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/////////////////////////////////////////////////////////////////

We give a simple description of the Pancharatnam-Berry 
geometric phase and some of its applications in optics. 
Geometric phases are a universal phenomenon, but we focus 
here on the case of geometric phases caused by changes in 
polarization. The geometric origin of this phase is explained 
by analogy with the motion of an imaginary creature living on 
a small planet, inspired by Saint-Exupéry’s “The Little Prince”.  

TThe geometric phase 
is a universal phe-
n o m e n o n  t h a t 
appears in many 
areas across wave 
physics. It was first 
discovered wit-

hin the context of optics in 1956 by 
S. Pancharatnam [1] as a net phase 
difference between two beams which 
have undergone different sequences 
of polarization, depending only on 
these sequences.  A few decades la-
ter, Berry [2,3] recognized this pheno-
menon’s universality and underlying 
geometric nature, which goes well 
beyond electromagnetic waves. In 
optics and photonics, geometric 
phases have attracted significant 
attention and found many practical 
applications. While extensive reviews 

exist (for example [4]), the goal of this 
short article is to provide a simple 
description of the Pancharatnam-
Berry (PB) phase for optical polari-
zation and explain why it is so useful 
in applications such as wavefront 
shaping. As one learns in any basic 
course in optics, a propagating opti-
cal beam is described by its intensity 
and phase, the latter being accumu-
lated proportionally to the beam’s 
optical path length. In addition, a 
light beam has “internal” degrees 
of freedom such as polarization, 
which can also change as the beam 
propagates. Such evolution can lead 
to an extra contribution to the phase 
unrelated to the overall optical path 
length. This phase is called “geome-
tric” because it is directly related to 
the geometry in the natural abstract 
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space that best describes the internal 
degrees of freedom in question.

CURVED SPACES,  
PARALLEL TRANSPORT,  
AND THE LITTLE PRINCE
The phenomenon of the geome-
tric phase requires that the space 
that describes the internal degrees 
of freedom be curved, and that the 
evolution over such space follows 
the rules of what is known as parallel 
transport. Let us explain the basic 
concept of parallel transport by ima-
gining an episode inspired by Saint-
Exupéry’s Le Petit Prince: 

On his way back from the Sahara 
to his planet (Asteroid B-612), the litt-
le prince stopped by another small 
planet (Asteroid PB-56-84), inhabited 
only by a strange creature, Par-Tra. 
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POLARIZATION 
AND THE POINCARÉ SPHERE
For a paraxial monochromatic optical 
beam (e.g. a collimated laser), the elec-
tric field vector at any point traces an 
elliptical path. The global size of this el-
lipse depends on the intensity, and the 
specific position of the electric field at 
a given time depends on the phase. The 
remaining, purely geometric properties 
of the ellipse, namely its orientation and 
ellipticity, constitute the state of polariza-
tion of the field. These are characterized 
respectively by i) the angle ψ between the 
horizontal coordinate axis and the el-
lipse’s major axis, and ii) the angle χ sub-
tended by a minor semi-axis from one of 
the vertices, whose magnitude encodes 
ellipticity and whose sign determines the 
handedness with which the electric field 
traces the ellipse.

Rotating the ellipse by half a turn (that 
is, turning ψ through π) brings it back to 
its initial state. Similarly, the angle χ takes 
values between ±π/4. For the extreme 
values 2χ = ±π/2, the ellipse becomes a 
circle, and ψ becomes irrelevant. These 
geometric properties make 2ψ and 2χ 
reminiscent of the longitude and lati-
tude angles on a sphere: their ranges are 
the same, and longitude becomes 

Par-Tra had a round body, and her many 
tiny legs could only move radially, ma-
king her perfectly capable of walking in 
any direction but completely unable to 
turn. When the prince arrived, he acci-
dentally stood behind Par-Tra. To face 
him, Par-Tra did what she always did in 
order to turn: walk sideways to the oppo-
site side of the planet, and then straight 
ahead back to her starting point. 

In this analogy, the curved space is 
the planet’s surface, and Par-Tra’s mo-
vement restrictions correspond (as her 
name suggests) to parallel transport—her 
only means of turning is by moving on a 
closed path on the curved surface. The 
angle of rotation (in radians) between 
Par-Tra’s initial and final orientation 
coincides precisely with the solid angle 
(in steradians) enclosed by her trajectory 
(in the illustration, approximately −π). 
Note that the rules of parallel transport 
are not unique to wave phenomena or 
imaginary creatures: they also explain 
mechanical effects such as the preces-
sion of Foucault’s pendulum, or the fact 
that when one rolls a rubber ball over 
a flat surface in a circular motion, each 
turn makes the ball turn proportionally 
to the solid angle enclosed by the path 
of the contact points with the surface. 

Figure 1.  
Par-Tra’s  
manoeuvre 
to turn towards 
the little prince: 
starting from the 
position at the top, 
facing left, Par-Tra 
first walks sideways 
(down) along 
a geodesic to the 
antipodal point 
(bottom), and then 
along another 
geodesic (left) facing 
forward,  
back to her initial 
position, where the 
final orientation 
of her head is shown 
in dotted lines. 
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irrelevant when we are at the North 
or South poles. Therefore, each state 
of polarization, determined by ψ 
and χ, can be represented by a point 
with coordinates 2ψ and 2χ over a 
unit sphere, known as the Poincaré 
sphere, shown in Fig.2. In other 
words, the natural abstract space for 
representing polarization is a sphere, 
as is also confirmed by the fact that 
the visibility of the intensity fringes 
resulting from the interference 
of two nearly parallel beams with 
different polarizations and equal in-
tensities can be fully determined by 
the angular separation between the 
two corresponding points over the 
Poincaré sphere. Three other aspects 
of polarization that are important to 
understand geometric phases are the 
following: i) two orthogonal polariza-
tions correspond to a pair of antipodal 
points on the Poincaré sphere, ii) any 
state of polarization can be expressed 
as a complex linear superposition of 
any two orthogonal polarizations, 
and iii) the angle between any two 
linear polarizations is half the angle 
between their corresponding points 
on the Poincaré sphere.

How can we change the polariza-
tion of a beam? Two main types of 
optical element are often used: 
The first corresponds to polarizers, 
which only transmit a given polari-
zation component and eliminate the 
orthogonal component (by absorp-
tion or reflection). In the Poincaré 

sphere representation, polarizers 
take any initial point (corresponding 
to the beam’s initial polarization) and 
transport it to the point representing 
the transmitted polarization, which 
is always the same regardless of the 
initial polarization. The trajectory for 
this type of projection corresponds to 
the shortest geodesic path joining the 
initial and final points as represented 
in Fig.3, as this is the path that re-
sults from gradually attenuating the 
orthogonal polarization. This geode-
sic projection automatically follows 
the rules of parallel transport. 

The second type of element cor-
responds to wave retarders, such 
as the waveplates used routinely in 
optical setups. These elements are 
typically almost transparent, and 
hence their action does not rely on 
eliminating a polarization compo-
nent; instead they introduce a phase 
difference δ between two preferred 
orthogonal polarizations. That is, 
these two eigenpolarizations expe-
rience different refractive indices, 
so one travels faster than the other 
and accumulates a smaller phase. On 
the Poincaré sphere, the action of a 
wave retarder corresponds to a rigid 
rotation by an angle δ around the axis 
joining the two eigenpolarizations, as 
represented in Fig. 3. 

PANCHARATNAM-BERRY PHASE
By using a sequence of optical ele-
ments like those just discussed, the 
polarization of the beam can be made 
to trace a path over the surface of the 
Poincaré sphere. Imagine a situation 
in which the final polarization is the 
same as the initial one, so that the 
path is closed. What we learn from 
Par-Tra’s story is that a sequence of 
displacements results in a rotation 
by an angle equal to the enclosed 
solid angle. In the small-planet ana-
logy, this rotation can be observed by 
looking at the change of orientation 
of Par-Tra’s head. In the optical 

Figure 2. The Poincaré sphere parametrizing 
states of elliptic polarization. 

Figure 3. Left: Polarizers carry all states of polarization to a single polarization  
state here horizontal linear) along red geodesics. Right: Retarders rotate the points 
on the sphere by angle about an axis given by two orthogonal polarizations 
(here horizontal and vertical linear).
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case, on the other hand, polarization 
is represented by a zero-size point 
over the sphere with no discernible 
feature. Nevertheless, it turns out 
that there is a measurable analogue 
of the angle of orientation of Par-Tra’s 
head. To see this, consider the case in 
which the initial/final polarization is 
circular and is represented by a point 
at one of the poles. A rigid rotation 
of the sphere by Φ leaves this point 
unchanged. However, this initial po-
larization state, c, can be expressed 
as a linear superposition of two 
orthogonal states, such as the two 
horizontal and vertical linear polari-
zations h and V, according to c = (h ± 
iV)/√–2. While the point for c remains 
at the north pole, the points initial-
ly representing h and V rotate by  
an angle Φ, and the corresponding  
polarization directions in physical  
space rotate by Φ/2. The final state  
would then be [(hcosΦ/2 + VsinΦ/2)  
± i(VcosΦ/2 − hsinΦ/2)]/√–2 = c exp(+–iΦ/2).  
This last global phase factor, the 
geometric phase, is the measurable 
quantity that reveals that a rotation 
of the point about its axis took place. 

As mentioned earlier, the geode-
sic paths resulting from using pola-
rizers automatically satisfy parallel 
transport. However, the same is not 
necessarily true for the circular paths 
resulting from the rotations enacted 
by wave retarders. To visualize this 
fact, let us go back to Asteroid PB-56-
84, and imagine that the little prince 
and Par-Tra go for a stroll around 
the only tree in the small planet (the 
axis of their rotational displacement). 
They both follow circular paths (of 
different radii in the figure only for 
illustration purposes) around the 
tree. The little prince walks always 
facing the forward motion direction, 
but Par-Tra’s physiology constrains 
her to gradually rotate at an angle 
different from that of the path. After 
completing one full circle, the prince 
has the same orientation as he did at 
the beginning, but Par-Tra’s orien-
tation changes by an angle equal 
to the solid angle enclosed by her 
path. Only had they chosen to walk 

along the geodesic normal to the 
tree, would their translational and 
rotational motions have coincided. 
The rotations enacted by a phase 
retarder correspond to the rigid ro-
tational motion of the little prince, 
and not to the parallel transport of 
Par-Tra. This can be seen by the fact 
that a “full-wave plate” (e.g. the cas-
cade of two parallel half-wave plates), 
corresponding to a full circular path 
around the axis of rotation, does not 
write different phases on different 
polarizations, even though the paths 
over the Poincaré sphere enclose 
different solid angles. That is, if a 
closed path includes non-geodesic 
segments resulting from using wave 
retarders, the corresponding phase 
is not necessarily equal to half the 
enclosed solid angle (although other 
geometric interpretations are pos-
sible). Therefore, to enact a clean geo-
metric phase with wave retarders, the 
displacement must be around great 
circles (geodesics). That is, the polari-
zation entering a wave retarder must 
correspond to a point that is at π/2 
over the Poincaré sphere from both 
eigenpolarizations. For birefringent 
waveplates, with linear eigenpolari-
zations (i.e. on the Poincaré sphere 
equator), maximal geometric phase 

control can be enacted if the initial 
polarization is circular (i.e. at one of 
the poles).

WAVEFRONT SHAPING WITH 
GEOMETRIC PHASE ELEMENTS
Consider a half-wave plate (δ = π), 
whose linear fast eigenpolarization 
is at an angle γ from the horizontal 
axis. Illuminating this element with 
circular polarization (corresponding 
to the north pole), the path over the 
Poincaré sphere will be a meridian 
ending at the south pole (circular po-
larization with the opposite handed-
ness), regardless of γ. However, the 
phase difference between two such 
paths corresponding to two values 
of γ, namely γ1 and γ2, will equal 
one half the solid angle enclosed by 
them. Since the two meridians are 
at an angle 2(γ2−γ1), the solid angle is 
4(γ2−γ1) and the phase difference is 
simply ±2(γ2−γ1), the sign depending 
on the conventions being used. That 
is, the phase of each emerging circu-
larly polarized beam is (to within an 
additive constant) ±2γ.

Modern technologies such as li-
quid crystals or metasurfaces allow 
the creation of birefringent optical 
elements where the eigenpolariza-
tion orientation can be tailored to 

Figure 4.  
Par-Tra  
and the 
little prince 
going for a 
stroll around 
the tree.
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or solid angle, the underlying principle 
is the same. Even in optics there are 
other realizations corresponding to 
different abstract spaces. One case is 
that of a specific family of structured 
beams, where the beam structure can 
be represented as a point on a sphere, 
and rotations of this sphere can be 
enacted with simple combinations of 
cylindrical lenses. Another one that 
involves polarization is the so-called 
(spin) redirection phase: imagine an 
optical fibre carrying a single mode 
with circular polarization. If the fibre 
is bent in 3D so that the local direction 
of propagation changes, a geometric 
phase is acquired that equals the solid 
angle enclosed by the local norma-
lized direction vector over the sphere 
of possible directions. It turns out that 
the redirection phase and the standard 
PB phase can be unified through an ap-
propriate 3D formalism [5].

CONCLUSION
As their name suggests, geometric phases 
arise from the inherent geometry of the 
space that naturally describes a proper-
ty of a wave field. If the laws of parallel 
transport apply, a series of displacements 
in this space enact a rotation if the space 
is curved; if Par-Tra’s planet were flat (or a 
very large sphere), she would be doomed 
to always look in the same direction. The 
fact that the natural space that describes 
polarization (and propagation direction) 
is a sphere leads to a particularly simple 
connection between the rotation (and 
hence the phase) and the enclosed solid 
angle, and to simple ways to control the 
phase of a beam through the local orien-
tation of a half-wave retarder. 

change from point to point in any de-
sired way for a range of applications. 
These devices allow writing arbitrary 
phase profiles on a wavefront. In the 
case of liquid-crystal-based devices, 
these phases can be turned on and off 
through appropriate electric control, so-
mething that is useful in applications 
such as beam steering. Note that the al-
ternative to using geometric phase is to 
use dynamic phase, enacted through an 
increase in optical path length based on 
refractive index and element thickness, 
as is the case with standard lenses, 
prisms, and phase gratings. A very 
attractive feature of geometric phase 
elements is that they naturally incor-
porate the periodicity of the phase in 
the periodicity of the eigenpolarization 
angle. This allows, for example, creating 
optical elements (known as Q-plates) 
that can induce a vortex on the wave-
front without requiring a discontinuity 
in the element’s surface (as is the case 
in a spiral phase plate), making the re-
sulting element more robust to chroma-
tic changes.

OTHER GEOMETRIC PHASES
Geometric phases are not restricted to 
optics, and there are many analogies 
in other quantum phenomena. For ins-
tance, the spin of an electron, repre-
sented on the Bloch sphere, acquires a 
phase evolving through closed paths, 
precisely as on the Poincaré sphere. 
Other systems have more complicated 
parameter spaces whose curvature 
takes more complicated distributions 
than the constant value on a sphere, 
and although the final phase might 
not reduce to a simple enclosed area 

REFERENCES
[1] S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247 (1956)

[2] M.V. Berry, Proc. R. Soc. A 392, 45 (1984)

[3] M.V. Berry, Curr. Sci. 67, 220 (1994)

[4] E. Cohen et al., Nat. Rev. Phys. 1, 437 (2019)

[5] K.Y. Bliokh, M.A. Alonso, M.R. Dennis, Rep. Prog. Phys. 82, 122401 (2019)




