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Abstract

Scalar conservation law ∂tρ(t, x) + ∂x(f(t, x, ρ)) = 0 with a �ux C1 in the state variable ρ, piecewise
C1 in the (t, x)-plane admits in�nitely many consistent notions of solution which di�er by the choice of
interface coupling. Only the case of the so-called vanishing viscosity solutions received full attention,
while di�erent choice of coupling is relevant in modeling situations that appear, e.g., in road tra�c and
in porous medium applications. In this paper, existence of solutions for a wide set of coupling conditions
is established under some restrictions on f , via a �nite volume approximation strategy adapted to
slanted interfaces and to the presence of interface crossings. The notion of solution, restated under the
form of an adapted entropy formulation which is consistently approximated by the numerical scheme,
implies uniqueness and stability of solutions. Numerical simulations are presented to illustrate the
reliability of the scheme.
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1 INTRODUCTION

1 Introduction

In the domain Ω = ]0,+∞[×R, consider the formal Cauchy problem{
∂tρ(t, x) + ∂x (f(t, x, ρ(t, x))) = 0 (t, x) ∈ Ω

ρ(0, x) = ρo(x) x ∈ R, (1.1)

where ρo ∈ L∞(R) and f : Ω×R 7→ R is a Carathéodory function, as speci�ed below. The physical range
of values of the state variable may be restricted to a compact subset [a, b] ⊂ R in many applications.

1.1 A state of the art

In the case where f extends to a locally Lipschitz continuous on Ω×R function, and under some restrictions
on the growth of f in ρ to ensure global in time existence (see in particular [31]), the de�nition of entropy
solutions in the sense of Kruzhkov [48] is the cornerstone of the well-posedness theory. Beyond this
essentially classical setting, discontinuous-�ux problems and related problems of conservation laws with
embedded interfaces appear in applications such as sedimentation, porous media, road tra�c, etc... By
"discontinuous-�ux" we mean only problems where the �ux is continuous (and even locally Lipschitz or
even C1) in the state variable ρ while it may present discontinuities in the (t, x)-plane. Sense can be
given to (1.1) (in particular, a weak formulation can be written) in the general situation where f is a
Carathéodory function (measurable in (t, x), continuous in ρ); to the best of the authors' knowledge, no
consistent theory has been constructed yet in this very general setting. The most general setting where
partial existence and uniqueness results were established concerns �uxes f that are either regulated in
(t, x) (like in [21]) or at least BVloc in (t, x), for all ρ ∈ R, see in particular [46, 54]. To the authors'
knowledge, the existence results under the BV kind assumption on the �ux, as well as for regulated �ux
in [21], concern exclusively solutions constructed by the classical vanishing viscosity strategy going back
to Rayleigh, Hopf and Kruzhkov. The early concepts of admissibility such as the minimal jump condition
([40]) or the Γ-condition ([35], see also [36]) at interfaces select the vanishing viscosity solution, cf. [12];
they were elaborated in the context of sedimentation applications. However, vanishing viscosity limits are
not always appropriate from the modeling perspective. Optimal entropy solutions (i.e. solutions which
maximize the �ow across interfaces) were a second class of solutions identi�ed as relevant in applications
in porous media, see [44, 2, 24]; they also appear in the context of road tra�c with varying road conditions
(see [16] and references therein). It has been realized that the optimal solutions may be di�erent from the
vanishing viscosity limits (see, in particular, [46, Sect. 7]). More generally, co-existence of in�nitely many
di�erent kinds of solutions, equally consistent from the purely mathematical standpoint, was explicitly
pointed out in [2]. Later on, the di�erent solution notions ((A,B)-connections) put forward in [2] were
linked to di�erent vanishing capillarity limits in the porous medium context [25, 7]. Moreover, fully
analogous situation arose from modeling of road tra�c by a classical, continuous-�ux Lighthill-Whitham-
Richards equation with point constraints on the �ux ([29, 10]) where di�erent solvers stem from di�erent
levels of constraint. Thus, di�erent notions of solution correspond to di�erent modeling assumptions at the
interface, quite analogously to what happens when one prescribes di�erent boundary conditions to a given
PDE (we refer to [6] for the viewpoint of "Interface Coupling Conditions" and highlighted analogies with
nonlinear boundary conditions for scalar conservation laws [18]). For this reason, writing (1.1) is formal,
even having in mind a Kruzhkov-like entropy formulation: indeed, one needs to specify the expected
(expected, given the underlying modeling context) behavior of solutions at interfaces which are the jump
sets of (t, x) 7→ f(t, x, ρ). From this perspective, these jump sets should be common for all values of ρ. A
rather general set of assumptions on f that allows to interpret (1.1) as a discontinuous-�ux conservation
law is elaborated in [33]. Coupling at interfaces and the associated uniqueness analysis for the reference
setting of [33] (see also [46, 15] for simpler but still rather complex variants) are mimicked from the model
case, which we now discuss.
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1 INTRODUCTION

The model case for the general problem (1.1) features the �ux function f discontinuous with respect to
the space variable across the interface {x = 0}. The expression for such �ux reads as follows:

f(t, x, ρ) =

{
g(ρ) if x < 0

f(ρ) if x > 0.
(1.2)

Problem (1.1)-(1.2) has been the main playground for understanding the issue of admissibility of solutions
and of their uniqueness (see [19, 53] for a di�erent line of research on this topic which applies to particular
�ux con�gurations, and where discontinuities need not to arrange along interfaces). General structure of
interface coupling leading to L1-contractive solution semigroup for (1.1), (1.2) has been described in [12] in
terms of �L1D germs� recalled below. It gave a common framework to a number of uniqueness arguments
developed in the literature ([40, 35, 58, 1, 46, 2, 23]). It has been exploited for the sake of uniqueness and
stability analysis of road tra�c models with point constraints [10] and of a non-conservative �uid-particle
interaction model [14]. The very general uniqueness result of [33] highlights the fact that abstract �germ
formulations� readily lead to uniqueness of the associated solutions, far beyond the model problem case
(in this respect, let us underline that [33] deals with the multi-dimensional analogue of (1.1)). For the sake
of completeness, let us point out a very di�erent uniqueness result of [21], which requires much weaker
than BV regularity assumptions on the (t, x)-dependence of f but is only applicable to vanishing viscosity
solutions.

In what concerns existence for (1.1) - for a given choice of interface coupling conditions, as highlighted
above - the situation is far less explored. We refer in particular to [33, Remark 2.10]. Typically, to prove
existence for (1.1) having in mind a speci�c interface coupling, it is required to construct sequences of
approximate solutions, pass to the limit using the appropriate compactness structures, and obtain at the
limit entropy formulations encoding, in particular, the coupling expected at the interfaces. To the best of
the authors' knowledge only one situation was explored systematically beyond the model �ux (1.2) case:
this is the vanishing viscosity interface coupling. The existence results of [58, 45, 46, 28, 11, 15, 47, 60, 21]
are based either on a vanishing viscosity approximation (which can be a very tricky one, see [15]) or
on a numerical �nite volume approximation which enforces, at the numerical level, the continuity of
the state variable ρ at interfaces. Actually, the notion of vanishing viscosity solution corresponds to an
implicit assumption of continuity - up to an interface layer, like for the case of Bardos-LeRoux-Nédélec
boundary-value problems - of solution ρ at interfaces ([15, 6, 8]), and such continuity is explicitly or
implicitly incorporated into the above mentioned approximation schemes. Another natural construction
procedure which is the smoothing of the discontinuities of f (see, e.g., [20] in the model case, see also
[55] for a more elaborate situation coming from vanishing viscosity approximation of a triangular system
of conservation laws): it may produce relevant solutions in particular situations, but it cannot be used
to produce solutions for any kind of coupling. The adapted viscosity procedure of [12] was a rather
arti�cial attempt to produce solutions with more general interface coupling, but it has not been extended
beyond the model case. Note in passing that the above viscosity, smoothing and discretization methods
are applicable for multi-dimensional generalization of (1.1), and some of the above references deal with
multiple space dimensions. In one space dimension, wave-front tracking approximations were used for
constructing solutions ([22] for the vanishing viscosity case, [39] for the general setting fully comparable to
[12]) but beyond the model situations, their use for problems of the kind (1.1) was mainly restricted to road
tra�c models in concrete situations. Now, road tra�c with point �ux limitations at interfaces is another
context where solutions to (1.1) were constructed for slanted, curved and possibly crossing interfaces either
through wave-front tracking or through �nite volume approximation. The latter is addressed in detail in
[57]; we refer to its introduction for a set of references to related works.

1.2 The general objective, the key contribution and the simplifying assumption

The goal of this paper is to provide a systematic �nite volume approach to the construction of solutions to
(1.1) with piecewise C1 dependence on (t, x) and with general interface coupling. To this end, we exploit
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2 FLUX AND INTERFACE COUPLING STRUCTURE

the constructions put forward in [57] (the general structure of the scheme, the treatment of interfaces and
of interface crossings, and the local compactness arguments) developed for a particular interface coupling
relevant to tra�c models. We complement the elements devised and detailed in [57] with an original
treatment of terms supported at the interfaces.

Naturally, the numerical scheme consistent with the desired interface coupling should use speci�c �uxes at
the locations of the interfaces; for the sake of maximal generality, we use the Godunov �ux associated with
the underlying germ (cf. [12]). Since the germ depends on the inclination ẏ(t) of the interface x = y(t) and
the interfaces are approximated, we require a mild restriction on the family Gẏ(t) prescribing the interface
coupling. The essential tool of our analysis is the adapted entropy formulation incorporating remainder
terms, as suggested in [12]. The cornerstone of our contribution is the identi�cation of the novel form
of the remainder term, suitable for our purposes because it is compatible with the Godunov numerical
approximation at interfaces.

While we wish to achieve wide generality in what concerns the choice of interface coupling and the geometry
of the interfaces (under the assumption of a �nite number of interfaces), we restrict our attention to the
simplest representative case in what concerns the assumptions on the �ux in the regions between the
interfaces. Therefore we make the simplifying assumption of taking a piecewise constant in (t, x) �ux.

Let us point out that developments necessary in order to cover the general piecewise C1 �ux case are
essentially of the technical nature, as well as the developments that would allow to carry the construction
and the resulting existence claims to the multi-dimensional situation (see in particular Remark 2.5). These
developments are postponed to future work.

1.3 The outline

The paper is organized as follows. In Section 2 we make precise the assumptions on f in (1.1) and on
the coupling enforced on each of the interfaces associated with the (t, x)-discontinuity of f . We state the
de�nition of solution for which uniqueness follows from [33] (but we also rely upon the analysis of [57]
for a technically simpler proof, since our geometrical assumptions on the structure of interfaces are much
stronger that those of [33]), and reformulate the notion of solution in terms of adapted entropy inequalities.
At this point, a speci�c Carathéodory structure of the family of interface couplings at hand comes into
play. We illustrate the resulting setting with an example (another example being explored in detail in [57]).
To conclude Section 2, we state the main result of existence via convergence of a Finite Volume scheme
that is described in subsequent sections. We also provide comments about the compactness assumptions
we take and on the convergence of other approximation procedures. In Section 3, we coin the key tools of
our study in the model case (1.2) with t-dependent coupling at the interface {(t, x) : x = 0, t ∈ ]0,+∞[}.
We link our adapted entropy formulation to the Godunov numerical approach at the interface, formulate
the numerical scheme and sketch the compactness and convergence analysis, treating in detail the interface
terms. In Section 4 we brie�y develop the adaptations needed in the scheme to take into account slanted
interfaces and interface crossings, and perform the reduction of the general case with multiple, possibly
crossing interfaces to the case on an isolated interface; we then call upon the convergence analysis of the
model case, showing that it also applies to the general setting. In Section 5, we illustrate the construction
by two examples inspired by concrete applications in pedestrian modeling and in �uid-particle interaction.
Finally, in Section 6 we present some conclusions and comments paving the way for going beyond the
simplifying piecewise constant assumption of the present contribution.

2 Flux and interface coupling structure. Notion of solution, uniqueness

and existence result

Our interest in this contribution goes to interface coupling and its approximation, therefore we assume
that the space-time heterogeneity of the �ux is reduced to the presence of sharp interfaces; in this way we
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avoid technical details related to t and x dependence of f in regions between interfaces. In simple words,
we assume that f is piecewise constant with respect to (t, x). The approximation scheme, the convergence
analysis and the resulting new existence results we obtain can be extended to the more general piecewise
C1 �uxes, but we do not pursue this objective in the present contribution. Note that the multi-dimensional
extension is also feasible. We refer to Remark 2.1, Remark 2.4 and Section 6 for a discussion on feasible
generalizations to �ux heterogeneous between interfaces.

2.1 Piecewise constant �ux

We assume we are given a �nite family of interfaces (yi)i∈[[1;J ]] (J ∈ N∗) de�ned on ]τi, Ti[ (0 ≤ τi < Ti ≤
+∞). Introduce the notations:

∀i ∈ [[1; J ]], Γi = {(t, x) ∈ Ω | t ∈ ]τi, Ti[ and x = yi(t)}. (2.1)

Note that the extension to locally �nite number of interfaces in straightforward. We suppose that for all
i ∈ [[1; J ]], yi ∈ W1,∞(]τi, Ti[). This notation means that what can be seen as crossing points between
interfaces will be considered as endpoints of the interfaces. We denote by (Cm)1≤m≤M the set of all
endpoints of the interfaces Γi, i ∈ [[1; J ]]. As suggested hereabove, we assume that in each of the regions
of the (t, x)-plane delimited by the interfaces, f depends on ρ only (i.e. the �ux is homogeneous in each
such region).

2.2 Germs and Godunov �uxes for interface coupling

Further, to each interface we attach a two-parameter family of subsets of R2 denoted by Gi
s(t), t ∈ ]τi, Ti[,

s ∈ R. In the terminology of [12, 6] recalled in Section 3 below, Gi
s(t) is assumed to be a complete L1D

germ for the couple of �uxes

gis(ρ) = f(t, yi(t)
−, ρ)− sρ, f is(ρ) = f(t, yi(t)

+, ρ)− sρ (∀t ∈ ]τi, Ti[); (2.2)

note that due to the piecewise constant assumption on f , the expressions of gis, f
i
s are actually t-independent.

We will need giẏ(t), f
i
ẏ(t) and Gi

ẏ(t)(t) to de�ne the interface coupling conditions associated with the inter-

faces in the formal problem (1.1), see De�nition 2.2 below; but we exploit Gi
s(t), for s in a vicinity of ẏ(t),

in order to construct approximate solutions via a numerical scheme. The assumption we impose on the
family {Gi

s(t)}t∈ ]τi,Ti[,s∈R is a Carathéodory-kind assumption: the family should be continuous in s and
measurable in t. To this end, we need to de�ne a topology on the set of L1D germs; the one we take is
inferred from our numerical approach and it is described in terms of the Godunov �ux associated to the
Riemann solver determined by the germ at hand. Note that de�nitions of a neighbourhood of a germ and
associated measurability properties were elaborated and discussed in [12, 6], but we elaborate a di�erent
and more practical viewpoint here. For given s ∈ R and a �xed t0 ∈ ]τi, Ti[, consider the �ux (1.2) with
g = gis, f = f is, with interface coupling prescribed (in the sense of [12], see also Section 3 below) by the
maximal L1D germ Gi

s(t0) and with Riemann initial data

ρo(x) =

{
κL if x < 0

κR if x > 0.

This problem admits a unique solution, which we denote RSi
s(κL, κR, t0). Since a maximal L1D germ is

also complete (see [12, 6]), this solution is self-similar, therefore the Godunov �ux

gis
(
RSi

s(κL, κR, t0)
)
|x=0− ≡ f is

(
RSi

s(κL, κR, t0)
)
|x=0+ (2.3)

is well de�ned. We call Fi,int
s (κL, κR, t0) this common value which see as real-valued function, constant in

t. Note that an alternative would be to use the formalism of [39], which directly prescribes the interface
coupling in terms of a Riemann solver de�ned at the interface.
We are now in a position to de�ne the Carathéodory structure on families of germs used in this paper.
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2 FLUX AND INTERFACE COUPLING STRUCTURE

De�nition 2.1. Given i ∈ [[1; J ]] and a family {Gi
s(t)}t∈ ]τi,Ti[,s∈R of maximal L1D germs associated with

�uxes gis, f
i
s, we say that the family is Carathéodory (measurable in t ∈ ]τi, Ti[, continuous in s ∈ R) if for

every (κL, κR) ∈ R2 the associated function

Fi,int(κL, κR) : R× ]τi, Ti[ −→ R

(s, t) 7−→ Fi,int
s (κL, κR, t)

is a Carathéodory function.

Recall that s will stand for ẏ(t) (the slope of the interface) or for its approximations, while t replaces the
�xed value t0 in the de�nition of the Godunov �uxes associated with the family of germs.

2.3 Notion of solution and uniqueness

We are now in a position to de�ne solutions; the de�nition readily leads to uniqueness. For κ ∈ R, denote
by Φ(t, x, ρ, κ) the Kruzhkov entropy �ux corresponding to f(t, x, ρ), i.e.

Φ(t, x, ρ, κ) = sgn(ρ− κ)(f(t, x, ρ)− f(t, x, κ)).

De�nition 2.2. Consider a piecewise constant �ux f : Ω×R → R with a set of interfaces of the form (2.1).
Assume that for each i ∈ [[1; J ]] we are given a family {Gi

s(t)}t∈ ]τi,Ti[,s∈R of maximal L1D germs associated
with �uxes gis, f

i
s in (2.2); assume that this family is Carathéodory, in the sense of De�nition 2.1.

Consider a function ρ ∈ L∞(Ω) such that ρ has strong one-sided traces in the sense of [62, 52] on interfaces
Γi; we denote them γiLρ, γ

i
Rρ : ]τi, Ti[→ R.

We say that such a function ρ is a Gi
s(t)-entropy solution to (1.1) with initial data ρo ∈ L∞(R) if for all

test functions φ ∈ C∞
c (Ω \ ∪J

i=1Γi), φ ≥ 0 and for all κ ∈ R, the classical Kruzhkov entropy inequalities
are satis�ed:

� +∞

0

�
R

(
|ρ− κ|∂tφ+Φ(t, x, ρ, κ)∂xφ

)
dx dt+

�
R
|ρo(x)− κ|φ(0, x) dx ≥ 0 (2.4)

and moreover, for all i ∈ [[1; J ]], for a.e. t ∈ ]τi, Ti[ there holds:(
(γiLρ)(t) , (γ

i
Rρ)(t)

)
∈ Gi

ẏi(t)
(t). (2.5)

Note that it is easy to assess that a solution ρ in the above sense actually belongs to C0(R+,L1
loc(R)) in

the sense that it is time-continuous taking values in the L1
loc space of functions of the space variable; see,

for instance [26, 30].

Remark 2.1. Regarding the assumption of existence of strong one-sided traces for ρ on interfaces Γi,
we have two important comments. First, our existence result will require uniform convexity or uniform
concavity in ρ of the �ux f on each of the regions of the (t, x)-plane delimited by the interfaces. Under
this assumption which implies the genuine nonlinearity of the �ux, existence of strong traces is well known
since [62]. Second, using the machinery of [52], one can circumvent the genuine nonlinearity assumption
with the help of a kind of singular mappings which allow to to de�ne the relevant traces and with the
help of �reduced germs� to replace (2.5) (see [12, Remark 2.2, De�nition 3.5]). For these two reasons, we
consider that the trace assumption is non-restrictive in practice.

Remark 2.2. For the sake of conciseness, in this contribution we have chosen to formulate De�nition 2.2
in the context of piecewise constant f . Extension of this notion of solution to piecewise regular �uxes,
heterogeneous but C1 (or even merely Lipschitz continuous) in (t, x) in regions delimited by the inter-
faces, is straightforward. Note that also the existence of strong one-sided interface traces extends to this
framework under mild assumptions, see in particular [4, 33, 50].
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2 FLUX AND INTERFACE COUPLING STRUCTURE

The uniqueness proof under the assumption of a �nite number of interfaces is standard (see, in particular,
[12, 15]; see also [57, Theorem 1.11]; moreover, even in the much more general situation of SBV �uxes
uniqueness is proved in [33]. We state the corresponding claim for the sake of completeness, along with
the L1 contraction result.

Theorem 2.3. In the situation of De�nition 2.2, there exists at most one Gi
s(t)-entropy solution for

every initial datum ρo ∈ L∞(R), moreover, if ρ̂o ∈ L∞(R) with ρ̂o − ρo ∈ L1(R) and ρ̂ is the associated
Gi
s(t)-entropy solution, then for all t > 0 there holds

∥ρ̂(t, ·)− ρ(t, ·)∥L1(R) ≤ ∥ρ̂o − ρo∥L1(R).

Note also that the continuous dependence on interface coupling conditions can be obtained along the same
line of argumentation, see [12, Proposition 3.21] for a prototype statement.

Finally, note that the Carathéodory assumption on the family {Gi
s(t)}t∈ ]τi,Ti[,s∈R plays no role in the

uniqueness proof (De�nition 2.2 makes sense and the uniqueness argument applies under a weaker as-
sumption of measurability of the family {Gi

ẏi(t)
(t)}t∈ ]τi,Ti[, cf. [6, Appendix], is enough); actually, we will

exploit the Carathéodory assumption on the family of germs for the sake of proving existence of solutions.
Moreover, we expect that the Carathéodory assumption is important for stability of solutions under per-
turbation of interface locations. To sum up, we believe that this assumption is an important one on the
way to a consistent theory of problem (1.1) and therefore, we have included it into De�nition 2.2.

2.4 Adapted entropy inequalities and existence result

De�nition 2.2 is particularly well suited for uniqueness proof, but it cannot be used directly to establish
existence of solutions. It became standard in the literature to use di�erent kinds of �adapted entropy
inequalities� in order to describe the interface coupling, in the place of (2.5). A typical well-posedness
proof (cf. [12]) then consists in proving existence for the adequate adapted entropy formulation, and
proving uniqueness by deriving explicit trace conditions that can be cast under the form (2.5). In the
case of tra�c models with �ux limitation, following [29] one uses entropy inequalities of Kruzhkov (with
a constant value κ) with a remainder term R(κ) supported by the interface; see [29, De�nition 3.2], [56,
De�nition 2.1] or [57, De�nition 2.1]. The choice of a constant κ can be done for the vanishing viscosity
interface coupling, see [45, 46]. The corresponding remainder term R(κ) appears quite naturally even in a
very general context, see [54], but this natural formulation leads to uniqueness only if the so-called crossing
condition is ful�lled (see [12]). The case without the crossing condition is signi�cantly more delicate but it
can be handled as well by introducing a singular form of remainder term R(κ), see [15, 32] (see also [47]).

However, the presence of remainder terms supported on the interfaces is not the main adaptation of the
classical Kruzhkov entropy conditions. Adapted entropy inequalities with κ that may jump across interface
o�er more �exibility; e.g., in many situations including the road tra�c with limited �ux, only one entropy
inequality (with a special choice of the piecewise constant function κ) is needed, see [23, 10, 7] and [12,
Sections 4.8, 4.9]. However, beyond the homogeneous situation with constant in time choice of coupling
across interfaces, adapted entropy inequalities should be written for arbitrary choice of the piecewise
constant κ, which jumps across the interfaces of f , see in particular [11, 15]; these inequalities incorporate
a remainder term that depends both upon the piecewise constant κ and on the prescribed coupling (i.e.
on the given family of germs along interfaces).

We start by reformulating the de�nition of Gi
s(t)-entropy solution under the form of adapted entropy

inequalities which incorporate a remainder term Ri
ẏi(t)

(κL, κR, t) di�erent from those previously proposed

in [12, 6] but satisfying the key structural properties that eventually lead to the equivalence with the
formulation of De�nition 2.2. More precisely, we �rst derive the trace property (2.5) from the adapted
entropy inequalities (2.7) stated in Proposition 2.4. As a consequence of the uniqueness of Gi

s(t)-entropy
solution (Theorem 2.3), the reciprocal implication of Proposition 2.4 can be proved as soon one can ensure
the existence of solutions in the sense of inequality (2.7), see Remark 3.4.
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2 FLUX AND INTERFACE COUPLING STRUCTURE

Proposition 2.4. Consider a piecewise constant �ux f : Ω × R → R with a set of interfaces of the form
(2.1). Assume that for each i ∈ [[1; J ]], we are given a family {Gi

s(t)}t∈ ]τi,Ti[,s∈R of maximal L1D germs
associated with �uxes gis, f

i
s in (2.2); assume that this family is Carathéodory, in the sense of De�nition 2.1.

Denote by K the set of all the functions, piecewise on Ω, that share the same interfaces as f . For a function
κ ∈ K and i ∈ [[1; J ]], we denote by kiL, k

i
R the one-sided limits of κ on Γi (being κiL = κ(t, yi(t)

−) and
κiR = κ(t, yi(t)

+) for all t ∈ ]τi, Ti[).
De�ne for all i ∈ [[1; J ]], t ∈ ]τi, Ti[, s ∈ R and (κL, κR) ∈ R2 the "remainder term"

Ri
s(κL, κR, t) :=

∣∣g(κL)− Fi,int
s (κL, κR, t)

∣∣+ ∣∣Fi,int
s (κL, κR, t)− f(κR)

∣∣ , (2.6)

where Fi,int
s (·, ·, t) is the Godunov �ux de�ned in (2.3) associated with the germ family {Gi

s(t)}t∈ ]τi,Ti[,s∈R.

Assume that ρ ∈ L∞(Ω) satis�es, for all test functions φ ∈ C∞
c (Ω), φ ≥ 0 and for all κ ∈ K, the following

adapted entropy inequalities:

� +∞

0

�
R

(
|ρ− κ|∂tφ+Φ(t, x, ρ, κ)∂xφ

)
dx dt+

�
R
|ρo(x)− κ|φ(0, x) dx

+
J∑

i=1

� Ti

τi

Ri
ẏi(t)

(κL, κR, t)φ(t, yi(t)) dt ≥ 0.

(2.7)

Then ρ is the Gi
s(t)-entropy solution to (1.1) with initial data ρo ∈ L∞(R).

Remark 2.3. As demonstrated in [57], in the context of formulations of the kind (2.7) we can replace the
set C∞

c (Ω) for the test functions by C∞
c (Ω \ ∪M

m=1Cm). This permits to relax, in a small vicinity of the
cross-points Cm, the consistency constraints on the approximation procedure used to construct solutions,
see Section 4.2.

With this reformulation of the notion of solution we are concerned with, we are in a position to state the
main result of the paper.

Theorem 2.5. Consider a piecewise constant �ux f : Ω×R → R with a set of interfaces of the form (2.1).
Assume that for each i ∈ [[1; J ]] we are given a family {Gi

s(t)}t∈ ]τi,Ti[,s∈R of maximal L1D germs associated
with �uxes gis, f

i
s in (2.2); assume that this family is Carathéodory, in the sense of De�nition 2.1.

Assume moreover that the following con�nement assumption holds:

∃a, b ∈ R : a < b and for a.e. (t, x) ∈ Ω f(t, x, a) = a, f(t, x, b) = b. (2.8)

Assume further that f is C2 in the state variable ρ ∈ [a, b] for a.e. (t, x) ∈ Ω and that the uniform
convexity/concavity assumption holds:

∃c > 0, ∀ρ ∈ [a, b], |∂2ρf(t, x, ρ)| ≥ c. (2.9)

Finally, suppose that for each i ∈ [[1; J ]],

(κL, κR, s, t) 7→ Fi,int
s (κL, κR, t) (2.10)

is Lipschitz continuous on [a, b]2 uniformly in t ∈ ]τi, Ti[ and locally uniformly in s ∈ R.
Then for any initial datum ρo ∈ L∞(R) taking values in [a, b], there exists a Gi

s(t)-entropy solution (which
is unique, due to Theorem 2.3) of the discontinuous-�ux conservation law (1.1). Moreover, it can be
obtained as the limit of a sequence of approximate solutions generated by a �nite volume numerical scheme
described in Section 4.
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2 FLUX AND INTERFACE COUPLING STRUCTURE

Let us stress that, due to the piecewise constant in (t, x) structure of f , assumption (2.9) is a concise way to
state that, in each of the regions delimited by the interfaces Γi, f is either subject to the uniform convexity
or to the uniform concavity assumption. Observe that the change of convexity across the interface is
relevant, e.g., in the Hughes model of pedestrian evacuation [5], cf. Section 5. Further, Assumption (2.8)
is a standard way to ensure uniform L∞ bounds on the approximate solutions (see, e.g., [46]); for instance
in tra�c and porous media models, it is satis�ed with [a, b] = [0, 1], the physical range of the state variable.
Next, we guess that Assumption (2.10) is veri�ed in all practical cases. In particular, for the interface
coupling based on transmission maps (see Section 2.5 below) the Lipschitz property is checked in [8],
while for the �ux-limitation coupling considered in [57], this property is obvious from the de�nition of the
Godunov �ux (see in particular [27] for the de�nition of the Godunov �ux in this case).
We stress that the convergence and existence result of Theorem 2.5 requires strong compactness of the
sequence of approximate solutions. Robust local compactness arguments that do not depend on the
choice of the interface coupling are most appropriate in our setting. The standard and popular approach
of this kind is based upon compensated compactness (or, in more involved variants, on parametrized
H-measures [51, 54]). Because our contribution exploits extensively the work [57], we borrow to [57,
Appendix A] (adapted from the work [60]) a di�erent local compactness argument, based upon one-sided
Lipschitz (OSL) regularization property of local entropy solutions and some of their approximations. This
argument requires the assumption of uniform convexity or concavity of the �uxes f is. Three remarks are
in order.

Remark 2.4. The OSL compactness technique we use in this paper does extend to t-dependent �ux in
regions between interfaces, see [60, 56], but is is not clear that it can be extended to x-dependent �ux in
regions between the interfaces.

Remark 2.5. Compensated compactness tools would permit to justify the existence and convergence
result of Theorem 2.5 under weaker assumptions on the genuine nonlinearity of f with respect to ρ in
each of the subdomains separated by interfaces, moreover, smooth (t, x)-dependence can be handled in
this framework at the price of lengthy but standard technicalities. We refer to [46] for such arguments, in
the setting of a Lax-Friedrichs scheme with a meshing di�erent from the one we consider in the present
work. Furthermore, the compensated compactness approach can be applied to multi-dimensional scalar
conservation laws. Multi-dimensional variants of the localization arguments, reducing intricate interface
geometries to the basic case of plane interfaces analogous to what we do in Section 4, should be detailed
in this case. These technical developments are left for future work.

Remark 2.6. As soon as the existence of a solution is established for a dense set of initial data, the
weak convergence methods (see, e.g., the "entropy process" framework put forward in [38]) can be applied
to justify convergence of other numerical schemes that are consistent with the weak formulation and
the adapted entropy inequalities. We refer to [12, Theorem 3.28, Theorem 6.5] and [10] for this line of
argumentation.

2.5 The example of transmission map coupling

In [57], the example of �ux limitation interface coupling was treated; here, let us observe that the asso-
ciated family of germs is indeed Carathéodory, due to the continuity in s of the �uxes gis, f

i
s and to the

measurability of the constraints t 7→ qi(t). Moreover, the remainder term denoted by R(κ, qi(t)) used in
[10, 56, 57], for the choice of constant κ, is precisely Ri

s(κ, κ, t) in our framework.
In this section, let us provide another important example of interface coupling ful�lling the Carathéodory
assumption, and give the explicit expression of the associated Godunov �uxes. This example is based upon
[8], see also [6] for a summary. For the sake of conciseness, let us consider the case of a single interface
de�ned for t ∈ ]0,+∞[, i.e. J = 1; in this case, we drop the interface label i in the notation. Given �uxes
g, f on [a, b] ⊂ R such that g(a) = f(a) and g(b) = f(b), set

gs(ρ) = g(ρ)− sρ, fs(ρ) = f(ρ)− sρ
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3 THE MODEL CASE

and denote by Godgs,Godfs : [a, b]2 → R the Godunov �uxes associated to gs, fs, respectively. The
explicit formula for the Godunov �uxes shows that the dependence of Godgs(κL, κR),Godfs(κL, κR) on
s is continuous.
To de�ne the interface coupling, given {β(t)}t∈ ]0,+∞[ a family of maximal monotone graphs in R×R, we
can de�ne for all s ∈ R and t ∈ ]τi, Ti[ the maximal L1D germ

Gs(t) =
{
(ρL, ρR) ∈ [a, b]2 , ∃(k−, k+) ∈ β(t) such that

gs(ρL) = (Godgs)(ρL, k−) = (Godfs)(k+, ρR) = fs(ρR)
}

and the associated interface Godunov �ux

Fint
s (κL, κR, t) = (Godgs)(κL, k−) = (Godfs)(k+, κR), (2.11)

where (k−, k+) ∈ β(t), being understood that the equality

(Godgs)(κL, k−) = (Godfs)(k+, κR)

may not de�ne uniquely the couple (k−, k+) ∈ β(t) but their common value is de�ned uniquely. We refer
to [8] for the justi�cation of the above claims. Note that the case β(t) = Id corresponds to the fundamental
case of vanishing viscosity interface coupling.
We point out that the family {Gi

s(t)}t∈ ]0,+∞[,s∈R is Carathéodory, in the sense of De�nition 2.1, provided
the family {β(t)}t∈]0,+∞[ is measurable in a natural sense. To this end, let us represent any maximal
monotone graph β in R× R as

β = {(πL(p), πR(p)) , p ∈ R},

where πL,R : R → R are 1-Lipschitz non-decreasing functions verifying πL(p)+πR(p) = p for all p ∈ R. In
other words, we parametrize β by the sum p = κL+κR of the two components of a point (κL, κR) ∈ β. Then
the natural way to impose measurability of a family {β(t)}t is to consider the corresponding parametriza-
tions πL,R(t, ·) and require that these functions be Carathéodory. Then, in view of the construction (2.11),
it is clear that, given (κL, κR), (s, t) 7→ Fint

s (κL, κR, t) is continuous with respect to s because the Godunov
�uxes are continuous with respect to s; and measurable with respect to t because they are obtained solving
an equation of the form Fs(t, p) = 0 for a measurable in t, monotone and continuous in p function Fs.

3 The basic ingredients in the model case with variable interface cou-

pling

Let us now provide the key tools to our study for the model case (1.1)-(1.2) with a time-dependent
coupling at the interface {x = 0}. Therefore, in this section, we consider a �ux f : Ω × R → R given
by (1.2) verifying the con�nement assumption (2.8) and the the uniform convexity/concavity assumption
(2.9) with f, g ∈ C2([a, b]). Throughout the section, we denote by Φf (resp. Φg) the classical Kruzhkov
entropy �ux associated with f (resp. g) so that:

∀x ∈ R∗, ∀ρ, κ ∈ [a, b], Φ(x, ρ, κ) =

{
Φg(ρ, κ) if x < 0

Φf (ρ, κ) if x > 0.

Suppose also that we are given a family {G(t)}t>0 of maximal L1D germs associated with �uxes f and g.
We suppose that this family is Carathéodory in the sense of De�nition 2.1 which, in this context, means
that for all κL, κR ∈ [a, b], the associated function

t ∈ R 7→ Fint(κL, κR, t)

is a Carathéodory function.
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3 THE MODEL CASE

3.1 Stability and uniqueness

For the sake of completeness, we recall the abstract de�nition of L1D germ, see [12, De�nition 3.1] or [6,
De�nition 1.1]. We restrict ourselves to subsets of [a, b]2 in view of the con�nement assumption veri�ed
by f and g.

De�nition 3.1. A family {G(t)}t>0 of subsets of [a, b]2 is called L1D germ associated with �uxes f, g if
for all t > 0:

(i) for all (κL, κR) ∈ G(t), g(κL) = f(κR);

(ii) for all (κL, κR), (cL, cR) ∈ G(t),

Φg(κL, cL)− Φf (κR, cR) ≥ 0. (3.1)

We say that the family is maximal if for all t > 0, G(t) is not a strict subset of some other L1D germ.

Remark 3.1. With this convention, it is readily seen that any maximal L1D germ G(t) associated with
�uxes f, g verifying the con�nement condition (2.8) contains the couples (a, a) and (b, b).

Let us give the arguments of the proof of Theorem 2.3 for this model case. Following the proof of [57,
Lemma 2.7], we derive the Kato inequality:

� +∞

0

�
R

(
|ρ− ρ̂|∂tφ+Φ(x, ρ, ρ̂)∂xφ

)
dx dt+

�
R
|ρo(x)− ρ̂o(x)|φ(0, x) dx

+

� +∞

0

(
Φf (γRρ(t), γRρ̂(t))− Φg (γLρ(t), γLρ̂(t))

)
φ(t, 0) dt ≥ 0.

The L1D dissipativity assumption on the family of germs {G(t)}t>0 (3.1) ensures that for a.e. t > 0,

Φf (γRρ(t), γRρ̂(t))− Φg (γLρ(t), γLρ̂(t)) ≤ 0.

Upon a suitable choice of test function, see the proof of [57, Theorem 2.8], the stability estimate of Theorem
2.3 follows. This leads to uniqueness.

3.2 Adapted entropy inequalities with the Godunov remainder terms

We now turn to the proof of Proposition 2.4 where the remainder term becomes:

R(κL, κR, t) =
∣∣g(κL)− Fint(κL, κR, t)

∣∣+ ∣∣Fint(κL, κR, t)− f(κR)
∣∣ .

Recall that for t > 0 and κL, κR ∈ [a, b], Fint(κL, κR, t) denotes the Godunov �ux associated with the
family {G(t)}t>0. We start with the following lemma.

Lemma 3.2. Let (κL, κR) ∈ [a, b].

(κL, κR) ∈ G(t) =⇒ ∀t > 0, R(κL, κR, t) = 0.

Proof. Indeed, saying that (κL, κR) ∈ G(t) means that the piecewise constant function

κ(x) =

{
κL if x < 0
κR if x > 0

is the unique solution in the sense of De�nition 2.2 to the problem (1.1) with the �ux (1.2) and with initial
data ρo = κ. Consequently, for all t > 0,

g(κL) = Fint(κL, κR, t) = f(κR) and ∀t > 0, R(κL, κR, t) = 0,

concluding the proof. □
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3 THE MODEL CASE

We now turn to the proof of Proposition 2.4.

Suppose that ρ veri�es (2.7). Clearly, ρ satis�es (2.4) if φ ∈ C∞
c (Ω), φ ≥ 0 vanishes along the interface

{x = 0}. Following the proof of [57, Proposition 2.6], we obtain:
� +∞

0

(
Φg(γLρ(t), κL)− Φf (γRρ(t), κR) +R(κL, κR, t)

)
φ(t, 0) dt ≥ 0. (3.2)

Since t 7→ R(κL, κR, t) is measurable and bounded, the function t 7→ R(κL, κR, t) belongs to L
1
loc( ]0,+∞[).

Consequently, almost every t > 0 is a Lebesgue point of this function. From (3.2), we deduce that for a.e.
t > 0,

Φg(γLρ(t), κL)− Φf (γRρ(t), κR) +R(κL, κR, t) ≥ 0.

In particular, using Lemma 3.2,

∀(κL, κR) ∈ {G(t)}t>0, for a.e. t > 0, Φf (γRρ(t), κR) ≤ Φg(γLρ(t), κL). (3.3)

This last inequality implies that

for a.e. t > 0,
(
(γLρ)(t) , (γRρ)(t)

)
∈ G(t)

by maximality (and therefore completeness, see [12, 6]) of the family of germs. We proved that ρ is a
Gi
s(t)-entropy solution to (1.1) with initial data ρo ∈ L∞(R, [a, b]).

Remark 3.2. In the case of an interface coupling like the one [56], a case by case study ensures that a
G(t)-entropy solution to (1.1) veri�es inequality (2.7) as well, see the proof of [57, Proposition 2.6].

3.3 Finite volume scheme, compactness and convergence

We turn to the proof of the existence statement (Theorem 2.5) with the construction of �nite volume
scheme for which we prove the convergence. Let us recall some standard notations.

For a �xed spatial mesh size ∆x > 0 and time mesh size ∆t > 0, let xj = j∆x (j ∈ Z) and tn = n∆t
(n ∈ N). Set λ = ∆t/∆x. We de�ne the cell grids:

Ω =
⋃
n∈N

⋃
j∈Z

Pn
j+1/2, Pn

j+1/2 = [tn, tn+1[ × ]xj , xj+1[.

For n ∈ N and j ∈ Z, let us denote ρnj+1/2 an approximation of the solution ρ on Pn
j+1/2.

Let ρo ∈ L∞(R, [a, b]), where a, b ∈ R are the numbers de�ned in the con�nement assumption 2.8 veri�ed
by f and g. We denote by Ff = Ff (u, v) (resp. Fg = Fg(u, v)) any monotone numerical �ux associated
with f (resp. g). Following the assumptions of Theorem 2.5, we assume that (κL, κR) 7→ Fint(κL, κR, ·) is
Lipschitz continuous on [a, b]2, uniformly on t > 0. This can be expressed as:

∃C > 0, ∀t > 0, ∀x, y, u, v ∈ [a, b],∣∣Fint(x, y, t)− Fint(u, v, t)
∣∣ ≤ C (|x− u|+ |y − v|) . (3.4)

In the analysis below, the following properties of the Godunov �ux (κL, κR, t) 7→ Fint(κL, κR, t) are used
in addition to (3.4).

Lemma 3.3. The Godunov �ux de�ned in Section 2.2 has the following properties:

(i) for all t > 0, Fint(·, ·, t) is nondecreasing with respect to its �rst argument and nonincreasing with
respect to its second argument;

(ii) for all t > 0,
g(a) = Fint(a, a, t) = f(a), g(b) = Fint(b, b, t) = f(b). (3.5)
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3 THE MODEL CASE

Proof. Point (i) follows from the order-preservation property encoded in L1D germs via the Crandall-
Tartar Lemma (see [9]). Point (ii) comes from the fact that the couples (a, a) and (b, b) belong to {G(t)}t>0

(see Remark 3.1). Identites (3.5) follow as in the proof of Lemma 3.2. □

We now proceed to the de�nition of the scheme. Fix n ∈ N and j ∈ Z. Away from the interface, i.e. for
j /∈ {−1, 0}, our scheme reduces to a classical three-point �nite volume scheme on a uniform grid. More
precisely,

ρn+1
j+1/2 = ρnj+1/2 − λ(Fg(ρ

n
j+1/2, ρ

n
j+3/2)− Fg(ρ

n
j−1/2, ρ

n
j+1/2)), j ≤ −2 (3.6)

and
ρn+1
j+1/2 = ρnj+1/2 − λ(Ff (ρ

n
j+1/2, ρ

n
j+3/2)− Ff (ρ

n
j−1/2, ρ

n
j+1/2)), j ≥ 1. (3.7)

To handle the coupling at the interface, introduce the mean numerical �ux

Godn
int(ρ

n
−1/2, ρ

n
1/2) =

1

∆t

� tn+1

tn
Fint(ρn−1/2, ρ

n
1/2, t) dt (3.8)

and use it to de�ne the numerical solution in the remaining cells:

ρn+1
−1/2 = ρn−1/2 − λ(Godn

int(ρ
n
−1/2, ρ

n
1/2)− Fg(ρ

n
−3/2, ρ

n
−1/2)). (3.9)

and
ρn+1
1/2 = ρn1/2 − λ(Ff (ρ

n
1/2, ρ

n
3/2)−Godn

int(ρ
n
−1/2, ρ

n
1/2)). (3.10)

For the sake of simplicity, we choose Ff and Fg equal to one of the standard numerical �uxes: Rusanov,
Lax-Friedrichs, Godunov or Engquist-Osher. This way, the CFL condition reduces to

2 max
{
∥f ′∥L∞ , ∥g′∥L∞ , C

}︸ ︷︷ ︸
:=L

λ ≤ 1, (3.11)

with C de�ned in (3.4).

3.3.1 Stability and discrete entropy inequalities

Lemma 3.4 (L∞ stability). The numerical scheme (3.6)-(3.10) is monotone and stable:

∀n ∈ N, ∀j ∈ Z, ρnj+1/2 ∈ [a, b]. (3.12)

Proof. The monotonicity of the scheme follows from the same arguments used in the proof of [56,
Proposition] for instance. Note in particular that the Godunov interface �uxes Fint are monotone (which
implies the monotonicity of Godn

int due to (3.8). The stability estimate is proved by induction with the
introduction, for all n ∈ N and j ∈ Z, of the function Hn

j = Hn
j (x, y, z) used to express ρn+1

j+1/2 from ρnj−1/2,
ρnj+1/2 and ρnj+3/2. More precisely,

∀j ∈ Z (j ≤ −2), ∀u, v, w ∈ [a, b], Hn
j (u, v, w) = v − λ(Fg(v, w)− Fg(u, v))

or
∀u, v, w ∈ [a, b], Hn

0 (u, v, w) = v − λ(Godn
int(v, w)− Fg(u, v)).

The key point of the proof is the fact that a and b are stationary states of the scheme. Indeed, as a
consequence of Lemma 3.3 (iii), we have:

∀n ∈ N, ∀j ∈ Z, Hn
j (a, a, a) = a and Hn

j (b, b, b) = b.

We refer to the proof of [56, Proposition] for more precise details. □
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Corollary 3.5 (Discrete entropy inequalities). Fix κL, κR ∈ [a, b] and de�ne

∀j ∈ Z, κj+1/2 = κL1{j≤−1} + κR1{j≥0}.

Then the numerical scheme (3.6)-(3.10) ful�lls the following discrete entropy inequalities for all n ∈ N and
j ∈ Z: (

|ρn+1
j+1/2 − κj+1/2| − |ρnj+1/2 − κj+1/2|

)
∆x

≤


−
(
Φn
j+1 − Φn

j

)
∆t if j /∈ {−1, 0}

−
(
Φn
int − Φn

−1

)
∆t+ |g(κL)−Godn

int(κL, κR)|∆t if j = −1

− (Φn
1 − Φn

int)∆t+ |Godn
int(κL, κR)− f(κR)|∆t if j = 0,

(3.13)

where Φn
j and Φn

int are the numerical entropy �uxes:

Φn
j =

 Fg(ρ
n
j−1/2 ∨ κL, ρ

n
j+1/2 ∨ κL)− Fg(ρ

n
j−1/2 ∧ κL, ρ

n
j+1/2 ∧ κL) if j ≤ −1

Ff (ρ
n
j−1/2 ∨ κR, ρ

n
j+1/2 ∨ κR)− Ff (ρ

n
j−1/2 ∧ κR, ρ

n
j+1/2 ∧ κR) if j ≥ 1

Φn
int = Godn

int(ρ
n
−1/2 ∨ κL, ρ

n
1/2 ∨ κR)−Godn

int(ρ
n
−1/2 ∧ κL, ρ

n
1/2 ∧ κR).

Proof. This is mostly a consequence of the scheme monotonicity. Fix n ∈ N and j ∈ Z. Suppose �rst
that j /∈ {−1, 0}. In this case, all the constant states κL, κR ∈ [a, b] are stationary solutions of the scheme.
Consequently,

|ρn+1
j+1/2 − κj+1/2| = ρn+1

j+1/2 ∨ κj+1/2 − ρn+1
j+1/2 ∧ κj+1/2

= Hn
j

(
ρnj−1/2, ρ

n
j+1/2, ρ

n
j+3/2

)
∨Hn

j (κj+1/2, κj+1/2, κj+1/2)

−Hn
j

(
ρnj−1/2, ρ

n
j+1/2, ρ

n
j+3/2

)
∧Hn

j (κj+1/2, κj+1/2, κj+1/2)

≤ Hn
j

(
ρnj−1/2 ∨ κj+1/2, ρ

n
j+1/2 ∨ κj+1/2, ρ

n
j+3/2 ∨ κj+1/2

)
−Hn

j

(
ρnj−1/2 ∧ κj+1/2, ρ

n
j+1/2 ∧ κj+1/2, ρ

n
j+3/2 ∧ κj+1/2

)
= |ρn+1

j+1/2 − κj+1/2| − λ(Φn
j+1 − Φn

j ),

which is exactly (3.14) in the case j /∈ {−1, 0}.
Suppose now that j = −1 for instance. The previous observation regarding the constants κL, κR ∈ [a, b]
is not longer valid in this case since

Hn
−1(κL, κL, κR) = κL − λ (Godn

int(κL, κR)− g(κL)) .

Instead, we deduce:

Hn
−1

(
ρn−3/2 ∧ κL, ρ

n
−1/2 ∧ κL, ρ

n
3/2 ∧ κR

)
− λ (Godn

int(κL, κR)− g(κL))
−

≤ κL ≤ Hn
−1

(
ρn−3/2 ∨ κL, ρ

n
−1/2 ∨ κL, ρ

n
3/2 ∨ κR

)
+ λ (Godn

int(κL, κR)− g(κL))
+ ,
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where we denoted by z+ (resp. z−) the positive part (resp. negative part) of the real number z. We
deduce:

|ρn+1
−1/2 − κL| = ρn+1

−3/2 ∨ κL − ρn+1
−3/2 ∧ κL

≤ Hn
−1

(
ρn−3/2 ∨ κL, ρ

n
−1/2 ∨ κL, ρ

n
1/2 ∨ κR

)
+ λ (Godn

int(κL, κR)− g(κL))
+

−Hn
−1

(
ρn−3/2 ∧ κL, ρ

n
−1/2 ∧ κL, ρ

n
1/2 ∧ κR

)
+ λ (Godn

int(κL, κR)− g(κL))
−

= |ρn−1/2 − κL| − λ
(
Φn
int − Φn

−1

)
+ λ |Godn

int(κL, κR)− g(κL)| ,
which is exactly (3.13) in the case j = −1. The obtaining of (3.13) in the case j = 0 is similar so we omit
the details of the proof for this case. □

We now derive continuous entropy inequalities similar to (2.7) veri�ed by ρ∆. Let us de�ne the approximate
entropy �ux:

Φ∆ (x, ρ∆, κ) =
∑
n∈N

∑
j∈Z∗

Φn
j 1[tn,tn+1[×]xj ,xj+1[

and the approximate remainder term: if t ∈ [tn, tn+1[,

R∆(κL, κR, t) = |g(κL)−Godn
int(κL, κR)|+ |Godn

int(κL, κR)− f(κR)| .

Proposition 3.6 (Approximate entropy inequalities). Fix κL, κR ∈ [a, b] and de�ne

κ = κL1{x<0} + κR1{x>0}.

Let φ ∈ C∞
c (Ω), φ ≥ 0. Fix n ∈ N and κ ∈ [0, 1]. Then as ∆ → 0, we have� T

0

�
R

(
|ρ∆ − κ|∂tφ+Φ∆ (x, ρ∆, κ) ∂xφ

)
dx dt+

�
R
|ρ0∆ − κ|φ(0, x) dx

+

� T

0
R∆(κL, κR, t)φ(t, 0) dt ≥ O(∆x) +O(∆t) .

(3.14)

Proof. For the sake of clarity, let us introduce the following notations:

∀n ∈ N, Rn
L = |g(κL)−Godn

int(κL, κR)| ; Rn
R = |Godn

int(κL, κR)− f(κR)| .

Fix n ∈ N. Let us multiply the discrete entropy inequalities (3.13) by φn+1
j+1/2∆x and sum over j ∈ Z:∑

j∈Z

∣∣∣ρn+1
j+1/2 − κ

∣∣∣φn+1
j+1/2∆x ≤

∑
j∈Z

j /∈{−1,0}

(∣∣∣ρnj+1/2 − κ
∣∣∣∆x− (Φn

j+1 − Φj)
n∆t

)
φn+1
j+1/2

+ |ρn−1/2 − κ|φn+1
−1/2∆x−

(
Φn
int − Φn

−1

)
φn+1
−1/2∆t+Rn

Lφ
n+1
−1/2∆t

+ |ρn1/2 − κ|φn+1
1/2 ∆x− (Φn

1 − Φn
int)φ

n+1
1/2 ∆t+Rn

Rφ
n+1
1/2 ∆t.

We now proceed to the Abel's transformation as well as adding some quantities and their opposites to
obtain: ∑

j∈Z

∣∣∣ρn+1
j+1/2 − κ

∣∣∣φn+1
j+1/2∆x−

∑
j∈Z

∣∣∣ρnj+1/2 − κ
∣∣∣φn

j+1/2∆x

−
∑
j∈Z

∣∣∣ρnj+1/2 − κ
∣∣∣ (φn+1

j+1/2 − φn
j+1/2

)
∆x ≤

∑
j∈Z

Φn
j

(
φn+1
j+1/2 − φn+1

j−1/2

)
∆t︸ ︷︷ ︸

A

+
(
Rn

Lφ
n+1
−1/2 ++Rn

Rφ
n+1
1/2

)
∆t︸ ︷︷ ︸

B

+(Φn
int − Φn

0 )(φ
n+1
1/2 − φn+1

−1/2)∆t︸ ︷︷ ︸
C

.
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3 THE MODEL CASE

The left-hand side of this inequality is equal to�
R
|ρ∆(tn+1, x)− κ|φ(tn+1, x) dx−

�
R
|ρ∆(tn, x)− κ|φ(tn, x) dx

−
� tn+1

tn

�
R
|ρ∆ − κ|∂tφdx dt .

We now estimate the members of the right-hand side.

Estimating A. We write:

A = ∆t

�
R
Φ∆(ρ∆, κ)∂xφ(t

n+1, x) dx+ λ
∑
j∈Z

� xj+1

xj

� x

x−∆x

� y

x
Φn
j ∂

2
xxφ(t

n, z) dz dy dx︸ ︷︷ ︸
A1

=

� tn+1

tn

�
R
Φ∆(ρ∆, κ)∂xφdx dt+A1 +

� tn+1

tn

�
R

� tn+1

t
Φ∆(ρ∆, κ)∂

2
txφ(τ, x) dτ dx dt︸ ︷︷ ︸

A2

,

and we have the estimations:

|A1| ≤ 4L sup
t≥0

∥∂2xxφ(t, ·)∥L1∆x∆t, |A2| ≤ L sup
t≥0

∥∂2txφ(t, ·)∥L1∆t2.

Estimating B.

B = Rn
L

(
φ(tn+1, 0) +

1

∆x

� 0

−∆x
(φ(tn+1, x)− φ(tn+1, 0))︸ ︷︷ ︸

≤∥∂xφ∥L∞∆x

dx

)
∆t

+Rn
R

(
φ(tn+1, 0) +

1

∆x

� ∆x

0
(φ(tn+1, x)− φ(tn+1, 0))︸ ︷︷ ︸

≤∥∂xφ∥L∞∆x

dx

)
∆t

= R∆(κL, κR, t
n)φ(tn+1, 0)∆t+O(∆x∆t)

=

� tn+1

tn
R∆(κL, κR, t)φ(t, 0) dt+

� tn+1

tn
R∆(κL, κR, t)

(
φ(tn+1, 0)− φ(t, 0)

)
dt︸ ︷︷ ︸

≤(∥g∥L∞+∥f∥L∞ )∥∂tφ∥L∞∆t2

+O(∆x∆t)

=

� tn+1

tn
R∆(κL, κR, t)φ(t, 0) dt+O(∆x∆t) +O

(
∆t2

)
.

Estimating C. Finally,
|C| ≤ (2L)∆x∆t,

concluding the proof of the statement. □

Remark 3.3. If φ is supported in time in some [0, T ] (T > 0), with T ∈ [tN , tN+1[, then by summing
(3.14) over n ∈ [[0;N + 1]], we obtain:

� T

0

�
R

(
|ρ∆ − κ|∂tφ+Φ∆ (x, ρ∆, κ) ∂xφ

)
dx dt+

�
R
|ρ0∆ − κ|φ(0, x) dx

+

� T

0
R(κL, κR, t)φ(t, 0) dt ≥ O(∆x) +O(∆t) .

(3.15)
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4 MULTI-INTERFACE PROBLEM WITH GENERAL INTERFACE COUPLING

3.3.2 Compactness and convergence

We now prove existence of solutions in the sense of inequality (2.7).
The compactness of the sequence (ρ∆)∆ is obtained by deriving local BV bounds. Since f and g are
assumed to have uniform convexity/convexity, we can use the OSL technique put forward by [60] and
described in detail in [57, Appendix]. This technique "does not see" the interface coupling. This provides
the existence of ρ ∈ L∞(Ω, [a, b]) such that a subsequence of (ρ∆)∆ converges to ρ a.e. on Ω. To pass to
the limit in (3.15) and conclude the analysis, we need to ensure that

� T

0
R∆(κL, κR, t)φ(t, 0) dt −→

∆→0

� T

0
R(κL, κR, t)φ(t, 0) dt .

This convergence claim comes from the measurability and the boundedness of t 7→ R(κL, κR, t). Since
t 7→ R∆(κL, κR, t) is obtained by taking the mean values of t 7→ R(κL, κR, t) on a uniform grid, we
are ensured that for all Lebesgue points t > 0 of R(κL, κR, ·) (which are a.e. t > 0), (R∆(κL, κR, t))∆
converges to R(κL, κR, t). This last ingredient implies that by letting ∆ → 0 in (3.15), we obtain that ρ
satis�es (2.7).

Remark 3.4. As mentioned after Proposition 2.4, now that we proved the existence of solutions in the
sense of inequality (2.7), we can prove, under the assumptions of Theorem 2.5, the uniqueness for the
adapted entropy formulation (2.7) and the reciprocal statement of Proposition 2.4.
First, let us observe that combining the last step of the convergence proof reasoning and Section 3.2, we
proved a well-posedness result for solutions in the sense of inequality (2.7). Existence is obtained by the
scheme. Moreover, two solutions in the sense of inequality (2.7) are also G(t)-entropy solutions by Section
3.2; for those solutions we have uniqueness, see Theorem 2.3, leading to uniqueness for the adapted entropy
formulation of Proposition 2.4.
Now �x ρo ∈ L∞(R, [a, b] and suppose that ρ is a G(t)-entropy solution to (1.1) with initial data ρo.
Suppose that ρ is not the solution in the sense of inequality (2.7). Let us then denote by σ ̸= ρ the
solution in the sense of inequality (2.7). As mentioned before, σ is also a G(t)-entropy solution, and
therefore equal to ρ by uniqueness. This contradicts the fact that ρ is not the solution in the sense of
inequality (2.7). We conclude that ρ veri�es (2.7).

4 Multi-interface problem with general interface coupling

This section is very brief because it borrows almost all of its contents to the corresponding [57, Section 4].
Indeed, the only changes are that we use Godunov interface �ux in a more general situation leading to a
more abstract form of the remainder term; and that we do not need any more the constraint inequalities
required for sharp characterization of solutions for the adapted entropy formulation of [57]. We proceed in
two steps. First the case of a single interface is dealt with calling upon the analysis of the previous section
in what concerns the remainder term Rs. Second, the accurate use of partitions of unity along with the
choice of test functions vanishing near the cross-points permits to reduce the general case described in
Section 2.1 to the case of a single slanted interface.

4.1 The case of a single slanted interface

This section builds on the work done in [57, Sections 1-3]. If y denotes the trajectory of the interface, the
remainder term has now the form:

Rẏ(t)(κL, κR, t) =
∣∣∣gẏ(t)(κL)− Fint

ẏ(t)(κL, κR, t)
∣∣∣+ ∣∣∣Fint

ẏ(t)(κL, κR, t)− fẏ(t)(κR)
∣∣∣ .

Using De�nition 2.2, the proof of uniqueness follows the ones of [57, Lemma 2.7, Theorem 2.8].
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4 MULTI-INTERFACE PROBLEM WITH GENERAL INTERFACE COUPLING

Regarding the existence, the only di�erence with the model case is that here we need to discretize the
interface and to adapt the mesh in a neighbourhood of the discrete interface. We de�ne the sequence of
approximate slopes:

∀n ∈ N, sn =
1

∆t

� tn+1

tn
ẏ(t) dt ; ∀t ≥ 0, s∆(t) =

∑
n∈N

sn1[tn,tn+1[(t),

which converges to ẏ in L1
loc(]0,+∞[). The mesh is produced in the same way as in [57, Section 4], see in

particular Figure 1 below.

Figure 1: Illustration of the local modi�cation to the mesh, in the (x, t) plane.

One only needs to make precise the numerical �ux used at the slanted mesh boundaries. At time step tn,
the approximate coupling Godunov �ux is de�ned by:

Godsn

int(ρ
n
−1/2, ρ

n
1/2) =

1

∆t

� tn+1

tn
Fint
sn (ρn−1/2, ρ

n
1/2, t) dt . (4.1)

Note that by assumption, the family of germs {Gs(t)}t>0,s∈R is Carathéodory which implies that for all
(κL, κR) ∈ [a, b]2, s 7→ Gods

int(κL, κR) is continuous since for all t > 0, s 7→ Fint
s (κL, κR, t) is continuous.

The approximate remainder term that appears in the approximate adapted entropy inequalities is:

Rs∆(t)(κL, κR, t) =
∣∣gsn(κL)−Godsn

int(κL, κR)
∣∣+ ∣∣Godsn

int(κL, κR)− fsn(κR)
∣∣

when t ∈ [tn, tn+1[. The convergence

� +∞

0
Rs∆(t)(κL, κR, t)φ(t, y∆(t)) dt −→

∆→0

� +∞

0
Rẏ(t)(κL, κR, t)φ(t, y(t)) dt

comes from:

� the measurability of t 7→ Rẏ(t)(κL, κR, t);

� the continuity of s 7→ Rs(κL, κR, t) (t > 0) combined with the strong convergence of (s∆)∆ to ẏ.

Existence of solutions in the sense of inequality (2.7) follows and like in Section 3.3.2, we can prove the
equivalence between De�nition 2.2 and inequality (2.7).
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5 ILLUSTRATION WITH NUMERICAL SIMULATIONS

4.2 Isolating interfaces and neglecting cross-points

The construction of the mesh, of the �nite volume scheme and the convergence analysis by reduction of
the initial con�guration of Section 2 to the case of a single slanted interface, tackled in Section 4.1 is
identical to the reasoning of [57, Section 4]. Let us only highlight the fact that the choice of the precise
coupling at the interfaces near the cross-points (see Figure 3 below) does not matter for the convergence
of the scheme and its overall consistency. Indeed, the choice of the test functions in Remark 2.3 permits
to disregard the discrete solution near cross-points. We only have to ensure that the discrete solutions
take their values within [a, b], for this sake we can use any numerical �ux at the interfaces consistent with
the stationary solutions a and b. In this way, we complete the proof of Theorem 2.5.

Remark 4.1. In the practice of numerical approximation of problem (1.1) by the schemes we propose
in this paper, any numerical �ux which is monotone and whose Lipschitz constant is consistent with the
CFL can be used on the interfaces in a small vicinity of the crossing points. This may lead to appearance
of numerical artefacts (see [57, Section 4] for an example). However, the latter remain "under control"
since, according to our analysis, they do not a�ect the convergence of the scheme.

5 Illustration with numerical simulations

In this section, we describe two simulations carried out in the framework of transmission maps set up on
curved interfaces: the one-dimensional Hughes' model [43, 37, 5, 17] and the Burgers-particle interaction
model [49, 13, 14]. Both of them feature moving interfaces, actually they correspond to complex situations
where the interface dynamics is coupled to the dynamics of the solution itself. Since the locations of the
interfaces are not known a priori, the approach of this paper to construction of solutions is not directly
applicable. However, if we consider the �xed-point strategy (see in particular [41] for the Hughes' model
and [14] for the Burgers-particle model) then the step of resolution of the conservation law, given the
interface locations, corresponds to the setting of our paper.

The Hughes' model makes appear solely one interface, while in the Burgers-particle(s) model multiple
interfaces with crossing make sense (see, in particular, [13, 61]). In both situations, speci�c �nite volume
schemes were developed in the literature [42], [13, 3, 59, 61]. We will not apply these schemes; in order to
stick to our main example detailed in Section 2.5, we will use interface �uxes based upon suitably identi�ed
transmission maps. Let us stress that in the Burgers-particle setting, the interface coupling is actually
non-conservative but the adaptation of the transmission map approach to this situation is straightforward
[6]; our theoretical result extends readily to such non-conservative interface couplings.

Note that the third example of simulations featuring slanted interfaces and interface crossings, in a setting
signi�cant in the road tra�c context, can be found in [57]. The interface coupling corresponds, in this
case, to �ux limitation across interfaces, following [29, 34, 56]. The scheme of [57] is a particular case of
the one considered in the present paper, with convergence analysis which exploited an adapted entropy
formulation di�erent from the one exhibited in the present paper. The analysis of the present paper applies
to the situation considered in [57] (constant �ux, featuring the same nonlinearity in the regions between
the �ux-limiting interfaces) and also to its generalization with piecewise constant �ux.

5.1 One-dimensional Hughes model

The model of [43] for pedestrian evacuation through multiple exits, in the general multi-dimensional
setting, features a conservation law with discontinuous �eld of directions given by the gradient of the
solution to an eikonal equation. According to the analysis of [37] the one-dimensional situation in the
corridor modeled by the interval [−1, 1] can be simpli�ed, by explicitly solving the underlying eikonal
equation, to

∂tρ(t, x) + ∂x (sign(x− ξ(t))f(ρ(t, x))) = 0 (5.1)
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5 ILLUSTRATION WITH NUMERICAL SIMULATIONS

with f(ρ) = ρv(ρ) a standard LWR (Lighthill-Whitham-Richards) �ux, e.g. for v(ρ) = 1 − ρ, and ξ is a
curve solving � ξ(t)

−1
c(ρ(t, x)) dx =

� 1

ξ(t)
c(ρ(t, x)) dx

for some cost function c. In the situation considered in [17, 41], c(ρ) = 1 + αρ, α ∈ R+, is a linear cost
and it is proved that the interface ξ is a Lipschitz continuous function of the time variable. The �ux of
(5.1) is equal to −f for x < ξ(t) and to +f , for x > ξ(t). It can be proved (see [41]) that the coupling
at the interface x = ξ(t) boils down to the mere continuity of the normal component of the �ux, i.e., to
the Rankine-Hugoniot condition. Indeed, it can be checked that the set of all couples (ρL, ρR) ∈ [0, 1]2

ful�lling
−f(ρL)− ξ̇(t)ρL = +f(ρR)− ξ̇(t)ρR

constitutes an L1D germ. This means in particular that, whatever be the choice of a transmission map on
the interface, the resulting solution corresponds to this unique possible germ (cf. [8]). For this reason, we
choose the simplest transmission map β = Id to model the interface coupling in the Hughes' model (see
[41] for details). Consider the Lipschitz curve ξ which graph is represented on Figure 1. We parametrize
a corridor with the interval [−4, 4]. Below, we present the numerical solution to (5.1) with inital data
ρo = 0.5× 1[0.5,1.5] and time horizon T = 5.

Figure 2: When ξ reaches the density, a "non clasical" shock appears at the point where the directions of
the propagation are opposite.
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6 CONCLUSION AND POSSIBLE EXTENSIONS

5.2 Fluid-particle interaction via a drag force

Fluid-particle interaction via a drag force was formalized in [49] as a one-dimensional model where the
Burgers, equation with singular source carried by a curve, x = h(t)

∂tρ(t, x) + ∂x
(
ρ(t, x)2/2)

)
= −λ(ρ(t, x)− h′(t))δ0(x− h(t)) (5.2)

is coupled to an ODE with singular right-hand side

mh′′(t) = λ(ρ(t, h(t))− h′(t))

prescribing the evolution of h. While (5.2) features a non-conservative product in the source term, the
interpretation of the problem in terms of a singular limit and of global conservation of the kinetic energy
of the �uid-particle system gave rise to a de�nition in [49] of an adequate notion of solution. In [13, 14]
the notion of solution for (5.2) was re-interpreted in terms of the �germ formalism� underlying the present
paper, with a generalization allowing for a non-conservative germ. Further, in [6] this example was inserted
into the framework of transmission maps, with the necessary non-conservative generalization of the latter.
The transmission map in the context is constant in time, given by

β =
{
(k−, k+) ∈ R2 , k− − k+ = λ

}
,

but one also introduces the associated �dissipation map� ψ taking the form

ψs(k−, k+) =
λ

2

(
k− + k+ − 2s

)
.

The �uxes in (5.2) are fs(ρ) = gs(ρ) =
ρ2

2 − sρ and the (conservative) Godunov transmission �ux (2.11)
should be replaced by two one-sided �uxes

Fint
s (κL, κR)

− = (Godgs)(κL, k−), Fint
s (κL, κR)

+ = (Godfs)(k+, κR)

with (k−, k+) ∈ β found from the relation

(Godfs)(k+, κR)− (Godgs)(κL, k−) + ψs(k−, k+) = 0; (5.3)

note that, upon parametrization of β by p = k− + k+, the left-hand side of the above relation is a
monotone increasing function of p. The model of [49] allows for the presence of multiple particles, with a
�drafting-kissing-tumbling� phenomenon observed in simulations [13, 61].

We propose a numerical simulation whose purpose is merely to show that the scheme proposed is actually
implementable and provides reasonable results. Consider two crossing trajectories h1, h2 imitating the
observed behavior, see Figure 3 below and also [61, Figure 4]. The idea is that the two particles are
initially headed towards each other until colliding. In the full model the dynamics is then dictated by the
�uid density and the ODEs. Here, we approximate the density ρ in the model analogous to (5.2) with
two particles located at x = h1(t), x = h2(t), respectively. The evolution of the numerical simulation is
presented in Figure 4.

6 Conclusion and possible extensions

Discontinuous-�ux conservation law (1.1) with piecewise constant in (t, x) �ux f is a formal problem
which is underdetermined. In general, it is needed to specify the choice of the interface coupling, much
like boundary conditions should be speci�ed for problems stated in bounded domains. Previous works
on the subject of existence and approximation of solutions to such problems focused on the vanishing
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6 CONCLUSION AND POSSIBLE EXTENSIONS

Figure 3: Illustration of the local modi�cations of the mesh; when the curves are to close, they are replaced
by their mean curve.

Figure 4: Evolution of the numerical solution of (5.2).
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6 CONCLUSION AND POSSIBLE EXTENSIONS

viscosity coupling, while the particular instance of �ux-limitation coupling in the context of road tra�c is
addressed in [57].
In this paper, we provided an existence result for one-dimensional discontinuous-�ux conservation law
(1.1) for a wide choice of interface couplings. To this end, we constructed a �nite volume numerical
scheme where the uniform mesh, rectangular in (t, x), is adapted to the presence of interfaces and of their
cross-points. The adaptation to interfaces is accurate and the Godunov �ux consistent with the interface
condition is used along the discretized interfaces.
The convergence result is based upon a new variant of adapted entropy inequality which naturally arises
from Godunov discretization at interfaces; the Godunov �ux should be compatible with the interface
coupling imposed for (1.1). We stress that the entropy formulation veri�ed by the limit of the scheme
enjoys uniqueness, i.e. both the entropy admissibility conditions within the regions of homogeneous �ux
and full information on the interface coupling are captured. The existence result is based upon consistency
with such adapted entropy formulation and on a local strong compactness property, which requires �ne
analysis of the scheme. The local compactness technique we exploit here is based upon one-sided Lipschitz
regularization, under the assumption of uniform convexity or concavity of the �ux f with respect to the
state variable. Due to the local nature of the compactness arguments, it does not depend on the choice of
the interface coupling. We highlight the fact that, as soon as existence is justi�ed, convergence of other
approximation schemes can be achieved with weak compactness arguments (cf. [12, Sections 3.4, 6.4]
and [10]) as soon as these approximation schemes are consistent - away from the cross-points - with the
adapted entropy inequalities for the interface coupling at hand.

Let us highlight a few key elements required in order to go beyond the piecewise constant restriction
on the �ux, and even to the multi-dimensional setting which will be the object of a future work. Our
present compactness approach can be replaced by the compensated compactness technique, under the
weaker assumption of non-degenerately nonlinear �ux (cf. [46] for a very similar result). At the same
time, the use of the compensated compactness technique would also make our construction applicable
to the multi-dimensional generalization of (1.1). Indeed, for instance in the case of a two-dimensional
space (so, (t, x) ∈ R3), interfaces are surfaces in R3 and interface crossings are lower-dimensional sets
(curves and their cross-points). The crossings can be neglected and the rectangular space-time mesh can
be locally adapted to the shape of interfaces away from a vicinity of crossings. Like for the one-dimensional
problem, adapted entropy inequalities involving Godunov �uxes in the normal direction to the interfaces
can be written at the discrete level and inherited at the limit; like in the one-dimensional case, the
resulting formulation enjoys uniquenes, cf. [33, 6]. In this way, quite general existence results can be
reached for heterogeneous discontinuous-�ux scalar conservation laws under abstract interface couplings.
The couplings we can handle are encrypted by Godunov �uxes verifying the Caratheodory assumption
formulated in the present contribution.
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