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Combinatorial, additive and dose- 
dependent drug–microbiome associations

Sofia K. Forslund1,2,3,4,5,6,43, Rima Chakaroun7,43, Maria Zimmermann-Kogadeeva1,43, 
Lajos Markó2,4,5,43, Judith Aron-Wisnewsky8,9,43, Trine Nielsen10,43, Lucas Moitinho-Silva1, 
Thomas S. B. Schmidt1, Gwen Falony11, Sara Vieira-Silva11, Solia Adriouch8, Renato J. Alves1, 
Karen Assmann8, Jean-Philippe Bastard12,13, Till Birkner2,3, Robert Caesar14, Julien Chilloux15, 
Luis Pedro Coelho1,16,17, Leopold Fezeu18, Nathalie Galleron19, Gerard Helft20, Richard Isnard20, 
Boyang Ji21, Michael Kuhn1, Emmanuelle Le Chatelier19, Antonis Myridakis15, Lisa Olsson14, 
Nicolas Pons19, Edi Prifti8,22,23, Benoit Quinquis19, Hugo Roume19, Joe-Elie Salem24, 
Nataliya Sokolovska8, Valentina Tremaroli14, Mireia Valles-Colomer11, Christian Lewinter25, 
Nadja B. Søndertoft10, Helle Krogh Pedersen10, Tue H. Hansen10, The MetaCardis Consortium*, 
Jens Peter Gøtze26, Lars Køber25, Henrik Vestergaard10,27, Torben Hansen10, 
Jean-Daniel Zucker8,22,23, Serge Hercberg18, Jean-Michel Oppert9, Ivica Letunic1,28, 
Jens Nielsen21, Fredrik Bäckhed10,14,29, S. Dusko Ehrlich19, Marc-Emmanuel Dumas15,30,31,32, 
Jeroen Raes11, Oluf Pedersen10, Karine Clément8,9 ✉, Michael Stumvoll7,33 ✉ & Peer Bork1,3,34,35 ✉

During the transition from a healthy state to cardiometabolic disease, patients become 
heavily medicated, which leads to an increasingly aberrant gut microbiome and serum 
metabolome, and complicates biomarker discovery1–5. Here, through integrated 
multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show 
that the explanatory power of drugs for the variability in both host and gut microbiome 
features exceeds that of disease. We quantify inferred effects of single medications, 
their combinations as well as additive effects, and show that the latter shift the 
metabolome and microbiome towards a healthier state, exemplified in synergistic 
reduction in serum atherogenic lipoproteins by statins combined with aspirin, or 
enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. 
Several antibiotics exhibit a quantitative relationship between the number of courses 
prescribed and progression towards a microbiome state that is associated with the 
severity of cardiometabolic disease. We also report a relationship between 
cardiometabolic drug dosage, improvement in clinical markers and microbiome 
composition, supporting direct drug effects. Taken together, our computational 
framework and resulting resources enable the disentanglement of the effects of drugs 
and disease on host and microbiome features in multimedicated individuals. 
Furthermore, the robust signatures identified using our framework provide new 
hypotheses for drug–host–microbiome interactions in cardiometabolic disease.

Identifying robust contributions of gut microbiota to health and disease 
requires complex technical and statistical frameworks1,2 and remains 
challenging due to the many covariates that affect both microbial 
composition3–5 and disease. Common covariates include therapeu-
tic drugs4,6–10—such as broadly prescribed proton-pump inhibitors 
(PPIs)6 and the type 2 diabetes (T2D) drug metformin7—that affect 
the gut microbiota and modulate inflammation11. Furthermore, direct 
drug–microbial interactions have been demonstrated in vitro8. For 
several drugs in a mostly healthy population, their usage explained 
more variance in microbiota composition than other covariates tested, 
albeit with small individual effect sizes12. However, studies in healthy 
populations12,13 are inadequate for investigating the secondary effects 
of drugs in the context of chronic diseases. To robustly disentangle 
drug–microbiome associations from host and disease factors, large 

sample sizes and a high resolution of clinical phenotypes and medica-
tion are required, while accounting for variables known to affect the 
gut microbiome. Finally, drug effects are often dose-dependent, yet 
dosage is rarely considered in microbiome studies.

To overcome these limitations, we propose a general framework 
for separating disease from treatment associations in multi-omics 
cross-sectional studies and apply it to gut metagenomic, host clinical 
and metabolomic measurements of 2,173 European residents from 
the multicentre MetaCardis cohort. The MetaCardis cohort includes 
patients with metabolic syndrome, severe and morbid obesity, T2D, 
acute and chronic coronary artery disease and heart failure, and healthy 
control individuals. Considering cardiometabolic disease (CMD) and 
herein frequently prescribed medications, we investigated drug–host–
microbiome associations for eight major indications (antidiabetic, 
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antihypertensive, antidyslipidaemic, antithrombotic, antiarrhythmic 
agents, gout medication, PPIs and antibiotics). The most commonly pre-
scribed CMD drugs were statins (n = 772, 35.5%), beta-blockers (n = 656, 
30.2%), metformin (n = 607, 27.9%), aspirin (n = 532, 24.5%), angiotensin 
converting enzyme (ACE) inhibitors (n = 470, 21.6%) and angiotensin 
II receptor blockers (n = 470, 21.6%), often taken in combination (Sup-
plementary Tables 1–4). We therefore studied individual drug effects, 
and their synergistic and additive interactions in the context of available 
phenotypic, dietary and demographic variables, molecular readouts 
including serum concentrations of lipoproteins, cytokines and metabo-
lites, and taxonomic and functional profiles of the gut microbiome.

To quantify the overall effect of medications, we performed mul-
tivariate regression analysis of the explained variance in host and 

microbiome data on the total influence of medications, clinical and 
environmental factors and disease status. All of the drugs together 
explain more variation in microbiome composition than disease group 
alone, or any other factor considered under a conservative estimate. 
However, consistent with previously reported high individual vari-
ability14, only 1.7–9% of variation between individuals is explainable by 
factors that are included in the model, of which 1–2.5% is attributable to 
drug intake, comparable to disease status, diet and smoking combined 
(Fig. 1a and Supplementary Table 5).

To quantify individual drug effects, we implemented a univariate 
statistical approach to disentangle drugs from disease associations with 
the gut microbiome and host features. Thus, features distinguishing 
patient groups from healthy controls are divided into (1) confidently 

Alpha
 d

ive
rs

ity

GM
M

 m
od

ule
s

KEGG m
od

ule
s

m
OTU

, c
las

s

m
OTU

, d
om

ain

m
OTU

, f
am

ily

m
OTU

, g
en

us

m
OTU

, o
rd

er

m
OTU

, p
hy

lum

m
OTU

, s
pec

ies
M

GS

Alpha
 d

ive
rs

ity

GM
M

 m
od

ule
s

KEGG m
od

ule
s

m
OTU

, c
las

s

m
OTU

, d
om

ain

m
OTU

, f
am

ily

m
OTU

, g
en

us

m
OTU

, o
rd

er

m
OTU

, p
hy

lum

m
OTU

, s
pec

ies
M

GS

Indication

Ind
ica

tio
n

c

10+ 5 0 5 10+

Number of features
Drug effects  |  Severity markers

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1.0

−1.
0

−0.
8

−0.
6

−0.
4

−0.
2 0

0.
2

0.
4

0.
6

0.
8

1.
0

Disease effect size (Cliff’s delta)

D
ru

g 
ef

fe
ct

 s
iz

e 
(C

lif
f’s

 d
el

ta
)

Microbiome features
Host featuresPositive effects

Negative effects

ba

Naive Con�dently
deconfounded

Ambiguously
deconfounded

Confounded

Other drugs

Antibiotic

Antidiabetic

Antihypertensive

Antidyslipidaemic
Total drug fraction

on�dently

All T2D
markers 

Confounder status 
of all T2D markers

Drug associations
(subset of confounded)

2,845 1,123

435
1,287 799

39

927
167 62

100% 40% 15% 45%

E
ffe

ct
 s

iz
e 

(C
lif

f’s
 d

el
ta

)

Va
ria

nc
e 

ex
p

la
in

ed
 (R

2)
un

iq
ue

 e
ffe

ct
s

Ta
xo

no
m

y

Fu
nc

tio
n

AM
R

Ser
um

   
 

 m
et

ab
oli

te
s

0.10

0.05

0

Other drug
Age
Antibiotic
Antidiabetic
Antidyslipidaemic
BMI
Country/study cohort
Diet
Patient group
Sex
Smoking

1.0

0.5

–0.5

0

–1.0

Microbiome features Host features

Features

Microbiome featuresHost features

d

Phe
no

typ
e

Ser
um

, G
C–M

S

Ser
um

, N
M

R ab
so

lut
e

Ser
um

, a
cy

lca
rn

itin
es

Ser
um

, b
at

ch
 4

Ser
um

, li
pop

ro
te

ins

Ser
um

, u
na

nn
ot

at
ed

Urin
e, 

an
no

ta
te

d

Urin
e, 

un
an

no
ta

te
d

Phe
no

typ
e

Ser
um

, G
C–M

S

Ser
um

, N
M

R ab
so

lut
e

Ser
um

, a
cy

lca
rn

itin
es

Ser
um

, b
at

ch
 4

Ser
um

, li
pop

ro
te

ins

Ser
um

, u
na

nn
ot

at
ed

Urin
e, 

an
no

ta
te

d

Urin
e, 

un
an

no
ta

te
d

Calcium antagonist
PPI
Ezetimibe
K-sparing diuretic
Digitalis
Statin
Gout drug
GLP-1 receptor agonist

Beta-blocker
Fibrate

Thiazide
Insulin basal

SGLT2 inhibitor
Sulfonylurea

DPPIV inhibitor
Metformin
Insulin bolus
Antithrombotic
Aspirin

ACE inhibitor
Loop diuretic

Nitrate

Other antiarrhythmic
Clopidogrel

Angiotensin receptor blocker
Amiodarone

Anticoagulant
Central antihypertensive

Ind
ica

tio
n

1

4

39 42

49

53

54

55

56

73

74

75

76

77

78

79 80

81

90
91

92

94 959798

99

100

101

102 103
104

105

107

110111 112

113

114
115

116

117

118

119

120

121

122

123

124

125
126

127

4:
 F

irm
icu

te
s (

CAG01
15

3)

39
: C

los
tri

dial
es

 (C
AG01

23
6)

42
: a

ce
tyl

sa
lic

yli
c a

cid

49
: u

nc
las

si�
ed

 (C
AG00

61
4)

56
: C

los
tri

dial
es

sp
.

81
: la

ur
oy

l c
ar

nit
ine

1:
 d

ias
to

lic
 b

loo
d p

re
ss

ur
e

53
: L

DL-
4 

tri
gly

ce
rid

es

54
: v

LD
L-

3 
ch

ole
ste

ro
l

55
: v

LD
L-

4 
ch

ole
ste

ro
l

73
: g

am
m

a-
but

yro
bet

ain
e

74
: B

ac
te

ro
idet

es
 sp

.

75
: P

re
vo

te
lla

 b
uc

ca
lis

76
: P

ar
vim

on
as

77
: P

ar
vim

on
as

 m
icr

a

78
: S

uc
cin

ivi
brio

na
ce

ae

79
: S

uc
cin

at
im

on
as

80
: P

ro
te

us

90
: g

lut
am

at
e

91
: C

. g
lyc

yrr
hiz

ini
lyt

icu
m

92
: a

lan
ine

94
: R

. g
na

vu
s (

CAG00
25

4)

95
: p

ro
lin

e

97
: a

lan
ine

98
: 2

-h
yd

ro
xy

iso
but

yr
at

e

99
: p

yr
uv

ic 
ac

id

10
0:

 p
yr

uv
at

e

10
1:

 C
los

tri
dium

 sp
. A

T4
 

10
2:

 L
ac

hn
os

pira
ce

ae

10
3:

 u
nc

l. L
ac

hn
os

pira
ce

ae

10
4:

 B
lau

tia
 sp

. (C
AG00

36
9)

10
5:

 C
oll

ins
ell

a i
nt

es
tin

ali
s

10
7:

 F
us

ob
ac

te
riu

m
 u

lce
ra

ns

11
0:

 g
luc

on
ic 

ac
id

11
1:

 C
RP

11
2:

 ty
ro

sin
e

11
3:

 xy
lul

os
e

11
4:

 su
cc

ina
te

11
5:

 m
an

no
se

11
6:

 b
et

a-
hy

dro
xy

iso
va

ler
at

e

11
7:

 ce
llo

te
tra

os
e

11
8:

 la
ct

os
e

11
9:

 xy
los

e

12
0:

 m
yr

ist
oy

l-c
ar

nit
ine

12
1:

 IL
6H

S

12
2:

 m
ali

c a
cid

12
3:

 fu
m

ar
ic 

ac
id

12
4:

 tr
eh

alo
se

12
5:

 la
ur

ic 
ac

id

12
6:

 b
et

a-
ala

nin
e

12
7:

 m
alt

os
e

Lip
op

ro
te

ins

Nitrate
Angiotensin receptor blocker
DPPIV inhibitor
GLP-1 receptor agonist
ACE inhibitor

Metformin
Sulfonylurea

Antithrombotic

Amiodarone
Central antihypertensive

Other antiarrhythmic
Fibrate

Anticoagulant
Clopidogrel

Ezetimibe
Beta-blocker

PPI
Insulin basal

Thiazide
Insuline bolus
Calcium antagonist
Statin
SGLT2 inhibitor
Aspirin
Loop diuretic
Digitalis

K-sparing diuretic
Gout drug

Antithrombotic
PPI, PPI-related

Antiarrhythmic
Antidyslipidaemic

AntidiabeticAntihypertensive
Gout drug

Fig. 1 | Associations between CMD drugs, host and microbiome. a, The 
variance explained (R2) by variable group and feature type. b, Confounder 
analysis of features that are differentially abundant between individuals with 
T2D and control individuals. Data are the distribution of effect size; the number 
of features per category is listed. Naive associations (yellow, two-sided MWU, 
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deconfounded features of CMD; (2) ambiguously deconfounded (where 
both treatment and disease strongly correlate); and (3) confounded 
(unambiguous drug associations) (Extended Data Fig. 1). A major frac-
tion of naive associations (for example, 45% for T2D) between drugs 
and microbiome or metabolome is attributable to drug intake (Fig. 1b 
and Supplementary Table 5). Nonetheless, we recovered previously 
described signatures of metabolic disease and show that these cannot 
be reduced to treatment effects (Extended Data Fig. 2 and Supplemen-
tary Results). We therefore conclude that a drug-conscious approach 
uncovers true disease associations and is crucial to circumvent highly 
inflated treatment-confounded false-positives in biomarker discovery.

Next, we disentangled the potential direct effects of medication (for 
which the treatment association direction opposes the disease asso-
ciation) from potential severity markers (concordant direction of the 
treatment and disease association). Of 28 cardiometabolic drugs taken 
by at least ten individuals within at least one patient group, the strongest 
effects on the serum metabolome were found for antidiabetic drugs, 
statins, beta-blockers, antithrombotic drugs and aspirin. Although 

drugs with the same indication (that is, antidiabetic, antihypertensive) 
had concordant associations with host features, the effect on the gut 
microbiome was more diverse in the effect size and the direction between 
these drugs (Fig. 1c and Supplementary Tables 6 and 7). Our approach 
recaptured previously reported findings on the effect of antibiotics15, 
PPIs16,17, statins11, beta-blockers and metformin7,18 (Extended Data Fig. 3). 
Importantly, we identified new associations for these as well as for other 
highly prevalent drugs (Supplementary Results). For example, we iden-
tified aspirin-associated changes in the abundances of microbial spe-
cies, and shifts in the serum lipidome and metabolome associated with 
improved cardiometabolic health (among others, depletion of Rumino-
coccus gnavus, Clostridium glycyrrhizinilyticum and Parvimonas micra, 
reduction in the plasma concentrations of inflammatory markers (CRP 
and IL-6), and decreased levels of pyruvate, glutamate and succinate 
at comparable significance to that of the aspirin levels detected in the 
serum of medicated individuals; Fig. 1d). Moreover, γ-butyrobetaine, 
which is a recently identified proatherogenic intermediate of micro-
bial metabolism19, is lower in individuals taking aspirin, revealing a 
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potential complex antiatherogenic effect of the drug beyond its known 
platelet-inhibitory functions20. For metformin, we deduced new anti-
diabetic effects that are possibly related to lowered glutamate levels21 
(d = −0.17, false-discovery rate (FDR)-adjusted P = 0.02), due to reduced 
microbial glutamate transport (d = −0.2, FDR-adjusted P = 0.006), along 
with increased microbial vitamin B12 uptake (d = 0.32, FDR-adjusted 
P = 3.65 × 10−6), potentially contributing to vitamin B12 deficiency in 
the host—a known side effect of metformin (Supplementary Results 

and Supplementary Table 6). PPIs had the most associations with the 
gut microbiome features (Fig. 1c and Supplementary Table 7), includ-
ing a higher prevalence of presumably oral bacteria, supporting the 
hypothesized PPI-caused transfer of oral bacteria into the gut due to 
decreased stomach acidity17. Single-nucleotide variation analysis on 
the basis of large reference cohorts revealed an increased abundance 
of oral-based strains of Rothia, Haemophilus and Streptococcus species 
in the gut of individuals taking PPIs, implying that the patient’s own oral 
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Fig. 3 | Additive and dose-dependent drug associations with the host and 
microbiome. a–c, Microbiome features that are significantly associated with 
the number of antibiotics courses in the past 5 years in control individuals 
(n = 256) and individuals with T2D (n = 456). a, Gene richness. b, The total 
abundance of antimicrobial resistance genes. c, The first principal component 
of gut species composition. For a–c, the grey area shows the 95% confidence 
intervals for the linear regression. The box plots (median (centre line), quartiles 
(box limits), 1.5× interquartile range (whiskers) and outliers (dots)) show the 
comparisons in antibiotics-naive (n = 148 (control), n = 274 (T2D)) and 
antibiotics-exposed (n = 108 (control), n = 182 (T2D)) control individuals and 
individuals with T2D. Pairwise significance values (two-sided MWU tests, 
FDR-adjusted) are shown in the figure. d, The number of drug–feature 
associations confirmed by dosage analysis (left), or uniquely revealed by 

dosage analysis (right). Features are separated by potential drug effects 
(discordant with the disease effect) or severity markers (concordant with the 
disease effect). e, The relationship between drug intake effect size (Cliff’s 
delta) and drug dosage effect size (Spearman’s ρ) on enterotype distribution 
within each patient group. Features that are significantly affected in either 
analysis (two-sided MWU, FDR < 0.1) are shown in green (potential drug effects) 
or purple (potential severity markers). The black circles highlight associations 
that are depicted in f. Bact., Bacteroides; Prev., Prevotella; Rum., Ruminococcus. 
f, The coloured areas represent the stacked enterotype prevalence along the 
drug dosage axis. Each dot represents a patient taking a specific drug dose, and 
is classified into one of the four enterotypes. Random noise was added for 
better visualization (Supplementary Tables 11–14).
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strains colonize the intestine as gastric acidity weakens22 (Extended Data 
Fig. 4 and Supplementary Results).

Beyond single drugs, MetaCardis enables the analysis of combinato-
rial (polypharmacy) effects, as 1,300 individuals were prescribed more 
than one drug (average intake of 3 drugs with some receiving up to 
13 distinct drugs per day) (Fig. 2a, b and Supplementary Tables 2 and 
3). Polypharmacy in CMD mostly reflects the concurrence of meta-
bolic diseases, risk factors or treatments preventing the recurrence 
of an atherosclerotic event, but also includes medications that are 
co-prescribed to reduce side effects, such as PPIs with aspirin to prevent 
gastric ulcers and bleeding. Multimedicated patients often exhibit a 
more pronounced improvement in disease markers compared with 
those receiving only one of the drugs, consistent with synergistic 
interactions between drugs. In the T2D group, the most pronounced 
synergistic effects on the microbiome features were observed for loop 
diuretics, especially in combination with aspirin, ACE inhibitors and 
beta-blockers, whereas the most pronounced synergistic effects on host 
features were observed for statins (Fig. 2c). For example, loop diuretics 
combined with aspirin, ACE inhibitors or beta-blockers more strongly 
enrich microbiome-related health markers23, including Roseburia abun-
dance11 (combination: d = 0.46, d = 0.51, d = 0.36, respectively; single 
drugs: diuretics d = 0.27). Taken with metformin or aspirin, statins are 
associated with lower intermediate-density, low-density (LDL) and 
very-low-density (vLDL) lipoprotein levels in the serum, and lower total 
body fat mass, while increasing the microbiome richness and abun-
dance of Firmicutes and methanogenic bacteria that are depleted in the 
T2D group (Fig. 2d and Supplementary Tables 8 and 9). These shifts in 
the microbiome might mediate some of the synergistic drug effects on 
the host (Fig. 2e, Supplementary Table 10 and Supplementary Results).

Next, we investigated additive drug associations. The clearest such 
association was observed for antibiotics using five-year retrospective 
exposure (total number of courses). Antibiotics are frequently prescribed 
for patients with CMD due to an increased prevalence of infections24. Yet, 
epidemiological studies link antibiotics to an increased risk of obesity, 
T2D, and metabolic and inflammatory diseases25. Previous antibiotics 
exposure is significantly associated with lower gut gene richness within 
the same participant groups (Fig. 3a; Spearman ρ = −0.25, P = 3.7 × 10−5) 
and correlated with the total abundance of antimicrobial resistance genes 
in the gut (control individuals: Spearman ρ = 0.30, P = 9 × 10−7; individu-
als with T2D: Spearman ρ = 0.20, P = 2 × 10−5) (Fig. 3b). These findings 
imply that there are cumulative, additive shifts after repeated antibi-
otics exposure towards a more resistant but less diverse microbiota, 
which is a hallmark of the microbiome signature in obesity, insulin resist-
ance and low-grade inflammation26. The same properties distinguish 
antibiotics-naive patients with CMD from healthy control individuals, 
confirming an effect of repeated antibiotics exposure (antibiotics-naive 
healthy versus T2D richness, two-sided Mann–Whitney U (MWU)-test, 
P = 7.9 × 10−21; antimicrobial resistance gene abundance, P = 2 × 10−2). 
Using principal component analysis (Supplementary Table 11), we show 
that the first principal component of microbiome composition, which 
explains 45% of variation and correlates with gene richness, is associ-
ated with both an additive effect of antibiotics and metabolic impair-
ment after antibiotics exposure (antibiotics effect: controls, Spearman 
ρ = 0.27, P = 1.7 × 10−5; individuals with T2D, Spearman ρ = 0.16, P = 7× 10 −4; 
antibiotics-naive healthy individuals versus antibiotics-treated healthy 
individuals, two-sided MWU test, P = 1 × 10−3; antibiotics-naive individu-
als with T2D versus antibiotics-treated individuals with T2D, two-sided 
MWU test, P = 1 × 10−3) (Fig. 3c). A multivariate breakdown of these shifts 
reveals a reduced abundance of Prevotella copri and Faecalibacterium 
prausnitzii, and an increase in Bacteroides vulgatus and Bacteroides dorei, 
representatives of abundant genera constituting hallmarks of entero-
types27,28. Furthermore, we show that shifts in gut microbial metabolic 
functions link additive effects of specific antibiotics groups to CMD 
susceptibility (Extended Data Figs. 5–7, Supplementary Table 12 and 
Supplementary Results).

Moreover, the detailed medication tracking in MetaCardis enables us 
to investigate the effect of dosage on the host and microbiota. For the 
20 drugs with sufficient dosage information, we distinguished between 
dosage-confirmed effects, that is, features that are significantly associ-
ated with both drug intake and its dosage; and dosage-unique effects, 
where dosage analysis revealed associations that are not captured by 
other analyses. The drugs with the most features confirmed by dos-
age analysis were metformin, sulfonylurea, insulin, PPI, gout medi-
cations and statins, whereas the most dosage-unique associations 
were reported for metformin and statins (Fig. 3d). Statin dosage was 
negatively associated with atherogenic vLDL levels, highlighting 
the intended dose-dependent lipid-lowering effects, and positively 
associated with health-promoting Roseburia species in the gut11. Met-
formin dosage was negatively associated with cytokine levels (SDF1 
and MIF), consistent with previous reports of its anti-inflammatory 
effects29,30. Furthermore, we observed a change in the prevalence of the 
Bacteroides 1 and Bacteroides 2 enterotypes in patients with increas-
ing metformin dosage; the Bacteroides 2 enterotype is also associated 
with disease, proposing it as a severity marker in T2D indepedent of 
metformin treatment (Fig. 3e, f and Supplementary Tables 13 and 14). 
For statins, dosage analysis strengthens the reported observation of 
microbiome shifts towards a heathier state away from the Bacteroides 
2 enterotype11. Moreover, dosage analysis uniquely identified Bacte-
roides 2 and Prevotella enterotypes as severity markers for beta-blocker 
usage in individuals with severe and morbid obesity (Fig. 3e, f and Sup-
plementary Table 14).

With stringent analytical approaches, we show that not only 
medication intake, but also dosage, drug combinations and previ-
ous exposure to antibiotics should be captured in human studies 
to disentangle the drug–host–microbiome interactions in complex 
diseases. For several drugs, our results identify microbiome shifts 
associated with medication intake that might mediate the improve-
ment in clinical markers. Given the observational study design, our 
analysis enables the identification of associative (and not necessar-
ily causative) effects of drugs on variations in the microbiome and 
clinical phenotypes. Thus, experimental validation in animal models 
(such as the multimodal effect of low-dose aspirin, or the synergistic 
effects of statin and aspirin or metformin in LDL-receptor-deficient 
mice fed a high-fat diet) is required to substantiate these findings, as 
controlled clinical trials can be challenging in a population with mul-
timorbidity. Disentangling medication effects on the gut microbiome 
and serum metabolome, as illustrated here, is the first step towards 
understanding the systemic effects of drugs at the molecular level, 
while preclinical tests should be performed to assess their significance 
in terms of health outcomes for CMD. To improve treatment in the 
context of genetic and microbiome variability and complex drug regi-
mens, robust molecular markers are needed to identify the transition 
from a state of good health to chronic disease. Subsequently, the gut 
modulation potential of drugs could be harnessed to reverse disease 
progression in a personalized manner.
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Methods

Study cohort and sample acquisition
The prospective cross-sectional multi-centre study MetaCardis covered 
a wide range of metabolic and cardiac phenotypes. For the purpose 
of the study a total of 2,173 individuals, including healthy individuals 
as well as individuals with increasingly severe metabolic and cardiac 
disease, were recruited into eight study groups in Denmark, Germany 
and France (Supplementary Table 1). Individuals were evaluated for 
suitability according to standardized inclusion and exclusion crite-
ria across the three sites. Exclusion criteria included a past history 
of abdominal malignancy/intestinal resection/radiation, chronic or 
acute inflammatory disease, autoimmune disease, history of organ 
transplantation with immunosuppressive drug intake, severe kidney 
disease as defined by estimated glomerular filtration rate < 50 ml min−1 
per 1.73 m2, specific exclusion criteria allowed for a group-dependent 
specific phenotype acquisition. The study complied with all of the rel-
evant international and respective local regulations and aligned with 
the declaration of Helsinki. The study protocol was approved by the 
Ethics Committee at the Medical Faculty at the University of Leipzig 
(application number: 047-13-28012013), the ethical committees of 
the Capital Region of Denmark (H-3-2013-145) and the ethics commit-
tee ‘Comite de Protection des Personnes’ (CPP) Ile-de-France III no. 
IDRCB2013-A00189-36. The study protocol was registered at https://
clinicaltrials.gov/ (NCT02059538). All of the participants provided 
written informed consent. Sample size was not calculated prior to 
recruitment but was set to surpass earlier studies showing significant 
effect sizes of drug treatment on microbial gut signatures. Due to the 
nature of the study, randomization and blinding were not applied. 

Groups were defined along international definitions of disease, with 
obesity defined according to the WHO criteria31, metabolic syndrome 
according to the International Diabetes Federation32, T2D by the Ameri-
can Diabetes Association33 and hypertension according to the American 
College of Cardiology and American Heart Association34. For obesity 
specifically, participants were recruited into two groups: group 2A, con-
sisting of individuals with mostly severe obesity (referred to in text as 
2A: severe obesity), none of whom had T2D or previous cardiovascular 
conditions, whereas group 2B consisted of mostly individuals with mor-
bid obesity, who were eligible for bariatric surgery (referred to in text as 
2B: morbid obesity). T2D was not an exclusion criterion for this particular 
group (as compared with group 2A) and patients had overall more severe 
metabolic impairment (Supplementary Table 1). Individuals with heart 
failure were defined according to the American College of Cardiology, 
American Heart Association and the Heart Failure Society of America35.

Phenotyping was performed according to standardized operational 
procedures between countries and included biological samples acqui-
sition and anthropometrics, such as weight, height, body mass index 
calculation (BMI), blood pressure measurement and body composition 
analyses using bioimpedance analysis as well as waist and hip circum-
ference measurements.

Participants answered questionnaires relating to medical and fam-
ily history, physical activity, quality of life, eating behaviour as well as 
food intake using a customized validated food frequency question-
naire36. Medication/drug intake was assessed either by direct recall or 
by medication list when provided, and participants were questioned 
on adherence to the medication plan by an experienced clinician. 
Five-year antibiotics intake was assessed by recall in France and Den-
mark, whereas participants in Germany were requested to provide 
medication anamnesis from their general practitioners or physicians 
they were prescribed medications by in the past 5 years.

Cardiometabolic drugs were classified according to indication/cat-
egory and further subdivided by drug class (Supplementary Table 4), 
aiming to resolve the major mechanisms of action at a granularity ena-
bling statistical testing. All medication data were curated jointly by the 
study physicians at each centre so as to harmonize representation.

Blood samples were collected through standard venepuncture after 
an overnight fast and were used to assess metabolic markers in local 
routine laboratories. Analyses of adipokines, measures of insulin and 
C-peptide, inflammatory markers, free fatty acids and metabolomics 
were centralized at Pitié-Salpêtrière hospital. Plasma and serum sam-
ples were stored at the respective clinical centres at −80 °C until ship-
ment to a central measuring facility. Stool samples were obtained by 
each participant at home and were immediately frozen. Frozen sam-
ples were then delivered to the respective study centres within 48 h on 
dry ice and were stored immediately at −80 °C until analysis. Fasting 
plasma glucose, total and HDL cholesterol, triglycerides, creatinine 
and HbA1c levels were measured using enzymatic methods at local 
laboratories in each centre according to benchmarked standardized 
methods. LDL cholesterol concentrations were measured enzymatically 
for German participants, and values for French and Danish partici-
pants were calculated on the basis of the Friedwald equation. Kinetic 
assays based on coupled enzyme systems were used to measure ala-
nine aminotransferase (ALAT), aspartate aminotransferase (ASAT) and 
γ-glutamyltransferase (GGT) levels. Ultrasensitive C-reactive protein 
(usCRP) was measured using an Image Automatic Immunoassay Sys-
tem (Beckman Coulter). High-sensitivity IL-6 was measured using the 
Human IL-6 Quantikine HD ELISA Kit (R&D Systems). IFNγ-induced 
protein 10 (IP-10) and C-X-X motif chemokine ligand 5 (CXCL5), CCL2, 
eotaxin, IL-7, MIF, MIP1b, SDF1 and VEGFa were measured using the 
Luminex assay (ProcartaPlex Mix&Match Human 13-plex; eBioscience).

Data acquisition and preprocessing
Total faecal DNA from 1,901 individuals was extracted according to 
the International Human Microbiome Standards (IHMS) guidelines 
(SOP 07 V2 H) and sequenced using ion-proton technology (Thermo 
Fisher Scientific) resulting in 23.3 ± 4.0 million (mean ± s.d.) 150 bp 
single-end reads per sample on average. Reads were cleaned using Alien 
Trimmer (v.0.2.4)37 to remove resilient sequencing adapters and trim 
low-quality nucleotides at the 3′ side (quality and length cut-off of 20 
and 45 bp, respectively). Cleaned reads were subsequently filtered from 
human and potential food contaminant DNA (using human genome 
RCh37-p10, Bos taurus and Arabidopsis thaliana with an identity score 
threshold of 97%).

Gene abundance profiling was performed using the 9.9 million gene 
integrated reference catalogue of the human microbiome38. Filtered 
high-quality reads were mapped with an identity threshold of 95% to 
the 9.9-million-gene catalogue using Bowtie (v.2.2.6) included in the 
METEOR (v.3.2) software39. A gene abundance table was generated 
using a two-step procedure with METEOR. First, the uniquely mapping 
reads (reads mapping to a single gene in the catalogue) were attrib-
uted to their corresponding genes. Second, shared reads (reads that 
mapped with the same alignment score to multiple genes) were attrib-
uted according to the ratio of their unique mapping counts. The gene 
abundance table was processed for rarefaction and normalization and 
further analysis using the MetaOMineR40 (v.1.2) R package. To decrease 
technical bias due to different sequencing depth and avoid any artefacts 
of sample size on low abundance genes, read counts were rarefied. The 
gene abundance table was rarefied to 10 million reads per sample by 
random sampling of 10 million mapped reads without replacement. 
The resulting rarefied gene abundance table was normalized according 
to the FPKM strategy (normalization by the gene size and the number 
of total mapped reads reported in frequency) to give the gene abun-
dance profile table. Metagenomic species (MGS; co-abundant gene 
groups with more than 500 genes corresponding to microbial species; 
n = 1,436) were clustered from 1,267 human gut metagenomes used 
to construct the 9.9-million-gene catalogue41. MGS abundances were 
estimated as the mean abundance of the 50 genes defining a robust 
centroid of the cluster (if more than 10% of these genes gave positive 
signals). MGS taxonomical annotation was performed using all genes 
by sequence similarity using NCBI blastN; a species-level assignment 
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was given if >50% of the genes matched the same reference genome of 
the NCBI database (November 2016 version) at a threshold of 95% of 
identity and 90% gene length coverage. Remaining MGS were assigned 
to a given taxonomical level from genus to superkingdom if more than 
50% of their genes had the same level of assignment. Microbial gene 
richness (gene count) was calculated by counting the number of genes 
that were detected at least once in a given sample, using the average 
number of genes counted in ten independent rarefaction experiments. 
Moreover, a second approach was used to quantify microbial taxa based 
on the mOTU approach42. The quantification of mOTU abundance per 
metagenome was performed according to the original methodology: (1) 
short reads were mapped to the database of single-copy marker genes;42 
(2) gene-level abundance tables were computed, normalizing by the size 
of each gene and the number of input reads, emulating the scaled mode 
in MOCAT2 (ref. 43); (3) within each metagenome, the abundance of all 
reads mapping to genes within the same mOTU cluster and the same 
orthologous group (COG), was added together to obtain a mOTU–COG 
abundance table, emulating the functional mapping of MOCAT2 (ref. 43)  
(which could not be used directly as the file formats were not appropri-
ate); (4) this abundance table was then run through the final step in the 
NGLess interface44 (v.1.3.0) to the mOTU tool to obtain the mOTU abun-
dance table (in brief, the abundance of a mOTU is defined as the mean 
of its constituent COGs, while ignoring non-detected COGs, provided 
that at least two COGs have been detected, as in the original publica-
tion). For quantification of functional modules, metagenome reads 
mapped to the IGC gene catalogue after rarefaction to 10 million reads 
per sample were binned by functional category, as per the annotations 
of the previously analyses within the MOCAT2 framework43. Functional 
potentials at each class of annotations (such as KEGG modules) were 
summed within each annotation term.

Determination of faecal microbial load
Microbial loads of faecal samples were determined as described 
previously11. In brief, 0.2 g frozen (−80 °C) aliquots were dissolved in 
physiological solution (9 g l−1 NaCl; Baxter) to a total volume of 100 ml 
(8.5 g l−1 NaCl; VWR). Subsequently, the slurry was diluted 1,000 times. 
Samples were filtered using a sterile syringe filter (pore size of 5 µm; 
Sartorius Stedim Biotech). Next, 1 ml of the microbial cell suspension 
obtained was stained with 1 µl SYBR Green I (1:100 dilution in DMSO; 
shaded 15 min incubation at 37 °C; 10,000 concentrate, Thermo Fisher 
Scientific). The flow cytometry analysis was performed using a C6 
Accuri flow cytometer (BD Biosciences)45. Fluorescence events were 
monitored using the FL1 533/30 nm and FL3 >670 nm optical detec-
tors. Forward- and sideward-scattered light was also collected. The 
BD Accuri CFlow (v.1.0.264.21) software was used to gate and separate 
the microbial fluorescence events on the FL1/FL3 density plot from the 
faecal sample background. A threshold value of 2,000 was applied on 
the FL1 channel. The gated fluorescence events were evaluated on the 
forward/sideward density plot, as to exclude remaining background 
events. Instrument and gating settings were kept identical for all of the 
samples (fixed staining/gating strategy45; Extended Data Fig. 8). On 
the basis of the exact weight of the aliquots analysed, cell counts were 
converted to microbial loads per gram of faecal material.

Quantitative microbiome profiling
Phylogenetic quantitative microbiome profiles were built using a modi-
fied version of the pipeline described in Vandeputte et al.46 (https://
github.com/raeslab/QMP/). In short, sample abundance profiles were 
downsized to even sampling depth, defined as the ratio between the 
sample’s sampling size (microbial cells sequenced) and microbial load 
(total microbial cell count). In 16S amplicon sequencing, sampling size 
is defined as total sequencing depth, whereas, for shotgun metagenom-
ics, it is defined as the average mOTU marker genes coverage43. For both, 
microbial load is determined by flow cytometry as the average total 
cell count per gram of frozen faecal material. The sequencing depth of 

each sample was rarefied to the level necessary to equate the minimum 
observed sampling depth in the cohort. The rarefied mOTU abundance 
matrix was converted into numbers of cells per gram and quantitative 
microbiome profiling matrices created for phylum to species levels. 
Functional quantitative microbiome profiles and quantitative coabun-
dance gene groups41 profiles were constructed by multiplication of 
relative proportions to an indexing factor proportional to the microbial 
cell densities of the samples (load), defined as the sample load divided 
by the median load over the entire MetaCardis cohort.

Multivariate effects of antibiotics and non-antibiotic drugs
The multivariate effects of antibiotics and non-antibiotic drugs on 
microbiome and host metabolite features were tested. Only patients 
and healthy individuals with complete microbiome and host metabo-
lomic features were considered. Variables with less than ten non-zero 
occurrences were excluded. Furthermore, variables were checked 
for high association using Kendall’s tau correlation for correlations 
between pairs of numerical variables, intraclass correlation coefficient 
for pairs of numerical versus categorical variables, and Cramer’s V for 
pairs of categorical variables. The variables ‘PPI and related drugs’ and 
‘TRIMETHOPRIM’ were removed from the downstream analysis due 
to their high association (>0.8 correlation) with other variables. The 
threshold of 0.8 was chosen as it is the standard in the field12,47. Finally, 
non-antibiotic drugs and antibiotics to be tested were selected for each 
microbiome feature set as well as for the set of host phenotype meas-
urements. This was achieved by automatic stepwise model building in 
both directions based on the Akaike information criterion, using the 
function ordistep in vegan package (v.2.4-5). The function chooses a 
model by permutation tests under constrained ordination, in this case, 
distance-based redundancy analysis (dbRDA) constructed on Bray–Cur-
tis dissimilarities of square-root transformed values from each feature 
set. The variables selected were added to the set of control variables to 
compose the full models for each feature set. The control variables were 
selected on the basis of their potential confounding effects. Those were 
BMI, sex, age, country of recruitment, stool consistency (Bristol scale), 
alternative healthy eating index (as a measure of diet quality), smoking 
status and patient group (that is, disease categories or control status).

The unique effect of a given variable was assessed considering all of 
the other variables present in the model specific to each feature set. As 
in the model selection stage, dbRDA was constructed on Bray–Curtis 
dissimilarities of square-root transformed values from each feature set. 
The proportion of variation explained by a given variable independent 
of the other variables was obtained using the Condition function of 
the dbRDA implementation in the vegan R package (v.2.4-5). For each 
variable of interest, a new model was constructed by including all other 
variables within the Condition function. Type III analysis of variance 
was used to test significance of models with 999 permutations. P values 
were corrected for multiple testing using the Benjamini–Hochberg 
procedure. Adjusted P values of less than 0.05 were considered to be 
significant. Adjusted R2 was recovered from the function using the 
vegan R function RsquareAdj. Adjusted R2 was also obtained from the 
full model, that is, the model constructed without the Condition func-
tion. All calculations were performed in the R environment v.3.4.3 using 
the vegan package v.2.4-5. The code for multivariate analysis is docu-
mented and available under https://doi.org/10.5281/zenodo.4719526.

Univariate effects of antibiotics and non-antibiotic drugs
To assess the relative roles of drugs versus the disease influence on each 
microbiome or host measurement separately, a software pipeline was 
established according to the approach outlined in Extended Data Fig. 1. 
The approach followed hinges on filtering each naive association by the 
outcomes of post hoc tests for the influence of each salient covariate. 
In the first step, all of the tested features (separately by feature space, 
such as serum metabolites or gut microbial species) are checked for 
associations both for all group comparisons (that is, controls versus 
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each patient group for a case–control study such as MetaCardis) and for 
each potential covariate, for example, medicated versus unmedicated 
individuals for each drug or drug combination. This test is a two-sided 
Mann-Whitney U-test for binary variables, Kruskal–Wallis test for other 
categorical variables or a Spearman test for continuous variables. These 
tests are adjusted for multiple testing using Benjamini–Hochberg cor-
rection, with standardized effect sizes computed for binary variables 
using the Cliff’s Delta metric (as implemented in the orddom R pack-
age (v.3.1)) and Spearman’s ρ for continuous variables. These tests are 
conducted stratified for patient groups, separate for each, for every 
continuous non-constant variable and every binary variable where 
at least ten individuals in a patient group fall within each level of the 
variable. For the variable ‘study center’, which is the one nonbinary 
categorical variable tested, we performed the tests in every case. For 
each (continuous) feature, if a covariate is significant (FDR < 0.1) and 
relevant (absolute standardized effect size > 0.1, requirement omitted 
for study centre) in at least one patient group, then it is tested for in the 
post hoc test for all of the patient groups. The post hoc test is a nested 
linear model comparison test, where the feature, rank-transformed, is 
modelled using either both the tested variable (for example, drug or 
disease group comparison) and each other covariate in turn, versus a 
model containing only the covariate. The inverse test is also performed, 
comparing the more complex model to the one containing only the 
tested variable. P values for these models are computed using a likeli-
hood ratio test for the models using the R lmtest package (v.0.9-38). If 
the model for the tested variable always retains a significantly (post-hoc 
P < 0.05) better fit than the covariate-only model omitting it, or if no 
salient covariates exist, the feature is considered to be associated under 
confident deconfounding with regards to the tested variable. If one 
or more covariates exist for which including the tested variable in the 
model does not significantly improve the model fit, but the same con-
dition holds inversely for all such covariates, then the tested feature 
co-occurs so strongly with each salient covariate that it is not possi-
ble to assess whether the observed effect stems from the tested fea-
ture or the covariate; such a feature is considered to be ambiguously 
associated both with the tested variable and the covariates. Note also 
that it is possible for a feature to be associated even under confident 
deconfounding with several tested variables/covariates. If for a given 
feature its dependence on a tested variable is reducible to at least one 
covariate that in turn cannot be reduced to the influence of the tested 
variable, the effect of the tested variable on the feature is considered to 
be confounded by all such features. This classification therefore results 
in a set of feature–variable associations that are either confidently 
or ambiguously deconfounded, and in a similar map of the decon-
founded associations of each possible covariate, tested separately in 
each patient group in MetaCardis where a naive effect can be observed 
and tested. Note that confidently deconfounded can be stated only 
within the scope of available metadata.

For the hierarchical clustering of drug associations with the host 
and microbiome features, the number of features of a specific type 
affected by each drug falling into each category was used to cluster 
the drug effects. Pearson’s correlation was used as a distance metric 
for clustering.

Enrichment of oral strain populations in faecal samples
To quantify the differential faecal enrichment of oral strain popula-
tions, we relied on the multisite metagenomic dataset provided by 
the Human Microbiome Project (HMP) to define predominantly oral 
microbial single nucleotide variants (SNV). Raw sequence reads for 
399 stool and 945 oral HMP samples (from 9 distinct subsites) were 
downloaded from the European Nucleotide Archive (ENA: PRJNA48479, 
PRJNA275349), quality-trimmed and mapped to reference genomes of 
1,753 specI clusters42 using NGlessR44 (v.1.3.0). Uniquely mapping reads 
for all oral subsites were then combined per individual and time point 
into a total of 375 oral samples, using the samtools merge command. 

Faecal samples for the present cohort were processed in a similar man-
ner and mapped to the same set of specI reference genomes.

For the resulting combined dataset, microbial SNVs were called using 
metaSNV48 (v.1), requiring a minimum of 4 non-reference reads at a 
prevalence of ≥5% of total samples to define an SNV. From the resulting 
set, all SNVs observed in at least half of oral HMP samples and at least 
10 HMP faecal samples were defined as predominantly oral and used 
as proxies to quantify oral microbial strain populations in MetaCardis 
faecal samples. By using the threshold on the lowest number of faecal 
samples (at least 10), we selected strains that are predominantly linked 
to the oral cavity, but which can at least sometimes be observed in the 
gut as well, which enabled us to make the test more conservative and 
ensure robustness to noise.

Medication intake and co-prescription frequency
To infer association rules for drug co-prescription rules, the Equiva-
lence Class Transformation algorithm implemented in the R library 
arules49 (v.1.6-2) was used. Drug effects against disease were calcu-
lated according to the univariate tests described above; effects that 
had the opposite direction to those found comparing patients versus 
controls were considered to be putative drug effects, whereas effects 
that had the same sign as the disease signature were putatively labelled 
as severity markers or indications for receiving a drug for purposes of 
visualization. Plots were generated using ggptlot2, ggpubr and igraph 
R libraries, using R v.3.5.3.

Mediation analysis
To assess whether drug effects on the host features were mediated 
by changes in the microbiome features or vice versa, we performed 
general mediation analysis50 implemented in the Python (v.3.7.7) 
library statsmodels51 (v.0.11.0). For each drug or drug combination, 
we included only host and microbiome features that were associated 
with the treatment with the single drug, drug dosage or the drug combi-
nation, correspondingly. The thresholds for association were (1) MWU 
FDR < 0.1; (2) passing all confounder filters; (3) disease association is the 
opposite in direction to that of the drug combination; and (4) in the case 
of dosage and combination, significance in a nested linear model com-
parison test (likelihood ratio post hoc P < 0.05). The basic mediation 
analysis was performed using the formulas feature ~ drug + mediator 
for the outcome model (defined with the function sm.GLM.from_for-
mula) and mediator ~ drug for the mediator model (defined with a 
function sm.OLS.from_formula). The effect size and significance of 
mediation was calculated with the function statsmodels.stats.media-
tion.Mediation.fit() using ‘drug’ and ‘mediator’ as parameters. In addi-
tion to mediation analysis, we also calculated the Pearson’s correlation 
between each feature and each mediator included in the analysis for 
each effector.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The source data for the figures are provided at Zenodo (https://doi.
org/10.5281/zenodo.4728981). Raw shotgun sequencing data that sup-
port the findings of this study have been deposited at the ENA under 
accession codes PRJEB41311, PRJEB38742 and PRJEB37249 with public 
access. Raw spectra for metabolomics have been deposited in the Mas-
sIVE database under the accession codes MSV000088043 (UPLC–MS/
MS) and MSV000088042 (GC–MS). The metadata on disease groups 
and drug intake are provided in Supplementary Tables 1–3. The demo-
graphic, clinical and phenotype metadata, and processed microbiome 
and metabolome data for French, German and Danish participants  
are available at Zenodo (https://doi.org/10.5281/zenodo.4674360).
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Code availability
The new drug-aware univariate biomarker testing pipeline is available 
as an R package (metadeconfoundR; Birkner et al., manuscript in prepa-
ration) at Github (https://github.com/TillBirkner/metadeconfoundR) 
and at Zenodo (https://doi.org/10.5281/zenodo.4721078). The latest 
version (0.1.8) of this package was used to generate the data shown in 
this publication. The code used for multivariate analysis based on the 
VpThemAll package is available at Zenodo (https://doi.org/10.5281/
zenodo.4719526). The phenotype and drug intake metadata, processed 
microbiome, and metabolome data and code resources are available 
for download at Zenodo (https://doi.org/10.5281/zenodo.4674360). 
The code for reproducing the figures is provided at Zenodo (https://
doi.org/10.5281/zenodo.4728981).
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Extended Data Fig. 1 | A post-hoc testing approach for deconfounding 
univariate biomarker analysis for multiple medications and risk factors. 
The schematic highlights our covariate control approach. All significant 
associations between putative drivers (e.g., disease D) and covariates (C1...Cn) 
to each measured feature (Y1...Ym) are taken. The outcome of the test is 
denoted with ai for a positive outcome (“yes”) and āi for a negative 
outcome (“no”). A significant predictor is called “confounded” and is filtered 
out in a post-hoc test if there is at least one covariate (e.g., drug treatment or 

combination) such that the predictor does not add significant predictive 
capacity beyond the covariate (“confounded”). If no such covariate itself 
passes the same test (i.e., covariates cannot in turn be shown to have predictive 
capacity beyond tested predictor), the predictor is considered ambiguous 
(“ambiguously deconfounded”). Otherwise, the predictor is considered 
“confidently deconfounded” (we note that “confidently deconfounded” is 
defined as no confounders were found among all covariates measured in our 
study).



Extended Data Fig. 2 | Previously reported metabolic disease associations 
are replicated in the MetaCardis cohort under drug deconfounding, 
highlighting systemic inflammation, short-chain fatty acid and 
branched-chain amino acid mechanisms underlying insulin resistance. 
Cuneiform plot marker hues and direction show sign of effect size (Cliff’s 
delta), intensity and size show amplitude of effect size, comparing metabolic 
diseased proband subsets (horizontal axis) with healthy control subject in the 
MetaCardis population for different microbiome, metabolome and host 

features (vertical axis). Bold and opaque markers show significant associations 
(two-sided MWU FDR < 0.1) not reducible to any significant drug or 
demographic confounder. Full associations are found in Supplementary 
Table 9; here a preselected subset is displayed reflecting previously reported 
risk and protective factors, validated in MetaCardis. 1H NMR features are shown 
with retention time in parentheses, functional modules with GMM or KEGG 
identifier in parenthesis, analogous for metagenomic species and mOTUs.
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Extended Data Fig. 3 | Previously reported drug-microbiome associations 
are replicated in the MetaCardis cohort for metformin and PPI. Bar plots 
show the magnitude and direction of effect size (Cliff’s delta) of metformin 
treatment (left) and PPI treatment (right) on microbiome features. These 

effects are compared to the previously published data from two independent 
patient cohorts10. Only features with direct match on the taxonomic level were 
included in the comparison. Full list of associations is provided in 
Supplementary Table 6.



Extended Data Fig. 4 | SNV analysis of strains in the gut of subjects taking 
PPIs. Cuneiform plot shows change in abundance of bacterial species in the gut 
in subjects taking/not taking PPIs (controlling for other drugs and 
demographic factors) in each clinical group separately, and for all subjects 
pooled together. Rows marked “SNV” show whether oral strain single 
nucleotide markers are significantly (two-sided MWU FDR < 0.1) enriched over 
gut strain markers in subjects taking PPIs, controlling for abundance of each 

species. Marker direction, colour and size denote the sign and value of Cliff’s 
delta standardized effect size; opaque markers are significantly altered 
(two-sided MWU FDR < 0.1; passing all confounder checks). Bacteria are shown 
if their abundance is significantly altered under PPI consumption, and there are 
SNPs distinguishing oral from gut strains in HMP samples. (See Supplementary 
Tables 5–7).
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Extended Data Fig. 5 | Breakdown of antibiotics association into individual 
features, selected features shown. Left cuneiform plot (markers show 
Spearman correlation direction by shape and colour, scope by size and colour, 
significance (two-sided MWU FDR < 0.1, deconfounded for other drug and 
demographic features) by edge opacity) shows association between each 
feature and total number of antibiotics courses in CMD groups as well as in 
healthy controls. Right cuneiform shows whether the same features are 
significantly different (two-sided MWU FDR < 0.1) between healthy controls 

and CMD subjects following drug deconfounding (markers show Cliff’s delta 
effect size), requiring significant and deconfounded correlation with number 
of antibiotic courses demonstrable in at least one proband group and at least 
one group showing significant and deconfounded alteration compared to 
healthy controls. Core features include increased carriage of possible 
disease-associated Ruminococcus gnavus and various Clostridia species, 
alongside decreased carriage of commensals such as Faecalibacterium species. 
Full list of associations is provided in Supplementary Table 12.



Extended Data Fig. 6 | Taxonomic changes are validated in a recent 
intervention cohort. For bacterial species where an effect on abundance of 
total antibiotics courses in MetaCardis could be demonstrated (significant at 
Spearman FDR < 0.1 and deconfounded), and where effect of antibiotic 
intervention has been tested in a recent antibiotic intervention study52, 
MetaCardis correlation on vertical axis vs intervention log-transformed fold 

change on horizontal axis are displayed. Separate markers are shown for each 
MetaCardis patient group within which antibiotic effect can be demonstrated. 
Bold markers achieve significance (FDR < 0.1) in the intervention study as well. 
For the majority of taxa overlapping between studies, direction of changes 
matches, consistent with a causal impact of antibiotics on the microbiota in 
MetaCardis.
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Extended Data Fig. 7 | Enterotype likelihood is altered by antibiotics. 
Cuneiform shows normalized regression coefficients of logistic models for 
each 4-class enterotype as a function of antibiotics courses in the past 5 years, 
separately for controls and metabolic disease patient groups. All significant 

(two-sided Wald FDR < 0.1) models show depletion of Ruminococcus and 
Prevotella enterotypes, and enrichment for Bacteroides enterotypes; in the 
case of metabolic disease patients, this is strongest for the low cell count 
Bacteroides 2 enterotype.



Extended Data Fig. 8 | Illustration of flow cytometry gating strategy.  
A fixed gating/staining approach was applied45. Both blank and sample 
solutions were stained with SYBR Green I. a. FL1-A/FL3-A acquisition plot of a 
blank sample (0.85% w/v physiological solution) with gate boundaries 
indicated. A threshold value of 2000 was applied on the FL1 channel.  
b. Secondary gating was performed on the FSC-A/SSC-A channels to further 
discriminate between debris/background and microbial events. c, d./ FL1-A/
FL3-A count acquisition of a faecal sample with secondary gating on FSC-A/
SSC-A channels based on blank analyses. Total counts were defined as events 
registered in the FL1-A/FL3-A gating area excluding debris/background events 
observed in the FSC-A/SSC-A R1 gate. The flow rate was set at 14 microliters per 
minute and the acquisition rate did not exceed 10,000 events per second. Each 
panel reflects the events registered during a 30 s acquisition period. Cell 
counts were determined in duplicate starting from a single biological sample.
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n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection For full details see Methods; METEOR (v3.2), MetaOMineR (v1.2), Alien Trimmer (v0.2.4) , MOCAT2 (v2.0), ngless (v1.3.0), Bowtie (v2.2.6), 
samtools (v1.13) were used to process microbiome data.

Data analysis For full details see Methods; the following R packages were used: vegan (v2.4-5), lmtest (v0.9-38), orddom (v3.1), arules (v 1.6-2 ), ggplot2 
(v3.3.4), ggpubr (v0.4.0) and igraph (v1.2.6). The following Python modules were used in Python (v3.7.7): numpy (v1.18.1), pandas (v1.0.3), 
scipy (v1.6.2), statsmodels (v0.11.0). Custom R code (metadeconfoundR pipeline (v0.2.1) and wrapper scripts to reproduce the results are 
available on github (https://github.com/TillBirkner/metadeconfoundR) and Zenodo (https://doi.org/10.5281/zenodo.4721078; https://
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Raw shotgun sequencing data that support the findings of this study have been deposited in The European Nucleotide Archive (ENA) with accession codes 
[PRJEB41311, PRJEB38742 and PRJEB37249] with public access. The metadata for all samples are provided in Supplementary Tables 2 and 3. The metadata, 
processed microbiome and metabolome data are available under https://doi.org/10.5281/zenodo.4674360 for download. The source data for the figures and 
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Sample size No prior power calculation was carried out but sample size was selected so as to exceed that of the MetaHIT study, which was adequately 
powered.

Data exclusions No subjects for which data was available was excluded during analysis.

Replication As a hypothesis generating study, no explicit replication attempts were made, but 1) tests were performed separately in different participant 
groups, showing agreement; 2) previously published results were replicated in the present study. As stated in the manuscript, we could 
reproduce effects on serum metabolome of antidiabetic drugs, statins, beta-blockers, antithrombotic drugs and aspirin. Our approach 
recaptured previously reported drug-gut microbiome findings on the impact of antibiotics, PPIs, statins, beta-blockers and metformin. 
Specifically, for the study of Maier et al. Nature 2018 (https://doi.org/10.1038/nature25979), we reproduced at least one negative drug-
microbial interactions for 6 out of 8 drugs overlapping between our studies (75%), which is summarized in Supplementary Table 6. For the 
study of Vich Vila et al. Nature Communications 2020 (https://doi.org/10.1038/s41467-019-14177-z), we could reproduce 10/12 (83%) of 
overlapping drug-microbiome interactions for metformin, and 26/26 (100%) of overlapping drug-microbiome interactions for proton pump 
inhibitors (summarized in Extended Data Figure 3).

Randomization Since no intervention was performed, there was in principle nothing to randomize. However, wherever samples were processed in batch in 
the course of -omics data generation (including DNA extraction, sequencing, metabolomics measurements as well as preprocessing), they 
were randomly assigned to batches. Thus for all purposes that randomization is well-defined for this type of study design, it was carried out. 
We do not anticipate any resulting bias.

Blinding Computational analysis was effectively blinded by default, as was processing of all data. Clinical laboratory measures and -omics data 
processing was likewise done blinded to the group labels (with samples given group-unrelated identifiers and labelled using derived barcode 
stickers), and with staff performing these procedures being unaware of sample group labels. The only data collection done by any staff aware 
of the group labels was initial clinical data collection by study nurses and physicians, who due to the design of the study (group labels 
reflecting diagnosis) cannot be blinded. We do not anticipate any resulting bias.
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Human research participants
Policy information about studies involving human research participants

Population characteristics This is described in detail within the manuscript as part of what we study, relative to both geographical, clinical, demographic 
and treatment factors (see Supplementary Table 1).

Recruitment This is described in greater detail in the manuscript and companion manuscripts, and involve hospital regions of Paris, 
Copenhagen and Leipzig during period 2012-2016. Patients were recruited in the course of receiving specialist care in the 
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participating clinics. Healthy controls were recruited through public advertisement in the cities where the clinics were 
located. Subjects recruited into the patient groups were selected according to the clinical group criteria. As such all patients 
fulfilling these criteria were asked to take part in the study and the return rate was above 90%. Healthy subjects in Germany 
were recruited via public advertisement, as it was not possible to randomly sample the population, so a slight selection bias 
can not be excluded for this particular group stemming from an overt interest in health. Considering this is beneficial for 
fidelity of study design when impacting specifically healthy controls, we can exclude that this impacted the results of the 
study. Moreover, the criteria for each group were overseen by recruiting physicians, leading to further filtering of groups. In 
summary, all subjects recruited with study groups were included upon preselection according to the group requirements and 
not upon interest of subject. 

Ethics oversight The study protocol was approved by the Ethics Committee at the Medical Faculty at the University of Leipzig, the Ethics 
Committees of the Capital Region of Denmark and the Ethics Committee CPP Ile-de-France. All participants provided written 
informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration The study protocol was registered at ClinicalTrials.gov (NCT02059538).

Study protocol Study protocol is available from the study promoter: Assistance Publique-Hôpitaux de Paris (AP-HP).

Data collection This is described in greater detail in the manuscript and companion manuscripts, and involve hospital regions of Paris, Copenhagen 
and Leipzig during period 2012-2016. The prospective cross-sectional multi-center study MetaCardis covered a wide range of 
metabolic and cardiac phenotypes. For the purpose of the study a total of 2,173 subjects including healthy controls as well as 
subjects with increasingly severe metabolic and cardiac disease were recruited into 8 study groups in Copenhagen, Denmark, at the 
university hospital of Leipzig, Germany and Assistance Public des Hopitaux (APHP), France.  Subjects were free to answer their 
questionnaires at home and questionnaires were collected on the study day. Data pertaining to metabolic and metabolomics 
measurements stem from blood samples drawn on the study day after an overnight fast. Metagenomics data stem from sequencing 
of stool samples collected by the subjects no earlier or later than a week of their study visit.

Outcomes Since the study was a cross-sectional non-intervention study, conventional outcomes were neither defined nor assessed. As such no 
primary or secondary outcomes were predefined or assessed. Assessed were metabolic health markers in association with 
microbiome and metabolome data. Disease status and patient groups were defined along international definitions of disease, with 
obesity defined according to the WHO criteria , metabolic syndrome according to the International Diabetes Federation, T2D by the 
American Diabetes Association and hypertension according to the American College of Cardiology and American Heart Association.

Flow Cytometry
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Methodology

Sample preparation 0.2 g frozen (-80ºC) faecal aliquots were dissolved in physiological solution to a total volume of 100 mL (8.5 g/L NaCl). 
Subsequently, the slurry was diluted 1,000 times. Samples were filtered using a sterile syringe filter (pore size of 5 μm). 1 mL 
of the microbial cell suspension obtained was stained with 1 μL SYBR Green I (1:100 dilution in DMSO; shaded 15 min 
incubation at 37ºC). 

Instrument C6 Accuri flow cytometer (BD Biosciences, New Jersey, USA).

Software BD Accuri CFlow software v1.0.264.21 (BD Biosciences, New Jersey, USA). 

Cell population abundance Not applicable. No sorting of fractions was performed. 

Gating strategy Fluorescence events were monitored using the FL1 533/30 nm and FL3 >670 nm optical detectors. In addition, also forward 
and sideward-scattered light was collected. The BD Accuri CFlow software was used to gate and separate the microbial 
fluorescence events on the FL1/FL3 density plot from background. A threshold value of 2000 was applied on the FL1 channel. 
The gated fluorescence events were evaluated on the forward/sideward density plot, as to exclude remaining background 
events. Instrument and gating settings were kept identical for all samples. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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