise correlation between the algorithms (Table 11). The higher correlation 
value was obtained was 0.69, found between LG and SVMl, a value that can be considered as low. 

Similarly to what occurred with the classification of the modern sample, the best ML performance 
was given by the stacked model using a NNET, which provided a perfect classification rate of the 
modern sample (accuracy/kappa ¼ 1) (Table 12). The other ensemble models provided as well high 
accuracy values, between 0.978 (GLM and GB) and 0.989 (RF). The application of ensemble 
techniques was useful in the case of the stacked model using a NNET, as it improved the best 
performance shown by a base learner (accuracy ¼ 0.989). 

However, although accuracy values among models are similar, it must be noted that the 
classification of the fossil specimens indicate clear differences of performance between these 
algorithms. For instance, when the base learners were used to identify the m1 sample of the 
Estrecho Cave, some of them assigned a high number of teeth to M. m. domesticus (DTC5.0, RF, GB 
and NB), while the most accurate model (NNET) only identified 4 teeth as belonging to M. m. 
domesticus. In the case of the Ensemble Learning algorithms, all classified as M. m. domesticus 
between 5 (GLM and NNET) and 3 (RF and GB) teeth. The hyperparameter configuration of these 
models is shown in Table 10. 

As can be seen in Supplementary File 3, the classification results provided by the ensembled 
models are quite similar among them. However, they are showing certain discrepancies that must be 
considered. 

Considering the posterior probability values (p) of assignation to one or another species obtained 
for each specimen using the ensemble models, between 43 and 48 out of the 48 (89.58%e100%) Mus 
m1 of the Estrecho Cave were classified with posterior probabilities above the 0.9 thresholds (Table 
13) (Supplementary File 3). Thus, we think it best to use all the models together instead of only one if 
reliable results classifying fossil material is intended. 

41 teeth have been indisputably identified as Mus spretus and only 2 teeth (specimens CE4 and 
CE17) as Mus musculus domesticus by all ensemble models. For these cases, all these teeth can be 
considered as successfully classified. However, the remaining specimens show some peculiarities that 
deserve being commented. 

In the case of specimen CE1, GLM and NNET have classified the tooth (p < 0.9) as M. musculus 
domesticus while RF and GB have identified the specimen as Mus spretus (RF p ¼ <0.9; GB p ¼ > 0.9). 
Thus, the classification of this tooth shows too much problematic to classify it and it should remain 
for the time being as indeterminate. 

A similar situation occurs with specimen CE14, which was classified as M. m. domesticus by GLM 
and NNET models (GLM p ¼ < 0.9; NNET p ¼ > 0.9) and as M. spretus by RF and GB (RF p ¼ < 0.9; GB p 
¼ > 0.9). Thus, we also leave this tooth as indeterminate. 

A different case is found in specimen CE18, which was clearly (p ¼ >0.9) classified as M. m. 
domesticus by NNET and GB, while although GLM and RF also classified the tooth as belonging to M. 
m. domesticus, these models gave a low p-value for this result. Therefore, we consider reasonable to 
classify this specimen as M. m. domesticus. A similar situation, but involving M. spretus is seen in 
specimens C128 and C135, which have been assigned to it (see Supplementary File 3). 

Thus, after this assessment of the classification results, 43 specimens have been assigned to Mus 
spretus and only 3 to M. m. domesticus (Fig. 5), leaving only 2 specimens as indeterminate. 
 
5. Discussion 
 

The use of Machine Learning techniques has recently contributed to improve several approaches 
to palaeobiological issues such as the characterization of skeletal part profiles in archaeological 
assemblages (Arriaza and Domínguez-Rodrigo, 2016), the classification of different bone fracture 
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patterns (Mocl_an et al., 2019, 2020) or even the identification of differences among carnivore tooth 
marks (Courtenay et al., 2019). 

The application of this type of techniques to the classification of fossils is very promising, since it 
provides objective mechanisms to proceed with the taxonomic assignments of material that, due to 
its fragmentary nature, usually provides less complete information compared to what is available in 
the classification of recent specimens, and reducing the subjective bias introduced by the 
taxonomist. Although this type of approach has been previously applied to different taxa with a high 
confidence performance (e.g. Miele et al., 2020; Monson et al., 2018; Villon et al., 2018; Wills et al., 
2021), it is still rarely applied today in palaeontological studies. 

In this paper we have shown how the use of stacking techniques with a Neural Network algorithm 
to distinguish between M. m. domesticus and M. spretus with modern samples has given a perfect 
accuracy performance. Here, the achievement attained after using Artificial Intelligence was an 
improved the accuracy rate from a 95.31% (Valenzuela-Lamas et al., 2011) to 100%. 

This accomplishment is especially important in the fields of Palaeontology and Archaeology, since 
many relevant interpretations rely on the correct identification of the taxa present in the fossil 
assemblages, such as the reconstruction of past environmental conditions, their changes through 
time, or even in the case of more recent times, to clarify anthropogenic biological invasions of 
commensals such as the house mouse (Cucchi, 2008; Cucchi et al., 2005b, 2011, 2020; Cucchi and 
Vigne, 2006; Michaux et al., 2007; Stoetzel et al., 2013; Valenzuela-Lamas et al., 2011). 

However, several aspects must be considered in order to better understand the results obtained 
by the models used here. The sample size of the modern sample of this paper and its intraspecific 
variability seems to be more adequate than others (Stoetzel et al., 2013; Valenzuela-Lamas et al., 
2011) if we take into account that, with the “classical” LDA analysis, the accuracy value that was 
obtained when applied to classify the modern specimens reached better results (14 PC scores ¼ 
0.955) than those previously obtained by other researchers (Stoetzel et al., 2013; Valenzuela-Lamas 
et al., 2011). Nevertheless, the difference obtained with the latter is extremely weak (0.2%). 

There is a clear improvement in the results obtained using ML algorithms compared to LDA. There 
are nine ML algorithms (with 82 PC scores) that provided a higher number of correct scores in the 
modern samples than those obtained through LDA with LOOCV, besides better classification results 
with all the ensembled/stacked models. This is in agreement with Dietterich (2000), who showed 
that ensemble methods can perform better classifications than any single classifier. A similar 
conclusion has been reached for the taxonomic identification of theropod teeth (Wills et al., 2021). 
Thus, from our results we consider that Ensemble Learning combined withGMMis the best method 
(excluding the DNA studies) to detect the presence of either M. m. domesticus or M. spretus, or 
both, in palaeontological and archaeological material. 

However, it must be noted that some differences of algorithmic performance are detected when 
the ensembled/stacked models classified the palaeontological samples. Although all of them showed 
extremely high accuracy values (>0.97) classifying the modern sample, the number of specimens 
classified as M. m. domesticus/M. spretus in the Estrecho Cave varied depending on the model used. 

In our opinion, the best performance of the stacked model is that which was trained using a 
Gradient Boosting algorithm. Although this model gives an accuracy value below 1, when it was used 
with the modern material, it classified correctly all the specimens giving a posterior probability above 
0.9. Having this in mind, it is possible that the perfect classification provided by the stacked NNET 
model is due to overfitting, nevertheless to a low degree. In any case, as other studies have also 
pointed out (e.g. Domínguez-Rodrigo et al., 2020), if different classification rates provided by 
different algorithms are taken into account at the same time, the interpretation of the classification 
will be the more conservative solution and, this way, we will avoid making erroneous interpretations 
in most cases. 

For the particular case of classifying isolated m1 of M. m. domesticus and M. spretus, our results 
show that the ML techniques applied to GMM data substantially outperform both LDA and 
traditional morphometric analyses in obtaining precise taxonomic assignations of fossil materials 
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specimens (Darviche et al., 2006; Darviche and Orsini, 1982; Gerasimov et al., 1990; Stoetzel et al., 
2013; Valenzuela-Lamas et al., 2011). 

Concerning the results achieved in the taxonomic identification of the Mus material from the 
Estrecho Cave, our results are relevant for providing new highly reliable information on the co-
occurrence of M. m. domesticus and M. spretus at the site. Until now, M. m. domesticus in the 
Estrecho Cave had not been correctly confirmed (Domínguez García et al., 2019a, 2019b). 

Through this methodology, to identify a few specimens of M. m. domesticus in a fossil assemblage 
dominated by M. spretus has been possible. Probably, the co-occurrence of two Mus taxa in other 
assemblages in which one of the two species is distinctly more abundant has been overlooked more 
than once due to misclassification (e.g. Cucchi et al., 2013). In this way, GMM and ML techniques are 
a promising new approach to obtain reliable taxonomic identifications in the numerous 
archaeological and palaeontological sites in which Mus is represented, both for new findings as for 
older material that remained undetermined due to imprecise taxonomic results with traditional 
methods/criteria (Domínguez García et al., 2019a). 

Following previous works (Domínguez García et al., 2019b, 2020), the small mammal remains of 
the Estrecho Cave can be considered as a single and homogenous assemblage with the same origin 
and age according to stratigraphy, taphonomy and radiocarbon dating. Thus, the higher abundance 
of M. spretus in relation toM. m. domesticus could be explained by the ecology of each of the two 
species as well as the archaeological context of the site. The house mouse is a commensal species 
which hence is found associated to human settlements (Wilson et al., 2017), while the western 
Mediterranean mouse is not commensal with humans and is more abundant in natural 
environments. Moreover, the cave was just used by humans as a funerary place during the Bronze 
Age and not as habitat, a situation that it is not favourable to the presence of M. m. domesticus in 
the site. After to this use, mouse remains were accumulated from predation by a small to medium-
sized mammal carnivore (Domínguez García et al., 2019b), which hunted the most abundant species 
in its low anthropised environment. This is in agreement with the few fossil occurrences of M. m. 
domesticus in the western Mediterranean region that can be considered reliable according to 
Domínguez García et al. (2019a). These records come only from human settlements of the Iron Age 
and early Roman Period (~2.8e2 kyr BP): at Alorda Park (Valenzuela-Lamas et al., 2011) and Estrets-
Rac_o de Rata (Guillem Calatayud, 2011) in eastern Iberia, as well as at Rirha in Morocco (Oueslati et 
al., 2020), both species occurred with a majority of house mouse, while at La Mota or el Soto de la 
Medinilla (Morales Mu~niz et al.,1995) in Spain, and at Lattara in Mediterranean France (Poitevin and 
S_en_egas, 1999), only M. m. domesticus was identified. 

The possibility to obtain a precise identification of both species in the small mammal assemblage 
of the Estrecho Cave using the methods explained in this paper, has thus added new valuable data 
concerning the history of the genus Mus in the western Mediterranean region. These reliable results 
demonstrate that both species were already present in central Iberia c. 2300-2150 years ago, 
supporting the available palaeontological and genetic data concerning the age of arrival and the way 
in which these two species colonised the Iberian Peninsula (Bonhomme et al., 2011; Boursot et al., 
1985; Cucchi et al., 2005b; Domínguez García et al., 2019a; Lalis et al., 2019). The presence of M. m. 
domesticus points to a quick dispersal process that took place from coastal areas to inland Iberia, 
since it is supposed to have arrived after 3000 B P through navigation routes. The abundant presence 
of M. spretus in the Estrecho Cave provides one of the fewfossil records of this species in Europe, 
adding not only evidence of its colonisation and dispersal process, but also of the expansion in the 
Mediterranean climate region of the Iberian Peninsula since its arrival during the Late Neolithic. 

Finally, all these results are most remarkable given the limited differentiation in the shape of m1s 
observed between these two closely related species, as shown by the high overlapping in the PCA 
(Figs. 3 and 4). This is most probably related to the relatively recent divergence between M. musculus 
and M. spretus estimated around 1e3 Ma (Chevret et al., 2005; She et al., 1990). In addition, genetic 
bidirectional introgressions have been demonstrated between natural populations of both species in 
Africa and Europe (Banker et al., 2022; Liu et al., 2015; Orth et al., 2002). Although this phenomenon 
is limited, these studies showed various ancient and recent interbreeding events. Thus, even though 
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genetic introgression does not necessarily affect phenotypes, it may generate significant 
morphological variations (Renaud et al., 2012), possibly affecting tooth morphology, an issue that is 
still to be addressed. In that case, our results could possibly be already influenced by unnoticed 
morphological variability consequences of hybridisation (e.g. could this be the reason for the 
disagreement obtained between algorithms and the indeterminate classification of some 
specimens?). Therefore, further research including genomic data in morphometric analysis using ML 
techniques should be addressed in order to test this hypothesis and to move forward improving 
systematic and taxonomic methodologies.  
 
6. Conclusions 
 

Machine Learning algorithms combined with the use of Geometric Morphometrics applied to the 
outline shape of the first lower molars of M. musculus domesticus and Mus spretus have provided 
the highest accuracy rate obtained so far to discriminate both species. Here we present a 
methodological approach to distinguish these two taxa using Artificial Intelligence techniques. Our 
results have provided a new procedure which gives a nearperfect classification rate based on the 
interspecific differences in molar shape from modern populations of the western Mediterranean. 

Machine learning methods have provided high accuracy values when the maximum number of PC 
scores were employed, which implies that a higher percentage of the accumulated variance of the 
samplewas included in the analysis, instead of the reduced number of PC scores that usually have 
been employed in previous analyses.  

The use of ensemble/stacking trained algorithms for the classification of Mus materials of the 
Estrecho Cave has provided robust identifications of both species in the assemblage. A combination 
of the results provided by the four ensembled methods used in this study has allowed a classification 
of 43 specimens as Mus spretus, 3 as M. m. domesticus and 2 as Mus sp.  

Although the possible effects of hybridisation between these two closely related species on tooth 
morphology have not been tested yet, these could influence the application of this method for 
taxonomic purposes. Therefore, a new line of research combining genomic and morphometric data is 
open. 

The good results obtained in this study leads us to encourage on the use of ensemble ML 
techniques as an alternative approach to be used single or combined with classical classification 
methods. The use of such methods on isolated Mus teeth demonstrates that high levels of predictive 
taxonomic accuracy are possible from GMM data. An example is given of how the application of 
these methods to fossil material of Mus spp. From a Spanish site provided sound results useful to 
clarify biogeographic issues concerning species dispersal in the past relevant to understand recent 
patterns of distribution of the species involved. 
 
Credit author statement 
Abel Mocl_an: Conceptualization, Methodology, Software, Formal analysis, Investigation, Data 
Curation, Writing-Original draft, Visualization. _Angel C. Domínguez-García: Conceptualization, 
Methodology, Formal analysis, Investigation, Resources, Writing-Original draft, Visualization. 
Emmanuelle Stoetzel: Resources, Funding acquisition, Project administration, Writing – Review & 
Editing, Supervision. Thomas Cucchi: Resources, Writing - Review& Editing. Paloma Sevilla: Project 
administration,Writing - Review & Editing, Supervision. C_esar Laplana: Conceptualization, Project 
administration, Writing- Review & Editing, Supervision. 
 
Declaration of competing interest 
The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
 
Data availability 
Data will be made available on request.. 



13 

 
Acknowledgements 
The authors are very grateful to Irene Prieto Saiz (University of Castilla la Mancha) for notifying the 
existence of the microvertebrate deposits at the Estrecho Cave and to “Lapis Specularis” team, 
especially to Juan Carlos Guisado di Monti and María Jos_e Bern_ardez G_omez for enabling to carry 
out the sampling of microvertebrate remains in the cave, among which were found the fossil Mus 
specimens used in this study.Wewould also like to thank C. Urdiales Alonso, curator of the Vertebrate 
Collections at the Estaci_on Biol_ogica de Do~nana (EBD-CSIC, Sevilla) and _A.L. Garvía Rodríguez, 
curator of the Mammals Collections at the Museo Nacional de Ciencias Naturales (MNCN-CSIC, 
Madrid), who granted us access to modern mice collections from Spain. AMwas funded by a grant 
from the Junta de Castilla y Le_on financed in turn by the European Social Funds through the 
Consejería de Educaci_on (BDNS 376062). ACDG was funded by a Postdoctoral Grant (POP-
UCMCT17/ 17-CT18/17) and by a Research Stay Grant (UCM 2020 e EB25/ 20), both financed by the 
Complutense University of Madrid and co-financed by Santander Bank. This work has also benefited 
from support from the SOuMed project “Approche pluridisciplinaire de la diffusion des souris 
commensales et sauvages dans l’Ouest de la M_editerran_ee” (E. Stoetzel dir.) from the 
D_epartement Homme & Environnement of the Mus_eum national d’Histoire naturelle of Paris. This 
work is a contribution of the Research Group UCM 970827 on Quaternary Ecosystems of the 
Complutense University of Madrid. 
 
Appendix A. Supplementary data 
Supplementary data to this article can be found online at 
https://doi.org/10.1016/j.quascirev.2022.107877. 
 
References 
 
Abellan, N., Baquedano, E., Domínguez-Rodrigo, M., 2022. High-accuracy in the classification of 

butchery cut marks and crocodile tooth marks using machine learning methods and computer 
vision algorithms. Geobios (Jodhpur). 

Andrews, P., 1995. Mammals as palaeoecological indicators. Acta Zool. Cracov. (Engl. Transl.) 38, 
59e72. 

Arriaza, M.C., Domínguez-Rodrigo, M., 2016. When felids and hominins ruled at Olduvai Gorge: a 
machine learning analysis of the skeletal profiles of the nonanthropogenic Bed I sites. Quat. Sci. 
Rev. 139, 43e52.  

Avery, D.M., 2007. Micromammals as palaeoenvironmental indicators of the southern African 
Quaternary. Trans. Roy. Soc. S. Afr. 62, 17e23.  

Banker, S.E., Bonhomme, F., Nachman, M.W., 2022. Bidirectional introgression between Mus 
musculus domesticus and Mus spretus. Genome Biology and Evolution 14, evab288.  

Bellin, N., Calzolari, M., Callegari, E., Bonilauri, P., Grisendi, A., Dottori, M., Rossi, V., 2021. Geometric 
morphometrics and machine learning as tools for the identification of sibling mosquito species of 
the Maculipennis complex (Anopheles). Infect. Genet. Evol. 95, 105034.  

Bonhomme, F., Orth, A., Cucchi, T., Rajabi-Maham, H., Catalan, J., Boursot, P., Auffray, J.-C., Britton-
Davidian, J., 2011. Genetic differentiation of the house mouse around the Mediterranean basin: 
matrilineal footprints of early and late colonization. Proc. Biol. Sci. 278, 1034e1043.  

Bookstein, F.L., 1997. Landmark methods for forms without landmarks: morphometrics of group 
differences in outline shape. Med. Image Anal. 1, 225e243.  

Boursot, P., Jacquart, T., Bonhomme, F., Britton-Davidian, J., Thaler, L., 1985. Geographic 
differentiation of the mitochondrial genome in Mus spretus Lataste. C R acad sci III, serie III. 
Sciences de la vie 301, 161e166. 

Britton, J., Pasteur, N., Thaler, L., 1976. Les souris du Midi de la France: caracterisation genetique de 
deux groupes de populations sympatriques. C R Acad Sci, Serie D 258, 515e518. 



14 

Chaline, J., Brunet-Lecomte, P., Montuire, S., Viriot, L., Courant, F., 1999. Anatomy of the arvicoline 
radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary data. Ann. 
Zool. Fenn. 36, 239e267.  

Chevret, P., Veyrunes, F., Britton-Davidian, J., 2005. Molecular phylogeny of the genus Mus 
(Rodentia: murinae) based on mitochondrial and nuclear data. Biol. J. Linn. Soc. 84, 417e427.  

Courtenay, L.A., Gonzalez-Aguilera, D., 2020. Geometric morphometric data augmentation using 
generative computational learning algorithms. Appl. Sci. 10, 9133.  

Courtenay, L.A., Yravedra, J., Huguet, R., Aramendi, J., Mate-Gonzalez, M.A.,Gonzalez-Aguilera, D., 
Arriaza, M.C., 2019. Combining machine learning algorithms and geometric morphometrics: a 
study of carnivore tooth marks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 522, 28e39.  

Cucchi, T., 2008. Uluburun shipwreck stowaway house mouse: molar shape analysisand indirect clues 
about the vessel's last journey. J. Archaeol. Sci. 35, 2953e2959.  

Cucchi, T., Balas¸ escu, A., Bem, C., Radu, V., Vigne, J.-D., Tresset, A., 2011. New insights into the 
invasive process of the eastern house mouse (Mus musculus musculus): evidence from the burnt 
houses of Chalcolithic Romania. Holocene 21, 1195e1202.  

Cucchi, T., Kovacs, Z.E., Berthon, R., Orth, A., Bonhomme, F., Evin, A., Siahsarvie, R., Darvish, J., 
Bakhshaliyev, V., Marro, C., 2013. On the trail of Neolithic mice and men towards Transcaucasia: 
zooarchaeological clues from Nakhchivan (Azerbaijan). Biol. J. Linn. Soc. 108, 917e928.  

Cucchi, T., Orth, A., Auffray, J.-C., Renaud, S., Fabre, L., Catalan, J., Hadjisterkotis, E., Bonhomme, F., 
Vigne, J.-D., 2005a. A new endemic species of the subgenus Mus (Rodentia, Mammalia) on the 
Island of Cyprus. Zootaxa 1241, 1e36.  

Cucchi, T., Papayianni, K., Cersoy, S., Aznar-Cormano, L., Zazzo, A., Debruyne, R., Berthon, R., 
Balașescu, A., Simmons, A., Valla, F., Hamilakis, Y., Mavridis, F., Mashkour, M., Darvish, J., 
Siahsarvi, R., Biglari, F., Petrie, C.A., Weeks, L., Sardari, A., Maziar, S., Denys, C., Orton, D., Jenkins, 
E., Zeder, M., Searle, J.B., Larson, G., Bonhomme, F., Auffray, J.-C., Vigne, J.-D., 2020. Tracking the 
Near Eastern origins and European dispersal of the western house mouse. Sci Rep 10, 8276.  

Cucchi, T., Vigne, J.-D., 2006. Origin and diffusion of the house mouse in the mediterranean. Human 
Evolution 21, 95.  

Cucchi, T., Vigne, J.-D., Auffray, J.-C., 2005b. First occurrence of the house mouse (Mus musculus 
domesticus Schwarz & Schwarz, 1943) in the Western Mediterranean: a zooarchaeological 
revision of subfossil occurrences. Biological Journal of the Linnean Society 84, 429e445.  

Cucchi, T., Vigne, J.-D., Auffray, J.-C., Croft, P., Peltenburg, E., 2002. Introduction involontaire de la 
souris domestique (Mus musculus domesticus) a Chypre des le Neolithique preceramique ancien 
(fin IXe et VIIIe millenaires av. J.-C.). Comptes Rendus Palevol 1, 235e241.  

Cuenca-Bescos, G., Blain, H.-A., Rofes, J., Lopez-García, J.M., Lozano-Fernandez, I., Galan, J., Nú~nez-
Lahuerta, C., 2016. Updated Atapuerca biostratigraphy: smallmammal distribution and its 
implications for the biochronology of the Quaternary in Spain. Comptes Rendus Palevol, 
Biochronology, biostratigraphy, and paleoecology of the Quaternary Biochronologie, la 
biostratigraphie et la paleoecologie du Quaternaire 15, 621e634. 

Darviche, D., Orsini, P., 1982. Criteres de differenciation morphologique et biom etrique de deux 
especes de souris sympatriques : Mus spretus et Mus musculus domesticus. Mammalia 46, 
205e218.  

Darviche, D., Orth, A., Michaux, J., 2006. Mus spretus et M. musculus (Rodentia, Mammalia) en zone 
mediterraneenne: differenciation biometrique et morphologique: application a des fossiles 
marocains pleistocenes/Mus spretus and M. musculus (Rodentia, Mammalia) in the 
Mediterranean zone: biometric and morphological differentiation: application to Pleistocene 
Moroccan fossils. Mammalia 70, 90e97.  

Deane-Mayer, Z.A., 2019. A Brief Introduction to caretEnsemble [WWW Document]. CRAN. URL. 
https://cran.r-project.org/web/packages/caretEnsemble/vignettes/caretEnsemble-intro.html. 
accessed 11.12.21. 



15 

Deane-Mayer, Z.A., Knowles, J.E., 2019. Package ‘caretEnsemble. ’. Dietterich, T.G., 2000. Ensemble 
methods in machine learning. In: Multiple Classifier Systems, Lecture Notes in Computer Science. 
Springer, Berlin, Heidelberg, pp. 1e15.  

Domínguez García, A.C., Laplana, C., Sevilla, P., 2020. Early reliable evidence of the Etruscan shrew 
(Suncus etruscus) in southwestern Europe during ancient times. Reconstructing its dispersal 
process along the Mediterranean Basin. Quaternary Science Reviews 250, 106690.  

Domínguez García, A.C., Laplana, C., Sevilla, P., Blain, H.-A., Zumajo, N.P., Benítez de Lugo Enrich, L., 
2019a. New data on the introduction and dispersal process of small mammals in southwestern 
Europe during the Holocene: castillejo del Bonete site (southeastern Spain). Quaternary Science 
Reviews 225, 106008.  

Domínguez García, A.C., Laplana, C., Sevilla, P., Guisado Di Monti, J.C., Bernandez Gomez, M.J., 
2019b. Tafonomía y cronología de la asociacion de micromamíferos de la Cueva del Estrecho 
(Villares del Saz, Cuenca, Espa~na). Spanish Journal of Palaeontology 34, 241e256.  

Domínguez-Rodrigo, M., 2019. Successful classification of experimental bone surface modifications 
(BSM) through machine learning algorithms: a solution to the controversial use of BSM in 
paleoanthropology? Archaeol Anthropol Sci 11, 2711e2725.  

Domínguez-Rodrigo, M., Cifuentes-Alcobendas, G., Jimenez-García, B., Abellan, N., Pizarro-Monzo, 
M., Organista, E., Baquedano, E., 2020. Artificial intelligence provides greater accuracy in the 
classification of modern and ancient bone surface modifications. Scientific Reports 10, 18862.  

Fox, N.S., Veneracion, J.J., Blois, J.L., 2020. Are geometric morphometric analyses replicable? 
Evaluating landmark measurement error and its impact on extant and fossil Microtus 
classification. Ecology and Evolution 10, 3260e3275.  

Gerasimov, S., Nikolov, H., Mihailova, V., Auffray, J.-C., Bonhomme, F., 1990. Morphometric stepwise 
discriminant analysis of the five genetically determined European taxa of the genus Mus. 
Biological Journal of the Linnean Society 41, 47e64.  

Guillem Calatayud, P.M., 2011. Els paisatges ramaders en epoca iberica. Una reconstruccio a partir 
dels micromamífers. Arqueo Mediterrania 12, 117e121. 

Guisado Di Monti, J.C., Bernandez Gomez, M.J., 2016. Cueva del Estrecho en Villares del Saz. 
Adaptacion de la Cueva a Uso Turístico. In: Ruiz-Checa, J.M., Cristini, V. (Eds.), Actuaciones Sobre 
El Patrimonio Historico y Medioambiental. Plan de Mejoras Turísticas, Provincia de Cuenca (Plamit 
2011-2015). Diputacion Provincial de Cuenca, Cuenca, pp. 59e61. 

Herranz-Rodrigo, D., Tardaguila-Giacomozzi, S.J., Courtenay, L.A., Rodríguez-Alba, J.-J., Garrucho, A., 
Recuero, J., Yravedra, J., 2021. New geometric morphometric insights in digital taphonomy: 
analyses into the sexual dimorphism of felids through their tooth pits. Applied Sciences 11, 7848.  

John, C.R., 2020. MLeval: Machine Learning Model Evaluation. Kim, D.H., MacKinnon, T., 2018. 
Artificial intelligence in fracture detection: transfer learning from deep convolutional neural 
networks. Clin Radiol 73, 439e445.  

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional 
neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (Eds.), Presented at 
the 26th Annual Conference on Neural Information Processing Systems. Currant Associates Inc., 
U.S.A., pp. 1097e1105 Kuhn, M., Johnson, K., 2013. Applied Predictive Modeling. Springer-Verlag, 
New York. 

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, 
B., , R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt, T., 
2020. Caret: Classification and Regression Training. 

Lalis, A., Mona, S., Stoetzel, E., Bonhomme, F., Souttou, K., Ouarour, A., Aulagnier, S., Denys, C., 
Nicolas, V., 2019. Out of Africa: demographic and colonization history of the Algerian mouse (Mus 
spretus Lataste). Heredity 122, 150e171.  

Lantz, B., 2013. Machine Learning with R. Packt Publishing, Birmingham. 
Laplana, C., Sevilla, P., 2013. Documenting the biogeographic history of Microtus cabrerae through its 

fossil record. Mammal Review 43, 309e322.  



16 

Liu, K.J., Steinberg, E., Yozzo, A., Song, Y., Kohn, M.H., Nakhleh, L., 2015. Interspecific introgressive 
origin of genomic diversity in the house mouse. Proceedings of the National Academy of Sciences 
112, 196e201.  

Lopez García, J.M., 2011. Los micromamíferos del Pleistoceno superior de la Península Iberica: 
Evolucion de la diversidad taxonomica y cambios paleoambientales y paleoclimaticos. Editorial 
Academica Española, Madrid. 

Michaux, J., Cucchi, T., Renaud, S., Garcia-Talavera, F., Hutterer, R., 2007. Evolution of an invasive 
rodent on an archipelago as revealed by molar shape analysis: the house mouse in the Canary 
Islands. Journal of Biogeography 34, 1412e1425.  

Miele, V., Dussert, G., Cucchi, T., Renaud, S., 2020. Deep Learning for Species Identification of 
Modern and Fossil Rodent Molars.  

Moclan, A., Domínguez-Rodrigo, M., Yravedra, J., 2019. Classifying agency in bone breakage: an 
experimental analysis of fracture planes to differentiate betweenhominin and carnivore dynamic 
and static loading using machine learning (ML) algorithms. Archaeol Anthropol Sci 11, 4663e4680. 

Moclan, A., Huguet, R., Marquez, B., Laplana, C., Arsuaga, J.L., Perez-Gonzalez, A., Baquedano, E., 
2020. Identifying the bone-breaker at the Navalmaíllo Rock Shelter (Pinilla del Valle, Madrid) using 
machine learning algorithms. Archaeol Anthropol Sci 12, 46.  

Monson, T.A., Armitage, D.W., Hlusko, L.J., 2018. Using machine learning to classify extant apes and 
interpret the dental morphology of the chimpanzee-human last common ancestor. PaleoBios 35, 
1e20.  

Morales Mu~niz, A., Cereijo Pecharroman, M.A., Hernandez Carrasquilla, F., Liesau von Lettow-
Vorbeck, C., 1995. Of mice and sparrows: commensal faunas from the Iberian iron age in the 
duero valley (central Spain). International Journal of Osteoarchaeology 5, 127e138.  

Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S., Packer, C., Clune, J., 2018. 
Automatically identifying, counting, and describing wild animals in camera-trap images with deep 
learning. PNAS 115, E5716eE5725.  

Opitz, D., Maclin, R., 1999. Popular ensemble methods: an empirical study. Journal of Artificial 
Intelligence Research 11, 169e198.  

Ortega Martínez, A.I., Martín Merino, M.A., 1992. Informe sobre el descubrimiento de tres cuevas 
arqueologicas en el termino municipal de Villares del Saz (Cuenca). Servicio de Investigaciones 
Espeleologicas. Diputacion provincial de Burgos, Spain. 

Orth, A., Belkhir, K., Britton-Davidian, J., Boursot, P., Benazzou, T., Bonhomme, F., 2002. Hybridation 
naturelle entre deux especes sympatriques de souris Mus musculus domesticus L. et Mus spretus 
Lataste. Comptes Rendus Biologies 325, 89e97.  

Oueslati, T., Kbiri Alaoui, M., Ichkhakh, A., Callegarin, L., de Chazelle, C.-A., Rocca, E., Carrato, et al., 
2020. 1st century BCE occurrence of chicken, house mouse and black rat in Morocco: socio-
economic changes around the reign of Juba II on the site of Rirha. Journal of Archaeological 
Science: Reports 29, 102162. 

Papayiannis, K., 2012. The micromammals of Minoan Crete: human intervention in the ecosystem of 
the island. Palaeobio Palaeoenv 92, 239e248.  

Poitevin, F., Senegas, F., 1999. Les micromammiferes du site de Lattara. In: Py, M. (Ed.), Recherches 
Sur La Quatrieme Siecle Avant Notre Ere a Lattes, Lattara. CNRS Editions, Paris, pp. 609e635. 

Quenu, M., Trewick, S.A., Brescia, F., Morgan-Richards, M., 2020. Geometric morphometrics and 
machine learning challenge currently accepted species limits of the land snail Placostylus 
(Pulmonata: bothriembryontidae) on the Isle of Pines, New Caledonia. Journal of Molluscan 
Studies 86, 35e41. 

R Core Team, 2022. R: A Language and Environment for Statistical Computing. Renaud, S., 2005. First 
upper molar and mandible shape of wood mice (Apodemus sylvaticus) from northern Germany: 
ageing, habitat and insularity. Mammalian Biology 70, 157e170. 

Renaud, S., 1999. Size and shape variability in relation to species differences and climatic gradients in 
the African rodent Oenomys. Journal of Biogeography 26, 857e865. 



17 

Renaud, S., Alibert, P., Auffray, J.-C., 2012. Modularity as a source of new morphological variation in 
the mandible of hybrid mice. BMC Evolutionary Biology 12, 141. 

Ripley, B., Venables, B., Bates, D.M., Hornik, K., Gebhardt, A., Firth, D., 2020. MASS: Support 
Functions and Datasets for Venables and Ripley's MASS. 

Rohlf, F.J., 2019. Tps Relative Warps. 
Rohlf, F.J., 2018. tpsUtil. 
Rohlf, F.J., 2010. tpsDig. 
Rokach, L., 2010. Ensemble-based classifiers. Artif Intell Rev 33, 1e39.  
Romero, I.C., Kong, S., Fowlkes, C.C., Jaramillo, C., Urban, M.A., Oboh-Ikuenobe, F., D'Apolito, C., 

Punyasena, S.W., 2020. Improving the taxonomy of fossil pollen using convolutional neural 
networks and superresolution microscopy. PNAS 117, 28496e28505.  

Sagi, O., Rokach, L., 2018. Ensemble learning: a survey. WIREs Data Mining and Knowledge Discovery 
8, e1249.  

Sevillano, V., Holt, K., Aznarte, J.L., 2020. Precise automatic classification of 46 different pollen types 
with convolutional neural networks. PLOS ONE 15, e0229751.  

She, J.X., Bonhomme, F., Boursot, P., Thaler, L., Catzeflis, F., 1990. Molecular phylogenies in the 
genus Mus: comparative analysis of electrophoretic, scnDNA hybridization, and mtDNA RFLP data. 
Biological Journal of the Linnean Society 41, 83e103.  

Stoetzel, E., Denys, C., Michaux, J., Renaud, S., 2013. Mus in Morocco: a Quaternary sequence of 
intraspecific evolution. Biological Journal of the Linnean Society 109, 599e621.  

Tan, M., Le, Q.V., 2020. EfficientNet: rethinking model scaling for convolutional neural networks. In: 
International Conference on Machine Learning. 

Valenzuela-Lamas, S., Baylac, M., Cucchi, T., Vigne, J.-D., 2011. House mouse dispersal in Iron Age 
Spain: a geometric morphometrics appraisal. Biological Journal of the Linnean Society 102, 
483e497.  

Villon, S., Mouillot, D., Chaumont, M., Darling, E.S., Subsol, G., Claverie, T., Villeger, S., 2018. A Deep 
learning method for accurate and fast identification of coral reef fishes in underwater images. 
Ecological Informatics 48, 238e244.  

Weissbrod, L., Marshall, F.B., Valla, F.R., Khalaily, H., Bar-Oz, G., Auffray, J.-C., Vigne, J.-D., Cucchi, T., 
2017. Origins of house mice in ecological niches created by settled hunter-gatherers in the Levant 
15,000 y ago. PNAS 114, 4099e4104.  

Wills, S., Underwood, C.J., Barrett, P.M., 2021. Learning to see the wood for the trees: machine 
learning, decision trees, and the classification of isolated theropod teeth. Palaeontology 64, 
75e99. 

Wilson, D.E., Lacher Jr., T.E., Mittermeier, R.A. (Eds.), 2017. Handbook of the Mammals of the World. 
Rodents II, vol. 7. Lynx Edicions, Barcelona, Spain. 

 
  



18 

FIGURES 
 

 
 
Fig. 1. Geographic location of the Estrecho Cave in the Iberian Peninsula (created with Natural Earth, 
www.naturalearthdata.com). 
 
 

 
 
Fig. 2. Example of the orientation and location of the landmark and semi-landmarks on a first lower 
molar of Mus spp. 
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Fig. 3. a) Biplot of the two first principal component scores of the modern sample; b) results provided 
by the application of the Broken Stick test to the PCA results; c) percentage of the accumulated 
variance of the PC scores. 
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Fig. 4. Biplot of the two first principal components of the modern sample and the Estrecho Cave 
specimens. 
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Fig. 5. Selected Mus spp. M1 in occlusal view of the modern and the Estrecho Cave samples. Modern 
Mus spretus (a: MNCN_9982eb: MNCN_9979); modern Mus musculus domesticus (c: MNCN_3490-d: 
MNCN_18,920); Mus spretus from the Estrecho Cave (e: CE3-f: CE19); Mus musculus domesticus 
from the Estrecho Cave (g: CE4-h: CE17). Scale = 1 mm. 
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TABLEAUX 
 
 

 
 
Table 1. Small mammals identified in the assemblage of the Estrecho Cave, taken from Domínguez 
Gerasimov et al. (1990, 2020)and unpublished data. 
 
 

 
 
Table 2. Modern and fossil samples used in this study, according to species, populations, collections 
and number of specimens studied (n). 
 
  



23 

 
 
Table 3. Results provided by the Linear Discriminant Analysis when 7,14, 27 and 82 PC scores are 
used. Note that an important reduction of the accuracy is produced when the testing dataset is 
classified, and the leave-one-out cross-validation method is applied (especially when 82 PC scores are 
used). The best results are obtained when the training dataset is analysed (except for the sample 
with 7 PC scores with LOOCV). 
 
 

 
 
Table 4. Results obtained after calculating the AUC-ROC values. Before presenting the results 
obtained after using the different Machine and Ensemble algorithms, it must be noted that in most 
of the pairwise comparison, non-correlation between algorithms was detected, and when it was 
detected, the correlation was in most cases low (Table 5). Only when 7 PC scores were used, 
correlation appeared to be present in most cases, sometimes giving results indicating strong 
correlation values, even higher than 80%. 
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Table 5. Results obtained after calculating the pairwise correlation of the different algorithms applied 
to the modern sample. Values in bold show the presence of correlation between algorithms. 
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Table 6. Results provided by ML learning and Ensemble Learning algorithms with 82 PC scores of the 
modern sample. In bold is shown the best algorithmic performance. 
 
 

 
 
Table 7. Results provided by ML learning and Ensemble Learning algorithms with 7 PC scores of the 
modern sample. In bold is shown the best algorithmic performance. 
 
 

 
 
Table 8. Results provided by ML learning and Ensemble Learning algorithms with 14 PC scores of the 
modern sample. In bold is shown the best algorithmic performance. 
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Table 9. Results provided by ML learning and Ensemble Learning algorithms with 27 PC scores of the 
modern sample. In bold is shown the best algorithmic performance. 
 
 

 
 
Table 10. Hyperparameter configuration of the best performance model provided by the Machine 
Learning algorithms. Note that the configuration used to classify the sample of the Estrecho Cave has 
also been included. 
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Table 11. Correlation values obtained by calculating the pairwise correlation of the different 
algorithms applied to the modern sample and the Estrecho Cave. Values in bold show the presence 
of correlation between algorithms. 
 
 

 
 
Table 12. Results provided by ML learning and Ensemble Learning algorithms with all PC scores of the 
modern sample and the Estrecho Cave. First, the results provided by the training process of the 
algorithms are shown while in the last two columns the number of identified teeth by species is 
shown. 
 
 

 
 
Table 13. Taxonomic classification of 48 m1 of the Estrecho Cave according to Ensemble Learning 
algorithms. p: the posterior probability of classification. 
 
 


