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ABSTRACT
We present two logics of collective belief with a semantics exploit-

ing the notion of belief base. The semantics distinguishes explicit

from implicit belief: an agent’s belief of explicit type is a piece of

information contained in the agent’s belief base, while a belief of

implicit type corresponds to a piece of information that is derivable

from the agent’s belief base. The first part of the paper is devoted to

the logic of implicit common belief, while the second presents the

logic of explicit common belief. Implicit common belief is defined

as a mutual belief of any order. This leads to the usual fixpoint

construction of common belief. Explicit common belief is the col-

lective counterpart of explicit individual belief and has a public

nature. It moreover implies implicit common belief. We study ax-

iomatic aspects of our logics as well as complexity of satisfiability

checking. We show that, while the satisfiability checking problem

is EXPTIME-hard for the logic of implicit common belief, it is in

PSPACE for the logic of explicit common belief. This makes the

latter logic a natural candidate for reasoning about collective atti-

tudes in multi-agent scenarios and applications. We also study a

dynamic extension of the logic of explicit common belief in which

private and public forms of information dynamics can be modeled.
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1 INTRODUCTION
Epistemic logic is the logic of epistemic attitudes including knowl-

edge and belief. Since the pioneering work of Hintikka [24], it

has been widely studied in artificial intelligence (AI) [15, 35] and

economics [29]. It offers a rich language for modeling not only

agents’ beliefs about propositional facts, but also higher-order be-

liefs. Standard semantics for epistemic logic languages exploit the

so-called multi-agent Kripke models, namely, multi-relational struc-

tures equipped with valuation functions for the interpretation of

atomic formulas. Binary relations in a multi-agent Kripke model

are called epistemic accessibility relations and are used to describe

the agents’ epistemic states and uncertainties.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

Higher-order beliefs are essential constituents of collective atti-

tudes of agents including common knowledge and common belief

[43]. According to the standard fixpoint definition, a group of agents

J has the common belief that the fact φ is true if and only if the

agents in J mutually believe that φ for every order k ≥ 1, that is,

every agent in J believes that φ, every agent in J believes that every
agent in J believes that φ, and so on ad infinitum.

The earliest analysis of common belief can be found in [16, 28].

The economist Robert Aumann [2] gave the first set-theoretic char-

acterization of common knowledge. Some initial analysis of com-

mon belief and common knowledge based on epistemic logic can

be found in [4, 6]. The axiomatic and complexity properties of the

standard approach to common belief based on the Kripke seman-

tics were fully studied in [20].
1
Weakest systems of common belief

and common knowledge not satisfying, e.g., closure under logical

consequence for individual beliefs or the least fixpoint principle for

common belief were studied in [8, 17, 22, 29, 36]. Common belief

has played a fundamental role in the analysis of shared cooperative

activity of both human agents [10] and artificial agents [18, 27],

intentional communication [12], social conventions [28] and social

institutions [30]. It has also be demonstrated to be an essential

constituent of the concept of common ground [41], as a basis for

discourse understanding and definite reference [11, 39]. Finally, it

is central in epistemic game theory [37] in which several solution

concepts including iterated deletion of strongly/weakly dominated

strategies (IDSDS/IDWDS) [9, 31] and backward induction [3] are

justified in the light of common belief that all players are rational.

In this paper, we present a novel approach to common belief

which relies on a formal semantics exploiting the notion of belief

base. The latter distinguishes explicit from implicit belief: an agent’s

belief of explicit type is a piece of information contained in the

agent’s belief base, while a belief of implicit type corresponds to a

piece of information that is derivable from the agent’s belief base.

This semantics and its corresponding logic of explicit and implicit

individual belief were introduced in [33] (see also [32, 34]). They

generalize the concept of belief base from knowledge representation

[21] and, more generally, the database perspective on modeling

agents’ mental attitudes [40] to the multi-agent case. In this paper,

we extend them with collective attitudes of coalitions of agents. We

study two logical systems: a logic of explicit and implicit individual

belief extended by the notion of implicit common belief, and a logic

of explicit and implicit individual belief extended by the notion

of explicit common belief. Implicit common belief is the standard

1
The axiomatics of common knowledge and belief given in [20] use a fixpoint axiom

and an induction (alias least fixpoint) rule. In [19, 26], the induction rule is replaced by

an induction axiom. An alternative axiomatization of S5-based common knowledge

using a more intuitive version of the induction axiom was recently given in [23].
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fixpoint notion of common belief we find in the literature [20],

whereas explicit common belief is the collective counterpart of

explicit individual belief and has a public nature. We stipulate that

there is an explicit common belief in a coalition of agents about a

certain fact α , if every agent explicitly believes that α , and every

agent explicitly believes that there is an explicit common belief that

α . This construction guarantees that explicit common belief implies

implicit common belief, but not vice versa. The main reason for

distinguishing explicit common belief from implicit common belief

is that the logic of the former notion is intrinsically simpler than

the logic of the latter one. In particular, we will show that, while

the satisfiability checking problem is EXPTIME-hard for the logic

of implicit common belief, it is in PSPACE for the logic of explicit

common belief. This makes the latter logic a natural candidate

for reasoning about collective attitudes of agents in multi-agent

scenarios and applications.

The paper is organized as follows. In Section 2 we present the

background material on the language and the semantics for explicit

and implicit individual belief introduced in [33]. Section 3 is de-

voted to the logic of implicit common belief. Section 4 focuses on

the logic of explicit common belief. We study the axiomatic and

complexity properties of both logics. In Section 5, we illustrate the

expressiveness of the logic of explicit common belief by using it to

formalize an example of coordination between robotic agents. In

Section 6, we present a dynamic extension of the logic of explicit

common belief in which private and public forms of information

dynamics can be modeled.

2 BACKGROUND
This section presents the language and the semantics for agents’

individual beliefs of both explicit and implicit type introduced in

[33].

2.1 Language
Assume a countably infinite set of atomic propositions Atm =
{p,q, . . .} and a finite set of agents Agt = {1, . . . ,n}. We define the

language in two steps. First, define the language L0 by:

L0

def
= α ::= p | ¬α | α1 ∧ α2 | △iα ,

where p ranges over Atm and i ranges over Agt. L0 is the language

for representing explicit beliefs. The formula △iα is read “agent i
has the explicit belief that α”. The language L extends L0 and is

defined by:

L def
= φ ::= α | ¬φ | φ1 ∧ φ2 | 2iφ,

where α ranges over L0 and i ranges over Agt. The other Boolean
constructions ⊤, ⊥, ∨,→ and↔ are defined from α , ¬ and ∧ in the

standard way. The formula 2iφ is read “agent i implicitly believes

that φ”. The abbreviation 3iφ
def

= ¬2i¬φ defines the concept of

belief compatibility. The formula3iφ has to be read “φ is compatible

with agent i’s explicit beliefs”.

2.2 Belief Base Semantics
The formal semantics for the language L exploit belief bases. Un-

like the standard Kripke semantics in which possible worlds and

epistemic alternatives are primitive, they are here defined from the

primitive concept of belief base.

Definition 1 (State). A state is a tuple B =
(
(Bi )i ∈Agt ,V

)
where

Bi ⊆ L0 is agent i’s belief base, and V ⊆ Atm is the actual environ-
ment. The set of all states is noted S.

The following definition specifies truth conditions for formulas

in the sublanguage L0.

Definition 2 (Satisfaction relation). LetB =
(
(Bi )i ∈Agt ,V

)
∈

S. Then,

B |= p ⇐⇒ p ∈ V ,
B |= ¬α ⇐⇒ B ̸ |= α ,

B |= α1 ∧ α2 ⇐⇒ B |= α1 and B |= α2,
B |= △iα ⇐⇒ α ∈ Bi .

Observe in particular the set-theoretic interpretation of the ex-

plicit belief operators in the previous definition: agent i has the
explicit belief that α if and only if α is included in her belief base.

States satisfying the property of belief correctness (BC) are of

particular interest, namely, states in which agents’ explicit beliefs

are correct.

Definition 3 (Belief correct state). Let B =
(
(Bi )i ∈Agt ,V

)
be a state. We say it satisfies belief correctness (BC) if and only if, for
every i ∈ Agt and for every α ∈ L0, if α ∈ Bi then B |= α . The set of
states satisfying property BC is noted SBC .

The following definition introduces the notion of doxastic alter-

native.

Definition 4 (Doxastic alternatives). Let i ∈ Agt. Then, Ri
is the binary relation on the set S such that, for all B =

(
(Bi )i ∈Agt ,V

)
,

B′ =
(
(B′i )i ∈Agt ,V

′) ∈ S:
BRiB′ if and only if ∀α ∈ Bi : B′ |= α .

BRiB′ means that B′ is a doxastic alternative for agent i at B,
that is to say, B′ is a state that at B agent i considers possible. The
idea of the previous definition is that B′ is a doxastic alternative for
agent i at B if and only if, B′ satisfies all facts that agent i explicitly
believes at B.

A multi-agent belief model (MAB), or simply model, is defined

to be a state supplemented with a set of states, called context. The
context Cxt is not necessarily equal to the set of all states S, since
there could be states in S incompatible with the general “laws of the

domain” and, consequently, with the agents’ epistemic states. For

example, wemight want to exclude from the contextCxt all states in
which the propositions “1+1=2” and “1+1=3” are true concomitantly.

Definition 5 (Multi-agent belief model). Amulti-agent belief
model (MAB) is a pair (B,Cxt), where B ∈ S and Cxt ⊆ S. The class
of MABs is noted M.

Note that in Definition 5 we do not require B ∈ Cxt. The fol-
lowing definition extends Definition 2 to the full language L. Its
formulas are interpreted with respect to MABs. (We omit Boolean

cases, as they are defined in the usual way.)

Definition 6 (Satisfaction relation (cont.)). Let (B,Cxt)
∈ M. Then:

(B,Cxt) |= α ⇐⇒ B |= α ,
(B,Cxt) |= 2iφ ⇐⇒ ∀B′ ∈ Cxt : if BRiB′ then (B′,Cxt) |= φ.
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According to the previous definition, agent i implicitly believes

that φ if and only if, φ is true at all states in the context that i
considers possible.

The notion of belief correctness can be lifted from states to

models, as follows.

Definition 7 (Belief correct MAB). Let (B,Cxt) ∈ M. We say
it satisfies belief correctness (BC) if and only if (i) B ∈ Cxt, and (ii) all
states in Cxt satisfy property BC of Definition 3. The class of MABs
satisfying property BC is noted MBC .

It is easy to verify that (B,Cxt) satisfies BC iff B ∈ Cxt and, for
every i ∈ Agt, Ri ∩ (Cxt × Cxt) is reflexive.

Let φ ∈ L. We say that φ is valid relative to the class M (resp.

MBC ), noted |=M φ (resp. |=MBC φ), if and only if, for every (B,Cxt) ∈
M (resp. (B,Cxt) ∈ MBC ) we have (B,Cxt) |= φ. We say that φ is

satisfiable for the class M (resp. MBC ) if and only if ¬φ is not valid

for the class M (resp. MBC ).

2.3 Axiomatics and Complexity
In [33, Def. 13], the logic LDA (Logic of Doxastic Attitudes) is de-

fined as follows.

Definition 8 (LDA). LDA is the extension of classical proposi-
tional logic by the following axioms and rule of inference:

(2iφ ∧2i (φ → ψ )) → 2iψ (K2i )

△iα → 2iα (Int△i ,2i )

φ

2iφ
(Nec2i )

Logic LDAT2i
extends LDA by the following additional axiom:

2iφ → φ. (T2i )

K2i and Nec2i are, respectively, the K axiom and the rule of

necessitation for implicit belief. Int△i ,2i is the “bridge” axiom

between explicit and implicit belief, while T2i is the T axiom for

correct implicit belief. In [33, Theorem 3], it is proved that LDA

(resp. LDAT2i
) is sound and complete for class M (resp. MBC ). It is

also proved that satisfiability checking for formulas in L relative

to class M (resp. MBC ) is PSPACE-complete [33, Theorem 6].

3 IMPLICIT COMMON BELIEF
In this section, we study a novel extension of the logic of explicit

and implicit individual belief by implicit common belief. The latter

is the standard notion of common belief in the literature [15].

3.1 Language and Semantics
We extend the language L by the implicit shared belief operator

2Jφ and implicit common belief operator 2∗J and name L2∗J the

resulting language. We define it as follows:

L2∗J def
= φ ::= α | ¬φ | φ1 ∧ φ2 | 2iφ | 2Jφ | 2∗Jφ,

with α ranging over L0, i ranging over Agt and J over the set of
non-empty sets of agents (alias coalitions) 2Agt∗ = 2

Agt \ {∅}.
Formula 2Jφ has to be read “the agents in J share the implicit

belief that φ”, whereas 2∗Jφ has to be read “the agents J have the

implicit common belief that φ”. Before giving a semantic interpreta-

tion of the implicit shared and common belief operator, we define

the mutual belief operator inductively as follows:

20

Jφ
def
= φ,

2k+1
J φ

def
= 2J2

k
J φ for k ≥ 0.

The implicit shared and common belief operator are interpreted

relative to a multi-agent belief model (B,Cxt) of Definition 5, as

follows:

(B,Cxt) |= 2Jφ ⇐⇒ ∀i ∈ J : (B,Cxt) |= 2iφ,

(B,Cxt) |= 2∗Jφ ⇐⇒ ∀k ∈ N∗ : (B,Cxt) |= 2k
J φ.

According to the previous semantic interpretations, implicit shared

belief coincides with implicit belief of all agents, while implicit

common belief is the same ask-order mutual belief for everyk ∈ N∗.

3.2 Alternative Kripkean Semantics
In [33] an alternative semantics for the language L is given. It

extends the standard multi-relational Kripke semantics of epistemic

logic by agents’ belief bases. We here use it for interpreting the

language L2∗J and show that it has the same set of validities as the

belief base semantics.

Definition 9 (Notional doxastic model). A notional doxastic
model (NDM) is a tupleM = (W ,D,N ,V) where:
• W is a set of worlds,
• D : Agt ×W −→ 2

L0 is a doxastic function,
• N : Agt ×W −→ 2

W is a notional function,
• V : Atm −→ 2

W is a valuation function,
and such that, given the following inductive definition of the semantic
interpretation of formulas L2∗J relative to a pair (M,w) withw ∈W :

(M,w) |= p ⇐⇒ w ∈ V(p),
(M,w) |= ¬φ ⇐⇒ (M,w) ̸|= φ,

(M,w) |= φ ∧ψ ⇐⇒ (M,w) |= φ and (M,w) |= ψ ,
(M,w) |= △iα ⇐⇒ α ∈ D(i,w),
(M,w) |= 2iφ ⇐⇒ ∀v ∈ N(i,w) : (M,v) |= φ,
(M,w) |= 2Jφ ⇐⇒ ∀i ∈ J : (M,w) |= 2iφ,

(M,w) |= 2∗Jφ ⇐⇒ ∀k ∈ N∗ : (M,w) |= 2k
J φ.

it satisfies the following condition, for all i ∈ Agt and for allw ∈W :
(C1) N(i,w) = ⋂

α ∈D(i,w ) | |α | |M ,
with | |α | |M = {v ∈W : (M,v) |= α }.

We say that M satisfies belief correctness (BC) if the following
condition holds, for all i ∈ Agt and for allw ∈W :
(C2) w ∈ N(i,w).
The class of NDMs is noted NDM, while the class of NDMs satisfying
property BC is noted NDMBC .

The pair (M,w) in the previous definition is called pointed NDM.

For every agent i and for every worldw , D(i,w) denotes agent i’s
set of explicit beliefs atw . The set N(i,w) is called agent i’s set of
notional worlds at worldw , where the term ‘notional’ is borrowed

from [13, 14] (see, also, [25]). As Condition C1 indicates, an agent’s
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notional world is a world at which all its explicit beliefs are true.

Condition C2 is the counterpart of belief correctness for NDMs.

As usual, we say that formula φ ∈ L is valid relative to the class

NDM (resp. NDMBC ) if and only if, for everyM = (W ,D,N ,V) ∈
NDM (resp.M = (W ,D,N ,V) ∈ NDMBC ) and for everyw ∈W ,

we have (M,w) |= φ. We say that φ is satisfiable for the class NDM
(resp. NDMBC ) if and only if ¬φ is not valid for the class NDM
(resp. NDMBC ).

Quasi-notional doxastic models (quasi-NDMs) are like notional

doxastic models of Definition 9 except that Constraint C1 is replaced

by the following weaker constraint:

(C1
∗
) N(i,w) ⊆ ⋂

α ∈D(i,w ) | |α | |M .

The class of quasi-NDMs is noted QNDM, whereas the class of

quasi-NDMs satisfying property BC is noted QNDMBC .

A NDM (resp. quasi-NDM) M = (W ,D,N ,V) is said to be

finite if and only ifW , D(i,w) and V←(w) = {p ∈ Atm : w ∈
V(p)} are finite sets for every i ∈ Agt and for every w ∈ W .

The class of finite NDMs (resp. finite quasi-NDMs) is noted finite-

NDM (resp. finite-QNDM). The class of finite NDMs (resp. finite

quasi-NDMs) satisfying property BC is noted finite-NDMBC (resp.

finite-QNDMBC ).

The following theorem highlights that the five semantics for the

language L2∗J are all equivalent.

Theorem 1. Let φ ∈ L2∗J . Then, the following five statements are
equivalent.

(1) φ is satisfiable relative to class QNDM (resp. QNDMBC ),
(2) φ is satisfiable relative to class finite-QNDM (resp. finite-

QNDMBC ),
(3) φ is satisfiable relative to class finite-NDM (resp. finite-NDMBC ),
(4) φ is satisfiable relative to class NDM (resp. NDMBC ),
(5) φ is satisfiable relative to class M (resp. MBC ).

Sketch of Proof. We use a filtration method to prove that (1)

implies (2). In order to prove that (2) implies (3), we use a technique

which consists in enlarging an agent i’s belief base at a world

w (i.e., D(i,w)) so that agent i’s set of doxastic alternatives at

w (i.e., N(i,w)) shrinks and perfectly coincides with the set of

worlds in which all formulas in agent i’s belief base atw are true,

as required by Condition C1 in Definition 9. Finally, we prove that

(4) and (5) are equivalent. The right-to-left direction is easy since

from a MAB we can easily construct the corresponding NDM. The

left-to-right direction is less immediate. Indeed, a NDM can be

redundant, i.e., it can contain two different worlds with the same

valuation of propositional atoms and the same belief bases for the

agents. We have to transform a possibly redundant NDM into a

non-redundant one. From a non-redundant NDM we can construct

the corresponding MAB which satisfies the same formulas. ■

3.3 Axiomatics
The logic LDA−ICB (Logic of Doxastic Attitudes and Implicit Com-

mon Belief) and its variant LDA−ICBT2i
extend the logics LDA and

LDAT2i
by principles for implicit common belief taken from [20].

They are defined as follows.

Definition 10 (LDA−ICB). LDA−ICB is the extension of LDA
defined in Definition 8 by the following axioms and rule of inference:

2Jφ ↔
∧
i ∈J

2iφ (Def2J )

2∗Jφ → 2J (φ ∧2∗Jφ) (FP2∗J
)

ψ → 2J (φ ∧ψ )
ψ → 2∗Jφ

(Ind2∗J )

Logic LDA−ICBT2i
extends LDA−ICB by Axiom T2i of Definition 8.

Axiom FP2∗J
is the so-called fixpoint axiom for implicit common

belief, while rule Ind2∗J is the so-called induction rule (alias least
fixpoint rule).

As usual, for every φ ∈ L2∗J , we write ⊢LDA−ICB φ to mean that

φ is deducible in LDA−ICB, that is, there is a sequence of formulas

(φ1, . . . ,φm ) such that:

• φm = φ, and
• for every 1 ≤ k ≤ m, either φk is an instance of one of the ax-

iom schema of LDA−ICB or there are formulas φk1 , . . . ,φkt
such that k1, . . . ,kt < k and

φk
1
, ...,φkt
φk

is an instance of

some inference rule of LDA−ICB.
We say that the set of formulas Γ from L2∗J is LDA−ICB-consistent
if there are no formulas φ1, . . . ,φm ∈ Γ such that ⊢LDA−ICB (φ1 ∧
. . . ∧ φm ) → ⊥. Moreover, φ is LDA−ICB-consistent if {φ} is
LDA−ICB-consistent. Definitions of LDA−ICBT2i

-deducibility and

LDA−ICBT2i
-consistency are analogous. Definitions of strong com-

pleteness and weak completeness are the usual ones from modal

logic (see, e.g., [7]): a logic Λ is said to be strongly complete with re-

spect to a class of structures S iff every Λ-consistent set of formulas

is satisfiable on some element of S. It is said to be weakly complete

with respect to S iff every finite Λ-consistent set of formulas is

satisfiable on some element of S.
We know for sure that the logics LDA−ICB and LDA−ICBT2i

are

not strongly complete. Indeed, they do not satisfy the compactness

property, i.e., the fact that for every set of L2∗J -formulas Γ, if Γ
is LDA−ICB-consistent (resp. LDA−ICBT2i

-consistent) then there

is (B,Cxt) ∈ M (resp. (B,Cxt) ∈ MBC ) such that (B,Cxt) |= ψ ,
for every ψ ∈ Γ. For example, let Γ = {¬2∗Jp} ∪ {2i1 . . .2ikp :

k ∈ N∗, i1, . . . , ik ∈ J }. Γ is LDA−ICB-consistent, but there is no
(B,Cxt)
∈ M such that (B,Cxt) |= ψ , for every ψ ∈ Γ. However, LDA−ICB
and LDA−ICBT2i

are weakly complete.

Theorem 2. The logic LDA−ICB is sound and weakly complete for
the classM, and the logic LDA−ICBT2i

is sound and weakly complete
for the class MBC .

Sketch of Proof. Soundness is a routine exercise. Thanks to The-

orem 1, it is sufficient to prove completeness for the quasi-notional

model semantics of Section 3.2. We prove the latter adapting the

proof of Theorem 4.3 in [20]. Our proof uses a canonical model

argument in which worlds in the canonical model are not maxi-

mally consistent sets of all formulas but rather finite maximally

consistent subsets of set Sub
∗(φ) including all subformulas of an

input formula φ, their negations and a finite “epistemic theory” cap-

turing the interrelation between implicit individual and common
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belief. The latter is necessary to prove that the canonical model so

constructed belongs to the class QNDM (resp. QNDMBC ). ■

In Section 4, we will replace implicit common belief by explicit

common belief. We will show that the resulting logic satisfies the

compactness property and is strongly complete. Moreover, it is

computationally simpler than the logic of implicit common belief.

3.4 Complexity
It is easy to show that satisfiability checking for formulas in L2∗J

relative to model classes M and MBC is EXPTIME-hard. Indeed,

LDA−ICB is a conservative extension of the logic of common belief

with base logic K
n
for individual belief, while LDA−ICBT2i

is a

conservative extension of the logic of common belief with base

logic KT
n
for individual belief. These two logics are known to be

EXPTIME-hard for n > 1 [20]. As the following theorem indicates,

EXPTIME is also a upper bound.

Theorem 3. Let n > 1. Then, satisfiability checking for formulas
in L2∗J relative to the class M (resp. MBC ) is in EXPTIME.

Sketch of Proof. Given a formula φ, we define a variant of its set
of sub-formulas. Then, we consider the set of maximally consistent

subsets of such a set, which are intended to be the worlds of a

canonical model. We set an algorithm which deletes some of those

states, until we can effectively obtain a quasi-NDM. Then, we can

simply check if φ is in one of the remaining sets to know if φ is

satisfiable. Moreover, the algorithm can be executed in exponential

time in the size of φ. ■

Forn = 1, logics LDA−ICB and LDA−ICBT2i
are clearly PSPACE-

complete, since they coincide with the single-agent logics of explicit

and implicit belief with base logics K and KT for implicit belief

which are known to be PSPACE-complete [33].

4 EXPLICIT COMMON BELIEF
In Section 3, we have presented the logic of explicit and implicit

individual belief, and implicit common belief. The aim of this section

is study a new concept of collective attitude of explicit type: explicit

common belief. Explicit common belief is the collective counterpart

of explicit individual belief. We will use symbols of type ▽J to

represent it. We stipulate that there is an explicit common belief that
α if everyone explicitly believes that α , and everyone explicitly believes
that there is an explicit common belief that α . The latter highlights
the public nature of explicit common belief: explicit common belief

implies the agents’ awareness of its existence. This is similar to

the publicity condition of the concept of co-presence, as defined by

Clark & Marshall [11]. For example, suppose Ann, Bob, Mary and

Paul are sitting at a table on which there is a box. This is a situation

of co-presence: each agent correctly believes that there is a box on

the table and, moreover, that they are jointly seeing that there is a

box on the table so that they commonly believe so.

4.1 Language and Semantics
We name L▽J

0
the language which results from extending L0 with

operators for explicit shared belief and explicit common belief. It is

defined as follows:

L▽J
0

def
= α ::= p | ¬α | α1 ∧ α2 | △iα | △Jα | ▽Jα ,

with p ranging over Atm and i ranging over Agt. Formula △Jα has

to be read “the agents in J share the explicit belief that α”, whereas
▽Jα has to be read “the agents in J have the explicit common belief

that α”. The following language L▽J extends language L▽J
0

by

implicit individual belief operators:

L▽J def
= φ ::= α | ¬φ | φ1 ∧ φ2 | 2iφ,

with α ranging over L▽J
0

and i ranging over Agt.
In order to interpret the new language L▽J

0
, we need to slightly

redefine the notion of state of Definition 1 by assuming that an

agent i’s belief base is now a set of formulas from L▽J
0

.

The explicit shared belief and explicit common belief operators

are interpreted relative to a state B =
(
(Bi )i ∈Agt ,V

)
so redefined,

as follows:

B |= △Jα ⇐⇒ ∀i ∈ J : α ∈ Bi ,
B |= ▽Jα ⇐⇒ ∀i ∈ J : α ∈ Bi and ▽Jα ∈ Bi .

Notice, in particular, the semantic interpretation of the explicit

common belief operator: explicit common belief that α is the same

as everyone having the explicit belief that α and that there is explicit

common belief that α .
Clearly, implicit common belief does not necessarily imply ex-

plicit common belief. Indeed, for every J ∈ 2
Agt∗

, there exists

(B,Cxt) ∈ M such that:

(B,Cxt) |= 2k
J p for every k ∈ N∗ and (B,Cxt) ̸|= ▽Jp.

An example of such a MAB is the following: Cxt = {B,B′}, B =(
(Bi )i ∈Agt ,V

)
and B′ =

(
(Bi )i ∈Agt ,V ′

)
, where Bi = {q,q → p}

for every i ∈ Agt, V = {q} and V ′ = {p,q}. On the contrary,

explicit common belief necessarily implies implicit common belief,

as indicated by the following validity, for every J ∈ 2Agt∗:

|= ▽Jα → 2k
J α for every k ∈ N∗.

Moreover, explicit common belief implies implicit common belief

about explicit shared belief, as well as implicit common belief about

explicit common belief. For every J ∈ 2Agt∗, we have

|= ▽Jα → 2k
J △Jα for every k ∈ N∗,

|= ▽Jα → 2k
J ▽Jα for every k ∈ N∗.

Like implicit common belief, the explicit common belief operator

can alternatively be interpreted relative to notional doxastic models

(NDMs) introduced in Section 3.2. To do so, we simply need to

replace the semantic interpretation for the modal operator 2∗J in
Definition 9 by the following semantic interpretation for the modal

operators △J and ▽J :
(M,w) |= △Jα ⇐⇒ ∀i ∈ J : α ∈ D(i,w),
(M,w) |= ▽Jα ⇐⇒ ∀i ∈ J : α ∈ D(i,w) and ▽Jα ∈ D(i,w),
where (M,w) is a pointed NDM.

The following theorem is the counterpart of Theorem 1 for the

language of explicit common belief.

Theorem 4. Let φ ∈ L▽J . Then, the following five statements are
equivalent:

(1) φ is satisfiable relative to class QNDM (resp. QNDMBC ),
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(2) φ is satisfiable relative to class finite-QNDM (resp. finite-
QNDMBC ),

(3) φ is satisfiable relative to class finite-NDM (resp. finite-NDMBC ),
(4) φ is satisfiable relative to class NDM (resp. NDMBC ),
(5) φ is satisfiable relative to class M (resp. MBC ).

Sketch of Proof. The proof is similar to that of Theorem 1. ■

4.2 Axiomatics
The following definition introduces the logic LDA−ECB (Logic of

Doxastic Attitudes and Explicit Common Belief) and its variant

LDA−ECBT2i
for correct beliefs.

Definition 11 (LDA−ECB). LDA−ECB is the extension of LDA
defined in Definition 8 by the following axioms:

△Jα ↔
∧
i ∈J
△iα (Def△J )

▽Jα ↔ (△Jα ∧ △J▽Jα) (Refl▽J )

The logic LDA−ECBT2i
extends LDA−ECB by Axiom T2i of Defini-

tion 8.

Axiom Def△J defines explicit shared belief from the explicit in-

dividual belief of all agents. Axiom Refl▽J is the “publicity” axiom
for explicit common belief. Definitions of LDA−ECB-deducibility,
LDA−ECBT2i

-deducibility, LDA−ECB-consistency, LDA−ECBT2i
-

consistency, strong and weak completeness for LDA−ECB and

LDA−ECBT2i
are analogous to the ones for logics LDA−ICB and

LDA−ICBT2i
given in Section 3.3. Unlike logics LDA−ICB and

LDA−ICBT2i
, logics LDA−ECB and LDA−ECBT2i

satisfy the com-

pactness property and, as the following theorem indicates, are

strongly complete.

Theorem 5. The logic LDA−ECB is sound and strongly complete
for the class M, and the logic LDA−ECBT2i

is sound and strongly
complete for the class MBC .

Sketch of Proof. Soundness is a routine exercise. Thanks to The-

orem 4, it is sufficient to prove completeness for the class QNDM
(resp. QNDMBC ). Unlike the proof of Theorem 5, we prove the lat-

ter by standard canonical model argument: worlds in the canonical

model are (infinite) maximally consistent sets of formulas. ■

4.3 Complexity
It is easy to show that satisfiability checking for formulas in L▽J
relative to model classes M and MBC is PSPACE-hard. Indeed,

LDA−ECB is a conservative extension of the multi-modal logic

K
n
, while LDA−ICBT2i

is a conservative extension of the multi-

modal logic KT
n
. These two logics are known to be PSPACE-hard,

even for the case n = 1 [20]. As the following theorem indicates,

PSPACE is also a upper bound.

Theorem 6. Satisfiability checking for formulas in L▽J relative
to the class M (resp. MBC ) is in PSPACE.

Sketch of Proof. We can use the tableau method. To check the

satisfiablity of a given formula φ, the goal is to construct a tableau
(a concept similar to that of a quasi-NDM) which satisfies φ at

its root. Then φ is satisfiable if and only if the construction can

be completed. The construction algorithm can be executed with a

quadratic memory in the size of the formula φ. ■

5 EXAMPLE
We illustrate the language L▽J with the help of an example of

dichotomous coordination game in which agents can achieve their

common goal only by making the same choice. In a coordination

game, each coordination point is a Nash equilibrium and the general

problem is to select one of them in order to ensure that the common

goal is effectively achieved.

To this aim, we assume the set of atomic propositions Atm in-

cludes special atoms of type pli [a] with i ∈ Agt and a ∈ Act,
where Act is a finite set of action symbols. Atom pli [a] has to be

read “agent i plays (or chooses) action a”. The agents in Agt are
said to play a dichotomous coordination game with common goal

φG ∈ L▽J and action repertoire X ⊆ Act, noted Coord(φG ,X ), if
and only if (i) each agent will choose exactly one action from X ,
and (ii) the agents will achieve their common goal φG if and only

if they coordinate by choosing the same action from X . In formal

terms:

Coord(φG ,X )
def
=

(
φG ↔ (

∨
a∈X

∧
i ∈Agt

pli [a])
)
∧∧

i ∈Agt

(
(
∨
a∈X

pli [a]) ∧
∧

a,b ∈X :a,b

(pli [a] → ¬pli [b])
)
.

In our example, we suppose Agt = {1, 2} and {mr,ml} ⊆ Act.
Agents 1 and 2 are two mobile robots standing in front of a narrow

passage on its opposite sides, as illustrated in Figure 1. An agent

Agent 2

����

Agent 1

Figure 1: Example of coordination game

can either decide to move forward keeping to the right (action mr)
or decide to move forward keeping to the left (action ml). The two
agents can only coordinate by making the same choice. Indeed, if

they choose different actions (e.g., agent 1 chooses mr while agent
2 chooses ml), they will miscoordinate and, consequently, collide

(coll). We consider a number of hypotheses that agents 1 and 2

could share in the coordination scenario:

α1
def
= coll ↔

(
(pl

1
[mr] ∧ pl

2
[ml]) ∨ (pl

1
[ml] ∧ pl

2
[mr])

)
,

α2
def
=

∧
i ∈Agt

(pl i [mr] ∨ pl i [ml]),

α3
def
=

∧
i ∈Agt

(pl i [mr] → ¬pl i [ml]).
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According to hypothesis α1, agents 1 and 2 will collide if and only

if they choose different actions. Hypotheses α2 and α3 just state
that an agent will choose exactly one action from {mr,ml}.

We can prove that explicit common belief of every hypothesis in

{α1,α2,α3} implies implicit common belief of facing a coordination

problem. Indeed, for every k ∈ N∗, we have:

|=M
( ∧
h∈{1,2,3}

▽Agtαh
)
→ 2k

AgtCoord(¬coll,{mr,ml}). (1)

In a coordination game like the one depicted in Figure 1, there

are different ways to secure coordination. The bottom-up solution

relies on repeated interaction: by playing the game several times

the agents can learn to coordinate in a such a way that a social con-

vention between them is established. According to Lewis’ seminal

theory [28], for a social convention to exist in a group of agents,

the agents in the group must form a common belief that every-

one in the group will conform to the convention by playing the

corresponding action in the selected equilibrium. The top-down

solution is by means of external norms that induce agents to play

a specific equilibrium in the game. For example, in the case of the

coordination game of Figure 1 the obligation to choose action mr
could be enforced on agents 1 and 2 to secure coordination among

them and to make the agents have a common belief of this, under

the assumption that they are obedient and will comply with the

obligation.

We are going to show how such a top-down mechanism can

be formally represented in the language L▽J . The first step in the

analysis consists in assuming that the set of atomic propositions

Atm includes special atoms of type obedi and obl[a] for every i ∈
Agt and a ∈ Act that have to read, respectively, “agent i is norm
compliant (or obedient)” and “it is obligatory to perform action

a”. As a second step, we define the following hypothesis which

specifies the meaning of the notion of norm compliant agent:

α4
def
=

∧
i, j ∈Agt:i,j

(
obedi ↔

∧
a∈Act

(
(△iobl[a] ∧ △iobed j ) → pli [a]

) )
.

According to hypothesis α4, an agent is norm compliant (or obedi-

ent) if and only if, if it explicitly believes that the other agent is also

norm compliant and that there is an obligation to perform action

a, then it will choose action a. This captures a reciprocal form of

obedience: an agent is willing to comply with the obligation only if

it believes that the other agent is willing too.

For every k ∈ N∗, we have the following two validities which

highlight the conditions under which obligations determine coordi-

nation and common belief about coordination:

|=M
( ∧
i ∈Agt

▽Agtobedi ∧ ▽Agtα4
)
→∧

a∈Act
2k
Agt

(
△Agtobl[a] → (pl1[a] ∧ pl2[a])

)
, (2)

|=M
( ∧
i ∈Agt

▽Agtobedi ∧
∧

h∈{1,3,4}
▽Agtαh

)
→∧

a∈Act
2k
Agt

(
△Agtobl[a] → ¬coll

)
. (3)

According to validity (2) if the agents in the coordination game of

Figure 1 have explicit common belief that each of them is norm

compliant and have explicit common belief of what norm compli-

ance means, as specified by hypothesis α4, then they have implicit

common belief that if each of them is aware that it is obligatory

to perform a certain action then they will perform the obligatory

action. According to validity (3) if the agents in the coordination

game of Figure 1 have explicit common belief that each of them

is norm compliant and have explicit common belief of each hy-

pothesis in {α1,α3,α4}, then they have implicit common belief that

if each of them is aware that it is obligatory to perform a certain

action then they will not collide.

6 DYNAMIC EXTENSION
In this section, we extend the language L▽J by belief expansion

operations. Such an extension allows us to represent private and

public forms of information dynamics in a multi-agent domain. We

name L▽J ,+J the resulting language and define it as follows:

L▽J ,+J def
= φ ::= α | ¬φ | φ1 ∧ φ2 | 2iφ | [+Jα]φ,

where α ranges over L▽J
0

, i ranges over Agt and J ranges over

2
Agt∗

. The formula [+Jα]φ has to be read “φ holds after every agent

in J has expanded her belief base with α”. Events of type +Jα are

generically named ‘informative events’.

The dynamic operator [+Jα] has the following semantic inter-

pretation relative to MABs of Definition 5. Let B =
(
(Bi )i ∈Agt ,V

)
∈ S and let (B,Cxt) ∈ M. Then:

(B,Cxt) |= [+Jα]φ ⇐⇒ (B+J α ,Cxt) |= φ,

with V+J α = V , B+J αi = Bi ∪ {α } for i ∈ J , and B+J αj = Bj for
j < J .

Intuitively speaking, belief expansion by all agents in J with α
simply consists in every agent in J adding the information α to her

belief base, while all agents outside J keep their beliefs unchanged.

The following proposition provides reduction principles which

allow us to transform every formula of the language L▽J ,+J into
an equivalent formula of the language L▽J .

Proposition 1. The following formulas are valid for class M:

[+Jα]p ↔ p

[+Jα]¬ψ ↔ ¬[+Jα]ψ
[+Jα](ψ1 ∧ψ2) ↔ ([+Jα]ψ1 ∧ [+Jα]ψ2)
[+Jα]△iβ ↔ △iβ if i < J or α , β

[+Jα]△iα ↔ ⊤ if i ∈ J
[+Jα]△J ′β ↔ △J ′β if α , β

[+Jα]△J ′α ↔ △J ′\Jα
[+Jα]▽J ′β ↔ (△J ′β ∧ △J ′\J▽J ′β) if α = ▽J ′β
[+Jα]▽J ′β ↔ (△J ′\J β ∧ △J ′▽J ′β) if α = β
[+Jα]▽J ′β ↔ ▽J ′β if α , ▽J ′β and α , β

[+Jα]2iφ ↔ 2iφ if i < J

[+Jα]2iφ ↔ 2i (α → φ) if i ∈ J

It is easy to define a a mapping red which iteratively applies the

valid equivalences of Proposition 1 and transforms any formula φ in

L▽J ,+J into an equivalent formula red(φ) inL▽J of polynomial size.
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As a consequence, thanks to Theorem 6, the following complexity

result can be proved.

Theorem 7. Satisfiability checking for formulas in L▽J ,+J rela-
tive to the class M is PSPACE-complete.

Let us briefly explore the modeling aspects of the language

L▽J ,+J . In this language, we can represent a variety of private

and public information dynamics. Before defining them, we intro-

duce the following abbreviation:

[+J1α1; . . . ;+Jkαk ]φ
def
= [+J1α1] . . . [+Jkαk ]φ,

where [+J1α1; . . . ;+Jkαk ]φ means “φ holds after the informative

events +J1α1, . . . ,+Jkαk take place consecutively”. The following

validity captures a commutativity property for informative events:

|=M [+J1α1; . . . ;+Jkαk ]φ ↔ [σ (+J1α1); . . . ;σ (+Jkαk )]φ, (4)

where σ is any permutation of the set {+J1α1, . . . ,+Jkαk }. This
property is a consequence of the semantics of informative events

based on belief expansion. Since events +J1α1, . . . ,+Jkαk simply

expand the belief bases of the agents in J1, . . . , Jk , the order in

which they occur does not matter. This is different from public

announcement logic PAL [38] in which the order of announcements

can play a role. The following are three examples of informative

events of private, semi-private and public form:

priv(J ,α) def
= +Jα ,

publ(J ,α) def
= +Jα ;+J▽Jα ,

semiPriv(J , J ′,α) def
= +Jα ;+J ′(△Jα ∨ △J¬α).

The event priv(J ,α) consists in every agent in J privately learn-

ing that α , whereas publ(J ,α) means that all agents in J publicly
learn that α . Finally, semiPriv(J , J ′,α) means that all agents in J
privately learn that α , while the agents in J ′ learn that the agents

in J has just learnt whether α is true. An example of the latter is

the situation of Ann (A), Bob (B), Mary (M) and Paul (P ) sitting at a
table on which there is an empty box. In the initial situation, they

do not know whether the box is empty since they cannot see what

is inside it. Mary and Paul look inside the box in front of everybody.

Therefore, Mary and Paul privately learn that the box is empty.

Moreover, Ann, Bob, Mary and Paul learn that Mary and Paul have

just learnt whether the box is empty. The latter event is represented

by semiPriv({M, P}, {A,B,M, P}, boxEmpty). Note that publ(J ,α)
and semiPriv(J , J ′,α) are definable from priv(J ,α). Specifically,
publ(J ,α) is the same as priv(J ,α) followed by priv(J ,▽Jα) and
semiPriv(J , J ′,α) is the same as priv(J ,α) followed by priv(J ′,△Jα∨
△J¬α). In other words, publicity and semi-privateness are defined

from privateness. For instance, publicly learning that α corresponds

to the fact that every agent in α privately learns that α and that α
has become common belief. The following are interesting properties

of private, semi-private and public informative events:

|=M [priv(J ,α)]
∧
i ∈J

2iα , (5)

|=M [semiPriv(J , J ′,α)]
∧

i ∈J , j ∈J ′

(
2iα ∧2j (2iα ∨2i¬α)

)
, (6)

|=M [publ(J ,α)]2k
J α for every k ∈ N∗, (7)

|=M [publ(J ,α)]2k
J △Jα for every k ∈ N∗, (8)

|=M [publ(J ,α)]2k
J ▽Jα for every k ∈ N∗. (9)

Note in particular validities (7), (8) and (9): after having publicly

learnt that α , the agents will have the implicit common belief of

α , that they share the belief of α and that they have the explicit

common belief of α . For example, going back to the example of

Section 5, we have the following validity, for every k ∈ N∗:

|=M
( ∧
i ∈Agt

▽Agtobedi ∧ ▽Agtα4
)
→[

publ

(
Agt, obl[a]

) ]
2k
Agt (pl1[a] ∧ pl2[a]). (10)

This guarantees that if the agents in the coordination game of Figure

1 have explicit common belief that each of them is norm compliant

and of what norm compliance means then, by publicly learning

that action a is obligatory, they form the implicit common belief

that each of them will perform the obligatory action.

7 CONCLUSION
Let’s take stock. We have studied two logics of collective attitudes:

the logic of implicit common belief and the logic of explicit com-

mon belief. We have provided axiomatic and complexity results

for both logics. While satisfiability checking for the former logic

is EXPTIME-hard, it is in PSPACE for the latter. Our complexity

result relies on a tableau method. Future work will be devoted to

find a polysize reduction of satisfiability checking for the logic of

explicit common belief to QBF. This will open up the possibility of

exploiting existing efficient QBF solvers for automated reasoning

about collective attitudes in multi-agent systems. We also plan to

explore the connection between the dynamic extension we pre-

sented in Section 6 and dynamic epistemic logic (DEL), namely the

extension of epistemic logic by so-called event models [5, 42]. In

particular, we would like to precisely characterize the subclass of

event models that are captured by our update semantics. Since full

DEL is known to be NEXPTIME-hard [1], we know for sure that

the latter is necessarily a strict subclass. In this paper, we have

studied the logic of implicit common belief and the logic of explicit

common belief separately. In future work, we will explore the ax-

iomatic properties and complexity of the unified language including

both implicit and explicit common belief. Our conjecture is that

satisfiability checking for such rich epistemic language remains in

EXPTIME.
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