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Milano-Bicocca, , Via R. Cozzi 53, 20125, Milano, Italy.

*Corresponding author(s). E-mail(s):
boris.andreianov@univ-tours.fr; abraham.sylla@unimib.it;

Abstract

Scalar conservation law ∂tρ(t, x) + ∂x(f(t, x, ρ)) = 0 with a flux
C1 in the state variable ρ, piecewise C1 in the (t, x)-plane admits
infinitely many consistent notions of solution which differ by the choice
of interface coupling. Only the case of the so-called vanishing viscos-
ity solutions received full attention, while different choice of coupling
is relevant in modeling situations that appear, e.g., in road traf-
fic and in porous medium applications. In this paper, existence of
solutions for a wide set of coupling conditions is established under
some restrictions on f , via a finite volume approximation strategy
adapted to slanted interfaces and to the presence of interface cross-
ings. The notion of solution, restated under the form of an adapted
entropy formulation which is consistently approximated by the numer-
ical scheme, implies uniqueness and stability of solutions. Numerical
simulations are presented to illustrate the reliability of the scheme.
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2 Finite volume approximation of conservation laws with moving interfaces

1 Introduction

In the domain Ω = ]0,+∞[×R, consider the formal Cauchy problem{
∂tρ(t, x) + ∂x (f(t, x, ρ(t, x))) = 0 (t, x) ∈ Ω

ρ(0, x) = ρo(x) x ∈ R, (1)

where ρo ∈ L∞(R) and f : Ω×R 7→ R is a Carathéodory function, as specified
below. The physical range of values of the state variable may be restricted to
a compact subset [a, b] ⊂ R in many applications.

1.1 A state of the art for well-posedness of (1)

We start by exposing the important PDE aspects of the problem and highlight
the absence, in the literature, of general existence results in the situa-
tions where the issues of solution admissibility and of uniqueness are well
understood.

In the case where f extends to a locally Lipschitz continuous on Ω×R func-
tion, and under some restrictions on the growth of f in ρ to ensure global in
time existence (see in particular [1]), the definition of entropy solutions in the
sense of Kruzhkov [2] is the cornerstone of the well-posedness theory. Beyond
this essentially classical setting, discontinuous-flux problems and related prob-
lems of conservation laws with embedded interfaces appear in applications such
as sedimentation, porous media, road traffic, etc... By ”discontinuous-flux” we
mean only problems where the flux is continuous (and even locally Lipschitz
or even C1) in the state variable ρ while it may present discontinuities in the
(t, x)-plane. Sense can be given to (1) (in particular, a weak formulation can
be written) in the general situation where f is a Carathéodory function (mea-
surable in (t, x), continuous in ρ); to the best of the authors’ knowledge, no
consistent theory has been constructed yet in this very general setting. The
most general setting where partial existence and uniqueness results were estab-
lished concerns fluxes f that are either regulated in (t, x) (like in [3]) or at
least BVloc in (t, x), for all ρ ∈ R, see in particular [4, 5]. To the authors’
knowledge, the existence results under the BV kind assumption on the flux,
as well as for regulated flux in [3], concern exclusively solutions constructed
by the classical vanishing viscosity strategy going back to Rayleigh, Hopf and
Kruzhkov. The early concepts of admissibility such as the minimal jump condi-
tion ([6]) or the Γ-condition ([7], see also [8]) at interfaces select the vanishing
viscosity solution, cf. [9]; they were elaborated in the context of sedimentation
applications. However, vanishing viscosity limits are not always appropriate
from the modeling perspective. Optimal entropy solutions (i.e. solutions which
maximize the flow across interfaces) were a second class of solutions identified
as relevant in applications in porous media, see [10–12]; they also appear in
the context of road traffic with varying road conditions (see [13] and references
therein). It has been realized that the optimal solutions may be different from
the vanishing viscosity limits (see, in particular, [4, Sect. 7]). More generally, co-
existence of infinitely many different kinds of solutions, equally consistent from
the purely mathematical standpoint, was explicitly pointed out in [11]. Later
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on, the different solution notions ((A,B)-connections) put forward in [11] were
linked to different vanishing capillarity limits in the porous medium context
[14, 15]. Moreover, fully analogous situation arose from modeling of road traf-
fic by a classical, continuous-flux Lighthill-Whitham-Richards equation with
point constraints on the flux ([16, 17]) where different solvers stem from dif-
ferent levels of constraint. Thus, different notions of solution correspond to
different modeling assumptions at the interface, quite analogously to what
happens when one prescribes different boundary conditions to a given PDE
(we refer to [18] for the viewpoint of ”Interface Coupling Conditions” and
highlighted analogies with nonlinear boundary conditions for scalar conserva-
tion laws [19]). For this reason, writing (1) is formal, even having in mind a
Kruzhkov-like entropy formulation: indeed, one needs to specify the expected
(expected, given the underlying modeling context) behavior of solutions at
interfaces which are the jump sets of (t, x) 7→ f(t, x, ρ). From this perspective,
these jump sets should be common for all values of ρ. A rather general set
of assumptions on f that allows to interpret (1) as a discontinuous-flux con-
servation law is elaborated in [20]. Coupling at interfaces and the associated
uniqueness analysis for the reference setting of [20] (see also [4, 21] for simpler
but still rather complex variants) are mimicked from the model case, which we
now discuss.

The model case for the general problem (1) features the flux function f
discontinuous with respect to the space variable across the interface {x = 0}.
The expression for such flux reads as follows:

f(t, x, ρ) =

{
g(ρ) if x < 0

f(ρ) if x > 0.
(2)

Problem (1)-(2) has been the main playground for understanding the issue
of admissibility of solutions and of their uniqueness (see [22, 23] for a different
line of research on this topic which applies to particular flux configurations,
and where discontinuities need not to arrange along interfaces). General struc-
ture of interface coupling leading to L1-contractive solution semigroup for (1),
(2) has been described in [9] in terms of “L1D germs” recalled below. It gave
a common framework to a number of uniqueness arguments developed in the
literature ([4, 6, 7, 11, 24–26]). It has been exploited for the sake of unique-
ness and stability analysis of road traffic models with point constraints [17]
and of a non-conservative fluid-particle interaction model [27, 56, 57] involv-
ing moving interfaces. The very general uniqueness result of [20] highlights
the fact that abstract “germ formulations” readily lead to uniqueness of the
associated solutions, far beyond the model problem case (in this respect, let
us underline that [20] deals with the multi-dimensional analogue of (1)). For
the sake of completeness, let us point out a very different uniqueness result
of [3], which requires much weaker than BV regularity assumptions on the
(t, x)-dependence of f but is only applicable to vanishing viscosity solutions.

In what concerns existence for (1) - for a given choice of interface cou-
pling conditions, as highlighted above - the situation is far less explored.
We refer in particular to [20, Remark 2.10]. Typically, to prove existence for
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(1) having in mind a specific interface coupling, it is required to construct
sequences of approximate solutions, pass to the limit using the appropriate
compactness structures, and obtain at the limit entropy formulations encod-
ing, in particular, the coupling expected at the interfaces. To the best of the
authors’ knowledge only two situations were explored systematically beyond
the model flux (2) case. A huge majority of works on the subject is concerned
with the vanishing viscosity interface coupling. The existence results of, e.g.,
[3, 4, 21, 24, 28–32] are based either on a vanishing viscosity approximation
(which can be a very tricky one, see [21]) or on a numerical finite volume
approximation which enforces, at the numerical level, the continuity of the
state variable ρ at interfaces. Actually, the notion of vanishing viscosity solu-
tion corresponds to an implicit assumption of continuity - up to an interface
layer, like for the case of Bardos-LeRoux-Nédélec boundary-value problems
- of solution ρ at interfaces ([18, 21, 33]), and such continuity is explicitly
or implicitly incorporated into the above mentioned approximation schemes.
Another natural construction procedure is the smoothing of the discontinuities
of f (see, e.g., [34] in the model case, see also [35] for a more elaborate sit-
uation coming from vanishing viscosity approximation of a triangular system
of conservation laws). It may produce relevant solutions in particular situa-
tions, but it cannot be used to produce solutions for any kind of coupling. The
adapted viscosity procedure of [9] was a rather artificial attempt to produce
solutions with more general interface coupling, but it has not been extended
beyond the model case. Note in passing that the above viscosity, smoothing
and discretization methods are applicable for multi-dimensional generalization
of (1), and some of the above references deal with multiple space dimensions.
In one space dimension, wave-front tracking approximations were used for con-
structing solutions ([36] for the vanishing viscosity case, [37] for the general
setting fully comparable to [9]) but beyond the model situations, their use for
problems of the kind (1) was mainly restricted to road traffic models in con-
crete situations. Road traffic with point flux limitations at interfaces (which
is a specific chice of coupling, relevant in traffic modeling) is the second con-
text where solutions to (1) were constructed for slanted, curved and possibly
crossing interfaces either through wave-front tracking or through finite volume
approximation. The latter is addressed in detail in the recent work [38]; we
refer to its introduction for a set of references to related works.

From the viewpoint of the PDE theory adopted in this paragraph, the
present contribution addresses - via numerical analysis tools - the problem of
existence, beyond the known situations. We extend the approximation strategy
elaborated in [38] for handling very general interface couplings; to do so, we find
it useful to modify (in a way equivalent to the previously known formulations)
the concept of admissible solution to (1).

1.2 The general objectives, the key contribution and the
simplifying assumption

Firstly, our goal is to provide a convergent finite volume approach to the
construction of solutions to (1) with piecewise C1 dependence on (t, x) and
with general interface coupling not covered by known existence results. To this
end, we exploit the constructions put forward in [38] (the general structure
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of the scheme, the treatment of interfaces and of interface crossings, and the
local compactness arguments) which were developed for a particular interface
coupling relevant to traffic models. The coupling formalism of [38] does not
extend to the general situation we have in mind. To achieve our general result,
we complement the elements devised and detailed in [38] with an original
treatment of terms supported at the interfaces. To make the idea apparent
and to circumvent heavy technicalities of a straightforward analysis, we first
develop the formalism and the convergence analysis in a simple model case.
Then we operate a series of reductions to show that the analysis in the general
situation can be reduced, in a non-technical way, to the simple model situation.

Moreover, the numerical strategy we devise here keeps in mind a more
elaborate scenario. In Section 5 we give two numerical illustrations which are
extracted from complex PDE-ODE coupled problems known in the literature.
Let us highlight the fact that, although the interfaces in the setting of our
present contribution are given beforehand, such more complex problems where
the interface evolves along with the solution itself are tractable within the
same numerical approach. We refer to [39] for a simple example and to [40] for
further work in this direction, based on the strategy of the present contribution.

Secondly, the paper contributes to a better theoretical understanding of
the PDE problem at hand. Focusing on a finite volume approach leads us to
reformulate the underlying solution notion in terms most suitable for numer-
ical analysis of the problem. Indeed, the numerical scheme consistent with
the desired interface coupling should use specific fluxes at the locations of
the interfaces; for the sake of maximal generality, we use the Godunov flux
associated with the underlying germ (cf. [9] and Section 2.2). Since the germ
depends on the inclination ẏ(t) of the interface x = y(t) and the interfaces are
approximated, we require a mild restriction on the family of germs prescribing
the interface coupling. Identification of the proper Carathéodory structure for
families of germs is a useful consequence of our approach. The essential tool for
convergence analysis is the adapted entropy formulation incorporating remain-
der terms (cf. [9]). The cornerstone of our contribution is the identification of
a novel form of the remainder term. It is crucial for our purposes because it is
directly linked to the Godunov numerical approximation at interfaces.

Accordingly, the secondary goal achieved (partially) in this paper is to
complement the general theory of discontinuous-flux conservation laws with
an existence result in a wide setting that was never considered in the litera-
ture. Note that uniqueness in this setting is not a novelty (see, e.g., [18]): it is
inherent to the chosen germ formalism for interface coupling. While we wish
to achieve wide generality in what concerns the choice of interface coupling
and the geometry of the interfaces (under the assumption of a finite number of
interfaces), we restrict our attention to the simplest representative case in what
concerns the assumptions on the flux in the regions between the interfaces.
This is done in order not to face straightforward but cumbersome numeri-
cal technicalities available in the literature on finite volume approximation of
conservation laws with smooth (t, x)-dependent flux (e.g., [51]). Therefore we
make the simplifying assumption of taking a piecewise constant in (t, x) flux,
which highlights the original elements of the analysis conducted in the present



6 Finite volume approximation of conservation laws with moving interfaces

paper, but which limits the outreach of the existence result. Nonetheless, the
existence strategy of the present contribution is extendable to piecewise regular
in (t, x) fluxes.

Indeed, let us point out that developments necessary in order to cover the
general piecewise C1 flux case are essentially of technical nature, as well as the
more original developments that would allow to carry the construction and the
resulting existence claims to the multi-dimensional situation (see in particular
Remark 5). Such useful but heavy developments are postponed to future work.

1.3 The outline

The paper is organized as follows. In Section 2 we make precise the assumptions
on f in (1) and on the coupling enforced on each of the interfaces associated
with the (t, x)-discontinuity of f . We state the definition of solution for which
uniqueness follows from [20] (but we also rely upon the analysis of [38] for a
technically simpler proof, since our geometrical assumptions on the structure
of interfaces are much stronger that those of [20]), and reformulate the notion
of solution in terms of adapted entropy inequalities. At this point, a specific
Carathéodory structure of the family of interface couplings at hand comes
into play. We illustrate the resulting setting with an example of transmission
maps covering many situations known in the literature (another example being
explored in detail in [38]). To conclude Section 2, we state the main result
of existence via convergence of a Finite Volume scheme that is described in
the subsequent Sections 3 and 4. We also provide comments about the com-
pactness assumptions we take and on the convergence of other approximation
procedures. In Section 3, we coin the key tools of our study in the model
case (2) with t-dependent coupling at the interface {(t, 0) : t ∈ ]0,+∞[}.
We link our adapted entropy formulation to the Godunov numerical approach
at the interface, formulate the numerical scheme and sketch the compactness
and convergence analysis, treating in detail the interface terms. In Section 4
we briefly develop the adaptations needed in the scheme to take into account
slanted interfaces and interface crossings, and perform the reduction of the
general case with multiple, possibly crossing interfaces to the case on an iso-
lated interface; we then call upon the convergence analysis of the model case,
showing that it also applies to the general setting. Finally, in Section 5 we
illustrate the construction by two examples inspired by concrete applications
in pedestrian modeling and in fluid-particle interaction.

2 Flux and interface coupling structure. Notion
of solution, uniqueness and existence result

Our interest in this contribution goes to interface coupling and its approx-
imation, therefore we assume that the space-time heterogeneity of the flux
is reduced to the presence of sharp interfaces; in this way we avoid techni-
cal details related to t and x dependence of f in regions between interfaces.
In simple words, we assume that f is piecewise constant with respect to
(t, x). The approximation scheme, the convergence analysis and the result-
ing new existence results we obtain can be extended to the more general
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piecewise C1 fluxes, but we do not pursue this objective in the present con-
tribution. Note that the multi-dimensional extension is also feasible. We refer
to Remark 2, Remarks 4, 5 for a brief discussion of feasible generalizations to
flux heterogeneous between interfaces.

2.1 Piecewise constant flux

We assume we are given a finite family of interfaces (yi)i∈[[1; J]] (J ∈ N∗) defined
on ]τi, Ti[ (0 ≤ τi < Ti ≤ +∞). Introduce the notations:

∀i ∈ [[1; J ]], Γi = {(t, yi(t)) ∈ Ω | t ∈ ]τi, Ti[}. (3)

Note that the extension to locally finite number of interfaces in straightfor-
ward. We suppose that for all i ∈ [[1; J ]], yi ∈ W1,∞(]τi, Ti[). This notation
means that what can be seen as crossing points between interfaces will be con-
sidered as endpoints of the interfaces. We denote by (Cm)1≤m≤M the set of all
endpoints of the interfaces Γi, i ∈ [[1; J ]]. As suggested hereabove, we assume
that in each of the regions of the (t, x)-plane delimited by the interfaces, f
depends on ρ only (i.e. the flux is homogeneous in each such region).

2.2 Germs and Godunov fluxes for interface coupling

Further, to each interface we attach a two-parameter family of subsets of R2

denoted by Gis(t), t ∈ ]τi, Ti[, s ∈ R. In the terminology of [9, 18] recalled in
Section 3 below, Gis(t) is assumed to be a complete L1D germ for the couple
of fluxes

gis(ρ) = f(t, yi(t)
−, ρ)− sρ, f is(ρ) = f(t, yi(t)

+, ρ)− sρ (∀t ∈ ]τi, Ti[); (4)

note that due to the piecewise constant assumption on f , the expressions of
gis, f

i
s are actually t-independent. We will need giẏ(t), f

i
ẏ(t) and Giẏ(t)(t) to define

the interface coupling conditions associated with the interfaces in the formal
problem (1), see Definition 2 below; but we exploit Gis(t), for s in a vicinity of
ẏ(t), in order to construct approximate solutions via a numerical scheme. The
assumption we impose on the family {Gis(t)}t∈]τi,Ti[,s∈R is a Carathéodory-
kind assumption: the family should be continuous in s and measurable in
t. To this end, we need to define a topology on the set of L1D germs; the
one we take is inferred from our numerical approach and it is described in
terms of the Godunov flux associated to the Riemann solver determined by
the germ at hand. Note that definitions of a neighbourhood of a germ and
associated measurability properties were elaborated and discussed in [9, 18],
but we elaborate a different and more practical viewpoint here. For given
s ∈ R and a fixed t0 ∈ ]τi, Ti[, consider the flux (2) with g = gis, f = f is, with
interface coupling prescribed (in the sense of [9], see also Section 3 below) by
the maximal L1D germ Gis(t0) and with Riemann initial data

ρo(x) =

{
κL if x < 0

κR if x > 0.
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This problem admits a unique solution, which we denote RSis(κL, κR, t0). Since
a maximal L1D germ is also complete (see [9, 18]), this solution is self-similar,
therefore the Godunov flux

gis
(
RSis(κL, κR, t0)

)
|x=0− ≡ f is

(
RSis(κL, κR, t0)

)
|x=0+ (5)

is well defined. We call Fi,ints (κL, κR, t0) this common value which is seen as
a real-valued function, constant in t. Note that an alternative would be to use
the formalism of [37], which directly prescribes the interface coupling in terms
of a Riemann solver defined at the interface.

We are now in a position to define the Carathéodory structure on families
of germs used in this paper.

Definition 1 Given i ∈ [[1; J ]] and a family {Gis(t)}t∈]τi,Ti[,s∈R of maximal L1D

germs associated with fluxes gis, f
i
s, we say that the family is Carathéodory (mea-

surable in t ∈ ]τi, Ti[, continuous in s ∈ R) if for every (κL, κR) ∈ R2 the associated
function

Fi,int(κL, κR) : R× ]τi, Ti[ −→ R

(s, t) 7−→ Fi,ints (κL, κR, t)

is a Carathéodory function.

Recall that s will stand for ẏ(t) (the slope of the interface) or for its approx-
imations, while t replaces the fixed value t0 in the definition of the Godunov
fluxes associated with the family of germs.

2.3 Notion of solution and uniqueness

We are now in a position to define solutions; the definition readily leads to
uniqueness. For κ ∈ R, denote by Φ(t, x, ρ, κ) the Kruzhkov entropy flux
corresponding to f(t, x, ρ), i.e.

Φ(t, x, ρ, κ) = sgn(ρ− κ)(f(t, x, ρ)− f(t, x, κ)).

Definition 2 Consider a piecewise constant flux f : Ω × R → R with a set of
interfaces of the form (3). Assume that for each i ∈ [[1; J ]] we are given a family

{Gis(t)}t∈]τi,Ti[,s∈R of maximal L1D germs associated with fluxes gis, f
i
s in (4); assume

that this family is Carathéodory, in the sense of Definition 1.
Consider a function ρ ∈ L∞(Ω) such that ρ has strong one-sided traces in the

sense of [41, 42] on interfaces Γi; we denote them γiLρ, γ
i
Rρ : ]τi, Ti[→ R.

We say that such a function ρ is a Gis(t)-entropy solution to (1) with initial data

ρo ∈ L∞(R) if for all test functions ϕ ∈ C∞c (Ω \ ∪Ji=1Γi), ϕ ≥ 0 and for all κ ∈ R,
the classical Kruzhkov entropy inequalities are satisfied:∫ +∞

0

∫
R

(
|ρ− κ|∂tϕ+ Φ(t, x, ρ, κ)∂xϕ

)
dx dt+

∫
R
|ρo(x)− κ|ϕ(0, x) dx ≥ 0 (6)

and moreover, for all i ∈ [[1; J ]], for a.e. t ∈ ]τi, Ti[ there holds:(
(γiLρ)(t) , (γiRρ)(t)

)
∈ Giẏi(t)(t). (7)
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Note that it is easy to assess that a solution ρ in the above sense actually
belongs to C(R+,L1

loc(R)) in the sense that it is time-continuous taking values
in the L1

loc space of functions of the space variable; see, for instance [43, 44].

Remark 1 Regarding the assumption of existence of strong one-sided traces for ρ on
interfaces Γi, we have two important comments. First, our existence result will require
uniform convexity or uniform concavity in ρ of the flux f on each of the regions of
the (t, x)-plane delimited by the interfaces. Under this assumption which implies the
genuine nonlinearity of the flux, existence of strong traces is well known since [41].
Second, using the machinery of [42], one can circumvent the genuine nonlinearity
assumption with the help of a kind of singular mappings which allow to to define the
relevant traces and with the help of “reduced germs” to replace (7) (see [9, Remark
2.2, Definition 3.5]). For these two reasons, we consider that the trace assumption is
non-restrictive in practice.

Remark 2 For the sake of conciseness, in this contribution we have chosen to formu-
late Definition 2 in the context of piecewise constant f . Extension of this notion of
solution to piecewise regular fluxes, heterogeneous but C1 (or even merely Lipschitz
continuous) in (t, x) in regions delimited by the interfaces, is straightforward. Note
that also the existence of strong one-sided interface traces extends to this framework
under mild assumptions, see in particular [20, 45, 46].

The uniqueness proof under the assumption of a finite number of interfaces
is standard: see, in particular, [9, 21]; see also [38, Theorem 1.11]. Moreover,
even in the much more general situation of SBV fluxes uniqueness is proved
in [20]. We state the corresponding claim for the sake of completeness, along
with the L1 contraction result.

Theorem 1 In the situation of Definition 2, there exists at most one Gis(t)-entropy
solution for every initial datum ρo ∈ L∞(R), moreover, if ρ̂o ∈ L∞(R) with ρ̂o−ρo ∈
L1(R) and ρ̂ is the associated Gis(t)-entropy solution, then for all t > 0 there holds

‖ρ̂(t, ·)− ρ(t, ·)‖L1(R) ≤ ‖ρ̂o − ρo‖L1(R).

Note also that the continuous dependence on interface coupling conditions
can be obtained along the same line of argumentation, see [9, Proposition 3.21]
for a prototype statement.

Finally, note that the Carathéodory assumption on the family
{Gis(t)}t∈]τi,Ti[,s∈R plays no role in the uniqueness proof (Definition 2 makes
sense and the uniqueness argument applies under a weaker assumption of
measurability of the family {Giẏi(t)(t)}t∈]τi,Ti[, cf. [18, Appendix], is enough);

actually, we will exploit the Carathéodory assumption on the family of germs
for the sake of proving existence of solutions. Moreover, we expect that the
Carathéodory assumption is important for stability of solutions under pertur-
bation of interface locations. To sum up, we believe that this assumption is an
important one on the way to a consistent theory of problem (1) and therefore,
we have included it into Definition 2.
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2.4 Adapted entropy inequalities and existence result

Definition 2 is particularly well suited for uniqueness proof, but it cannot be
used directly to establish existence of solutions. It became standard in the
literature to use different kinds of “adapted entropy inequalities” in order to
describe the interface coupling, in the place of (7). A typical well-posedness
proof (cf. [9]) then consists in proving existence for the adequate adapted
entropy formulation, and proving uniqueness by deriving explicit trace condi-
tions that can be cast under the form (7). In the case of traffic models with
flux limitation, following [16] one uses entropy inequalities of Kruzhkov (with
a constant value κ) with a remainder term R(κ) supported by the interface;
see [16, Definition 3.2], [39, Definition 2.1] or [38, Definition 2.1]. The choice
of a constant κ can be done for the vanishing viscosity interface coupling,
see [4, 28]. The corresponding remainder term R(κ) appears quite naturally
even in a very general context, see [5], but this natural formulation leads to
uniqueness only if the so-called crossing condition is fulfilled (see [9]). The
case without the crossing condition is significantly more delicate but it can be
handled as well by introducing a singular form of remainder term R(κ), see
[21, 47] (see also [31]).

However, the presence of remainder terms supported on the interfaces is
not the main adaptation of the classical Kruzhkov entropy conditions. Adapted
entropy inequalities with κ that may jump across interface offer more flexibil-
ity; e.g., in many situations including the road traffic with limited flux, only
one entropy inequality (with a special choice of the piecewise constant function
κ) is needed, see [15, 17, 26] and [9, Sections 4.8, 4.9]. However, beyond the
homogeneous situation with constant in time choice of coupling across inter-
faces, adapted entropy inequalities should be written for arbitrary choice of
the piecewise constant κ, which jumps across the interfaces of f , see in par-
ticular [21, 30]; these inequalities incorporate a remainder term that depends
both upon the piecewise constant κ and on the prescribed coupling (i.e. on
the given family of germs along interfaces).

We start by reformulating the definition of Gis(t)-entropy solution under
the form of adapted entropy inequalities which incorporate a remainder term
Riẏi(t)(κL, κR, t) different from those previously proposed in [9, 18] but satisfy-

ing the key structural properties that eventually lead to the equivalence with
the formulation of Definition 2. More precisely, we first derive the trace prop-
erty (7) from the adapted entropy inequalities (9) stated in Proposition 2. As
a consequence of the uniqueness of Gis(t)-entropy solution (Theorem 1), the
reciprocal implication of Proposition 2 can be proved as soon one can ensure
the existence of solutions in the sense of inequality (9), see Remark 9.

Proposition 2 Consider a piecewise constant flux f : Ω × R → R with a set of
interfaces of the form (3). Assume that for each i ∈ [[1; J ]], we are given a fam-

ily {Gis(t)}t∈ ]τi,Ti[,s∈R of maximal L1D germs associated with fluxes gis, f
i
s in (4);

assume that this family is Carathéodory, in the sense of Definition 1. Denote by K
the set of all the functions, piecewise on Ω, that share the same interfaces as f . For
a function κ ∈ K and i ∈ [[1; J ]], we denote by kiL, k

i
R the one-sided limits of κ on

Γi (being κiL = κ(t, yi(t)
−) and κiR = κ(t, yi(t)

+) for all t ∈ ]τi, Ti[).
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Define for all i ∈ [[1; J ]], t ∈]τi, Ti[, s ∈ R and (κL, κR) ∈ R2 the ”remainder term”

Ris(κL, κR, t) :=
∣∣∣g(κL)− Fi,ints (κL, κR, t)

∣∣∣+
∣∣∣Fi,ints (κL, κR, t)− f(κR)

∣∣∣ , (8)

where Fi,ints (·, ·, t) is the Godunov flux defined in (5) associated with the germ family

{Gis(t)}t∈ ]τi,Ti[,s∈R.

Assume that ρ ∈ L∞(Ω) satisfies, for all test functions ϕ ∈ C∞c (Ω), ϕ ≥ 0 and
for all κ ∈ K, the following adapted entropy inequalities:∫ +∞

0

∫
R

(
|ρ− κ|∂tϕ+ Φ(t, x, ρ, κ)∂xϕ

)
dx dt+

∫
R
|ρo(x)− κ|ϕ(0, x) dx

+

J∑
i=1

∫ Ti

τi

Riẏi(t)(κL, κR, t)ϕ(t, yi(t)) dt ≥ 0.

(9)

Then ρ is the Gis(t)-entropy solution to (1) with initial data ρo ∈ L∞(R).

Remark 3 As demonstrated in [38], in the context of formulations of the kind (9) we

can replace the set C∞c (Ω) for the test functions by C∞c (Ω\∪Mm=1Cm). This permits
to relax, in a small vicinity of the cross-points Cm, the consistency constraints on the
approximation procedure used to construct solutions, see Section 4.2.

With this reformulation of the notion of solution we are concerned with,
we are in a position to state the main result of the paper.

Theorem 3 Consider a piecewise constant flux f : Ω × R → R with a set of
interfaces of the form (3). Assume that for each i ∈ [[1; J ]] we are given a fam-

ily {Gis(t)}t∈]τi,Ti[,s∈R of maximal L1D germs associated with fluxes gis, f
i
s in (4);

assume that this family is Carathéodory, in the sense of Definition 1.
Assume moreover that the following confinement assumption holds:

∃a, b ∈ R : a < b and for a.e. (t, x) ∈ Ω f(t, x, a) = a, f(t, x, b) = b. (10)

Assume further that f is C2 in the state variable ρ ∈ [a, b] for a.e. (t, x) ∈ Ω and
that the uniform convexity/concavity assumption holds:

∃c > 0, ∀ρ ∈ [a, b], |∂2
ρf(t, x, ρ)| ≥ c. (11)

Finally, suppose that for each i ∈ [[1; J ]],

(κL, κR, s, t) 7→ Fi,ints (κL, κR, t) (12)

is Lipschitz continuous on [a, b]2 uniformly in t ∈ ]τi, Ti[ and locally uniformly in
s ∈ R.

Then for any initial datum ρo ∈ L∞(R) taking values in [a, b], there exists a

Gis(t)-entropy solution (which is unique, due to Theorem 1) of the discontinuous-
flux conservation law (1). Moreover, it can be obtained as the limit of a sequence
of approximate solutions generated by a finite volume numerical scheme described in
Section 4.
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Let us stress that, due to the piecewise constant in (t, x) structure of f ,
assumption (11) is a concise way to state that, in each of the regions delimited
by the interfaces Γi, f is subject either to the uniform convexity or to the
uniform concavity assumption. Observe that the change of convexity across the
interface is relevant, e.g., in the Hughes model of pedestrian evacuation [48],
cf. Section 5. Further, Assumption (10) is a standard way to ensure uniform
L∞ bounds on the approximate solutions (see, e.g., [4]); for instance in traffic
and porous media models, it is satisfied with [a, b] = [0, 1], the physical range
of the state variable.

Next, we guess that Assumption (12) is verified in all practical cases. In
particular, for the interface coupling based on transmission maps (see Section
2.5 below) the Lipschitz property is checked in [33], while for the flux-limitation
coupling considered in [38], this property is obvious from the definition of the
Godunov flux (see in particular [49] for the definition of the Godunov flux in
this case).

We stress that the convergence and existence result of Theorem 3 requires
strong compactness of the sequence of approximate solutions. Robust local
compactness arguments that do not depend on the choice of the interface cou-
pling are most appropriate in our setting. The standard and popular approach
of this kind is based upon compensated compactness (or, in more involved vari-
ants, on parametrized H-measures [5, 50]). Because our contribution exploits
extensively the work [38], we borrow to [38, Appendix A] (adapted from the
work [32]) a different local compactness argument, based upon one-sided Lips-
chitz (OSL) regularization property of local entropy solutions and some of their
approximations. This argument requires the assumption of uniform convexity
or concavity of the fluxes f is. Three remarks are in order.

Remark 4 The OSL compactness technique we use in this paper does extend to t-
dependent flux in regions between interfaces, see [32, 39], but is is not clear that it
can be extended to x-dependent flux in regions between the interfaces.

Remark 5 Compensated compactness tools would permit to justify the existence
and convergence result of Theorem 3 under weaker assumptions on the genuine non-
linearity of f with respect to ρ in each of the subdomains separated by interfaces,
moreover, smooth (t, x)-dependence can be handled in this framework at the price
of lengthy but standard technicalities. We refer to [4] for such arguments, in the set-
ting of a Lax-Friedrichs scheme with a meshing different from the one we consider
in the present work. Furthermore, the compensated compactness approach can be
applied to multi-dimensional scalar conservation laws. Multi-dimensional variants of
the localization arguments, reducing intricate interface geometries to the basic case
of plane interfaces analogous to what we do in Section 4, should be detailed in this
case. These technical developments are left for future work.

Remark 6 As soon as the existence of a solution is established for a dense set of initial
data, the weak convergence methods (see, e.g., the ”entropy process” framework put
forward in [51]) can be applied to justify convergence of other numerical schemes
that are consistent with the weak formulation and the adapted entropy inequalities.
We refer to [9, Theorem 3.28, Theorem 6.5] and [17] for this line of argumentation.
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2.5 The example of transmission map coupling

In [38], the example of flux limitation interface coupling was treated; here, let
us observe that the associated family of germs is indeed Carathéodory, due
to the continuity in s of the fluxes gis, f

i
s and to the measurability of the

constraints t 7→ qi(t) (wih the notation of [38]). Moreover, the remainder term
denoted by R(κ, qi(t)) used in [17, 38, 39], for the choice of constant κ, is
precisely Ris(κ, κ, t) in our framework.

In this section, let us provide another important example of interface cou-
pling fulfilling the Carathéodory assumption, and give the explicit expression
of the associated Godunov fluxes. This example is based upon [33], see also [18]
for a summary. For the sake of conciseness, let us consider the case of a single
interface defined for t ∈ ]0,+∞[, i.e. J = 1; in this case, we drop the interface
label i in the notation. Given fluxes g, f on [a, b] ⊂ R such that g(a) = f(a)
and g(b) = f(b), set

gs(ρ) = g(ρ)− sρ, fs(ρ) = f(ρ)− sρ

and denote by Godgs,Godfs : [a, b]2 → R the Godunov fluxes associated to
gs, fs, respectively. The classical explicit formula for the Godunov fluxes shows
that the dependence of Godgs(κL, κR),Godfs(κL, κR) on s is continuous.

To define the interface coupling, given {β(t)}t∈ ]0,+∞[ a family of maximal
monotone graphs in R × R, we can define for all s ∈ R and t ∈ ]τi, Ti[ the
maximal L1D germ

Gs(t) =
{

(ρL, ρR) ∈ [a, b]2 , ∃(k−, k+) ∈ β(t) such that

gs(ρL) = (Godgs)(ρL, k−) = (Godfs)(k+, ρR) = fs(ρR)
}

and the associated interface Godunov flux

Fints (κL, κR, t) = (Godgs)(κL, k−) = (Godfs)(k+, κR), (13)

where (k−, k+) ∈ β(t), being understood that the equality

(Godgs)(κL, k−) = (Godfs)(k+, κR)

may not define uniquely the couple (k−, k+) ∈ β(t) but their common value
is defined uniquely. We refer to [33] for the justification of the above claims.
Note that the case β(t) = Id corresponds to the fundamental case of vanishing
viscosity interface coupling.

We point out that the family {Gis(t)}t∈ ]0,+∞[,s∈R is Carathéodory, in the
sense of Definition 1, provided the family {β(t)}t∈]0,+∞[ is measurable in a
natural sense. To this end, let us represent any maximal monotone graph β in
R× R as

β = {(πL(p), πR(p)) , p ∈ R},
where πL,R : R→ R are 1-Lipschitz non-decreasing functions verifying πL(p)+
πR(p) = p for all p ∈ R. In other words, we parametrize β by the sum p =
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κL +κR of the two components of a point (κL, κR) ∈ β. Then the natural way
to impose measurability of a family {β(t)}t is to consider the corresponding
parametrizations πL,R(t, ·) and require that these functions be Carathéodory.
Then, in view of the construction (13), it is clear that, given (κL, κR), (s, t) 7→
Fints (κL, κR, t) is continuous with respect to s because the Godunov fluxes are
continuous with respect to s; and measurable with respect to t because they
are obtained solving an equation of the form Fs(t, p) = 0 for a measurable in
t, monotone and continuous in p function Fs.

3 The basic ingredients in the model case with
variable interface coupling

Let us now provide the key tools to our study for the model case (1)-(2) with
a time-dependent coupling at the interface {x = 0}. Therefore, in this section,
we consider a flux f : Ω × R → R given by (2) with f, g ∈ C2([a, b]) veri-
fying the confinement assumption (10) and the uniform convexity/concavity
assumption (11). Throughout the section, we denote by Φf (resp. Φg) the
classical Kruzhkov entropy flux associated with f (resp. g) so that:

∀x ∈ R∗, ∀ρ, κ ∈ [a, b], Φ(x, ρ, κ) =

{
Φg(ρ, κ) if x < 0

Φf (ρ, κ) if x > 0.

Suppose also that we are given a family {G(t)}t>0 of maximal L1D germs
associated with fluxes f and g. We suppose that this family is Carathéodory
in the sense of Definition 1 which, in this context, means that for all κL, κR ∈
[a, b], the associated function

t ∈ R 7→ Fint(κL, κR, t)

is a Carathéodory function.

3.1 Stability and uniqueness

For the sake of completeness, we recall the abstract definition of L1D germ,
see [9, Definition 3.1] or [18, Definition 1.1]. We restrict ourselves to subsets
of [a, b]2 in view of the confinement assumption verified by f and g.

Definition 3 A family {G(t)}t>0 of subsets of [a, b]2 is called L1D germ associated
with fluxes f, g if for all t > 0:

(i) for all (κL, κR) ∈ G(t), g(κL) = f(κR);

(ii) for all (κL, κR), (cL, cR) ∈ G(t),

Φg(κL, cL)− Φf (κR, cR) ≥ 0. (14)

We say that the family is maximal if for all t > 0, G(t) is not a strict subset of some

other L1D germ.
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Remark 7 With this convention, it is readily seen that any maximal L1D germ
G(t) associated with fluxes f, g verifying the confinement condition (10) contains the
couples (a, a) and (b, b).

Let us give the arguments of the proof of Theorem 1 for this model case.
Following the proof of [38, Lemma 2.7], we derive the Kato inequality:∫ +∞

0

∫
R

(
|ρ− ρ̂|∂tϕ+ Φ(x, ρ, ρ̂)∂xϕ

)
dxdt+

∫
R
|ρo(x)− ρ̂o(x)|ϕ(0, x) dx

+

∫ +∞

0

(
Φf (γRρ(t), γRρ̂(t))− Φg (γLρ(t), γLρ̂(t))

)
ϕ(t, 0) dt ≥ 0.

The L1D dissipativity assumption on the family of germs {G(t)}t>0 (14) and
property (7) of solutions ensure that for a.e. t > 0,

Φf (γRρ(t), γRρ̂(t))− Φg (γLρ(t), γLρ̂(t)) ≤ 0.

Upon a suitable choice of test function, see the proof of [38, Theorem 2.8], the
stability estimate of Theorem 1 follows. This leads to uniqueness.

3.2 Adapted entropy inequalities with the Godunov
remainder terms

We now turn to the proof of Proposition 2 where the remainder term becomes:

R(κL, κR, t) =
∣∣g(κL)− Fint(κL, κR, t)

∣∣+
∣∣Fint(κL, κR, t)− f(κR)

∣∣ .
Recall that for t > 0 and κL, κR ∈ [a, b], Fint(κL, κR, t) denotes the Godunov
flux associated with the family {G(t)}t>0. We start with the following lemma.

Lemma 4 Let (κL, κR) ∈ [a, b].

(κL, κR) ∈ G(t) =⇒ ∀t > 0, R(κL, κR, t) = 0.

Proof Indeed, saying that (κL, κR) ∈ G(t) means that the piecewise constant
function

κ(x) =

{
κL if x < 0
κR if x > 0

is the unique solution in the sense of Definition 2 to the problem (1) with the flux
(2) and with initial data ρo = κ. Consequently, for all t > 0,

g(κL) = Fint(κL, κR, t) = f(κR) and ∀t > 0, R(κL, κR, t) = 0,

concluding the proof. �

We now turn to the proof of Proposition 2.
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Suppose that ρ verifies (9). Clearly, ρ satisfies (6) if ϕ ∈ C∞c (Ω), ϕ ≥ 0
vanishes along the interface {x = 0}. Following the proof of [38, Proposition
2.6], we obtain:∫ +∞

0

(
Φg(γLρ(t), κL)− Φf (γRρ(t), κR) +R(κL, κR, t)

)
ϕ(t, 0) dt ≥ 0. (15)

Since t 7→ R(κL, κR, t) is measurable and bounded, the function t 7→
R(κL, κR, t) belongs to L1

loc( ]0,+∞[). Consequently, almost every t > 0 is a
Lebesgue point of this function. From (15), we deduce that for a.e. t > 0,

Φg(γLρ(t), κL)− Φf (γRρ(t), κR) +R(κL, κR, t) ≥ 0.

In particular, using Lemma 4,

∀(κL, κR) ∈ {G(t)}t>0, for a.e. t > 0, Φf (γRρ(t), κR) ≤ Φg(γLρ(t), κL).
(16)

This last inequality implies that

for a.e. t > 0,
(

(γLρ)(t) , (γRρ)(t)
)
∈ G(t)

by maximality of the family of germs. We proved that ρ is a Gis(t)-entropy
solution to (1) with initial data ρo ∈ L∞(R, [a, b]).

3.3 Finite volume scheme, compactness and convergence

We turn to the proof of the existence statement (Theorem 3) with the con-
struction of finite volume scheme for which we prove the convergence. Let us
recall some standard notations.

For a fixed spatial mesh size ∆x > 0 and time mesh size ∆t > 0, let
xj = j∆x (j ∈ Z) and tn = n∆t (n ∈ N). Set λ = ∆t/∆x. We define the cell
grids:

Ω =
⋃
n∈N

⋃
j∈Z
Pnj+1/2, Pnj+1/2 = [tn, tn+1[ × ]xj , xj+1[.

For n ∈ N and j ∈ Z, let us denote ρnj+1/2 an approximation of the solution ρ

on Pnj+1/2.

Let ρo ∈ L∞(R, [a, b]), where a, b ∈ R are the numbers defined in the con-
finement assumption 10. We denote by Ff = Ff (u, v) (resp. Fg = Fg(u, v))
any monotone numerical flux associated with f (resp. g). Following the
assumptions of Theorem 3, we assume that (κL, κR) 7→ Fint(κL, κR, ·) is
Lipschitz continuous on [a, b]2, uniformly on t > 0. This can be expressed as:

∃C > 0, ∀t > 0, ∀x, y, u, v ∈ [a, b],∣∣Fint(x, y, t)− Fint(u, v, t)
∣∣ ≤ C (|x− u|+ |y − v|) . (17)
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In the analysis below, the following properties of the Godunov flux
(κL, κR, t) 7→ Fint(κL, κR, t) are used in addition to (17).

Lemma 5 The Godunov flux defined in Section 2.2 has the following properties:

(i) for all t > 0, Fint(·, ·, t) is nondecreasing with respect to its first argument and
nonincreasing with respect to its second argument;

(ii) for all t > 0,

g(a) = Fint(a, a, t) = f(a), g(b) = Fint(b, b, t) = f(b). (18)

Proof Point (i) via the Crandall-Tartar Lemma follows from the order-preservation

property encoded in L1D germs (cf. [52]). Point (ii) comes from the fact that the
couples (a, a) and (b, b) belong to {G(t)}t>0 (see Remark 7). Identites (18) follow as
in the proof of Lemma 4. �

We now proceed to the definition of the scheme. Fix n ∈ N and j ∈ Z.
Away from the interface, i.e. for j /∈ {−1, 0}, our scheme reduces to a classical
three-point finite volume scheme on a uniform grid. More precisely,

ρn+1
j+1/2 = ρnj+1/2 − λ(Fg(ρ

n
j+1/2, ρ

n
j+3/2)− Fg(ρ

n
j−1/2, ρ

n
j+1/2)), j ≤ −2 (19)

and

ρn+1
j+1/2 = ρnj+1/2 − λ(Ff (ρnj+1/2, ρ

n
j+3/2)− Ff (ρnj−1/2, ρ

n
j+1/2)), j ≥ 1. (20)

To handle the coupling at the interface, introduce the mean numerical flux

Godnint(ρ
n
−1/2, ρ

n
1/2) =

1

∆t

∫ tn+1

tn
Fint(ρn−1/2, ρ

n
1/2, t) dt (21)

and use it to define the numerical solution in the remaining cells:

ρn+1
−1/2 = ρn−1/2 − λ(Godnint(ρ

n
−1/2, ρ

n
1/2)− Fg(ρ

n
−3/2, ρ

n
−1/2)). (22)

and
ρn+1

1/2 = ρn1/2 − λ(Ff (ρn1/2, ρ
n
3/2)−Godnint(ρ

n
−1/2, ρ

n
1/2)). (23)

For the sake of simplicity, we choose Ff and Fg equal to one of the standard
numerical fluxes: Rusanov, Lax-Friedrichs, Godunov or Engquist-Osher. This
way, the CFL condition reduces to

2 max {‖f ′‖L∞ , ‖g′‖L∞ ,C}︸ ︷︷ ︸
:=L

λ ≤ 1, (24)

with C defined in (17).
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3.3.1 Stability and discrete entropy inequalities

Lemma 6 (L∞ stability) The numerical scheme (19)-(23) is monotone and stable:

∀n ∈ N, ∀j ∈ Z, ρnj+1/2 ∈ [a, b]. (25)

Proof The monotonicity of the scheme follows from the same arguments used in
the proof of [39, Proposition 2] for instance. Note in particular that the Godunov

interface fluxes Fint are monotone (which implies the monotonicity of Godnint due
to (21)). The stability estimate is proved by induction with the introduction, for all

n ∈ N and j ∈ Z, of the function Hn
j = Hn

j (x, y, z) used to express ρn+1
j+1/2

from

ρnj−1/2, ρnj+1/2 and ρnj+3/2. More precisely,

∀j ∈ Z (j ≤ −2), ∀u, v, w ∈ [a, b], Hn
j (u, v, w) = v − λ(Fg(v, w)− Fg(u, v))

or
∀u, v, w ∈ [a, b], Hn

0 (u, v, w) = v − λ(Godnint(v, w)− Fg(u, v)).

The key point of the proof is the fact that a and b are stationary states of the
scheme. Indeed, as a consequence of Lemma 5 (iii), we have:

∀n ∈ N, ∀j ∈ Z, Hn
j (a, a, a) = a and Hn

j (b, b, b) = b.

We refer to the proof of [39, Proposition 2] for details. �

Corollary 7 (Discrete entropy inequalities) Fix κL, κR ∈ [a, b] and define

∀j ∈ Z, κj+1/2 = κL1{j≤−1} + κR1{j≥0}.

Then the numerical scheme (19)-(23) fulfills the following discrete entropy inequali-
ties for all n ∈ N and j ∈ Z:(

|ρn+1
j+1/2 − κj+1/2| − |ρ

n
j+1/2 − κj+1/2|

)
∆x

≤


−
(
Φnj+1 − Φnj

)
∆t if j /∈ {−1, 0}

−
(
Φnint − Φn−1

)
∆t+ |g(κL)−Godnint(κL, κR)|∆t if j = −1

− (Φn1 − Φnint) ∆t+ |Godnint(κL, κR)− f(κR)|∆t if j = 0,

(26)

where Φnj and Φnint are the numerical entropy fluxes:

Φnj =


Fg(ρnj−1/2 ∨ κL, ρ

n
j+1/2 ∨ κL)− Fg(ρnj−1/2 ∧ κL, ρ

n
j+1/2 ∧ κL) if j ≤ −1

Ff (ρnj−1/2 ∨ κR, ρ
n
j+1/2 ∨ κR)− Ff (ρnj−1/2 ∧ κR, ρ

n
j+1/2 ∧ κR) if j ≥ 1

Φnint = Godnint(ρ
n
−1/2 ∨ κL, ρ

n
1/2 ∨ κR)−Godnint(ρ

n
−1/2 ∧ κL, ρ

n
1/2 ∧ κR).

Proof This is mostly a consequence of the scheme monotonicity. Fix n ∈ N and j ∈ Z.
Suppose first that j /∈ {−1, 0}. In this case, all the constant states κL, κR ∈ [a, b] are
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stationary solutions of the scheme. Consequently,

|ρn+1
j+1/2 − κj+1/2| = ρn+1

j+1/2 ∨ κj+1/2 − ρ
n+1
j+1/2 ∧ κj+1/2

= Hn
j

(
ρnj−1/2, ρ

n
j+1/2, ρ

n
j+3/2

)
∨Hn

j (κj+1/2, κj+1/2, κj+1/2)

−Hn
j

(
ρnj−1/2, ρ

n
j+1/2, ρ

n
j+3/2

)
∧Hn

j (κj+1/2, κj+1/2, κj+1/2)

≤ Hn
j

(
ρnj−1/2 ∨ κj+1/2, ρ

n
j+1/2 ∨ κj+1/2, ρ

n
j+3/2 ∨ κj+1/2

)
−Hn

j

(
ρnj−1/2 ∧ κj+1/2, ρ

n
j+1/2 ∧ κj+1/2, ρ

n
j+3/2 ∧ κj+1/2

)
= |ρn+1

j+1/2 − κj+1/2| − λ(Φnj+1 − Φnj ),

which is exactly (27) in the case j /∈ {−1, 0}.
Suppose now that j = −1 for instance. The previous observation regarding the
constants κL, κR ∈ [a, b] is not longer valid in this case since

Hn
−1(κL, κL, κR) = κL − λ

(
Godnint(κL, κR)− g(κL)

)
.

Instead, we deduce:

Hn
−1

(
ρn−3/2 ∧ κL, ρ

n
−1/2 ∧ κL, ρ

n
3/2 ∧ κR

)
− λ

(
Godnint(κL, κR)− g(κL)

)−
≤ κL ≤ Hn

−1

(
ρn−3/2 ∨ κL, ρ

n
−1/2 ∨ κL, ρ

n
3/2 ∨ κR

)
+ λ

(
Godnint(κL, κR)− g(κL)

)+
,

where we denoted by z+ (resp. z−) the positive part (resp. negative part) of the real
number z. We deduce:

|ρn+1
−1/2 − κL| = ρn+1

−3/2 ∨ κL − ρ
n+1
−3/2 ∧ κL

≤ Hn
−1

(
ρn−3/2 ∨ κL, ρ

n
−1/2 ∨ κL, ρ

n
1/2 ∨ κR

)
+ λ

(
Godnint(κL, κR)− g(κL)

)+
−Hn

−1

(
ρn−3/2 ∧ κL, ρ

n
−1/2 ∧ κL, ρ

n
1/2 ∧ κR

)
+ λ

(
Godnint(κL, κR)− g(κL)

)−
= |ρn−1/2 − κL| − λ

(
Φnint − Φn−1

)
+ λ

∣∣Godnint(κL, κR)− g(κL)
∣∣ ,

which is exactly (26) in the case j = −1. The obtaining of (26) in the case j = 0 is
similar so we omit the details of the proof for this case. �

We now derive continuous entropy inequalities similar to (9) verified by
ρ∆. Let us define the approximate entropy flux:

Φ∆ (x, ρ∆, κ) =
∑
n∈N

∑
j∈Z∗

Φnj 1[tn,tn+1[×]xj ,xj+1[

and the approximate remainder term: if t ∈ [tn, tn+1[,

R∆(κL, κR, t) = |g(κL)−Godnint(κL, κR)|+ |Godnint(κL, κR)− f(κR)| .



20 Finite volume approximation of conservation laws with moving interfaces

Proposition 8 (Approximate entropy inequalities) Fix κL, κR ∈ [a, b]. Define

κ(x) = κL1{x<0} + κR1{x>0}.

Let ϕ ∈ C∞c (Ω), ϕ ≥ 0, let n ∈ N. Then as ∆→ 0, we have∫ tn+1

tn

∫
R

(
|ρ∆ − κ|∂tϕ+ Φ∆ (x, ρ∆, κ) ∂xϕ

)
dxdt+

∫
R
|ρ∆(tn, x)− κ|ϕ(tn, x) dx

−
∫
R
|ρ∆(tn+1, x)− κ|ϕ(tn+1, x) dx+

∫ tn+1

tn
R∆(κL, κR, t)ϕ(t, 0) dt

≥ O(∆x∆t) +O
(

∆t2
)
.

(27)

Proof For the sake of clarity, let us also introduce the following notations:

RnL =
∣∣g(κL)−Godnint(κL, κR)

∣∣ ; RnR =
∣∣Godnint(κL, κR)− f(κR)

∣∣ .
Define (kj+1/2)j∈Z as in Corollary 7. Let us multiply the discrete entropy inequalities

(26) by ϕn+1
j+1/2

∆x and sum over j ∈ Z:∑
j∈Z

∣∣∣ρn+1
j+1/2 − κj+1/2

∣∣∣ϕn+1
j+1/2∆x

≤
∑
j∈Z

j /∈{−1,0}

(∣∣∣ρnj+1/2 − κj+1/2

∣∣∣∆x− (Φnj+1 − Φj)
n∆t

)
ϕn+1
j+1/2

+ |ρn−1/2 − κL|ϕ
n+1
−1/2∆x−

(
Φnint − Φn−1

)
ϕn+1
−1/2∆t+RnLϕ

n+1
−1/2∆t

+ |ρn1/2 − κR|ϕ
n+1
1/2 ∆x−

(
Φn1 − Φnint

)
ϕn+1

1/2 ∆t+RnRϕ
n+1
1/2 ∆t.

We now proceed to the Abel’s transformation as well as adding some quantities
and their opposites to obtain:∑
j∈Z

∣∣∣ρn+1
j+1/2 − κj+1/2

∣∣∣ϕn+1
j+1/2∆x−

∑
j∈Z

∣∣∣ρnj+1/2 − κj+1/2

∣∣∣ϕnj+1/2∆x

−
∑
j∈Z

∣∣∣ρnj+1/2 − κj+1/2

∣∣∣ (ϕn+1
j+1/2 − ϕ

n
j+1/2

)
∆x ≤

∑
j∈Z

Φnj

(
ϕn+1
j+1/2 − ϕ

n+1
j−1/2

)
∆t

︸ ︷︷ ︸
A

+
(
RnLϕ

n+1
−1/2 +RnRϕ

n+1
1/2

)
∆t︸ ︷︷ ︸

B

+ (Φnint − Φn0 )(ϕn+1
1/2 − ϕ

n+1
−1/2)∆t︸ ︷︷ ︸

C

.

The left-hand side of this inequality is equal to∫
R
|ρ∆(tn+1, x)− κ(x)|ϕ(tn+1, x) dx−

∫
R
|ρ∆(tn, x)− κ(x)|ϕ(tn, x) dx

−
∫ tn+1

tn

∫
R
|ρ∆(t, x)− κ(x)|∂tϕdxdt .

We now estimate the members of the right-hand side.
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Estimating A. We write:

A = ∆t

∫
R

Φ∆(x, ρ∆, κ(x))∂xϕ(tn+1, x) dx

+ λ
∑
j∈Z

∫ xj+1

xj

∫ x

x−∆x

∫ y

x
Φnj ∂

2
xxϕ(tn, z) dz dy dx

︸ ︷︷ ︸
A1

=

∫ tn+1

tn

∫
R

Φ∆(x, ρ∆, κ(x))∂xϕdxdt+A1

+

∫ tn+1

tn

∫
R

∫ tn+1

t
Φ∆(x, ρ∆, κ(x))∂2

txϕ(τ, x) dτ dx dt︸ ︷︷ ︸
A2

,

and we have the estimations:

|A1| ≤ 4L sup
t≥0
‖∂2
xxϕ(t, ·)‖L1∆x∆t, |A2| ≤ L sup

t≥0
‖∂2
txϕ(t, ·)‖L1∆t2.

Estimating B.

B = RnL
(
ϕ(tn+1, 0) +

1

∆x

∫ 0

−∆x
(ϕ(tn+1, x)− ϕ(tn+1, 0))︸ ︷︷ ︸
≤‖∂xϕ‖L∞∆x

dx

)

+RnR
(
ϕ(tn+1, 0) +

1

∆x

∫ ∆x

0
(ϕ(tn+1, x)− ϕ(tn+1, 0))︸ ︷︷ ︸
≤‖∂xϕ‖L∞∆x

dx

)

= R∆(κL, κR, t
n)ϕ(tn+1, 0)∆t+O(∆x∆t)

=

∫ tn+1

tn
R∆(κL, κR, t)ϕ(t, 0) dt

+

∫ tn+1

tn
R∆(κL, κR, t)

(
ϕ(tn+1, 0)− ϕ(t, 0)

)
dt︸ ︷︷ ︸

≤(‖g‖L∞+‖f‖L∞ )‖∂tϕ‖L∞∆t2

+O(∆x∆t)

=

∫ tn+1

tn
R∆(κL, κR, t)ϕ(t, 0) dt+O(∆x∆t) +O

(
∆t2

)
.

Estimating C. Finally,
|C| ≤ (2L)∆x∆t,

concluding the proof of the statement. �

Remark 8 If ϕ is supported in time in some [0, T ] (T > 0), with T ∈ [tN , tN+1[, then
by summing (27) over n ∈ [[0; N + 1]], we obtain:∫ T

0

∫
R

(
|ρ∆ − κ|∂tϕ+ Φ∆ (x, ρ∆, κ) ∂xϕ

)
dxdt+

∫
R
|ρ0

∆ − κ|ϕ(0, x) dx

+

∫ T

0
R(κL, κR, t)ϕ(t, 0) dt ≥ O(∆x) +O(∆t) .

(28)
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3.3.2 Compactness and convergence

We now prove existence of solutions in the sense of inequality (9).
The compactness of the sequence (ρ∆)∆ is obtained by deriving local BV
bounds. Since f and g are assumed to have uniform convexity/concavity, we
can use the OSL technique put forward by [32] and described in detail in [38,
Appendix]. This technique ”does not see” the interface coupling. This provides
the existence of ρ ∈ L∞(Ω, [a, b]) such that a subsequence of (ρ∆)∆ converges
to ρ a.e. on Ω. To pass to the limit in (28) and conclude the analysis, we need
to ensure that∫ T

0

R∆(κL, κR, t)ϕ(t, 0) dt −→
∆→0

∫ T

0

R(κL, κR, t)ϕ(t, 0) dt .

This convergence claim comes from the measurability and the boundedness
of t 7→ R(κL, κR, t). Since t 7→ R∆(κL, κR, t) is obtained by taking the mean
values of t 7→ R(κL, κR, t) on a uniform grid, we are ensured that for all
Lebesgue points t > 0 of R(κL, κR, ·) (which are a.e. t > 0), (R∆(κL, κR, t))∆

converges to R(κL, κR, t). This last ingredient implies that by letting ∆ → 0
in (28), we obtain that ρ satisfies (9).

Remark 9 As mentioned after Proposition 2, now that we proved the existence of
solutions in the sense of inequality (9), we can prove, under the assumptions of
Theorem 3, the uniqueness for the adapted entropy formulation (9) and the reciprocal
statement of Proposition 2.
Indeed, first, let us observe that combining the last step of the convergence proof
reasoning and Section 3.2, we proved a well-posedness result for solutions in the sense
of inequality (9). Existence is obtained by the scheme. Moreover, two solutions in
the sense of inequality (9) are also G(t)-entropy solutions by Section 3.2; for those
solutions we have uniqueness, see Theorem 1, leading to uniqueness for the adapted
entropy formulation of Proposition 2.
Now fix ρo ∈ L∞(R, [a, b] and suppose that ρ is a G(t)-entropy solution to (1) with
initial data ρo. Suppose that ρ is not the solution in the sense of inequality (9). Let
us then denote by σ 6= ρ the solution in the sense of inequality (9). As mentioned
before, σ is also a G(t)-entropy solution, and therefore equal to ρ by uniqueness.
This contradicts the fact that ρ is not the solution in the sense of inequality (9). We
conclude that ρ verifies (9).

4 Multi-interface problem with general
interface coupling

This section is very brief because it borrows almost all of its contents to the cor-
responding [38, Section 4]. Indeed, the only changes are that we use Godunov
interface flux in a more general situation leading to a more abstract form of
the remainder term; and that we do not use any more the constraint inequal-
ities required for sharp characterization of solutions for the adapted entropy
formulation of [38]. We proceed in two steps. First the case of a single interface
is dealt with calling upon the analysis of the previous section in what concerns



Finite volume approximation of conservation laws with moving interfaces 23

the remainder term Rs. Second, the accurate use of partitions of unity along
with the choice of test functions vanishing near the cross-points permits to
reduce the general case described in Section 2.1 to the case of a single slanted
interface.

4.1 The case of a single slanted interface

This section builds on the work done in [38, Sections 1-3]. If y denotes the
trajectory of the interface, the remainder term has now the form:

Rẏ(t)(κL, κR, t) =
∣∣∣gẏ(t)(κL)− Fintẏ(t)(κL, κR, t)

∣∣∣+∣∣∣Fintẏ(t)(κL, κR, t)− fẏ(t)(κR)
∣∣∣ .

Using Definition 2, the proof of uniqueness follows the ones of [38, Lemma
2.7, Theorem 2.8].

Regarding the existence, the only difference with the model case is that here
we need to discretize the interface and to adapt the mesh in a neighbourhood
of the discrete interface. We define the sequence of approximate slopes:

∀n ∈ N, sn =
1

∆t

∫ tn+1

tn
ẏ(t) dt ; ∀t ≥ 0, s∆(t) =

∑
n∈N

sn1[tn,tn+1[(t),

which converges to ẏ in L1
loc(]0,+∞[). The mesh is produced in the same way

as in [38, Section 4], see in particular Figure 1 below.
One only needs to make precise the numerical flux used at the slanted mesh

boundaries. At time step tn, the approximate coupling Godunov flux is defined
by:

Gods
n

int(ρ
n
−1/2, ρ

n
1/2) =

1

∆t

∫ tn+1

tn
Fintsn (ρn−1/2, ρ

n
1/2, t) dt . (29)

Note that by assumption, the family of germs {Gs(t)}t>0,s∈R is Carathéodory
which implies that for all (κL, κR) ∈ [a, b]2, s 7→ Godsint(κL, κR) is continuous
since for all t > 0, s 7→ Fints (κL, κR, t) is continuous.

The approximate remainder term that appears in the approximate adapted
entropy inequalities is:

Rs∆(t)(κL, κR, t) =
∣∣∣gsn(κL)−Gods

n

int(κL, κR)
∣∣∣+∣∣∣Gods

n

int(κL, κR)− fsn(κR)
∣∣∣

when t ∈ [tn, tn+1[. The convergence∫ +∞

0

Rs∆(t)(κL, κR, t)ϕ(t, y∆(t)) dt −→
∆→0

∫ +∞

0

Rẏ(t)(κL, κR, t)ϕ(t, y(t)) dt

comes from:

• the measurability of t 7→ Rẏ(t)(κL, κR, t);
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• the continuity of s 7→ Rs(κL, κR, t) (t > 0) combined with the strong
convergence of (s∆)∆ to ẏ.

Fig. 1 Illustration of the local modification to the mesh, in the (x, t) plane.

Existence of solutions in the sense of inequality (9) follows and like in Section
3.3.2, we can prove the equivalence between Definition 2 and inequality (9).

4.2 Isolating interfaces and neglecting cross-points

The construction of the mesh, of the finite volume scheme and the convergence
analysis by reduction of the initial configuration of Section 2 to the case of a
single slanted interface, tackled in Section 4.1 is identical to the reasoning of
[38, Section 4]. Let us only highlight the fact that the choice of the precise
coupling at the interfaces near the cross-points (see Figure 3 below) does not
matter for the convergence of the scheme and its overall consistency. Indeed,
the choice of the test functions in Remark 3 permits to disregard the discrete
solution near cross-points. We only have to ensure that the discrete solutions
take their values within [a, b], for this sake we can use any numerical flux at
the interfaces consistent with the stationary solutions a and b. In this way, we
complete the proof of Theorem 3.

Remark 10 In the practice of numerical approximation of problem (1) by the schemes
we propose in this paper, any numerical flux which is monotone and whose Lipschitz
constant is consistent with the CFL can be used on the interfaces in a small vicin-
ity of the crossing points. This may lead to appearance of numerical artefacts (see
[38, Section 4] for an example). However, the latter remain ”under control” since,
according to our analysis, they do not affect the convergence of the scheme.

5 Illustration with numerical simulations

In this section, we describe two simulations carried out in the framework of
transmission maps set up on curved interfaces: the one-dimensional Hughes’
model [48, 53–55] and the Burgers-particle interaction model [27, 56, 57]. Both
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of them feature moving interfaces, actually they correspond to complex situa-
tions where the interface dynamics is coupled to the dynamics of the solution
itself. Since the locations of the interfaces are not known a priori, the approach
of this paper to construction of solutions is not directly applicable. However,
if we consider the fixed-point strategy (see in particular [40] for the Hughes’
model and [27] for the Burgers-particle model) then the step of resolution of
the conservation law, given the interface locations, corresponds to the setting
of our paper.

The Hughes’ model makes appear solely one interface, while in the
Burgers-particle(s) model multiple interfaces with crossing make sense (see,
in particular, [57, 58]). In both situations, specific finite volume schemes were
developed in the literature [59], [57, 58, 60, 61]. We will not apply these
schemes; in order to stick to our main example detailed in Section 2.5, we will
use interface fluxes based upon suitably identified transmission maps. Let us
stress that in the Burgers-particle setting, the interface coupling is actually
non-conservative but the adaptation of the transmission map approach to this
situation is straightforward [18]; our theoretical result extends readily to such
non-conservative interface couplings.

Note that the third example of simulations featuring slanted interfaces
and interface crossings, in a setting significant in the road traffic context,
can be found in [38]. The interface coupling corresponds, in this case, to flux
limitation across interfaces, following [16, 39, 62]. The scheme of [38] is a
particular case of the one considered in the present paper, with convergence
analysis which exploited an adapted entropy formulation different from the one
exhibited in the present paper. The analysis of the present paper applies to the
situation considered in [38] (constant flux, featuring the same nonlinearity in
the regions between the flux-limiting interfaces) and also to its generalization
with piecewise constant flux.

5.1 One-dimensional Hughes model

The model of [53] for pedestrian evacuation through multiple exits, in the gen-
eral multi-dimensional setting, features a conservation law with discontinuous
field of directions given by the gradient of the solution to an eikonal equation.
According to the analysis of [54] the one-dimensional situation in the corri-
dor modeled by the interval [−1, 1] can be simplified, by explicitly solving the
underlying eikonal equation, to

∂tρ(t, x) + ∂x (sign(x− ξ(t))f(ρ(t, x))) = 0 (30)

with f(ρ) = ρv(ρ) a standard LWR (Lighthill-Whitham-Richards) flux, e.g.
for v(ρ) = 1− ρ, and ξ is a curve solving∫ ξ(t)

−1

c(ρ(t, x)) dx =

∫ 1

ξ(t)

c(ρ(t, x)) dx

for some cost function c. In the situation considered in [40, 55], c(ρ) = 1 +αρ,
α ∈ R+, is a linear cost and it is proved that the interface ξ is a Lipschitz
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continuous function of the time variable. The flux of (30) is equal to −f for
x < ξ(t) and to +f , for x > ξ(t). It can be proved (see [40]) that the coupling
at the interface x = ξ(t) boils down to the mere continuity of the normal
component of the flux, i.e., to the Rankine-Hugoniot condition. Indeed, it can
be checked that the set of all couples (ρL, ρR) ∈ [0, 1]2 fulfilling

−f(ρL)− ξ̇(t)ρL = +f(ρR)− ξ̇(t)ρR

constitutes an L1D germ. This means in particular that, whatever be the choice
of a transmission map on the interface, the resulting solution corresponds to
this unique possible germ (cf. [33]). For this reason, we choose the simplest
transmission map β = Id to model the interface coupling in the Hughes’ model
(see [40] for details). Consider the Lipschitz curve ξ which graph is represented
on Figure 1. We parametrize a corridor with the interval [−4, 4]. Below, we
present the numerical solution to (30) with inital data ρo = 0.5×1[0.5,1.5] and
time horizon T = 5.

Fig. 2 When ξ reaches the density, a ”non clasical” shock appears at the point where the
directions of the propagation are opposite.
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5.2 Fluid-particle interaction via a drag force

Fluid-particle interaction via a drag force was formalized in [56] as a one-
dimensional model where the Burgers, equation with singular source carried
by a curve, x = h(t)

∂tρ(t, x) + ∂x
(
ρ(t, x)2/2)

)
= −λ(ρ(t, x)− h′(t))δ0(x− h(t)) (31)

is coupled to an ODE with singular right-hand side

mh′′(t) = λ(ρ(t, h(t))− h′(t))

prescribing the evolution of h. While (31) features a non-conservative product
in the source term, the interpretation of the problem in terms of a singu-
lar limit and of global conservation of the kinetic energy of the fluid-particle
system gave rise to a definition in [56] of an adequate notion of solution. In
[27, 57] the notion of solution for (31) was re-interpreted in terms of the “germ
formalism” underlying the present paper, with a generalization allowing for
a non-conservative germ. Further, in [18] this example was inserted into the
framework of transmission maps, with the necessary non-conservative general-
ization of the latter. The transmission map in the context is constant in time,
given by

β =
{

(k−, k+) ∈ R2 , k− − k+ = λ
}
,

but one also introduces the associated “dissipation map” ψ taking the form

ψs(k−, k+) =
λ

2

(
k− + k+ − 2s

)
.

The fluxes in (31) are fs(ρ) = gs(ρ) = ρ2

2 −sρ and the (conservative) Godunov
transmission flux (13) should be replaced by two one-sided fluxes

Fints (κL, κR)− = (Godgs)(κL, k−), Fints (κL, κR)+ = (Godfs)(k+, κR)

with (k−, k+) ∈ β found from the relation

(Godfs)(k+, κR)− (Godgs)(κL, k−) + ψs(k−, k+) = 0. (32)

Note that, upon parametrization of β by p = k− + k+, the left-hand side of
the above relation is a monotone increasing function of p. The model of [56]
allows for the presence of multiple particles, with a “drafting-kissing-tumbling”
phenomenon observed in simulations [57, 58].

We propose a numerical simulation whose purpose is merely to show that
the scheme proposed is actually implementable and provides reasonable results.
Consider two crossing trajectories h1, h2 imitating the observed behavior, see
Figure 3 below and also [58, Figure 4]. The idea is that the two particles are
initially headed towards each other until colliding. In the full model the dynam-
ics is then dictated by the fluid density and the ODEs. Here, we approximate
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the density ρ in the model analogous to (31) with two particles located at
x = h1(t), x = h2(t), respectively. The evolution of the numerical simulation
is presented in Figure 4.

Fig. 3 Illustration of the local modifications of the mesh; when the curves are to close, they
are replaced by their mean curve.

Fig. 4 Evolution of the numerical solution of (31).
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[21] Andreianov, B., Mitrović, D.: Entropy conditions for scalar conservation laws
with discontinuous flux revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire
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[43] Cancès, C., Gallouët, T.: On the time continuity of entropy solutions. J. Evol.
Equ. 11(1), 43–55 (2011)

[44] Colombo, R.M., Mercier, M., Rosini, M.D.: Stability and total variation
estimates on general scalar balance laws. Comm. Math. Sci. 7(1), 37–65 (2009)
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