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Reflection and transmission of a Kelvin-Helmholtz wave incident on a shock in a jet

Screech tones in supersonic jets are underpinned by resonance between downstreamtravelling Kelvin-Helmholtz waves and upstream-travelling acoustic waves. Specifically, recent works suggest that the relevant acoustic waves are guided within the jet and are described by a discrete mode of the linearised Euler equations. However, the reflection mechanism that converts downstream-travelling waves into upstream-travelling waves, and vice versa, has not been thoroughly addressed, leading to missing physics within most resonance models. In this work we investigate the reflection and transmission of waves generated by the interaction between a Kelvin-Helmholtz wave and a normal shock in an under-expanded jet using a mode-matching approach. Both vortex-sheet and finitethickness shear-layer models are explored, quantifying the impact of the shear layer in the reflection process. This approach could enable more quantitative predictions of resonance phenomena in jets and other fluid systems.

Introduction

Shock-containing shear flows involve a rich variety of phenomena including shockturbulence interaction (STI). In free shear layers, STI leads to an increase in turbulence levels and mixing downstream of the shock [START_REF] Génin | Studies of shock/turbulent shear layer interaction using largeeddy simulation[END_REF]. In wall-bounded flows, in addition to the enhancement of turbulence, STI may also be accompanied by boundary layer separation and the formation of a separation bubble [START_REF] Delery | Experimental investigation of turbulence properties in transonic shock/boundary-layer interactions[END_REF][START_REF] Dolling | Fifty years of shock-wave/boundary-layer interaction research: what next?[END_REF][START_REF] Clemens | Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[END_REF]. STI is also an important feature of supersonic combustion in scramjets [START_REF] Yang | Applications of shock-induced mixing to supersonic combustion[END_REF]. In imperfectly expanded propulsive jets, STI underpins the generation of broad-band shock associated noise [START_REF] Tanna | An experimental study of jet noise part ii: Shock associated noise[END_REF][START_REF] Tam | Shock associated noise of supersonic jets from convergentdivergent nozzles[END_REF]) and screech [START_REF] Powell | On the mechanism of choked jet noise[END_REF][START_REF] Tam | Proposed relationship between broadband shock associated noise and screech tones[END_REF][START_REF] Raman | Supersonic jet screech: half-century from powell to the present[END_REF][START_REF] Edgington-Mitchell | Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets-a review[END_REF].

Linear theory has been widely used to study the interaction between disturbance fields and shocks. [START_REF] Ribner | Convection of a pattern of vorticity through a shock wave[END_REF] considered the interaction between a vorticity wave and a normal shock. The analysis was later extended to consider STI, where a homogeneous turbulence was modelled as a superposition of Fourier vorticity waves [START_REF] Ribner | Shock-turbulence interaction and the generation of noise[END_REF]. [START_REF] Moore | Unsteady oblique interaction of a shock wave with a plane disturbance[END_REF] considered the interaction between sound waves and an oblique shock, and this work was extended by [START_REF] Mahesh | The interaction of an isotropic field of acoustic waves with a shock wave[END_REF] to study an isotropic field of acoustic disturbances interacting with a shock. Later, [START_REF] Mahesh | The influence of entropy fluctuations on the interaction of turbulence with a shock wave[END_REF] considered the influence of entropy fluctuations on STI as well and [START_REF] Buttsworth | Interaction of oblique shock waves and planar mixing regions[END_REF] derived expressions for shock-induced vorticity, useful for the estimation of mixing enhancement. The foregoing studies were all based on solution of the Rankine-Hugoniot relations. The unsteady STI was converted into an equivalent steady-flow problem which did not consider the reflection process associated with the incident turbulent disturbance but only the transmission mechanism through the shock wave. A review of these studies and others has been compiled by [START_REF] Andreopoulos | Shock wave-turbulence interactions[END_REF]. More recently, [START_REF] Kitamura | Rapid distortion theory analysis on the interaction between homogeneous turbulence and a planar shock wave[END_REF] used rapid distortion theory to study the interaction between homogeneous isotropic turbulence and a shock wave, and Chen & Donzis (2019) considered STI at high turbulence intensities. Similarly to the works reported above, the authors mainly focused on the turbulence amplification and modification of the turbulence length scales downstream of the shock.

The reflection and transmission of acoustic, vorticity and entropy waves within a convergent-divergent nozzle with and without a shock was studied by [START_REF] Marble | Acoustic disturbance from gas non-uniformities convected through a nozzle[END_REF]. The study focused on compact disturbances, that is, with wavelengths larger than the nozzle length, thus limiting the application to low frequencies. The inclusion of non-compactness effects was considered by [START_REF] Stow | Reflection of circumferential modes in a choked nozzle[END_REF], who provided a firstorder correction for the phase of the reflection coefficient for higher frequencies. The correction was extended to the transmission coefficient as well by [START_REF] Goh | Phase prediction of the response of choked nozzles to entropy and acoustic disturbances[END_REF] and a further development was carried out by [START_REF] Duran | Solution of the quasi-one-dimensional linearized euler equations using flow invariants and the magnus expansion[END_REF] and [START_REF] Duran | On the reflection and transmission of circumferential waves through nozzles[END_REF], who extended the high-frequency correction to the amplitude of the reflection and transmission coefficients in the case of planar and circumferential incident waves, respectively. All of these works were motivated by the problem of combustion noise and the role the reflected waves play on the onset of thermo-acoustic instability in the combustion chamber of the burner-turbine-nozzle configuration of an aero-engine.

The problem we consider is motivated by the sound generated by imperfectly expanded, supersonic jets, and, in particular, the phenomenon known as screech, a mechanistic explanation for which was first provided by [START_REF] Powell | On the mechanism of choked jet noise[END_REF]. The mechanism involves turbulent structures that are convected through the shock-cell structure; this STI results in the generation of upstream-travelling sound waves. According to Powell's phenomenological description, when the phases of the upstream-travelling sound waves and downstreamtravelling turbulent structures are suitably matched, at the jet exit plane and at the STI locations, resonance may occur. The downstream-travelling turbulent structures considered important for screech are what are often referred to as coherent structures.

A large body of recent work has shown how coherent structures in turbulent jets, and the sound they produce, can be modelled using linear theory [START_REF] Jordan | Wave packets and turbulent jet noise[END_REF][START_REF] Schmidt | Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability[END_REF][START_REF] Towne | Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis[END_REF][START_REF] Cavalieri | Wave-packet models for jet dynamics and sound radiation[END_REF][START_REF] Lesshafft | Resolvent-based modeling of coherent wave packets in a turbulent jet[END_REF][START_REF] Nogueira | Large-scale streaky structures in turbulent jets[END_REF]Edgington-Mitchell et al. 2021a). As shown in these studies, downstream-travelling coherent structures are largely underpinned by Kelvin-Helmholtz (K-H) instability. [START_REF] Powell | On the mechanism of choked jet noise[END_REF] assumed that the upstream-travelling waves responsible for the feedback mechanism in screech generation were free-stream acoustic waves, but this has been recently questioned. [START_REF] Shen | Three-dimensional numerical simulation of the jet screech phenomenon[END_REF] suggested that the upstreamtravelling disturbance might comprise a family of guided jet modes, first discussed by [START_REF] Tam | On the three families of instability waves of high-speed jets[END_REF]. This hypothesis has been recently confirmed in studies by [START_REF] Gojon | Oscillation modes in screeching jets[END_REF] and [START_REF] Edgington-Mitchell | Upstream-travelling acoustic jet modes as a closure mechanism for screech[END_REF], and a simplified screech-tone prediction model based on this idea has been developed and validated by Mancinelli et al. (2019a). In the simplest formulation of the screech-tone model, the spatial growth of the K-H mode is ignored, and a phase-matching criterion is sufficient to provide a reasonable prediction of screech-tone frequencies. A similar resonant mechanism was proposed for subsonic compressible jets [START_REF] Towne | Acoustic resonance in the potential core of subsonic jets[END_REF], cavity flows [START_REF] Rossiter | Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF][START_REF] Rowley | On self-sustained oscillations in twodimensional compressible flow over rectangular cavities[END_REF] and impinging jets [START_REF] Tam | Theoretical model of discrete tone generation by impinging jets[END_REF][START_REF] Bogey | Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets[END_REF]. The reflection of waves is implicitly considered in all these mechanisms, but it is rarely studied in detail. In more complete screech-frequency prediction models (Mancinelli et al. 2019b[START_REF] Mancinelli | A complex-valued resonance model for axisymmetric screech tones in supersonic jets[END_REF], where the spatial growth rates of the upstream-and downstream-travelling waves are included, knowledge of the reflection coefficients in the jet exit plane and at the location of STI is required.

In this paper, we investigate the interaction between a downstream-travelling K-H wave and a normal shock and compute the amplitude and phase of the reflected upstreamtravelling guided wave active in the screech loop using a mode-matching approach. We consider vortex-sheet (V-S) and finite-thickness (F-T) flow models, which elucidates the role of shear in the reflection and transmission processes. The efficiency of the modematching technique in the presence of a discontinuity, as is the shock in the flow we consider herein, has been already shown by [START_REF] Gabard | A computational mode-matching approach for sound propagation in three-dimensional ducts with flow[END_REF] for the estimation of the sound attenuation in a lined duct. More recently, a mode-matching approach has been used by [START_REF] Dai | Flow-acoustic resonance in a cavity covered by a perforated plate[END_REF] and [START_REF] Dai | Total reflection of two guided waves for embedded trapped modes[END_REF] to calculate the reflection and transmission coefficients in a duct flow in the presence of a cavity. Consistent with these works, we use linear theory to describe the flow dynamics upstream and downstream of the shock and then match the solutions across the discontinuity.

The paper is organised as follows. The general modelling framework, including the jet models adopted and the mode-matching approach used to calculate the reflection and transmission coefficients, is presented in §2. Results involving the reflection-coefficient calculation, its dependence on the frequency and jet-flow conditions and the reflected and transmitted pressure fields are presented and discussed in §3. The paper closes with concluding remarks in §4.

Modelling framework

We here present the shock and jet-dynamics modelling and the procedure adopted to calculate the reflection and transmission coefficients. We consider an axisymmetric, shock-containing supersonic jet. It is known that the organised structure of the jet plume of imperfectly expanded supersonic jets is shaped by oblique shocks and expansion waves (see among many the flow visualizations presented in [START_REF] Powell | On the mechanism of choked jet noise[END_REF], [START_REF] Powell | Observations of the oscillation modes of choked circular jets[END_REF], [START_REF] Panda | An experimental investigation of screech noise generation[END_REF] and [START_REF] Mercier | Experimental characterisation of the screech feedback loop in underexpanded round jets[END_REF]). Normal shocks are, however, found in the form of Mach disks for highly imperfectly expanded jets and often encountered in the jet plume of convergent-divergent nozzles and impinging jets (Edgington-Mitchell 2019). Despite many years of research activity (see among many the works by [START_REF] Powell | On the mechanism of choked jet noise[END_REF], [START_REF] Tam | Shock associated noise of supersonic jets from convergentdivergent nozzles[END_REF], [START_REF] Lele | Phased array models of shock-cell noise sources[END_REF], [START_REF] Suzuki | Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech[END_REF] as simple as possible and in the absence of a clear and unambiguous description of the interaction between instability and shock waves, the shock is herein assumed to be normal, thus allowing the use of the locally parallel flow assumption both upstream and downstream of the shock. This assumption implies that the linear response to shock oscillations induced by the incoming instability wave, which is a typical non-parallel feature, is not considered. A sketch of the shock-containing jet and the cylindrical reference system used in this paper are depicted in figure 1. We consider a K-H wave with unitary amplitude, I = 1, incident to a shock. The interaction of the incoming wave with the shock generates a collection of reflected and transmitted modes upstream and downstream of the shock, respectively. The sections upstream and downstream of the shock are hereinafter denoted 1 and 2 and the reflection and transmission coefficients of each wave moving away from the shock are indicated with R n R and T n T , respectively. The state vector is q * = {ρ * , u * x , u * r , u * θ , T * , p * }. The flow variables are normalised by the nozzle diameter D and the ambient density and speed of sound ρ ∞ and c ∞ , respectively, thus leading to a non-dimensional state vector q.

Shock model

The flow regions upstream and downstream of the shock are well described by a locally parallel model. In order to connect these two regions, we impose the conservation laws of mass, momentum and energy through the shock. This is done by dividing the shock into infinitesimal control volumes dV of length ∆x → 0 such that the flux terms through the top and bottom surfaces are zero (see figure 1) and enforcing mass, momentum, and energy conservation for the control volume, leading to the system of equations

                       S1 ρ * ⃗ u * • ⃗ n dS + S2 ρ * ⃗ u * • ⃗ n dS = 0, (2.1a) S1 ρ * ⃗ u * (⃗ u * • ⃗ n) dS + S1 p * ⃗ n dS + S2 ρ * ⃗ u * (⃗ u * • ⃗ n) dS - S2 p * ⃗ n dS = 0, (2.1b) S1 ρ * e * ⃗ u * • ⃗ n dS + S2 ρ * e * ⃗ u * • ⃗ n dS = 0, (2.1c)
where e * = h * + 0.5 u * 2 x + u * 2 r + u * 2 θ is the total specific energy with the enthalpy expressed as h * = c p T * . Normalising the flow variables, performing the Reynolds decomposition, q (x, r, θ, t) = q (r) + q ′ (x, r, θ, t) ,

(2.2) and substituting into (2.1), removing the mean and linearising, the linearised jump equations for the shock become

             u 1x ρ 1 + ρ 1 u 1x = u 2x ρ 2 + ρ 2 u 2x , (2.3a 
)

p 1 + 2ρ 1 u 1x u 1x + u 2 1x ρ 1 = p 2 + 2ρ 2 u 2x u 2x + u 2 2x ρ 2 , (2.3b) u 1r = u 2r , (2.3c 
)

u 1θ = u 2θ , (2.3d 
)

T 1 + u 1x u 1x = T 2 + u 2x u 2x , (2.3e)
where we removed the primes from the fluctuating variables for notational simplicity. We note that the adiabatic relation between the thermodynamic variables is implicit in the linearised operator. The perturbations upstream and downstream of the shock are modelled using the normal mode ansatz q ′ (x, r, θ, t) = q (r) e i(kx+mθ-ωt) , (2.4)

where k is the wavenumber along the axial direction, m is the azimuthal order and ω = 2πStM a is a non-dimensional frequency, with St = f D/U j the nozzle-diameterbased Strouhal number and M a = U j /c ∞ the acoustic Mach number. Considering that the only incident wave is the K-H wave, the system of equations (2.3) can be written in a compact form as follows,

A 1 I q1I + ∞ n R =1 R n R q1R,n R = A 2 ∞ n T =1
T n T q2T,n T , (2.5) where q1I , q1R,n R and q2T,n T are the incident, reflected and transmitted waves moving upstream and downstream of the shock, respectively, and

A 1 =       u 1x ρ 1 0 0 0 0 u 2 1x 2ρ 1 u 1x 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 u 1x 0 0 1 0       , A 2 =       u 2x ρ 2 0 0 0 0 u 2 2x 2ρ 2 u 2x 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 u 2x 0 0 1 0       (2.6)
are matrices containing information about the mean flow upstream and downstream of the shock. The vector of eigenfunctions q1I , q1R,n R and q2T,n T are computed using either a vortex sheet or finite-thickness model (see §2.3). The procedure used to ascertain whether a wave is reflected or transmitted is described in §2.3.3.

2.2.

Reflection-and transmission-coefficient calculation Equation (2.5) is exact if a complete basis of jet modes is considered. In order to estimate the reflection-and transmission-coefficient values, we truncate the sum to a finite number of modes N R and N T and we introduce an error density ϵ (r) for each conservation equation. Equation (2.5) can then be written as

A 1 I q1I + N R n R =1 R n R q1R,n R -A 2 N T n T =1 T n T q2T,n T = ϵ, (2.7)
where ϵ (r) is the error density vector and ϵ → 0 if the number of modes N R and N T → ∞.

The reflection and transmission coefficients R n R and T n T associated with each mode are estimated by a least-mean-square minimization of the error densities, formalised as

[R opt,n R , T opt,n T ] = min Rn R ,Tn T ∈ C ∞ 0 |ϵ 2 (r) | dr F .
(2.8)

The objective function F corresponds to the sum of the absolute value of the squared error densities associated with each conservation equation integrated along the radial direction. To solve the minimization problem in (2.8), we write (2.7) in a matrix form,

A 1 Q1R -A 2 Q2T R T = -IA 1 q1I + ϵ.
(2.9)

where Q1R = [q 1R,1 , ..., q1R,N R ] and Q2T = [q 2T,1 , ..., q2T,N T ] are the matrices of the eigenfunctions and R and T are the vectors of the reflection and transmission coefficients, respectively. We then define

R T = X, A 1 Q1R -A 2 Q2T = B, y = A 1 q1I I, (2.10) 
so that (2.9) can be written in the compact form ϵ = BX + y. The solution of (2.8) is obtained by finding the stationary point of F by setting its gradient to zero, (2.11) which leads to,

dF dX = d ϵ T Wϵ dX = B T WBX + B T Wy = 0,
X = -B T WB -1 B T Wy, (2.12) 
where B| + W = B T WB -1 B T W is the weighted pseudo-inverse matrix and W is a diagonal matrix of elements dr.

Jet models

We here present a local description of the jet dynamics using the parallel-flow linear stability theory. This theory is applied to two different models: a finite-thickness flow model and a simplified cylindrical vortex sheet. Both are governed by the Linearised Euler Equations (LEE) (see appendix A).

Finite-thickness model

Writing the LEE exclusively in terms of pressure, the compressible Rayleigh equation [START_REF] Schmid | Stability and transition in shear flows[END_REF])

∂ 2 p ∂r 2 + 1 r - 2k uxk -ω ∂ux ∂r - γ -1 γρ ∂ρ ∂r + 1 γT ∂T ∂r ∂ p ∂r -k 2 + m 2 r 2 - (uxk -ω) 2 (γ -1) T p = 0, (2.13)
is obtained, where γ is the specific heat ratio for a perfect gas. The solution of the linear stability problem is obtained by specifying a real or complex frequency ω and solving the resulting augmented eigenvalue problem k = k (ω), with p (r) the associated pressure eigenfunction. The eigenvalue problem is solved numerically by discretising (2.13) in the radial direction using the Chebyshev polynomials and by imposing Dirichlet boundary conditions at the domain boundaries. A mapping function proposed by [START_REF] Lesshafft | Linear impulse response in hot round jets[END_REF] is used to non-uniformly distribute the 500 grid points to efficiently resolve the shear layer of the jet and to ensure convergence of the computed eigenmodes. The eigenfunctions ûi , ρ and T are calculated from the knowledge of p (see appendix A). The eigenfunctions are normalised such that ∠p (r) = 0 for r = 0 and to have unitary energy norm, which, following [START_REF] Chu | On the energy transfer to small disturbances in fluid flow (part i)[END_REF] and [START_REF] Hanifi | Transient growth in compressible boundary layer flow[END_REF], is defined as

E = 1 2 2π 0 ∞ 0 ρ | ûx | 2 + | ûr | 2 + | ûθ | 2 + γ -1 γ T ρ |ρ| 2 + ρ γT | T | 2 r dr dθ. (2.14)
The derivation of the energy norm is provided in appendix B.

Vortex-sheet model

The vortex-sheet model is an inviscid idealisation of the jet where the infinitely thin vortex sheet separates the interior flow and the outer quiescent fluid, resulting in a jet with a mean top-hat profile. The vortex sheet was used by [START_REF] Lessen | On the inviscid stability of the laminar mixing of two parallel streams of a compressible fluid[END_REF] and [START_REF] Michalke | A note on the spatial jet-lnstability of the compressible cylindrical vortex sheet[END_REF] to study the stability properties of a compressible jet. We recently showed that the standard V-S model for free jets, which was used in the previous studies, does not support free-stream acoustic waves as discrete modes, as required for the mode-matching procedure. To obtain a discrete representation of free-stream acoustic modes, we use the dispersion relation of a confined jet with the radial distance of the boundary (r M AX ) sufficiently distant from the jet in order to recover the same dynamical properties of a free jet. The analysis of this surrogate problem allowed us to include the free-stream acoustic modes in the description of the jet dynamics (for more details the reader can refer to [START_REF] Mancinelli | Including acoustic modes in the vortex-sheet eigenbasis of a jet[END_REF]). We herein use this confined version of the vortex sheet, whose dispersion relation

D (k, ω; M a , T, m, r M AX ) = 0 is, 1 1 -kMa ω 2 + 1 T I m γi 2 K m γo 2 -zI m γo 2 γo 2 K m-1 γo 2 + mK m γo 2 + z γo 2 I m-1 γo 2 -mI m γo 2 γi 2 I m-1 γi 2 -mI m γi 2 = 0, (2.15) with γ i = k 2 - 1 T (ω -M a k) 2 , (2.16a) γ o = k 2 -ω 2 , (2.16b)
where I and K are modified Bessel functions of the first and second kind, respectively, T = T j /T ∞ is the jet-to-ambient temperature ratio such that the relation between the jet and the acoustic Mach numbers is

M a = M j √ T , and z = K m (γ o r M AX ) /I m (γ o r M AX
). The branch cut in the square root of (2.16) is chosen such that -π/2 ⩽ arg (γ i,o ) < π/2. The dispersion relation in (2.15) for a confined jet differs from the unconfined one for a free jet in the additional terms containing z (r M AX ). Following [START_REF] Mancinelli | Including acoustic modes in the vortex-sheet eigenbasis of a jet[END_REF], we herein use r M AX = 100 in order to avoid any effect of the boundary on the eigenmodes. Frequency/wavenumber pairs (ω, k) that satisfy (2.15) define eigenmodes of the vortex sheet for given values of m, M a , T and r M AX . To find these pairs, similarly to the finitethickness model, we specify a frequency ω (real or complex) and compute the associated eigenvalues k. Eigenvalues are computed using a root finder based on the Levenberg-Marquardt method [START_REF] Levenberg | A method for the solution of certain non-linear problems in least squares[END_REF][START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF].

After imposing bounded solution for r = 0 and a soft-wall boundary condition at r = r M AX , the solution for the pressure in the inner and outer flows is,

pi (r) = B i I m (γ i r) r ⩽ 0.5 (2.17a) po (r) = C o (-zI m (γ o r) + K m (γ o r)) r > 0.5, (2.17b)
where B i and C o are constants fixed in order to ensure pressure continuity at the vortex sheet location r = 0.5. The eigenfunctions of the other flow variables are calculated from the knowledge of pi,o (r) by exploiting the Fourier-transformed LEE (A 4). The same eigenfunction normalisation procedure described for the finite-thickness model is used for the vortex-sheet model as well.

Identification of reflected and transmitted waves

There are two types of waves which appear due to the scattering of the K-H wave at the shock: upstream-travelling reflected waves in region 1, and downstream-travelling transmitted waves in region 2 (see figure 1). Following [START_REF] Towne | Acoustic resonance in the potential core of subsonic jets[END_REF], we use the terms downstream-and upstream-travelling to designate the direction of the energy transfer. This property can be characterised using the Briggs-Bers criterion by looking at the asymptotic behaviour of k (ω) at large ω i [START_REF] Briggs | Electron-stream interaction with plasmas[END_REF][START_REF] Bers | Space-time evolution of plasma instabilities-absolute and convective[END_REF]). The wave is downstream-travelling if

lim ωi→+∞ k i = +∞ (2.18a)
and upstream-travelling if

lim ωi→+∞ k i = -∞, (2.18b)
where the subscript i stands for the imaginary part of the variable. The downstreamand upstream-travelling waves are denoted hereinafter with the superscript + and -, respectively.

Mean flow

The conditions upstream of the shock in the case of the vortex sheet are provided by, (2.19b) where ρ = ρ j /ρ ∞ is the jet-to-ambient density ratio.

r ⩽ 0.5          u 1x = M a1 p 1 = ρT γ ρ 1 = ρ T 1 = T γ-1 (2.19a) r > 0.5          u 1x = 0 p 1 = 1 γ ρ 1 = 1 T 1 = 1 γ-1 ,
In the case of finite thickness, we use the hyperbolic tangent function reported in [START_REF] Lesshafft | Linear impulse response in hot round jets[END_REF] for the velocity profile upstream of the shock,

u 1x = 1 2 M a1 1 + tanh R 4δ R r - r R , (2.20)
where δ is the shear-layer momentum thickness and R = 0.5 is the nozzle radius.

Consistent with Particle Image Velocimetry results presented in [START_REF] Mancinelli | A complex-valued resonance model for axisymmetric screech tones in supersonic jets[END_REF] for an under-expanded supersonic jet with jet Mach number M j1 = 1.1 and temperature ratio T ≈ 0.81, we choose a shear-layer thickness R/δ = 10. Denoting the dimensional variables with the superscript * and the fully expanded variables with the subscript j, the mean density profile is calculated as the inverse of the mean temperature profile, ρ * (r) /ρ j = (T * (r) /T j ) -1 , where the mean temperature is calculated using the Crocco-Busemann relation [START_REF] Michalke | Survey on jet instability theory[END_REF],

T * (r) T j = T ∞ T j + 1 - T ∞ T j u * x (r) U j + (γ -1) M 2 j u * x (r) U j 1 2 1 - u * x (r) U j .
(2.21)

The mean flow downstream of the shock can then be determined from the upstream conditions using the jump equations of normal shocks,

                                     M j2 = M 2 j1 (γ -1) + 2 2γM 2 j1 -(γ -1) , p 2 p 1 = 2γM 2 j1 -(γ -1) γ + 1 , ρ 2 ρ 1 = (γ + 1) M 2 j1 (γ -1) M 2 j1 + 2 , T 2 T 1 = 1 + γ-1 2 M 2 j1 2γ γ-1 M 2 j1 -1 M 2 j1 2γ γ-1 + γ-1 2 . (2.22a) (2.22b) (2.22c) (2.22d )
The mean-flow profiles upstream and downstream of the shock in the case of vortexsheet and finite-thickness models for the flow conditions listed above are represented in figure 2. The presence of the shock wave generates a mean pressure gradient along the radial direction downstream of the shock. This ∂p/∂r induces a mean radial velocity u r , thus making the flow slowly diverging. The evaluation of this induced radial velocity in the case of a finite-thickness model is reported in appendix C, where we show that the induced mean radial velocity is small compared with the axial velocity component. We also point out that the transmission and reflection mechanisms occur locally and hence they are not affected by the flow evolution far away from the shock.

Results

In this section we present the results of the reflection-coefficient calculation obtained by modelling the jet dynamics with both the vortex-sheet and finite-thickness models. We first consider a Strouhal number St = 0.68, a jet Mach number M j1 = 1.1 and a temperature ratio T ≈ 0.81 (corresponding to an acoustic Mach number M a1 ≈ 0.987), which results in a jet Mach number M j2 = 0.91 and an acoustic Mach number M a2 ≈ 0.84 downstream of the shock. These upstream jet conditions and Strouhal number are selected to match conditions for which screech has been experimentally observed by Mancinelli et al. (2019a) and [START_REF] Mancinelli | A complex-valued resonance model for axisymmetric screech tones in supersonic jets[END_REF]. Due to the axisymmetric nature of the resonance mode, we here study the azimuthal mode m = 0. Furthermore, we focus on the reflection coefficient of the upstream-travelling guided mode of the second radial order given that this mode has been proven to be the closure mechanism for axisymmetric screech modes (see Edgington-Mitchell et al. (2018), Mancinelli et al. (2019a) and [START_REF] Mancinelli | A complex-valued resonance model for axisymmetric screech tones in supersonic jets[END_REF]). Finally, for the finite-thickness model, we explore the variation of the reflection coefficient as a function of both St and M j .
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Incident, reflected and transmitted waves

First, we identify the reflected and transmitted waves generated by the interaction of the incident K-H wave with the shock discontinuity for both the V-S and F-T models upstream and downstream of the shock, respectively. Figure 3 shows the V-S eigenspectrum in the complex-k plane upstream of the shock. For the sake of brevity and clarity of the figure, in the present manuscript we show eigenvalues only for real ω (see [START_REF] Mancinelli | Including acoustic modes in the vortex-sheet eigenbasis of a jet[END_REF] for the corresponding eigenspectrum for ω ∈ C). Several distinct families of modes can be identified. The V-S model supports one convectively unstable mode, the K-H mode, which is denoted hereinafter k KH . The unstable k KH wave has a complex-conjugate and both eigenvalues have positive phase and group velocities according to the criteria (2.18). The V-S model also supports guided modes, i.e., modes that use the jet as a wave guide. These modes, hereinafter denoted k p , belong to a hierarchical family of waves identified by their azimuthal and radial orders m and n r , respectively. According to [START_REF] Towne | Acoustic resonance in the potential core of subsonic jets[END_REF], these modes are guided or completely trapped inside the jet depending on the St and the radial order considered. Specifically, we observe evanescent k p waves for n r = 1 with supersonic negative phase speed. The wave associated with k i > 0 is a downstream-travelling wave, whereas the wave with k i < 0 is upstream-travelling. The k p mode for n r = 2 is propagative and upstreamtravelling and has a slightly subsonic negative phase speed. All the k ± p modes with n r ⩽ 2 have support both inside and outside of the jet for the St analysed. The k + p modes for n r > 2 represent acoustic waves trapped inside the jet due to total reflection at the vortex sheet, which effectively behaves as a soft-walled duct [START_REF] Towne | Acoustic resonance in the potential core of subsonic jets[END_REF][START_REF] Martini | Acoustic modes in jet and wake stability[END_REF]. Finally, we find propagative and evanescent acoustic modes, which are hereinafter denoted k a . Among them, modes lying on the real and imaginary axes with k r < 0 and k i < 0, respectively, are upstream-travelling modes.

Figure 4 shows the eigenspectrum upstream of the shock computed using linear stability theory for a shear layer with finite thickness R/δ = 10. In addition to the mode families supported by the VS, the finite-thickness model supports critical-layer modes, denoted hereinafter k cr . These modes have positive, subsonic phase and group velocities and lie on the real axis. Their spatial support is concentrated in the critical layer of the jet, i.e., the region of the jet where the phase speed equals the local mean flow velocity [START_REF] Tissot | Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer[END_REF]. Critical-layer modes with small wavenumbers are characterised by a spatial support mainly concentrated in the core of the jet and possess a phase speed close to the mean jet velocity, whereas k cr modes with larger wavenumbers are mostly concentrated in the shear layer and have a phase speed value which decreases as the spatial support of the mode moves more and more outside of the jet. To summarise, both the vortex-sheet and finite-thickness models support two families of reflected waves upstream of the shock: (i) guided jet modes and (ii) propagative and evanescent acoustic modes. Among the guided modes, we may distinguish the evanescent k - p mode with n r = 1 and the propagative k - p mode with n r = 2. In the remainder of this paper, we focus our attention on the reflection coefficient between the KH wave and the propagative k - p mode with n r = 2, since this interaction is responsible for the screech resonance at this frequency and Mach number [START_REF] Edgington-Mitchell | Upstream-travelling acoustic jet modes as a closure mechanism for screech[END_REF]Mancinelli et al. 2019a[START_REF] Mancinelli | A complex-valued resonance model for axisymmetric screech tones in supersonic jets[END_REF][START_REF] Nogueira | Closure mechanism of the a1 and a2 modes in jet screech[END_REF].

We now consider the eigenspectrum downstream of the shock with the aim of identifying the transmitted modes for both the V-S and F-T models. Figure 5 shows the eigenspectrum obtained using the vortex sheet. According to [START_REF] Towne | Acoustic resonance in the potential core of subsonic jets[END_REF], in the subsonic regime for 0.82 ⩽ M < 1 the guided modes are characterised by two upstream-travelling branches delimited by two saddle points in the k r -St plane: one branch characterised by a larger negative phase speed close to the ambient speed of sound, the above-defined k - p , and one with a lower phase-speed absolute value, herein denoted k - d . Similar to the eigenspectrum upstream of the shock, we may identify the k + KH wave and its complex-conjugate k * + KH , the downstream-and upstream-travelling k p waves with n r = 1, which are evanescent and have supersonic negative phase speed at this frequency, and the k ± a modes. As outlined in [START_REF] Mancinelli | Including acoustic modes in the vortex-sheet eigenbasis of a jet[END_REF], propagative, downstream-travelling acoustic modes are not found in the vicinity of the sonic line due to numerical issues in the root-finder algorithm. We show in appendix D that these modes are not relevant for the determination of the reflection coefficient. We then locate the upstream-travelling propagative k - d wave for n r = 1, which has a duct-like behaviour [START_REF] Towne | Acoustic resonance in the potential core of subsonic jets[END_REF], and the evanescent k ± p waves with n r ⩾ 2, which behave like modes in a soft duct as well at this frequency. In this regard, we note that the k p eigenvalues with k i > 0 are associated with k + waves, whereas the eigenvalues with k i < 0 are associated with k -modes.

Figure 6 shows the eigenspectrum downstream of the shock computed using a finite- thickness model. Unlike those computed by the vortex sheet, the evanescent guided modes for n r > 1 bend towards the supersonic phase speed region as n r increases and eventually merge with the evanescent free-stream acoustic modes for n r > 4. Additionally, we observe the k + cr waves that are not supported by the VS. To summarise, within the vortex-sheet model, possible downstream-travelling transmitted modes are: (i) the K-H mode and its complex conjugate, (ii) the evanescent guided mode of first radial order with supersonic phase speed, (iii) the evanescent trapped modes of higher radial order with subsonic phase speed, and (iv) the acoustic modes. For the finite-thickness model, in addition to the transmitted modes listed above for the VS, we include the critical-layer modes. For this flow model, unlike the V-S model and consistent with the eigenspectrum shown in figure 6, we use evanescent k + p waves on the transmitted side up to the radial order n r = 4, that is, before this mode branch merges with the evanescent k + a modes and become no longer distinguishable. A summary of the modes involved in the reflection coefficient computation is reported in table 1.

Examples of the normalised pressure eigenfunctions of the waves upstream and downstream of the shock are reported in figure 7. For the VS (figure 7(a)), the incident and transmitted K-H waves show a peak at the vortex-sheet location and the reflected waves, that is k - p and k - a modes, have support both inside and outside the jet. We note that, although there is no energy loss at r = r M AX as a consequence of the imposition of a softwall boundary condition, the energy of k a modes reflected back cannot be transferred to the other discrete modes since the flow is locally parallel. On the transmitted side downstream of the shock, while the evanescent k + p wave with n r = 1 has a support both in the inner and outer part of the jet, the transmitted k + p modes with n r > 1 show a spatial support concentrated inside the jet, consistent with their identity as acoustic waves trapped within the jet core. Examples of the pressure eigenfunctions of the waves upstream and downstream of the shock computed using the finite-thickness model are shown in figure 7 have eigenfunctions with a spatial support concentrated either inside of the jet or in the shear layer depending on the wavenumber value considered. The spatial support of the critical-layer modes moves to larger r and the phase velocity U ϕ decreases as |k cr | increases.

Reflection coefficient

Second, we present the reflection coefficient values calculated by minimising the error objective function F in (2.8) via the pseudo-inverse solution (2.12). Figure 8 shows the evolution of the objective function F as a function of the number of reflected and transmitted modes n = n R + n T for both the V-S and F-T models. F is herein normalised so as to have unitary value when the sole incident K-H wave is considered in the minimisation algorithm, thus allowing to quantify the relevance of the modes added in the computation in terms of error reduction. We here make a convergence analysis showing how the objective function changes by adding reflected and transmitted modes. In the absence of any unquestionable criterion allowing to know a priori the relevance of each mode in the reflection/transmission dynamics, we choose to add modes as a function of the family they belong to. For each mode family, waves are added by increasing |k|. Specifically, we first add in the calculation the reflected waves, that is the k - p and k - a mode families, and then we add the transmitted modes downstream of the shock, that is k + KH and its complex conjugate, the k + p modes for n r ⩾ 1, the k + a modes and the k + cr waves in the case of the F-T model, for a total number of modes N = N R + N T = 800. The final results are independent of the mode arrangement. The objective function remains approximately constant when reflected waves are added. The transmitted K-H mode provides a significant decay in the cost function, which indicates that it has an important role in the reflection/transmission mechanism, as the impinging and transmitted K-H modes have a similar structure. For the VS, the addition of the other transmitted modes has a small impact on the cost functional, which saturates at a value of ≈ 10 -2 . On the contrary, for the F-T model, the addition of critical-layer modes produces an important reduction of the cost function, which saturates at a value of 5 • 10 -3 , lower than that observed in the case of the VS.

Figure 9 shows the evolution of the amplitude and phase of the reflection coefficient associated with the upstream-travelling guided mode of second radial order as a function of the number of modes n obtained using the V-S model. On the reflected side, the significant drop of |R| observed when k - a modes are added is due to propagative acoustic modes. Similar to the objective function in figure 8(a), both the amplitude and phase of the reflection coefficient undergo a significant jump when modes on the transmitted side are included in the calculation. Specifically, the solution does not drastically change after the inclusion of the k + KH mode and remains approximately constant. The solution converges to 5.8 • 10 -3 and -0.38 for the amplitude and phase, respectively.

The evolution of the amplitude and phase of the reflection coefficient as a function of n in the case of the finite-thickness model is shown in figure 10. Similar to the V-S model, we see a significant change in the value of both amplitude and phase when modes on the transmitted side are included in the calculation. Consistent with what we observed in the objective function trend, the addition of the k + cr modes plays an important role in the determination of the reflection coefficient. Specifically, a significant drop in amplitude occurs for critical-layer modes with 5.5 ⩽ |k| ⩽ 21, after which both the amplitude and phase values remain approximately constant. These are modes with wavelength in the range ≈ [0.3D, D] and, hence, 6 to 20 times the shear-layer thickness. Their phase speed is ≈ 0.2 U j ⩽ U ϕ ⩽ 0.75 U j , and they are mostly concentrated in the centre of the shear layer, as shown in figure 11.

A summary of the reflection-coefficient values obtained for both flow models is reported in table 2. A large discrepancy between the VS and finite-thickness model is found for both the amplitude and phase of the reflection coefficient. This result suggests that the presence of a finite thickness and the associated shear-layer dynamics, which cannot be described using a vortex sheet, plays an important role in the reflection/transmission mechanism and needs to be taken into account to perform a reliable estimation of the reflection coefficient. Table 2. Summary of the reflection-coefficient values associated with the upstream-travelling guided mode of second radial order generated by the interaction between an incident Kelvin-Helmholtz wave on a shock. Results obtained using both the vortex-sheet and finite-thickness models to describe the jet dynamics are reported. 

Reflected and transmitted pressure fields

The reflected and transmitted pressure fields for the flow condition investigated above using a finite-thickness model are here reconstructed in the x-r plane. Using the normalmode ansatz (2.4), the reflected and transmitted fields are given by

p R (x, r, θ) = N R n R =1 R n R p1R,n R e i(k nR x+mθ) , (3.1a) p T (x, r, θ) = N T n T =1
T n T p2T,n T e i(k nT x+mθ) .

(3.1b)

We set x = 0 to be the location of the shock discontinuity, so the reflected upstreamtravelling and transmitted downstream-travelling waves evolve along negative and positive x directions, respectively. Figure 12 shows the entire reflected field as well as the reflected fields for each type of the upstream-travelling modes considered in the reflectioncoefficient calculation, that is the propagative k - p mode with n r = 2, the evanescent k - p mode with n r = 1 and an example of the propagative and evanescent k - a waves with |k| ≈ 2.79 and 2.1, respectively. The fields reconstructed using the k - p modes show a spatial support both inside and outside the jet with a prescribed radial decay. Regarding the axial evolution, the evanescent k - p mode with n r = 1 exhibits a decay starting from the shock position x = 0, whereas the k - p mode with n r = 2 has a fixed axial structure consistent with its neutrally-stable nature. A similar behaviour is found for the pressure fields reconstructed using propagative and evanescent free-stream acoustic waves. The entire reflected pressure field, which results from the linear superposition of all the reflected k -waves, shows an axially and radially decaying structure starting from x = 0 and r = 0, respectively.

The entire transmitted field as well as the transmitted fields for each mode family considered in the reflection-coefficient calculation are shown in figure 13. We here report the fields obtained using the k + KH wave, the evanescent supersonic k + p mode with n r = 1, the evanescent subsonic k + p mode with n r = 2, the propagative and evanescent k + a waves with |k| ≈ 2.7 and 2.8, respectively, and the k + cr mode for |k| ≈ 11.5. Consistent with its unstable nature, the shape and intensity of the total transmitted field is dominated by the K-H mode. The shape of the transmitted fields reconstructed using the individual mode family is consistent with the neutral/evanescent nature and radial structure described above.

Frequency-Mach-number dependence of the reflection coefficient

We here explore the frequency-Mach-number dependence of the reflection coefficient associated with the upstream-travelling guided mode with n r = 2 obtained using the F-T model. For this purpose, we let the jet Mach number vary in the range M j = [1, 1.7] and explore the Strouhal-number band for which the guided mode is propagative for such flow conditions, that is the St-number range delimited by the branch and saddle points (see Mancinelli et al. (2019a) and [START_REF] Mancinelli | A complex-valued resonance model for axisymmetric screech tones in supersonic jets[END_REF]). The resolution for ∆M j and ∆St was set equal to 10 -2 and 5 • 10 -3 , respectively. Figure 14 shows the evolution of the normalised objective function F as a function of M j and St. The errors are very small for low M j and gradually rise as the jet Mach number increases but never exceed 13%. The amplitude and the phase modulus of the reflection coefficient as a function of St and M j are shown in figure 15. The reflection-coefficient amplitude rises with increasing M j for a given St and appears to be larger in the proximity of the saddle point for all M j , with the jet-flow region M j = [1.17, 1.37] showing the highest amplitude. Overall, the phase gradually increases for larger M j and lower St. We note that a jump from in-phase to out-of-phase conditions is found for M j = 1.58 for most frequencies.

Conclusions

The scattering of a Kelvin-Helmholtz wave into a discrete, upstream-travelling guided mode due to a normal shock in a jet flow was computed in the present manuscript. Jets with zero-and finite-thickness shear layers were modelled with an analytical vortex sheet and a numerical solution of the Rayleigh equation, respectively. The reflection coefficient associated with the scattered, upstream-travelling wave was calculated via a mode-matching technique enforcing conservation equations through the shock discontinuity. Assuming small disturbances, the shock equations were linearised about the mean flow and the possible scattered modes, i.e., upstream-travelling reflected waves and downstream-travelling transmitted waves, were identified by assessing the corresponding group velocity using the Briggs-Bers criteria. Solutions based on a truncated set of modes were obtained via the minimisation of the error in the conservation equations, which corresponds to a weighted pseudo-inverse solution. The finite-thickness model showed that critical-layer modes, characterised by eigenfunctions with radial support mostly concentrated in the centre of the shear layer, by a wavelength 6 to 20 times the shear-layer thickness and by a phase velocity between 0.2 and 0.75 of the jet velocity, play an important role in the reflection-coefficient calculation and, thus, most likely in the physical mechanisms underpinning the process. The reconstructed reflected and transmitted pressure fields in the x-r plane showed an organised structure consistent with the axial and radial evolution of the modes calculated by the finite-thickness model. The frequency-Mach-number dependence of the reflection coefficient has been explored, revealing that the reflection-coefficient amplitude is larger for frequencies in the proximity of the saddle point and for jet Mach number values in between 1.17 and 1.37. The phase exhibited a gradual increase as the Strouhal and jet Mach numbers decreased and increased, respectively.

The mode-matching approach described in this paper appears to be a relevant and promising tool for better describing and predicting resonant dynamics found in jets, such as screech in supersonic jets. A similar approach may be developed to evaluate the reflection coefficient at the nozzle exit, thus providing all the elements to make screech-frequency predictions without any input from data using the model presented in [START_REF] Mancinelli | A complex-valued resonance model for axisymmetric screech tones in supersonic jets[END_REF].

Appendix A. Linearised Euler Equations

The non-dimensional Euler equations in cylindrical coordinates are

                                       ∂ρ ∂t + ρ∇ • ⃗ u = 0, ρ ∂u x ∂t = - ∂p ∂x , ρ ∂u r ∂t = - ∂p ∂r , ρ ∂u θ ∂t = - 1 r ∂p ∂θ , ∂T ∂t + (γ -1) T ∇ • ⃗ u = 0, p = γ -1 γ ρT + T ρ . (B 2a) (B 2b) (B 2c) (B 2d ) (B 2e) (B 2f )
where we have removed the prime for the fluctuating part for notational simplicity. We calculate the time evolution of the energy norm,

∂E ∂t = ∂E ∂u i ∂u i ∂t + ∂E ∂ρ ∂ρ ∂t + ∂E ∂T ∂T ∂t , ( B 3) 
which, exploiting (B 2), can be written as For an inviscid locally parallel flow with medium at rest, the energy norm is finally given by (2.14). transmission mechanisms happen locally and are not influenced by the flow evolution far away from the shock.

∂E ∂t = - 1 2 V Au i 1 ρ ∇p + B ρ ρ∇ • u + CT (γ -1) T ∇ • u dV. ( B 
Appendix D. Relevance of the near-sonic, downstream-travelling acoustic modes

As outlined in [START_REF] Mancinelli | Including acoustic modes in the vortex-sheet eigenbasis of a jet[END_REF], propagative, downstream-travelling acoustic modes in the vicinity of the sonic line cannot be described using the confined vortexsheet model due to numerical issues in the root-finder algorithm when searching for zeros of the dispersion relation. Furthermore, the resolution of the acoustic branch close to the sonic line is function of the distance of the wall boundary r M AX , as exemplified in figure 17, which shows the maximum value of the acoustic eigenvalue of the propagative, downstream-travelling branch as a function of r M AX . The resolution in the vicinity of the sonic line deteriorates for increasing r M AX , thus bringing into question the reliability of the results obtained using the vortex sheet. To prove the little relevance of near-sonic, downstream-travelling acoustic modes in the determination of the reflection coefficient we consider the finite-thickness model and compute R both including and excluding near-sonic modes. The comparison in figure 18 shows no discrepancy in terms of both amplitude and phase when near-sonic acoustic modes are artificially removed from the reduced basis of the transmitted modes, thus suggesting the small influence of these modes in the reflection coefficient calculation and confirming the reliability of the results obtained using the vortex sheet. To further support this assertion, we finally show in figure 19 the variation of the objective function F , the reflection coefficient amplitude and phase as a function of r M AX when using the VS to describe the jet dynamics. The variation is relative to the results obtained using r M AX = 100 and presented throughout the manuscript. We observe variation lower than 0.1% for the objective function and of the order of 10% and 7% at maximum for the reflection coefficient amplitude and phase, respectively. These variations are considered acceptable especially given that, as outlined by [START_REF] Mancinelli | Including acoustic modes in the vortex-sheet eigenbasis of a jet[END_REF], the change of r M AX implies a change of the discretisation of the acoustic branch and, hence, of the number of modes considered in the calculation of the reflection coefficient.

  and Edgington-Mitchell et al. (2021b)), a clear picture of the way by which instability waves interact with shock cells to generate screech is still far from being reached. With the aim of keeping the model

Figure 1 .

 1 Figure 1. Schematic representation of the jet model: (a) sketch of the shock-containing jet, (b) control volume representation with identification of the normal to the inlet and outlet surfaces.

Figure 2 .

 2 Figure 2. Mean-flow upstream and downstream of the shock for the vortex-sheet and finite-thickness models for Mj 1 = 1.1: solid blue lines refer to upstream conditions, dashed red lines to downstream ones. (a) V-S model, (b) finite-thickness model: (i) axial velocity, (ii) temperature, (iii) density, (iv) pressure.

Figure 3 .

 3 Figure 3. Eigenspectrum upstream of the shock obtained using the vortex-sheet model for azimuthal mode m = 0, T ≈ 0.81, Mj 1 = 1.1 and ω ∈ R. Blue ⋄ represent k + KH and k * + KH waves, red • represents propagative k - p mode with nr = 2, black △ represent evanescent k ± p modes with nr = 1, green 2 represent k + p modes with nr ⩾ 2, magenta * represent k ± a waves. Dashed lines refer to the sonic speed ±c∞. Incident and reflected waves are indicated with arrows and labelled.

Figure 4 .

 4 Figure 4. Eigenspectrum upstream of the shock obtained using the finite-thickness model for azimuthal mode m = 0, T ≈ 0.81, Mj 1 = 1.1 and ω ∈ R. Markers and colours to identify the modes are the same used in figure 3 in the case of the VS. The modes that are only supported by the finite-thickness model, that is the k + cr modes, are here indicated by cyan ×. Dashed lines refer to the sonic speed ±c∞. Incident and reflected waves are indicated with arrows and labelled.

Figure 5 .

 5 Figure 5. Eigenspectrum downstream of the shock obtained using the V-S model for ω ∈ R, azimuthal mode m = 0, T ≈ 0.85 and Mj 2 = 0.91 (which corresponds to Ma 2 = 0.84): (a) global view, (b) zoom around the origin. Blue ⋄ represent k + KH and k * + KH waves, red • represents propagative k - d mode with nr = 1, black △ represent evanescent k ± p modes with nr = 1, green 2 represent k ± p modes with nr ⩾ 2, magenta * represent k ± a waves. Dashed lines refer to the sonic speed ±c∞. Transmitted waves are indicated with arrows and labelled.

  (b). The incident K-H mode and the reflected k - p and k - a have a similar shape to that found using the V-S model. As mentioned above, k + cr modes p with nr ⩾ 1 evanescent k + p with nr ⩾ 1 propagative and evanescent k + a propagative and evanescent k + a k + cr Table1. Summary of the eigenmodes supported by the vortex-sheet and finite-thickness models involved in the reflection coefficient computation.

Figure 6 .

 6 Figure 6. Eigenspectrum downstream of the shock obtained using the finite-thickness model for ω ∈ R, azimuthal mode m = 0, T ≈ 0.85 and Mj 2 = 0.91 (which corresponds to Ma 2 = 0.84): (a) global view, (b) zoom around the origin. Markers and colours are the same used in figure 5 to identify the modes in the case of the VS. The modes that are only supported by the finite-thickness model, that is the k + cr modes, are here indicated by cyan ×. Dashed lines refer to the sonic speed ±c∞. Transmitted waves are indicated with arrows and labelled.

Figure 7 .

 7 Figure 7. Pressure eigenfunctions for m = 0 and St = 0.68 computed using (a) the vortex-sheet model and (b) the finite-thickness model. The colours are the same as those used in figures 3, 4, 5 and 6 to identify the different mode families upstream and downstream of the shock, respectively. (i) incident and reflected waves upstream of the shock for Mj = 1.1 and T ≈ 0.81: solid blue line refers to the incident k + KH wave, dashed red line to the propagative k - p wave with nr = 2, dotted black line to the evanescent k - p mode with nr = 1, dash-dotted magenta line to the propagative k - a wave. (ii) transmitted waves downstream of the shock for Mj 2 = 0.91 and T ≈ 0.85: solid blue line refers to the transmitted k + KH mode, dotted black line to the evanescent k + p with nr = 1, dashed green line to the evanescent k + p with nr = 2, dash-dotted magenta line to the propagative k + a wave, solid and bold cyan lines to k + cr modes.

Figure 8 .

 8 Figure 8. Evolution of the normalised objective function as a function of the number of modes: (a) vortex sheet, (b) finite-thickness model. Markers and colours are the same as those used to identify the modes in the eigenspectra in figures 3 and 5 for the VS and figures 4 and 6 for the F-T model.

Figure 9 .

 9 Figure 9. Evolution of the reflection coefficient computed using the VS as a function of the modes considered in the calculation (markers and colours are the same as those used to identify the modes in the eigenspectra in figures 3 and 5): (a) amplitude, (b) phase. Blue dotted lines indicate ±π in the phase plot.

Figure 10 .

 10 Figure 10. Evolution of the amplitude and phase of the reflection coefficient computed using the finite-thickness model as a function of the number of modes considered. Markers and colours are the same as those used in figures 4 and 6 to identify the mode families. (a) amplitude, (b) phase. Blue dotted lines indicate ±π in the phase plot.

Figure 11 .

 11 Figure 11. Normalised eigenfunctions of k + cr modes computed using the finite-thickness model as a function of wavenumber k and radial distance r: (a) pressure, (b) axial velocity, (c) radial velocity.

Figure 12 .

 12 Figure 12. Reconstruction of the reflected fields in the x-r plane for a shock discontinuity located at x = 0: (a) k - p mode with nr = 2, (b) k - p mode with nr = 1, (c) propagative k - a wave, (d) evanescent k - a wave, (e) total field.

Figure 13 .

 13 Figure 13. Reconstruction of the transmitted fields in the x-r plane for a shock discontinuity located at x = 0: (a) k + KH wave, (b) supersonic k - p mode with nr = 1, (c) subsonic k + p with nr = 2, (d) propagative k + a wave, (e) evanescent k + a wave, (f) k + cr mode, (g) total field.

Figure 14 .

 14 Figure 14. Normalised error objective function as a function of Strouhal and jet Mach numbers for the finite-thickness model. Dashed and dash-dotted lines refer to the branch-and saddle-point locations, respectively.

Figure 15 .

 15 Figure 15. Evolution of the reflection coefficient as a function of Strouhal and jet Mach numbers for the finite-thickness model. Dashed and dash-dotted lines refer to the branch-and saddle-point locations, respectively. (a) amplitude, (b) phase.

  (B 2f) and applying integration by parts on the first term on the right hand-side of (B 4), the time evolution of the energy norm becomes, (γ -1) T ∇ • u dV , (B 5) where ∂V u i p dS represents the acoustic power crossing the domain V . Hence, ∂E/∂t + ∂V u i p dS can be interpreted as the total energy variation, which we impose to be conservative thus leading to the following expression, γ -1) T = 0. (B 7a) (B 7b) By legitimately imposing A = ρ, it is straightforward to calculate the values for the other two constants:

Figure 16 .

 16 Figure 16. Mean radial velocity profile along the radial direction downstream of the shock for Mj 1 and Mj 2 equal to 1.1 and 0.91, respectively.

Figure 17 .

 17 Figure 17. Maximum eigenvalue of the propagative, downstream-travelling acoustic branch as a function of the wall distance using the confined vortex-sheet model. Flow conditions are the same reported in figure 5 downstream of the shock. Blue • represent the eigenvalue, dashed red line the position of the sonic line.

Figure 18 .

 18 Figure 18. Evolution of the reflection coefficient as a function of the number of modes considered using the finite-thickness model: blue ⋄ refer to results obtained including near-sonic, downstream-travelling acoustic modes, red • refer to results obtained artificially removing near-sonic acoustic modes (k + a M AX = 3.2). (a) amplitude, (b) phase.

Figure 19 .

 19 Figure 19. Variation of the objective function, amplitude and phase of the reflection coefficient as a function of the wall distance using the confined vortex-sheet model. Variations are relative to the results obtained for rMAX = 100 presented throughout the manuscript. (a) objective function, (b) reflection coefficient amplitude, (c) reflection coefficient phase.
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where

Inserting the Reynolds decomposition (2.2), removing the mean and linearising, the LEE are written

where we removed the primes from the fluctuating variables for notational simplicity.

The locally parallel-flow assumption implies that the derivatives along the axial and azimuthal directions x and θ are zero as well as the mean radial and azimuthal velocities u r and u θ . Assuming the normal mode ansatz (2.4) yields

The Fourier-transformed LEE (A 4) can be written exclusively in terms of pressure, leading to the compressible Rayleigh equation (2.13). The eigenfunctions ûi (r), ρ (r) and T (r) are recovered from the pressure

Appendix B. Energy norm derivation

Eigenfunctions are normalised to have zero phase for the pressure eigenfunction on the centreline and to have unitary energy norm. Following [START_REF] Chu | On the energy transfer to small disturbances in fluid flow (part i)[END_REF], the energy norm is defined as,

where the * indicates the complex conjugate and the constants A, B and C have to determined on the basis of the flow considered [START_REF] Hanifi | Transient growth in compressible boundary layer flow[END_REF]. We assume a medium at rest, thus implying u x = 0 and ∂q/∂r = 0. Hence, the LEE reduce to the following,

Appendix C. Mean radial velocity downstream of the shock

The presence of the shock wave generates a mean pressure gradient along the radial direction downstream of the shock. This induces the appearance of a mean radial velocity. This radial velocity is here evaluated in the case of a finite thickness model in order to establish that it does not affect the calculation of the reflection coefficient. We consider the momentum equation along the radial direction (A 1c). The conservation equation for the mean flow is,

which gives for the mean radial velocity the following expression,

The radial derivative is computed using a centred finite-difference method. The radial profile of the mean radial velocity normalised by the jet Mach number downstream of the shock is reported in figure 16. We note that u r ̸ = 0 in the shear-layer region with a peak for r = 0.5. Nevertheless, since the maximum value is about 10% of the jet velocity, we may assert that the jet is slowly diverging downstream of the shock, but this feature does not affect the evaluation of the reflection coefficient given that both the reflection and
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