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We model persuasion, viewed as a deliberate action through which an agent (persuader) changes the beliefs of another agent's (persuadee). This notion of persuasion paves the way to express the idea of persuasive influence, namely inducing a change in the choices of the persuadee by changing her beliefs. It allows in turns to express different aspects of deception. To this end, we propose a logical framework that enables expressing actions and capabilities of agents, their mental states (desires, knowledge and beliefs), a variety of agency operators as well as the connection between mental states and choices. Those notions, once combined, enable us to capture, the notion of influence, persuasion and deception, as well as their relation.

Introduction

In many contexts, agents need the cooperation of others, to achieve their goals. To this end, they may influence others, namely execute actions leading others to perform further actions. Influence may result from impeding or enabling certain actions by others (removing or adding choices), but also from changing the mental states of others (removing or adding beliefs). In the first case we speak of regimentation, while in the second we speak of persuasion. In this paper, we focus on persuasion, i.e. on the deliberate action through which agents (persuaders) changes the beliefs of other agents (persuadees).

Persuasion in the human-machine interaction raises serious ethical and legal issues, as more and more often automated systems engage in attempts at influencing human choices through persuasive messages. Such persuasive activities may be determined by interests that are not aligned with the interests of their addressees, but are rather determined by the economic or political goals of the senders (or their principals). Automated persuaders may also be deceivers, e.g. agents which present fake information or anyway induce the persuadees into actions the latter will regret (bad economic, personal or political choices). To adequately respond to this challenge, it is important to have a clear conceptual framework, that enables us to capture the different ways in which influence, persuasion and deception can be deployed, so that adequate responses to each of such ways can be developed, through human or also computational interventions. Let us precise that, as we are mainly interested in artificial agents (automated persuaders), we will consider in this article rational agents. The anthropomorphic expression (persuader, persuadee, mental state) are just shortcuts that we use for convenience.

In the AI field, persuasion and related notions have been approached from different perspectives. Following seminal work on argumentation [START_REF] Walton | Commitment in Dialogue: Basic Concepts of Interpersonal Reasoning[END_REF], persuasion has been modelled through structured argumentation [START_REF] Prakken | Formal systems for persuasion dialogue[END_REF], abstract argumentation [START_REF] Bench-Capon | Persuasion in practical argument using value-based argumentation frameworks[END_REF][START_REF] Bonzon | On the outcomes of multiparty persuasion[END_REF], probabilistic argumentation [START_REF] Hunter | Modelling the persuadee in asymmetric argumentation dialogues for persuasion[END_REF], possibilistic belief revision [START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind? Possibilistic belief revision with fuzzy argumentation based on trust[END_REF], abstract argumentation combined with dynamic epistemic logic [START_REF] Proietti | Persuasive argumentation and epistemic attitudes[END_REF]. Some logical approaches have addressed notions related to persuasion, such as social influence [START_REF] Lorini | A STIT logic analysis of social influence[END_REF][START_REF] Santos | Indirect action, influence and responsibility[END_REF], manipulation (influence on choices) [START_REF] Leturc | A deliberate BIAT logic for modeling manipulations[END_REF], lying and deception [START_REF] Sakama | A formal account of dishonesty[END_REF][START_REF] Van Ditmarsch | On the logic of lying[END_REF], or changing other agents' degrees of beliefs [START_REF] Budzyńska | A logic for reasoning about persuasion[END_REF]. The original contribution of this work consists in providing a logical account of the way in which a persuader by changing the beliefs of the persuadee, influences the action of the latter. We aim indeed to provide a formal theory of the micro-foundations of deception, persuasion and influence, i.e., an account of the cognitive attitudes and agentive aspects that are involved in the persuasion and influence, and elucidate their relationship. For this purpose we provide a rich framework that expresses actions and capabilities of agents and their mental states (desires, knowledge and beliefs) as well as the connection between mental states and choices. In order to keep the framework simple while being expressive, we focus on a qualitative framework (such as Boolean games [START_REF] Van Benthem | Dependencies between players in Boolean games[END_REF]) where agents' preferences are not presented by continuous utility functions but rather by a qualitative three-valued scale desirable/undesirable/neutral. Then We express two notions of rationality (an optimistic and a pessimistic one), several agency operators (such as the so-called 'Chellas' STIT [START_REF] Horty | Agency and Deontic Logic[END_REF], the deliberative and the rational STIT operators [START_REF] Lorini | A STIT logic analysis of social influence[END_REF]) and different ways to influence agents' choices through belief change.

Relative to this rich background addressing partial aspects of persuasion processes, our model will be useful for better understanding and modelling the dynamics of social influence, especially those between artificial and human agents. It will also be relevant from a regulatory perspective, since it allows to pinpoint those instance in which online interactions, in virtue of their logical structure, can be viewed as detrimental to trustful and productive interaction, and thus call for normative limitations. It can also be relevant in the special cases where persuasion and deception can be of interest in social relationship to protect somebody [START_REF] Alistair | White lies on silver tongues: Why robots need to deceive (and how)[END_REF]. Our contribution has the advantage of providing a comprehensive model which captures the whole persuasive process including the mental states of the persuader, his persuading action, the modified mental states of persuadee and her resulting action. The model also captures the connection between influence, regimentation and persuasion, and enables to link persuasion with game theory. This article is organized as follow. Firstly, in Section 1 we introduce a running example. Then we define in Section 2 our logical framework and, in Section 3, we show how this framework can express notions of optimistic and pessimistic rationality, and a variety of agency operators. We then combine those notions in Section 4 to express deception, persuasion, regimentation and influence, and their relationships. Finally, we apply our framework to the running example.

Running example John is feeling back pain, and consequently he is consulting websites that offer medical advice as well as the opportunity to purchase drugs. A message from a bot promises, for a fair price, a drug which is said to be an excellent remedy that would eliminate all pain, and can be used for any length of time without producing any dependency. This message persuades John to buy the drug and he starts taking it. However the bot has deceived John because the bot knows that the drug creates addiction, with serious health consequences. John's wife Ann, comes to know that such pills are dangerous. She then removes all pills from the closet. As a consequence John does not take the drug.

This example shows two patterns of influence. The first is successful and misleading persuasion (deception) by the website, i.e., successful influencing by providing false information. The second stage consists in Ann successfully influencing John through regimentation, i.e., by removing a choice option.

Logical Framework

In this section, we present a modal logic language which supports reasoning about (i) actions and capabilities of agents and coalitions, (ii) agents' epistemic states and desires as well as their connection with agents' choices. We first present its syntax and its semantic interpretation (Sections 2.1 and 2.2). Then, in Section 2.3, we provide a sound and complete axiomatization of its set of validities.

Syntax

Assume a countable set of atomic propositions Atm = {p, q, . . .}, a finite set of agents Agt = {1, . . . , n}, a finite set of atomic action names Act = {a, b, . . .}. The set Act includes the (in)action skip, i.e., the action of doing nothing. We define Prop to be the set of propositional formulas, that is, the set of all Boolean combinations of atomic propositions.

The set of non-empty sets of agents, also called coalitions, is defined by 2 Agt * = 2 Agt \ {∅}. Elements of 2 Agt * are noted H, J, . . . A coalition H's joint action is defined to be a function δ H : H -→ Act. Coalition H's set of joint actions is noted JAct H . Its elements are noted δ H , δ H , . . . For notational convenience, we simply write JAct instead of JAct Agt to denote the grand coalition's set of joint actions. Its elements are noted δ, δ , . . . Moreover, we write Act i instead of JAct {i} to denote agent i's set of individual actions. Its elements are noted a i , b i , . . . We define JAct * to be the set of all finite sequences of joint actions from JAct. Elements of JAct * are noted , , . . . The empty sequence of joint actions is denoted by nil . Infinite sequences of joint actions are called histories. The set of all histories is noted Hist and its elements are noted h, h , . . . Elements of JAct * ∪ Hist are noted τ, τ , . . . For every τ 1 , τ 2 ∈ JAct * ∪ Hist, we write τ 1 τ 2 to mean that either τ 1 = τ 2 or τ 1 is an initial subsequence of τ 2 , i.e., there is τ 3 ∈ JAct * ∪ Hist such that τ 2 = τ 1 ;τ 3 . The language L is defined by the following grammar:

::= δ | ; ϕ ::= p | occ( ) | plaus i | good i | badi | neutrali | ¬ϕ | ϕ1 ∧ ϕ2 | [[δ]]ϕ | ϕ | Kiϕ
where p ranges over Atm, i ranges over Agt, δ ranges over JAct and ranges over JAct * . The other Boolean constructions , ⊥, ∨, → and ↔ are defined from p, ¬ and ∧ in the standard way. We note L -the fragment of L without operators [[δ]] defined by the following grammar:

ϕ ::= p | occ( ) | plaus i | good i | neutrali | badi | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ | Kiϕ
L has special atomic formulas of four different kinds. The atomic formulas occ( ) represent information about occurrences of joint action sequences. The formula occ( ) has to be read "the joint action sequence is going to occur".

The following abbreviations capture interesting action-related concepts. For every H ∈ 2 Agt * , joint action sequence ∈ JAct * and joint action δ H ∈ JAct H we define:

choose( ,δH ) def = δ∈JAct: ∀i∈H, δ H (i)=δ(i) occ( ;δ) can( ,δH ) def = ♦choose( ,δH )
choose( ,δ H ) has to be read "the joint action sequence is going to occur and will be followed by coalition H's joint action δ H ". For convenience, when = nil , we write choose(δ H ) instead of choose(nil ,δ H ). Formula can( ,δ H ) has to be read "coalition H can choose the joint action δ H at the end of the joint action sequence ".

The atomic formula plaus i is used to identify the histories in agent i's information set that she considers plausible. It has to be read "the current history is considered plausible by agent i". The other atomic formulas good i , bad i and neutral i are used to rank the histories that an agent envisages at a given world according to their value for the agent (i.e., how much a given history promotes the satisfaction of the agent's desires). They are read, respectively, "the current history is good/bad/neutral for agent i". Let us notice it is an agent-centric point-of-view. Each good i , bad i and neutral i atoms are defined only from agent i's perspective.

L has three kinds of modal operators: [[δ]], and K i . is the so-called historical necessity operator. The formula ϕ has to be read "ϕ is true in all histories passing through the current moment". We define ♦ to be the dual of , i.e., ♦ϕ def = ¬ ¬ϕ where ♦ϕ has to be read "ϕ is true in at least one history passing through the current moment". [[δ]] is a dynamic operator describing the fact that if the joint action δ is performed then it will lead to a state in which a given state of affairs holds. In particular, [[δ]]ϕ has to be read "if the joint action δ is performed, then ϕ will be true after its execution". Finally, K i is a modal operator characterizing the concept of ex ante (or choice-independent) knowledge [START_REF] Aumann | Rational expectations in games[END_REF][START_REF] Lorini | A STIT logic analysis of social influence[END_REF][START_REF] Roy | Epistemic logic and the foundations of decision and game theory[END_REF]. The formula K i ϕ has to be read "agent i knows that ϕ is true independently from her current choice" or "agent i thinks that ϕ is true for any choice she could have made". The dual of the operator K i is denoted by K i , i.e., K i ϕ def = ¬K i ¬ϕ. Ex ante knowledge is distinguished from ex post knowledge. Ex ante knowledge characterizes an agent's knowledge assuming that no decision has yet been made by him, whereas ex post knowledge characterizes an agent's knowledge assuming that the agent has made his decision about which action to take, but might still be uncertain about the decisions of others. The concept of ex post knowledge is expressed by the following operator K post i :

K post i ϕ def = a i ∈Act i choose(ai) → Ki(choose(ai) → ϕ)
where K post i ϕ has to be read "agent i knows that ϕ is true, given her actual choice". From the special atomic formula plaus i and the epistemic operator K i , we define a belief operator:

B i ϕ def = K i (plaus i → ϕ)
The formula B i ϕ has to be read "agent i believes that ϕ". According to this definition, an agent believes that ϕ if and only if ϕ is true at all states in the agent's information set at which ϕ is true. The dual of the operator B i is denoted by B i , i.e.,

B i ϕ def = ¬B i ¬ϕ.
Similarly to Situation Calculus [START_REF] Reiter | Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems[END_REF], we describe actions in terms of their positive and negative effect preconditions. In particular, we introduce two functions γ + and γ - with domain Agt × Act × Atm and codomain L -. The formula γ + (i, a, p) describes the positive effect preconditions of action a performed by agent i with respect to p, whereas γ -(i, a, p) describes the negative effect preconditions of action a performed by agent i with respect to p. Formula γ + (i, a, p) represents the conditions under which agent i will make p true by performing action a, if no other agent interferes with i's action; while γ -(i, a, p) represents the conditions under which i will make p false by performing a, if no other agent interferes with i's action. We assume that "making p true" means changing the truth value of p from false to true, whereas "making p false" means changing the truth value of p from true to false. The reason why an action's effect preconditions range over L -and not over L is that they should be independent from the effects of the action described by dynamic formulas of type [[δ]]ϕ.

Example 1. Let us consider the story given in Section 1, and use it to illustrate the γ + and γ -functions. We shall use the following vocabulary:

Agt ={Ann, John, Bot}, Act ={take, suggest, hide, skip}, Atm ={has John,drug , ingested John,drug , addicted John , pain John }

The actions' effect preconditions can be defined as:

γ + (Bot, suggest, p) = p for all p ∈ Atm, γ -(Bot, suggest, p) = ¬p for all p ∈ Atm, γ + (John, take, ingested John,drug ) = has John,drug , γ + (i, a, ingested John,drug ) = ⊥
Moreover, if a = take or i = John, we have:

γ -(i, a, ingested John,drug ) = ¬choose(take John )
Finally, for all a ∈ Act and i ∈ Agt, we have:

γ + (i, a, has John,drug ) = has John,drug ∧ ¬choose(hideAnn ) γ -(Ann, hide, has John,drug ) =
The effect preconditions specify that the speech act of suggestion has no effect on material facts. Ingesting the drug presupposes possession of it, while not ingesting it presupposes not having taken it. Finally, John will still have the drug unless Ann hides it, while John will not have the drug if Ann hides it.

Semantics

The semantics for the language L is a possible world semantics with accessibility relations associated with each modal operator, with a function designating the history starting in a given world, a plausibility function and a trichotomous utility function relative to histories. Definition 1. A model is a tuple M = W, H, ≡, (E i ) i∈Agt , P, U, V where: (i) W is a non-empty set of worlds, (ii) H : W -→ Hist is a history function, (iii) ≡ and every E i are equivalence relations on W , (iv)

P : W × Agt -→ {0, 1} is a plausibility function, (v) U : W × Agt -→ {0, 1, -1} is a utility function, and (vi) V : W -→ 2 Atm is a valuation function.
For each binary relation R ∈ {≡, E 1 , . . . , E n }, we set R(w) = {v ∈ W : wRv}. As usual p ∈ V(w) means that proposition p is true at world w. ≡-equivalence classes are called moments. If w and v belong to the same moment (i.e., w ≡ v), then the history starting in w (i.e., H(w)) and the history starting in v (i.e., H(v)) are said to be alternative histories (viz., histories starting at the same moment). The concept of moment is the one used in STIT logic [START_REF] Belnap | Facing the future: agents and choices in our indeterminist world[END_REF][START_REF] Horty | Agency and Deontic Logic[END_REF] and, more generally, in the Ockhamist theory of time [START_REF] Thomason | Combinations of tense and modality[END_REF][START_REF] Zanardo | Branching-time logic with quantification over branches: The point of view of modal logic[END_REF]. For every world w ∈ W , H(w) identifies the history starting in w. For notational convenience, for all ∈ JAct * , i ∈ Agt, a ∈ Act and w ∈ W , we write ;a i H(w) to mean that there is δ ∈ JAct such that δ(i) = a and ;δ H(w).

We define the actual choice function C act : W × Agt -→ Act: for every w ∈ W , i ∈ Agt and a ∈ Act, we have C act (w, i) = a iff there exists δ ∈ JAct such that δ(i) = a and δ H(w). Furthermore, we define the available choice function C avail : W × Agt -→ 2 Act : for every w ∈ W , i ∈ Agt and a ∈ Act, we have a ∈ C avail (w, i) iff there exists δ ∈ JAct and v ∈≡(w) such that δ(i) = a and δ H(v).

The equivalence relations E i are used to interpret the epistemic operators K i . The set E i (w) is the agent i's information set at world w: the set of worlds that agent i envisages at w or, shortly, agent i's set of epistemic alternatives at w. As E i is an equivalence relation, if wE i v then agent i has the same information set at w and v. The function P specifies the possibility value of a history for an agent. In particular, P(w, i) = 1 (resp. P(w, i) = 0) means that the history starting in w is considered plausible (resp. not plausible) by agent i. We define agent i's belief set at world w, denoted by B i (w), as the set of worlds in i's information set at w that i considers plausible:

B i (w) = E i (w) ∩ {v ∈ W : P(v, i) = 1}.
Consequently, the complementary set E i (w) \ B i (w) is the set of worlds that agent i envisages at w but that she does not consider plausible. Since E i is an equivalence relation, the following properties for belief hold. Note that B i ⊆ E i and if

wE i v then B i (w) = B i (v), where B i = {(w, v) ∈ W × W : v ∈ B i (w)}.
Moreover, B i is transitive and Euclidean. These properties correspond to the combination of belief and knowledge studied in [START_REF] Kraus | Knowledge, belief and time[END_REF].

The function U assigns the utility value U(w, i) of the history starting in w for agent i. In particular, U(w, i) = 1, U(w, i) = -1 and U(w, i) = 0, mean respectively that the history starting in w is good/bad/neutral for agent i. We impose the following three constraints on models. For all w, v ∈ W , δ ∈ JAct, ∈ JAct * , i ∈ Agt and a ∈ Act:

(C1) if for all i ∈ Agt there is u i ∈≡ (w) such that ;δ(i) i H(w), then there is u ∈≡(w) such that ;δ H(u); (C2) if there is v ∈≡(w) such that ;a i H(v) then, for every u ∈ E i (w), there is z ∈≡(u) such that ;a i H(z); (C3) if there is v ∈≡(w) such that ;a i H(v), then there is u ∈ E i (w) such that ;a i H(u); (C4) if w ≡ v then E i (w) = E i (v); (C5) B i (w) = ∅.
According to the Constraint C1, if every individual action in a joint action δ can be chosen at the end of the joint action sequence , then the individual actions in δ can be chosen simultaneously at the end of . The Constraint C1 is a variant of the assumption of independence of agents of STIT logic. More intuitively, this means that agents can never be deprived of choices due to the choices made by other agents. The Constraint C2 is a basic assumption about agents' knowledge over their abilities: if an agent i can choose action a at the end of the joint action sequence , then he knows this. In other words, an agent has perfect knowledge about the actions he can choose at the end of a joint sequence. The Constraint C3 characterizes the basic property of ex ante knowledge: if an agent i can choose action a at the end of joint action sequence , then there is a history that the agent considers possible in which he chooses action a at the end of the joint action sequence . In other words, for every action that an agent can choose, there is a history that the agent considers possible in which he chooses this action. According to Constraint C4, an agent's knowledge is moment-determinate, i.e., it does not depend on the specific history at which it is evaluated. This assumption is justified by the fact that the only thing which can vary at a given moment are the agents' choices, but not the agents' ex ante epistemic states. Finally, Constraint C5 is a normality requirement for beliefs: there should be at least a world in an agent's information set that the agent considers possible. L-formulas are interpreted relative to a model M = W, H, ≡, (E i ) i∈Agt , P, U, V and a world w in W as follows. (We omit boolean cases as they are standard.)

M, w |= occ( ) ⇐⇒ H(w) M, w |= plaus i ⇐⇒ P(w, i) = 1 M, w |= good i ⇐⇒ U(w, i) = 1 M, w |= badi ⇐⇒ U(w, i) = -1 M, w |= neutrali ⇐⇒ U(w, i) = 0 M, w |= [[δ]]ϕ ⇐⇒ if M, w |= occ(δ) then M δ , w |= ϕ M, w |= ϕ ⇐⇒ ∀v ∈ W : if w ≡ v then M, v |= ϕ M, w |= Kiϕ ⇐⇒ ∀v ∈ W : if wEiv then M, v |= ϕ
where model M δ is defined according to Definition 2 below. Note that the belief operator B i we defined in Section 2.1 as an abbreviation has the following interpretation:

M, w |= B i ϕ if and only if ∀v ∈ W : if wB i v then M, v |= ϕ.
Definition 2 (Update via joint action). Let M = W, H, ≡, (E i ) i∈Agt , P, U, V be a model. The update of M by joint action δ is the tuple:

M δ = W δ , H δ , ≡ δ , (E δ i ) i∈Agt , P δ , U δ , V δ
where:

W δ = {w ∈ W : M, w |= occ(δ)} H δ (w) = h if H(w) = δ ;h for some δ ∈ JAct ≡ δ = ≡ ∩(W δ × W δ ) E δ i = Ei ∩ (W δ × W δ ) P δ (w, i) = P(w, i) if Bi(w) ∩ W δ = ∅ P δ (w, i) = 1 otherwise U δ (w, i) = U(w, i) V δ (w) = V(w) \ p : ∃a ∈ Act, i ∈ Agt : δ(i) = a and M, w |= γ -(i, a, p) and ∃b ∈ Act, j ∈ Agt : δ(j) = b and M, w |= γ + (j, b, p) ∪ p : ∃a ∈ Act, i ∈ Agt : δ(i) = a and M, w |= γ + (i, a, p) and ∃b ∈ Act, j ∈ Agt : δ(j) = b and M, w |= γ -(j, b, p)
The performance of a joint action δ modifies the physical facts via the positive effect preconditions and the negative effect preconditions, defined above (see the definition of V δ ). In particular, if there is an action in the joint action δ whose positive effect preconditions with respect to p hold and there is no other action in the joint action δ whose negative effect preconditions with respect to p hold, then p will be true after the occurrence of δ; if there is an action in the joint action δ whose negative effect preconditions with respect to p hold and there is no other action in the joint action δ whose positive effect preconditions with respect to p hold, then p will be false after the occurrence of δ. Besides, the occurrence of the joint action δ makes the current history advance one step forward (see the definition of H δ ). As to the equivalence relations ≡ and E i for historical necessity and ex ante knowledge, they are restricted to the set of worlds in which the joint action δ occurs (see the definitions of ≡ δ and E δ i ). The joint action δ does not modify the agents' utilities over histories (see the definitions of U δ ). Finally, as for the update of the epistemic plausibility function P, two cases are possible. If the update removes all plausible worlds from the agent's information set, then the plausibility function is reinitialized and all worlds in the agent's information set become plausible. This is a form of drastic revision which guarantees preservation of Constraint C5. Otherwise, nothing changes and the agent keeps the same beliefs as before the update. As stated by the following proposition, the update via a joint action preserves the constraints on models.

Proposition 1. If M is a model then M δ is a model too.
Notions of validity and satisfiability for formulas in L relative to models is defined in the usual way. The fact that a formula ϕ is valid is noted |= ϕ.

Axiomatization

We call EVAL (Epistemic Volitional Action Logic) the extension of propositional logic by the principles in Figures 1, 2 and 3 and the following rule of replacement of equivalents:

ϕ 1 ↔ ϕ 2 ψ ↔ ψ[ϕ 1 /ϕ 2 ] (RE)
They consist in (i) a theory for the special atomic formulas, (ii) S5-principles for the epistemic and historical necessity operators, and (iii) reduction axioms which allow to eliminate all the dynamic operators [[δ]] from formulas.

As the next theorem indicates, they provide an axiomatics.

Theorem 1. The logic EVAL is sound and complete for the class of models of Definition 1.

Regarding complexity, we believe that checking satisfiability of formulas in the fragment L -can be polynomially reduced to satisfiability checking for star-free PDL with converse of atomic programs that, by adapting the technique in [START_REF] Giacomo | Eliminating "converse" from converse PDL[END_REF], can be proved to be in PSPACE. Given the polysize satisfiability preserving reduction from L-formulas to L --formulas based on the reduction axioms of Proposition 3, this guarantees that checking satisfiability of formulas in L is also in PSPACE. As for PSPACE-hardness, it follows from the fact that EVAL is a conservative extension of multi-agent epistemic logic S5 n , whose satisfiability problem is known to be PSPACE-hard [START_REF] Halpern | A guide to completeness and complexity for modal logics of knowledge and belief[END_REF]. Future work will be devoted to prove this conjecture. Nevertheless, it is of interest to have a decidable logic to deal with artificial agents.

occ( ) → δ∈JAct occ( ;δ) (OneJAct) occ(nil ) (EmptySeq) occ( ;δ) → ¬occ( ;δ ) if δ = δ (UniqueJAct) occ( ) → occ( ) if (SubSeqJAct) good i ∨ neutrali ∨ badi (ComplUtil)
xi → ¬yi if x, y ∈ {good, neutral, bad} and x = y (UniqueUtil)

( i∈Agt ♦choose( ,ai)) → ♦choose( ,δAgt ) (IndepAgt) can( ,ai) → Kican( ,ai) (KnowCan) can( ,ai) → Kichoose( ,ai) (ExAnteKnow) Kiϕ → Kiϕ (MomDetKnow) Kiplaus i (NormBel)
Fig. 1: Theory for the atomic formulas 

ϕ ∧ (ϕ → ψ) → ψ (K ) ϕ → ϕ (T ) ϕ → ϕ (4 ) ¬ ϕ → ¬ ϕ (5 ) ϕ ϕ (Nec )

Agency and Types

We now represent agency operators and two opposite rationality types, namely, the optimistic (or risk seeking) agent Rat opt i and the pessimistic (or risk averse) agent Rat pess i :

Rat opt i def = a i ∈Act i choose(ai) ∧ b i ∈Act i : b i =a i can(bi) → ( Bi(neutrali ∧ choose(bi)) → Bi((neutrali ∨ good i ) ∧ choose(ai)))∧ ( Bi(good i ∧ choose(bi)) → Bi(good i ∧ choose(ai))) [[δ]]¬ϕ ↔ (occ(δ) → ¬[[δ]]ϕ) [[δ]](ϕ ∧ ψ) ↔ ([[δ]]ϕ ∧ [[δ]]ψ) [[δ]]p ↔ (occ(δ) → (( i∈Agt γ + (i, δ(i), p)∧ j∈Agt:j =i ¬γ -(j, δ(j), p))∨ (p ∧ i∈Agt ¬γ -(i, δ(i), p))∨ (p ∧ i∈Agt γ + (i, δ(i), p)))) [[δ]]occ( ) ↔ (occ(δ) → occ(δ; )) [[δ]]plaus i ↔ occ(δ) → Bi¬occ(δ)∨ ( Biocc(δ) ∧ plaus i ) [[δ]]good i ↔ (occ(δ) → good i ) [[δ]]neutrali ↔ (occ(δ) → neutrali) [[δ]]badi ↔ (occ(δ) → badi) [[δ]] ϕ ↔ (occ(δ) → (occ(δ) → [[δ]]ϕ)) [[δ]]Kiϕ ↔ (occ(δ) → Ki(occ(δ) → [[δ]]ϕ))
Fig. 3: Reduction axioms for the dynamic operators

Rat pess i def = a i ∈Act i choose(ai) ∧ b i ∈Act i : b i =a i can(bi) → ( Bi(neutrali ∧ choose(ai)) → Bi((neutrali ∨ badi) ∧ choose(bi)))∧ ( Bi(badi ∧ choose(ai)) → Bi(badi ∧ choose(bi)))
As Proposition 2 highlights, a rationally optimistic agent makes a certain choice from her set of available choices, if she believes that its best possible outcome is at least as good as the best possible outcome of the other available choices. A rationally pessimistic agent makes a certain choice, if she believes that its worse possible outcome is at least as good as the worse possible outcome of the other available choices. Proposition 2. Let M = W, H, ≡, (E i ) i∈Agt , P, U, V be a model and let w ∈ W . Then, M, w |= Rat i iff:

Cact (w, i) ∈ arg max b∈C avail (w,i) max v∈B i (w): C act (v,i)=b U(v, i) if = opt Cact (w, i) ∈ arg max b∈C avail (w,i) min v∈B i (w): C act (v,i)=b U(v, i), if = pess
In the language L, we can express a variety of agency operators from STIT theory [START_REF] Belnap | Facing the future: agents and choices in our indeterminist world[END_REF][START_REF] Horty | Agency and Deontic Logic[END_REF]. Indeed, EVAL can be seen as a variant of STIT with explicit actions: while in STIT an action is identified with the result brought about by a coalition (i.e., in STIT one can only express that a given coalition H sees to it that ϕ), in EVAL an action is identified both with the result brought about by the coalition and with the means used by the coalition to bring about the result. For instance, the so-called 'Chellas' operator [H:cstit] of STIT is definable in our language as follows:

[H:cstit]ϕ def = δ H ∈JAct H choose(δH ) ∧ δ ∈JAct: ∀i∈H,δ H (i)=δ (i) choose(δ ) → ϕ
This means that the coalition H sees to it that ϕ if and only if, the agents in H choose some joint action δH such that, no matter what the agents outside H choose, if the agents in H choose δH then ϕ will be true. The 'deliberative' STIT operator is also definable:

[H:dstit]ϕ def = [H:cstit]ϕ ∧ ¬ ϕ.
Deliberative STIT adds the negative condition ¬ ϕ to Chellas STIT. It captures the fact that for a coalition H to see to it that ϕ, ϕ should not be inevitable (according to deliberative STIT, action is not compatible with necessity). Having formalized rationality types, we can define two rational STIT operators, [H:rstit] opt and [H:rstit] pess :

[H:rstit] ϕ def = i∈H Rat i → [H:cstit]ϕ
with ∈ {opt, pess}. Formula [H:rstit] opt ϕ (resp. [H:rstit] pess ϕ) has to be read "coalition H sees to it that that ϕ in an optimistic (resp. pessimistic) rational way". The latter means that if all agents in H are optimistically (resp. pessimistically) rational, then then they see to it that ϕ. Note that we could also define deliberative STIT counterparts of the previous (Chellas STITbased) rational STIT operators, in which operator [H:cstit] is replaced by operator [H:dstit]. Our language also integrates a temporal dimension allowing us to express the LTL operator 'next':

Xϕ def = δ∈JAct δ ϕ.

Influence, Persuasion and Deception

In this section, we define influence, persuasion, and deception. We also highlight the relationship between influence and persuasion, namely when an agent is persuaded to do an action a, it means that she may have acted differently but found rational to do a. Firstly, let us define influence. Influencing consists in an agent i (the influencer) intentionally seeing to it that another agent j (the influencee) rationally sees to it that a proposition ϕ. As we have two kinds of rationality types, we can define two kinds of influence with ∈ {opt, pess}.

Influences (i, j, ϕ) def = K post i [{i}:dstit]X[{j}:rstit] ϕ
Let us now define persuasion as the intentional action of changing another agent's mental state [START_REF] O'keffe | Persuasion: Theory and Research[END_REF][START_REF] Poggi | The goals of persuasion[END_REF]. Persuasion consists in an agent i (the persuader) knowingly seeing to it that another agent j (the persuadee) believes that a certain fact ϕ is true.

Persuades(i, j, ϕ) def = K post i [{i}:dstit]XBjϕ.
As the persuader knowingly sees to it that the persuadee will have a given belief, this definition expresses two different kinds of persuasion. One agent i may persuade another agent j either acquire a new belief that she does not have or to maintain a belief that she already has. Interestingly, a relationship between persuasion and influence can be deduced. An agent i influences an agent j to make a given choice a if i persuades j that choosing a is good for j and that all other choices are not good while knowing that j will be optimistically rational and can possibly choose a.

Proposition 3. Let i, j ∈ Agt and aj, bj ∈ Actj. Then,

|= (Persuades(i, j, Bj(choose(aj) ∧ good j )∧ b =a (choose(bj) → ¬good j )) ∧ KiX(Rat opt j ∧ ♦choose(aj))) → Influences opt (i, j, choose(aj))
Firstly, by using (Kiϕ → Ki ϕ), (♦ϕ∧ ϕ → ♦(ϕ∧ψ)), (Bjϕ → Bjϕ), (Xϕ∧Xψ → X(ϕ∧ ψ)) and previous definition of persuasion, we easily prove that (Persuades(i, j, choose(aj)

→ good j ∧ b =a (choose(bj) → ¬good j )) ∧ KiX(Rat opt j ∧ ♦choose(aj))) → Ki[{i}:dstit] X(Rat opt j ∧ ♦choose(aj) ∧ Bj(choose(aj) → good j ∧ b =a (choose(bj) → ¬good j ))))). Sec- ondly, since (Ki[{i}:dstit]X(Rat opt j ∧♦choose(aj)∧ Bj(choose(aj) → good j ∧ b =a (choose(bj) → ¬good j ))) → Ki[{i}:dstit]X(Rat opt j → [{j}:cstit]choose(aj))
), -intuitively this tautology means that since the only one good action for agent j is aj and since all other actions are either badj or neutralj (because of ¬good j ), necessarily the only optimistic rational choice for j is to choose aj -, and since we have the following equivalence : (Ki[{i}:dstit]X(Rat opt j → [{j}:cstit]choose(aj)) ≡ Influences opt (i, j, choose(aj))) we then immediately prove by modus ponens the theorem.

The previous validity shows how an optimistically rational agent can be influenced through persuasion. Similar theorems can be proved for pessimistically rational agents but are omitted due to space constraints. The idea in this case is simply to persuade agent j that action a has no bad consequence while all other actions have it. Thank to persuasion we can now define deception. Deception consists in persuasion of a proposition ϕ under the assumption that the persuader believes that ϕ is false. For instance, consider the student that tells the professor that he could not study for family commitments (when he had no such commitments).

Deceives(i, j, ϕ) def = Persuades(i, j, ϕ) ∧ BiX¬ϕ Let us notice that we only capture successful deception, and we do not explicitly model deception by truthfully telling. Indeed, truthfully telling is simply captured by persuasion, as we do not make assumption on the persuader's intention (an agent can simply persuade another one in a malevolent intention, which capture truthfully telling deception). Smooth-talking is weaker than deceiving, since it only requires that the persuader is uncertain whether ϕ is true or false. Consider the journalist spreading the news that Obama was a muslim, without having any clue on the matter. Formally, it is equivalent to what Sakama et al. called "bullshitting" [START_REF] Sakama | A formal account of dishonesty[END_REF].

PersuadesBySmoothTalking(i, j, ϕ) def = Persuades(i, j, ϕ) ∧ ¬K post i X¬ϕ ∧ ¬K post i ¬X¬ϕ
Let us notice we use ex post knowledge in this definition as we want to represent to complete uncertainty about ϕ. We do not want the persuader being able to belief ϕ being either true or false.

We can also distinguish three types of belief deception, a benevolent, a malevolent and a reckless form. In the malevolent form, the persuader i deceives the persuadee j into believing a proposition ϕ, given that i believes that believing ϕ will have bad consequences for j. An agent z will accomplish an action if z believes that the action has good consequences (and no bad ones). Consider for instance the case of the charlatan offering a miraculous cure for boldness. Or consider the website ensuring gamblers that they are going with certainty to gain a lot of money.

MalevolentDeception(i, j, ϕ) def = Deceives(i, j, ϕ) ∧ BiX(Bjϕ → badj)

A benevolent deception consists for the deceiver to transmit a false proposition, believing that believing that proposition is good for the deceived. Consider for instance the atheist philosopher, who persuades the credulous citizens that if they act morally, they are going to heaven, in order to induce them to behave well.

BenevolentDeception(i, j, ϕ) def = Deceives(i, j, ϕ) ∧ BiX(Bjϕ → good j )
The last form is reckless deception. It consists for the deceiver to transmit a false proposition, while not knowing whether that proposition is good or bad for the deceived. Consider for instance the case of Boris Johnson, who did not know (or did not care) whether Brexit would be good or bad for Britain, but induced people to believe that Brexit would provide money for the NHS, a belief that would lead them to vote for Brexit. He did not know whether this belief (which led to Brexit) would be good or bad for them.

RecklessDeception(i, j, ϕ) def = Deceives(i, j, ϕ) ∧ ¬K post i X(Bjϕ → good j ) ∧ ¬K post i X(Bjϕ → badj)
Application to the running example. Let us consider the actions' effect preconditions in Example 1, given the following hypotheses on agents' knowledge: (1, 2) the bot knows that its suggestion will persuade john that taking the pill will remove his pain and he will not get addicted, (3) the Bot and Ann know that John will also believe that this is good for him, (4) the bot knowingly makes the suggestion and it knows if it makes the suggestion, John will be aware of it, [START_REF] Belnap | Facing the future: agents and choices in our indeterminist world[END_REF] the Bot knows that John has the drug, that Ann does not hide the drug and that John can choose to not take the drug, (6) Ann will knowingly hide the drug, [START_REF] Bonzon | On the outcomes of multiparty persuasion[END_REF] Ann knows that John will possibly have the drug and can choose to take it, (8) the Bot knows that John will be optimistically rational. Finally, (9) means the bot knows that ingesting the drug will create addiction, and being addicted is a bad thing. From premises ϕ1, . . . ϕ8, we can then deduce Proposition 4 which means that, in a first step, the Bot influences John to ingest the drug by persuasion, i.e. suggesting him that his unique good option is to take the drug. In the next step, Ann influences John to not ingest the drug by removing the choice to take the drug. With ϕ9, we can also deduce Proposition 5 which means that the bot malevolently deceives John about the fact that ingesting the drug will not make him addict. 

ϕ1 def = KBot B John (choose(suggest Bot ) → X(¬pain John ↔ choose(take John ))) ϕ2 def = KBot B John (choose(suggest Bot ) → X(choose(take John ) → ¬addicted John )) ϕ3 def = KBot B John X(good John ↔ (¬addicted John ∧ ¬pain John ))∧ KAnn B John X(good John ↔ (¬addicted John ∧ ¬pain John )) ϕ4 def = KBot (choose(suggest Bot ) ∧ (choose(suggest Bot ) → K John (choose(suggest Bot )))

|=

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8) → Influences opt (Bot, John, Xingested John,drug ) ∧ X Influences opt (Ann, John, X¬ingested John,drug )
Firstly, we can prove that the bot knows that John knows it suggests him to take drug by applying axiom K on KBot i.e.: ϕ4 → KBotK John choose(suggestBot) We also consider the following theorem, that can be easily proved, ∀a ∈ Act, ∀i, j ∈ Agt: (Bj(choose(ai) → Xϕ) ∧ Kjchoose(ai)) → [{i}:cstit]XBjϕ. The proof relies on the fact that knowledge implies beliefs and BjXϕ → XBjϕ . By generalization with and since Kjchoose(ai) → choose(ai), we immediately prove the STIT and so the theorem. This theorem means that if one agent j believes that an action made by another agent i will imply a consequence and j knows i does this action, then the agent i sees to it that it will imply the agent j believes this consequence to be true. The theorem allows us to prove that if the bot suggests John to take the drug then, the bot knows John will believe taking the drug implies something good for him i.e. the bot persuades John of it. Starting from the assumptions, we prove this by substitution, augmentation, generalization (with KBot) and normal properties of modalities K, B and X, the following theorem. Note that the robot has an ex-post knowledge of the consequences of its action of suggesting. We have :

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4) → K post Bot (B John (choose(suggestBot) → X((¬pain John ↔ choose(take John )) ∧ (choose(take John ) → ¬addicted John ))) ∧ K John choose(chooseBot)) → [Bot:cstit]XB John (choose(take John ) → good John )
By contraposition on ϕ3, we prove that it is not good for John to be addicted or having pain and allows us to prove that John believes that the only good option for him is to take the drug :

(ϕ1 ∧ ϕ2 ∧ ϕ3) → KBot B John ((addicted John → ¬choose(take John ))
∧ (pain John → ¬choose(take John )) ∧ (¬choose(take John ) ≡ choose(skip John )))

→ KBot B John (¬choose(take John ) ≡ ¬good John ) Since John is assumed to be rationally optimistic with the hypothesis ϕ8 and as the unique good option for John is to take the drug, then John takes the drug i.e. we have the following validity:

(choose(take John ) → good John ) ∧ Rat opt John ∧ b =take (choose(b John ) → ¬good John ) → choose(take John )

As John is rationally optimistic, he rationally sees to it that he ingests drugs. Finally, let us notice that since John takes the drug, then John is also able to take the drug due to the theorem choose(take John ) → ♦choose(take John ). Furthermore, John can either do the action skip or take drug . Thus by generalization, all agents know the following validity:

(♦choose(take John ) ∧ b =take ♦choose(b John )) → ♦¬choose(take John ) Furthermore since the preconditions for taking drugs is to have drugs in regard to the frame, i.e. γ + (John, take, ingested John,drug ) = has John,drug , and having drugs implies that Ann does not hide drugs i.e. ∀a ∈ Act and i ∈ Agt γ + (i, a, has John,drug ) = has John,drug ∧ ¬choose(hideAnn ) and we have these preconditions by ϕ5, we deduce that John is able to take drugs or skipping. Then, as γ -(i, a, ingested John,drug ) = ¬choose(take John ), i.e. not taking the drugs would imply ¬Xingested John,drug , we have that it is not necessary for John to take drugs, with the previous validity. Thus, by applying axioms in Fig 3, we deduce the negative part of deliberative STIT operator, i.e. the bot deliberately sees to it that John is going to ingest drugs:

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ8) → K post
Bot [Bot:dstit]X(Rat opt John → Xingested John,drug )

Consequently:

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ8) → Influences opt (Bot, John, Xingested John,drug )

For the second part of the implication, let us notice that since Ann hides drugs, John has only one possible action which is to skip. It is necessarily a rationally pessimistic choice but also an optimistic one, because of the following theorem:

♦choose(skip John ) ∧ ¬♦¬choose(skip John ) → Rat opt John ∧ Rat pess

John

With the same method and with hypothesis ϕ6 and ϕ7 we can prove the second part, i.e.:

(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7 ∧ ϕ8) →
XInfluences opt (Ann, John, X¬ingested John,drug ) Proposition 5.

|= (ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ8 ∧ ϕ9) → MalevolentDeception(Bot, John, ingested John,drug ∧ ¬addicted John,drug ))

We can prove it with the same method as previously. By adding hypothesis ϕ9, it allows to prove a MalevolentDeception from the bot since it persuades John that he will not be addicted if he takes drugs while the bot knows the contrary, and being addicted is bad for John.

Conclusion

We have modelled influence on choices through belief change. To the end, we have introduced a logical framework covering capabilities, choices and mental states, and have expressed, through the combination of these notion, rationality and agency operators. We have also expressed formally the way in which persuasion leads to influence, i.e. the way in which by modifying the beliefs of agents, the latter can be induced to act accordingly. This has enabled us to distinguish two ways in which agents can be influenced: (a), through persuasion, i.e. by changing their beliefs, or (b) though regimentation, i.e. by changing the options that are available to them. Moreover, it allows us to express different kind of deception, such as malevolent and benevolent deception.

In the future, we would like to extend the framework towards a quantitative model in order to represent graded beliefs [START_REF] Budzyńska | A logic for reasoning about persuasion[END_REF]. Other perspectives are to reformulate our framework into a concurrent game structure [START_REF] Alur | Alternating-time temporal logic[END_REF] to deal with a richer notion of time, and to incorporate emotions as in the OCC model [START_REF] Adam | OCC's emotions: a formalization in a BDI logic[END_REF] to express richer notions of rationality.

  A history is good for an agent if the agent obtains what she likes and avoids what she dislikes along it. It is bad for the agent if the agent does not avoid what she dislikes and does not obtain what she likes along it. Finally, it is neutral for the agent if either the agent does not obtain what she likes and avoids what she dislikes along it, or the agent obtains what she likes and does not avoid what she dislikes along it. Our simplified account of utility presupposes that every agent is identified with a single appetitive desire (i.e., what the agent likes) and a single aversive desire (i.e., what the agent dislikes).
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