Arka Mallick 
  
Hoai-Minh Nguyen 
email: hoai-minh.nguyen@sorbonne-universite.fr
  
H.-M Nguyen 
  
THE CAFFARELLI-KOHN-NIRENBERG INEQUALITIES FOR RADIAL FUNCTIONS

Keywords: 26D10, 26A54 Caffarelli-Kohn-Nirenberg inequality, radial functions, compact embedding

We establish the full range of the Caffarelli-Kohn-Nirenberg inequalities for radial functions in the Sobolev and the fractional Sobolev spaces of order 0 < s ≤ 1. In particular, we show that the range of the parameters for radial functions is strictly larger than the one without symmetric assumption. Previous known results reveal only some special ranges of parameters even in the case s = 1. Our proof is new and can be easily adapted to other contexts. Applications on compact embeddings are also mentioned.

Introduction

Let d ≥ 1, p ≥ 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, α, β, γ ∈ R be such that (1.1) 1 τ + γ d , 1 p + α d , 1 q + β d > 0,
and the following balance law holds

(1.2) 1 τ + γ d = a 1 p + α -1 d + (1 -a) 1 q + β d .
Define σ by (1.3) γ = aσ + (1 -a)β.

Assume that

(1.4) 0 ≤ α -σ 1 and (1.5) α -σ ≤ 1 if 1 τ + γ d = 1 p + α -1 d .
Caffarelli, Kohn, and Nirenberg [START_REF]First order interpolation inequalities with weights[END_REF] (see also [10]) established the following famous Caffarelli, Kohn and Nirenberg (CKN) inequalities, for u ∈ C 1 c (R d ),

(1.6)

|x| τ u L τ (R d ) ≤ C |x| α ∇u a L p (R d ) |x| β u 1-a L q (R d )
,

for some positive constant C independent of u. Quite recently, the full range of the CKN inequalities has been derived by Nguyen and Squassina [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] for the fractional Sobolev spaces W s,p (R d ) with 0 < s < 1 and p > 1. More precisely, let d ≥ 1, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, and α 1 , α 2 , β, γ ∈ R. Set α = α 1 + α 2 and define σ by (1.3). Assume that 

1 τ + γ d = a 1 p + α -s d + (1 -a) 1 q + β d , ( 
L q (R d )
, (1.11) In the case 1 τ + γ d = 0, a log-correction is required, and the conditions (1.8) and (1.9) are replaced by (1.12) 0 ≤ α -σ ≤ s.

Denote B R the open ball centered at the origin with radius R. Assume additionally that τ > 1.

Nguyen and Squassina [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF]Theorem 3.1] showed that there exists a positive constant C such that for all u ∈ C 1 c (R d ) and for all R 1 , R 2 > 0, we have (i) if 

|x| β u 1-a L q (R d )
.

Note that the conditions 1 p + α d , 1 q + β d > 0 are not required in these inequalities. In the case a = 1 and 1/τ + γ/d > 0, several special ranges of parameters were previously derived in [START_REF] Abdellaoui | Caffarelli-Kohn-Nirenberg type inequalities of fractional order with applications[END_REF][START_REF] Frank | Non-linear ground state representations and sharp hardy inequalities[END_REF][START_REF] Vladimir | On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces[END_REF]. These works are partially motivated from new characterizations of Sobolev spaces using non-local, convex functionals proposed by Bourgain, Brezis, and Mironescu [START_REF] Bourgain | Another look at Sobolev spaces, Optimal control and partial differential equations[END_REF] (see also [8]). Related characterizations of Sobolev spaces with non-local, non-convex functionals can be found in [7,9,18] and the references therein. The proof given in [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] (see also [START_REF] Inequalities | On Hardy and[END_REF]) is new. It is based on the dyadic decomposition of the real space, Gagliardo-Nirenberg's inequalities for annulus, and a trick on summation processes to bring the information from a family of annulus to the whole space. Combining these ideas with the techniques in [START_REF] Nguyen | Some inequalities related to Sobolev norms[END_REF], which are used to prove new Sobolev's inequalities, we established the full range of Coulomb-Sobolev inequalities [START_REF] Mallick | Gagliardo-Nirenberg and Caffarelli-Kohn-Nirenberg interpolation inequalities associated with Coulomb-Sobolev spaces[END_REF]. In the case s = 1, inequality (1.6) also holds in the case 1/τ + γ/d < 0, and similar results as in (1.13) and (1.14) are valid in the case 1/τ + γ/d = 0. We present these results in Section 4 (see Theorem 4.1 and Theorem 4.2).

In this paper, we investigate the CKN inequalities for radial functions. We show that the previous results also hold for some negative range of α -σ (compare with (1.4) and (1.8)). The fact that the range of the parameters of a family of inequalities can be larger when a symmetry condition is imposed is a well-known phenomenon, e.g., in the context of Stein-Weis inequalities [START_REF] Nápoli | Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions[END_REF]22] and Coulomb-Sobolev inequalities [3,[START_REF] Bellazzini | Sharp lower bounds for Coulomb energy[END_REF]. Various compactness results can be established using the extended range and are useful in the proof of the existence of minimizers of variational problems. Also, these compactness results play important roles in the analysis of various interesting physical phenomena, see, e.g., [5,[START_REF] Elliott | Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation[END_REF][START_REF] Lions | Symétrie et compacité dans les espaces de Sobolev[END_REF][START_REF] Walter | Existence of solitary waves in higher dimensions[END_REF], and the references therein. It is quite surprising that very few results have been known for the extended range of the CKN inequalities for radial functions. The goal of this paper is to completely fill this gap for 0 < s ≤ 1.

We first concentrate on the setting of the fractional Sobolev spaces. The following notation is used.

For p > 1, 0 < s < 1, α ∈ R, Λ > 1, open Ω ⊂ R d ,
and a measurable function g defined in Ω, we set

(1.15) g p Ẇ s,p,α,Λ (Ω) = ˆΩ ˆΩ |g(x) -g(y)| p |x| αp |x -y| d+sp χ Λ (|x|, |y|) dx dy,
where, for r 1 , r 2 ≥ 0, we denote

(1.16) χ Λ (r 1 , r 2 ) = 1 for Λ -1 r 1 ≤ r 2 ≤ Λr 1 , 0 otherwise.
The dot in the LHS of (1.15) means that only the information of the "semi-norm" is considered.

Our first main result is the following one dealing with the case where 1/τ + γ/d = 0.

Theorem 1.1. Let d ≥ 2, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, α, β, γ ∈ R, and Λ > 1.
Define σ by (1.3). Assume (1.7) and

(1.17)

-(d -1)s ≤ α -σ < 0.
We have, for some positive constant

C, i) if 1 τ + γ d > 0, then for all radial u ∈ L 1 loc (R d \ {0}) with compact support in R d , it holds (1.18) |x| γ u L τ (R d ) ≤ C u a Ẇ s,p,α,Λ (R d ) |x| β u 1-a L q (R d ) , ii) if 1 τ + γ d < 0, then for all radial u ∈ L 1 loc (R d \ {0}
) which is 0 in a neighborhood of 0, it holds

(1.19) |x| γ u L τ (R d ) ≤ C u a Ẇ s,p,α,Λ (R d ) |x| β u 1-a L q (R d )
.

Remark 1.1. In (1.18) and (1.19), the following convention is used: +∞.0 = 0.(+∞) = 0, (+∞) 0 = 1 (this corresponds to the case a = 1), and +∞ ≤ +∞.

Remark Concerning the limiting case 1/τ + γ/d = 0, we obtain the following result. (1.20)

Theorem 1.2. Let d ≥ 2, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, α, β, γ ∈ R, µ > 1,
ˆRd |x| γτ ln µ (2R 2 /|x|) |u| τ dx 1 τ ≤ C u a Ẇ s,p,α,Λ (R d ) |x| β u 1-a L q (R d ) , ii) if 1 τ + γ d = 0, and supp u ∩ B R 1 = ∅, then it holds (1.21) ˆRd |x| γτ ln µ (2|x|/R 1 ) |u| τ dx 1 τ ≤ C u a Ẇ s,p,α,Λ (R d ) |x| β u 1-a L q (R d )
.

Remark 1.4. The convention in Remark 1.1 is also used in Theorem 1.2.

Remark 1.5. If 1/q + β/d > 0, by considering a smooth function u which is 1 in a neighborhood of 0 we can establish the necessity of the log-term in i) of Theorem 1.2 . Similarly, if 1/q + β/d < 0, by considering a smooth function u which is 1 outside B R for some large R the necessity of the log-term in ii) can be established.

Remark 1.6. Combing (1.13), (1.14), and Theorem 1.2 yields that, in the radial case, (1.13), (1.14) hold if one replaces (1.12) by the condition -(d -1)s ≤ α -σ ≤ s.

There are very few results known for the extended range of the CKN inequalities in the fractional Sobolev spaces for radial functions (the case s = 1 will be discussed in the last paragraph of Section 4). It was shown by Rubin [22] (see also [3, Theorem 4.3]) that (1.10) holds under the assumption (1.17) and 1/τ +γ/d > 0 in the case where a = 1, τ ≥ p = 2, and α = 0. The same result was proved in [START_REF] Nápoli | Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions[END_REF]Theorem 1.2]. These proofs are based on inequalities for fractional integrations. Our proof is different and quite elementary. It is based on an improvement of the fractional CKN inequalities in one dimensional case and a simple use of polar coordinates. This strategy can be easily extended to other contexts. The improvement was implicitly appeared in [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] and will be described briefly later. The same idea can be applied to the case s = 1 and will be presented in Section 4. Applications to the compact embedding will be given in Section 5. In particular, we derive the compact embedding of W s,p (R d ) into L q (R d ) for radial functions if p < q < dp d-sp for 0 < s ≤ 1 and sp < d. This result was previously obtained via various technique such as Strauss' lemma, Riesz-potential, fractional integration, Rubin's lemma, atomic decomposition, etc.

The paper is organized as follows. The improvement of the fractional CKN inequalities are given in Section 2. The proofs of Theorem 1.1 and Theorem 1.2 are given in Section 3. The results in the case s = 1 are given in Section 4. Section 5 is devoted to the compactness results.

Improvements of the fractional Caffarelli-Kohn-Nirenberg inequalities

In this section, we will establish slightly more general versions of the fractional CKN inequalities. These improvements appear very naturally in the proof of Theorem 1.1 and Theorem 1.2 when polar coordinates are used.

We begin with an improvement of (1.10) and (1.11).

Theorem 2.1. Let d ≥ 1, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, α, β, γ ∈ R, and Λ > 1.
Define σ by (1.3). Assume (1.7), (1.8), and (1.9). There exists a positive constant C such that i)

if 1 τ + γ d > 0, then for all u ∈ L 1 loc (R d \ {0}) with compact support in R d , it holds (2.1) |x| γ u L τ (R d ) ≤ C u a Ẇ s,p,α,Λ (R d ) |x| β u 1-a L q (R d ) , ii) if 1 τ + γ d < 0, then for all u ∈ L 1 loc (R d \ {0}) which is 0 in a neighborhood of 0, it holds (2.2) |x| γ u L τ (R d ) ≤ C u a Ẇ s,p,α,Λ (R d ) |x| β u 1-a L q (R d )
.

Concerning an improvement of (1.13) and (1.14), we have the following result.

Theorem 2.2. Let d ≥ 1, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, α, β, γ ∈ R, µ > 1, and Λ > 1. Assume that τ ≤ µ. Define σ by (1.
3). Assume (1.7) and (1.12). There exists a positive constant C such that for all

u ∈ L 1 loc (R d \ {0}) and for all R 1 , R 2 > 0, we have (i) if 1 τ + γ d = 0 and supp u ⊂ B R 2 , then it holds (2.3) ˆRd |x| γτ ln µ (2R 2 /|x|) |u| τ dx 1 τ ≤ C u a Ẇ s,p,α,Λ (R d ) |x| β u 1-a L q (R d ) , (ii) if 1 τ + γ d = 0, and supp u ∩ B R 1 = ∅, then it holds (2.4) ˆRd |x| γτ ln µ (2|x|/R 1 ) |u| τ dx 1 τ ≤ C u a Ẇ s,p,α,Λ (R d ) |x| β u 1-a L q (R d )
.

It is clear that Theorem 2.1 implies (1.10) and (1.11) and Theorem 2.2 yields (1.13) and (1.14). Theorem 2.1 and Theorem 2.2 were already implicitly contained in [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] where (1.10), (1.11), (1.13), and (1.14) were established. For the convenience of the reader, we will describe briefly the proofs of Theorem 2.1 and Theorem 2.2 in the next two sections respectively.

2.1. Proof of Theorem 2.1. The proof is divided into two steps where we prove i) and ii) respectively.

Step 1: Proof of i). For simplicity of arguments, we assume that Λ > 4 from later on 1 .

We first consider the case 0 ≤ α -σ ≤ s. As in [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF], for k ∈ Z set (2.5)

A k := x ∈ R d ; 2 k ≤ |x| < 2 k+1 .
Since α -σ ≥ 0, by Gagliardo-Nirenberg inequality [20, Lemma 2.2] 2 , we derive that 1 In the general case, one just needs to define A k by x ∈ R d ; λ k ≤ |x| < λ k+1 with λ 2 = Λ instead of (2.5).

2 [20, Lemma 2.2] states for functions of class C 1 up to the boundary but the same result holds for our setting by using the standard convolution technique.

(2.6)

A k u - A k u τ 1 τ ≤ C 2 -(d-sp)k ˆAk ˆAk |u(x) -u(y)| p |x -y| d+sp dxdy a/p A k |u(x)| q dx (1-a)/q .
Here and in what follows in the proof of Theorem 2.1, C denotes a positive constant independent of u and k (and also independent of m, and n, which appear later), and

ffl Ω := 1 |Ω| ´Ω. Since 2 τ γk ˆAk |u| τ ≤ C2 (τ γ+d)k A k u - A k u τ + C2 (τ γ+d)k A k u τ ,
using (1.7), we derive from (2.6) that (2.7)

ˆAk |u| τ |x| τ γ dx ≤ C2 (γτ +d)k A k u τ + C ˆAk ˆAk |u(x) -u(y)| p |x| αp |x -y| d+sp dx dy aτ p ˆAk |u(x)| q |x| βq dx (1-a)τ q . Let m, n ∈ Z be such that m ≤ n -2 and supp u ⊂ B 2 n . Summing (2.7) with respect to k from m to n, we get (2.8) ˆ{2 m <|x|<2 n+1 } |u| τ |x| τ γ ≤ C n k=m 2 (γτ +d)k A k u τ + C n k=m ˆAk ˆAk |u(x) -u(y)| p |x| αp |x -y| d+sp dx dy aτ p |x| β u (1-a)τ L q (A k )
.

Applying Lemma 2.3 below with κ = aτ /p and η = (1 -a)τ /q after using the condition α -σ ≤ s to check that κ + η ≥ 1, we derive that (2.9)

n k=m ˆAk ˆAk |u(x) -u(y)| p |x| αp |x -y| d+sp dx dy aτ p |x| β u (1-a)τ L q (A k ) ≤ u aτ Ẇ s,p,α,Λ (R d ) |x| β u (1-a)τ L q (R d )
.

Combining (2.8) and (2.9) yields (2.10)

ˆ{|x|>2 m } |u| τ |x| τ γ ≤ C n k=m 2 (γτ +d)k A k u τ + C u aτ Ẇ s,p,α,Λ (R d ) |x| β u (1-a)τ L q (R d )
.

We next estimate the first term of the RHS of (2.10). We have, as in (2.6),

(2.11)

A k u - A k+1 u τ ≤ C 2 (d-sp)k ˆAk ∪A k+1 ˆAk ∪A k+1 |u(x) -u(y)| p |x -y| d+sp dx dy aτ p × A k ∪A k+1 |u(x)| q dx (1-a)τ q .
With c = 2/(1 + 2 γτ +d ) < 1, since c2 γτ +d > 1 thanks to γτ + d > 0 we derive from (2.11) that (2.12) 2 (γτ +d)k

A k u τ ≤ c2 (γτ +d)(k+1) A k+1 u τ + C ˆAk ∪A k+1 ˆAk ∪A k+1 |u(x) -u(y)| p |x| αp |x -y| d+sp dxdy aτ p |x| β u (1-a)τ L q (A k ∪A k+1 )
.

Summing this inequality with respect to k from m to n for large n, since u has a compact support in B 2 n and c < 1 thanks to γτ + d > 0, we derive that (2.13)

n k=m 2 (γτ +d)k A k u τ ≤ C n k=m ˆAk ∪A k+1 ˆRd |u(x) -u(y)| p |x| αp |x -y| d+sp dx dy aτ p × |x| β u (1-a)τ L q (A k ∪A k+1 )
.

Applying Lemma 2.3 below again and letting m → -∞ , we obtain

(2.14) k∈Z 2 (γτ +d)k A k u τ ≤ C u aτ Ẇ s,p,α,Λ (R d ) |x| β u (1-a)τ L q (R d )
.

Combining (2.10) and (2.14) and letting m → -∞, we obtain (i) of Theorem 2.1. The proof of i) in the case 0 ≤ α -σ ≤ s is complete.

The proof of i) in the case α -σ > s and 1 τ + γ d = 1 p + α-s d is based on the standard interpolation technique as in [START_REF]First order interpolation inequalities with weights[END_REF][START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF]. One just notes that, for λ > 0,

u(λ•) Ẇ s,p,α,Λ (R d ) = λ s-α-d p u Ẇ s,p,α,Λ (R d )
since χ Λ (x, y) = χ Λ (λx, λy), and

|x| γ u(λ•) L τ (R d ) = λ -γ-d τ |x| γ u L τ (R d ) and |x| β u(λ•) L q (R d ) = λ -β-d q |x| β u L q (R d ) .
The details are omitted.

Step 2: Proof of ii). The proof of ii) of Theorem 2.1 is similar to that of i). We only deal with the case 0 ≤ α -σ ≤ s since the proof in the case where α -σ > s and 1 τ + γ d = 1 p + α-s d is only by interpolation and almost unchanged.

Assume 0 ≤ α -σ ≤ s. Let m be such that u = 0 in B 2 m . Similar to (2.10), we have

(2.15) ˆ{|x|<2 n } |u| τ |x| τ γ ≤ C n k=m 2 (γτ +d)k A k u τ + C u aτ Ẇ s,p,α,Λ (R d ) |x| β u (1-a)τ L q (R d )
.

To estimate the first term in RHS of (2.15), one just needs to note that, instead of (2.12), we have with c = (1 + 2 γτ +d )/2 < 1 thanks to γτ + d < 0, 2 (γτ +d)(k+1)

A k+1 u τ ≤ c2 (γτ +d)k A k u τ + C ˆAk ∪A k+1 ˆAk ∪A k+1 |u(x) -u(y)| p |x| αp |x -y| d+sp dxdy aτ p |x| β u (1-a)τ L q (A k ∪A k+1 )
.

Summing with respect to k, we also obtain (2.14). The conclusion now follows from (2.14) and (2.15).

The following simple lemma is used in the proof of Theorem 2.1.

Lemma 2.3. For κ, η ≥ 0 with κ + η ≥ 1, and k ∈ N, we have

(2.16) k i=1 |a i | κ |b i | η ≤ k i=1 |a i | κ k i=1 |b i | η for a i , b i ∈ R.
2.2. Proof of Theorem 2.2. As in the proof of Theorem 2.1, we assume that Λ > 4 for notational ease. In this proof, we use the notations in the proof of Theorem 2.1. We only prove the first assertion. The second assertion follows similarly as in the spirit of the proof of Theorem 2.1. Let

n ∈ N be such that 2 n-1 ≤ R 2 < 2 n . Set (2.17) ν = µ -1 > 0.
Since α -σ ≥ 0, using (1.7), we also obtain (2.7). Summing (2.7) with respect to k from m to n, we obtain

(2.18) ˆ{|x|>2 m } 1 ln 1+ν (2R 2 /|x|) |x| γτ |u| τ dx ≤ C n k=m 1 (n -k + 1) 1+ν A k u τ + C n k=m ˆAk ˆAk |u(x) -u(y)| p |x| αp |x -y| d+sp dx dy aτ p |x| β u (1-a)τ L q (A k ) .
As in (2.11), we have (2.19)

A k u - A k+1 u τ ≤ C 2 (d-sp)k ˆAk ∪A k+1 ˆAk ∪A k+1 |u(x) -u(y)| p |x -y| d+sp dx dy aτ p × A k ∪A k+1 |u(x)| q dx (1-a)τ q .
Applying Lemma 2.4 below with c = (n -k + 1) ν /(n -k + 1/2) ν , we deduce that

A k u τ ≤ (n -k + 1) ν (n -k + 1/2) ν A k+1 u τ + C(n -k + 1) τ -1 A k u - A k+1 u τ , since, for ν > 0, (n -k + 1) ν /(n -k + 1/2) ν -1 ∼ 1 n -k + 1
.

It follows from (1.7) and (2.19) that

A k u τ ≤ (n -k + 1) ν (n -k + 1/2) ν A k+1 u τ + C(n -k + 1) τ -1 ˆAk ∪A k+1 ˆAk ∪A k+1 |u(x) -u(y)| p |x| αp |x -y| d+sp dxdy aτ p |x| β u (1-a)τ L q (A k ∪A k+1 )
.

This yields

(2.20) 1 (n -k + 1) ν A k u τ ≤ 1 (n -k + 1/2) ν A k+1 u τ + C(n -k + 1) τ -1-ν ˆAk ∪A k+1 ˆAk ∪A k+1 |u(x) -u(y)| p |x| αp |x -y| d+sp dxdy aτ p |x| β u (1-a)τ L q (A k ∪A k+1 )
.

We have, for ν > 0 and k ≤ n,

(2.21) 1 (n -k + 1) ν - 1 (n -k + 3/2) ν ∼ 1 (n -k + 1) ν+1
and, since τ ≤ 1 + ν,

(2.22) (n -k + 1) τ -1-ν ≤ 1.
Summing (2.20) from m to n, and using (2.21) and (2.22), we derive that (2.23)

n k=m 1 (n -k + 1) 1+ν A k u τ ≤ C n k=m ˆAk ∪A k+1 ˆAk ∪A k+1 |u(x) -u(y)| p |x| αp |x -y| d+sp dxdy aτ p |x| β u (1-a)τ L q (A k ∪A k+1 )
. 

Combining
|x| β u (1-a)τ L q (A k ∪A k+1 )
.

Applying Lemma 2.3 with κ = aτ /p and η = (1 -a)τ /q, we derive that

ˆ{|x|>2 m } |x| γτ ln 1+ν (2 n+1 /|x|) |u| τ dx ≤ C u aτ Ẇ s,p,α,Λ (R d ) |x| β u (1-a)τ L q ( ∞ k=m A k ) .
This yields the conclusion.

In the proof of Theorem 2.2, we used the following elementary lemma which was stated in [20, Lemma 3.2]. For the completeness, we give the proof below. Lemma 2.4. Let M > 1 and τ ≥ 1. There exists C = C(M, τ ) > 0, depending only on M and τ such that, for all 1 < c < M ,

(2.24) (|a| + |b|) τ ≤ c|a| τ + C (c -1) τ -1 |b| τ for all a, b ∈ R.
Proof. The inequality is trivial when τ = 1. We next only deal with the case τ > 1.

Without loss of generality, one might assume that a ≥ 0 and b ≥ 0. Inequality (2.24) is clear if a = 0 or b = 0. Thus it suffices to consider the case where a > 0 and b > 0. This will be assumed from now on. Set x = a/b. Multiplying two sides of the inequality by a -τ , it is enough to prove that, for some C > 0, (2.25)

(1 + x) τ ≤ c + C (c -1) τ -1 x τ for x > 0.
There exists x 0 > 0 such that, for 0 < x < x 0 ,

(1 + x) τ ≤ 1 + 2τ x.
On the other hand, we have

c + C (c -1) τ -1 x τ = 1 + (c -1) + C (c -1) τ -1 x τ ≥ 1 + τ -1 τ (c -1) + 1 τ C (c -1) τ -1 x τ .
Applying the Young inequality, we obtain

τ -1 τ (c -1) + 1 τ C (c -1) τ -1 x τ ≥ (c -1) τ -1 τ C 1 τ x (c -1) τ -1 τ ≥ 2x if C > C 1 := 2 τ .
Thus (2.25) holds for 0

< x < x 0 for C ≥ C 1 .
It is clear that there exists C 2 > 0 such that (2.25) holds for x ≥ x 0 for C ≥ C 2 .

By choosing C = max{C 1 , C 2 }, we obtain (2.25) and the conclusion follows.

Remark 2.1. Lemma 2.4 is stated in [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] for τ > 1. Nevertheless, the result is trivial for τ = 1.

The Caffarelli-Kohn-Nirenberg inequalities for radial functions in the fractional Sobolev spaces

This section containing two subsections is devoted to the proofs of Theorem 1.1 and Theorem 1.2. In the first subsection, we present a lemma which brings the situation in the radial case into the one of one dimensional space via polar coordinates. The proof of Theorem 1.1 is given in the second subsection by applying Theorem 2.1 in one dimensional space and using the lemma in the first subsection.

3.1.

A useful lemma. The improvement forms of the CKN inequalities are inspired by the following lemma.

Lemma 3.1. Let d ≥ 2, 0 < s < 1, 1 ≤ p < ∞, α ∈ R, Λ > 1, and let u ∈ L 1 loc (R d \ {0}
) be radial. We have, with û(r) = u(rσ) for some σ ∈ S d-1 and for r > 0, (3.1)

ˆ∞ 0 ˆ∞ 0 |û(r 1 ) -û(r 2 )| p r αp+(d-1) 1 χ Λ (r 1 , r 2 ) |r 1 -r 2 | 1+sp dr 1 dr 2 ≤ C ˆRd ˆRd |u(x) -u(y)| p |x| αp χ Λ (|x|, |y|) |x -y| d+sp dx dy,
where C is a positive constant depending only on d, s, α, p, and Λ.

Proof. The proof is simply based on the use of the polar coordinates. Using these coordinates, we have

(3.2) ˆRd ˆRd |u(x 1 ) -u(x 2 )| p |x| αp χ Λ (|x 1 |, |x 2 |) |x 1 -x 2 | d+sp dx 1 dx 2 = ˆ∞ 0 ˆ∞ 0 |û(r 1 ) -û(r 2 )| p r αp+(d-1) 1 r d-1 2 χ Λ (r 1 , r 2 ) ˆSd-1 ˆSd-1 dσ 1 dσ 2 |r 1 σ 1 -r 2 σ 2 | d+sp dr 1 dr 2 . Since |r 1 σ 1 -r 2 σ 2 | = |(r 1 -r 2 )σ 1 + r 2 (σ 1 -σ 2 )| ≤ |r 1 -r 2 | + |r 2 ||σ 1 -σ 2 |, it follows that, for Λr 1 ≤ r 2 ≤ Λr 1 , (3.3) ˆSd-1 ˆSd-1 dσ 1 dσ 2 |r 1 σ 1 -r 2 σ 2 | d+sp ≥ C ˆ1 0 s d-2 ds |r 1 -r 2 | + |r 2 |s d+sp ≥ C r d-1 2 |r 1 -r 2 | 1+sp
.

The conclusion now follows from (3.2) and (3.3).

3.2. Proof of Theorem 1.1. Denote û(r) = u(rσ) with r > 0 and σ ∈ S d-1 . We have, by polar coordinates,

(3.4) |x| γ u L τ (R d ) = |S d-1 | 1 τ r γ+ d-1 τ û L τ (0,∞) , (3.5) |x| β u L q (R d ) = |S d-1 | 1 q r β+ d-1 q û L q (0,∞) ,
and by Lemma 3.1,

(3.6) ˆ∞ 0 ˆ∞ 0 |û(r 1 ) -û(r 2 )| p r αp+d-1 1 χ Λ (r 1 , r 2 ) |r 1 -r 2 | 1+sp dr 1 dr 2 ≤ C ˆRd ˆRd |u(x) -u(y)| p |x| αp χ Λ (|x|, |y|) |x -y| d+sp dxdy.
Extend û in R as an even function and still denote the extension by û. We have

(3.7) |ξ| γ+ d-1 τ û L τ (R) ∼ r γ+ d-1 τ û L τ (0,∞) (3.8) |ξ| β+ d-1 q û L τ (R) ∼ r β+ d-1 q û L q (0,∞) ,

and

(3.9)

ˆR ˆR |û(ξ 1 ) -û(ξ 2 )| p |ξ 1 | αp+d-1 χ Λ (|ξ 1 |, |ξ 2 |) |ξ 1 -ξ 2 | 1+sp dξ 1 dξ 2 ≤ 4 ˆ∞ 0 ˆ∞ 0 |û(r 1 ) -û(r 2 )| p r αp+d-1 1 χ Λ (r 1 , r 2 ) |r 1 -r 2 | 1+sp dr 1 dr 2 .
Hereafter in this proof, two quantities are ∼ if each one is bounded by the other up to a positive constant depending only on the parameters. It thus suffices to prove (3.10)

|ξ| γ+ d-1 τ û L τ (R) ≤ C û a Ẇ s,p,α+ d-1 p ,Λ (R) |ξ| β+ d-1 q û 1-a L τ (R) .
This is in fact a consequence of Theorem 2.1 in one dimensional case. To this end, let first rewrite the conclusion of Theorem 2.1 in one dimensional case. Let 0

< s < 1, p > 1, q ≥ 1 τ ≥ 1, 0 < a ≤ 1, α , β , γ ∈ R and define σ by σ ∈ R by γ = a σ + (1 -a )β . Assume that (3.11) 1 τ + γ = a 1 p + α -s + (1 -a ) 1 q + β , (3.12) 0 ≤ α -σ , and 
(3.13) α -σ ≤ s if 1 τ + γ = 1 p + α -s . Then, if 1 τ + γ > 0, it holds (3.14) |x| γ g L τ (R) ≤ C g a Ẇ s ,p ,α ,4 (R) |x| β g 1-a L q (R)
for g ∈ L 1 loc (R \ {0}), with compact support in R,

and if 1 τ + γ < 0, it holds (3.15) |x| γ g L τ (R) ≤ C g a Ẇ s ,p ,α ,4 (R) |x| β g 1-a L q (R)
for g ∈ L 1 loc (R) with 0 ∈ supp g.

We are applying (3.14) and (3.15) with s = s, a = a, p = p, q = q, τ = τ , α = α

+ d-1 p , β = β + d-1 q , γ = γ + d-1 τ , aσ + (1 -a)β = γ . Then clearly, 1 τ + γ = d τ + γ, 1 p + α -s = d p + α -s, 1 q + β = d q + β.
Hence (3.11) follows from (1.7).

We next compute α -σ . Since aσ

+ (1 -a)β = γ = γ + d-1 τ and aσ + (1 -a)β = γ, it follows that a(σ -σ) = d -1 τ -(1 -a)(β -β) = d -1 τ - (1 -a)(d -1) q = (d -1) 1 τ - 1 -a q (1.7) = a(d -1) 1 p + α -σ -s d .
It follows that

α -σ = α + d -1 p -σ -(d -1) 1 p + α -σ -s d = α -σ d + s(d -1) d .
This yields that α -σ ≥ 0 if and only if α -σ ≥ -s(d -1).

The conclusion now follows from (3.14) and (3.15).

3.3.

Proof of Theorem 2.2. The proof is in the same spirit of the one of Theorem 2.1. For the convenience of the reader, we briefly describe the main lines. Denote û(r) = u(rσ) with r > 0 and σ ∈ S d-1 . We have, by polar coordinates, (

)

ˆRd |x| γτ ln µ (2R 2 /|x|) |u| τ dx 1/τ = |S d-1 | 1/τ ˆ∞ 0 r γτ +d-1 ln µ (2R 2 r) |û| τ dr 1/τ

and

(3.17)

ˆRd |x| γτ ln µ (2|x|/R 1 ) |u| τ dx 1/τ = |S d-1 | 1/τ ˆ∞ 0 r γτ +(d-1) ln µ (2r/R 1 ) |û| τ dr 1/τ .
Extend û in R as an even function and still denote the extension by û. Using (3.5) and (3.6), as in (3.10), it suffices to prove that if supp û ⊂ B R 2 ⊂ R, then it holds

(3.18) ˆR |ξ| (γ+ d-1 τ )τ ln µ (2R 2 /|ξ|) |û| τ dξ 1 τ ≤ C û a Ẇ s,p,α+ d-1 p ,Λ (R) |ξ| β+ d-1 q |û| 1-a L q (R)
,

and if supp û ∩ B R 1 = ∅, then it holds (3.19) ˆR |ξ| (γ+ d-1 τ )τ ln µ (2|ξ|/R 1 ) |û| τ dξ 1 τ ≤ C û a Ẇ s,p,α+ d-1 p ,Λ (R) |ξ| β+ d-1 q |û| 1-a L q (R)
.

The conclusion now follows from Theorem 2.2 as in the proof of Theorem 1.2. The details are omitted.

We next show the optimality of condition α -σ ≥ -(d -1)s given in (1.17).

Proposition 3.1. The condition α -σ ≥ -(d -1)s in (1.17) is necessary for the assertions in Theorem 1.1 to hold.

Proof. Let v ∈ C ∞ c (R) with supp v ⊂ (0, 1). For large R > 0 define u R (x) := v(|x| -R), for x ∈ R d . Clearly, u R ∈ C ∞ c (R d ) with supp u R ⊂ A R,R+1
, where for any b, c ∈ (0, ∞), with b < c, the set A b,c is defined by

A b,c := {x ∈ R d : b < |x| < c}.
We denote

γ := d -1 τ + γ, α := d -1 p + α, β := d -1 q + β.
One can check that

(3.20) u R Ẇ s,p,0,Λ (R d ) ≤ C u R W 1,p (R d ) ≤ CR d-1 p , and since supp u R ⊂ A R,R+1 , (3.21) u R Ẇ s,p,α,Λ (R d ) ≤ u R Ẇ s,p,α,Λ A RΛ -1 ,(R+1)Λ ×A RΛ -1 ,(R+1)Λ ≤ CR α u R Ẇ s,p,0,Λ (R d ) .
Combining (3.20) and (3.21) yields

(3.22) u R a Ẇ s,p,α,Λ (R d ) ≤ CR aα .
On the other hand, one can check that (3.23)

|x| γ u R L τ (R d ) ∼ R γ and |x| β u R 1-a L q (R d ) ∼ R (1-a)β .
Therefore, if either (1.18) or (1.19) holds then using them for u = u R , we conclude form (3.22) and (3.23) R γ ≤ CR aα +(1-a)β for R large and C > 0 independent of R, which is possible only when α -σ ≥ -(d -1)s. The proof is complete.

4. The Caffarelli-Kohn-Nirenberg inequalities for radial functions in the Sobolev spaces

In this section, we present the result in the case s = 1. We first state variants/improvements of the CKN inequalities in the Sobolev spaces which follows directly from the approach given in [START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] (see also the proof of Theorem 2.1). We begin with the case 1/τ + γ/d = 0. Theorem 4.1. Let d ≥ 1, p ≥ 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, and α, β, γ ∈ R. Define σ by (1.3). Assume (1.2), (1.4), and (1.5). We have, for some positive constant C,

i) if 1 τ + γ d > 0, then for all u ∈ L 1 loc (R d \ {0}) with compact support in R d , it holds (4.1) |x| τ u L τ (R d ) ≤ C |x| α ∇u a L p (R d \{0}) |x| β u 1-a L q (R d ) , ii) if 1 τ + γ d < 0, then for all u ∈ L 1 loc (R d \ {0}
) which is 0 in a neighborhood of 0, (4.1) holds. Concerning the limiting case 1/τ + γ/d = 0, one has the following result. There exists a positive constant C such that for all u ∈ L 1 loc (R d \ {0}) and for all R 1 , R 2 > 0, we have

(i) if 1 τ + γ d = 0 and supp u ⊂ B R 2 , then (4.3) ˆRd |x| γτ ln µ (2R 2 /|x|) |u| τ dx 1 τ ≤ C |x| α ∇u a L p (R d \{0}) |x| β u 1-a L q (R d ) , (ii) if 1 τ + γ d = 0, and supp u ∩ B R 1 = ∅, then (4.4 
)

ˆRd |x| γτ ln µ (2|x|/R 1 ) |u| τ dx 1 τ ≤ C |x| α ∇u a L p (R d \{0}) |x| β u 1-a L q (R d )
.

We are ready to state the corresponding results in the radial case. We begin with the case 1/τ + γ/d = 0.

Theorem 4.3. Let d ≥ 2, p ≥ 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1 and α, β, γ ∈ R. Define σ by (1.3). Assume (1.2) and (4.5) -(d -1) ≤ α -σ < 0.
We have, for some positive constant

C, i) if 1 τ + γ d > 0, then for all radial u ∈ L 1 loc (R d \ {0}) with compact support in R d , (4.1) holds; ii) if 1 τ + γ d < 0, then for all radial u ∈ L 1 loc (R d \ {0}
) which is 0 in a neighborhood of 0, (4.1) holds.

Concerning the limiting case 1/τ + γ/d = 0, we obtain the following result. We end this section by mentioning what has been proved previously. In the case 1/τ + γ/d > 0, under the following additional requirement (see [12, the first inequality in (1.8) and (1.10)]) a(α -1 -σ) d + 1 -a q ≥ 0 and 1 p + α -1 d > 0, assertion i) of Theorem 4.3 was previously proved in [START_REF] Nápoli | Improved Caffarelli-Kohn-Nirenberg and trace inequalities for radial functions[END_REF] by a different approach via the Riesz potential and inequalities on fractional integrations.

< R 1 < R 2 , we have i) if 1 τ + γ d = 0 and supp u ⊂ B R 2 , then (4.3) holds. ii) if 1 τ + γ d = 0,

Applications to the compactness

In this section, we derive several compactness results from previous inequalities for radial case. We only consider the case 1/τ + γ/d > 0. We begin with the following result.

Proposition 5.1. Let d ≥ 1, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a < 1, α, β, γ ∈ R, and Λ > 1 be such that 1/τ + γ/d > 0. Define σ by (1.3). Assume (1.7), α -σ > 0, and

1 p + α -s d = 1 q + β d .
Assume that the embedding W s,p (B 1 ) ∩ L q (B 1 ) into L τ (B 1 ) is compact. Let (u n ) n ⊂ L 1 loc (R d ) with compact support be such that the sequences u n Ẇ s,p,α,Λ (R d ) n and |x| β u n L q (R d ) n are bounded. Then, up to a subsequence, (|x| γ u n ) n converges in L τ (R d ).

Proof. One just notes that for γ sufficiently close to γ, one can choose 0 < a < 1 close to a such that the assumptions of Proposition 5.1 hold with (a, γ) being replaced by (a , γ ). This implies, by Theorem 2.1 (see also (1.10)) that, for ε > 0 sufficiently small, ( |x| γ+ε u n L τ ) and ( |x| γ-ε u n L τ ) are bounded.

The conclusion follows since the embedding W s,p (B R ) ∩ L q (B R ) into L τ (B R ) is compact for R > 0.

In the case s = 1, one has the following result, whose proof is almost identical and omitted.

Proposition 5.2. Let d ≥ 1, p ≥ 1, q ≥ 1, τ ≥ 1, 0 < a < 1, and α, β, γ ∈ R be such that 1/τ + γ/d > 0. Define σ by (1.3). Assume (1.2), α -σ > 0, and

1 p + α -1 d = 1 q + β d .
Assume that the embedding W 1,p (B 1 ) ∩ L q (B 1 ) into L τ (B 1 ) is compact. Let (u n ) n ⊂ L 1 loc (R d ) with compact support be such that the sequences |x| α ∇u n L p (R d ) n and |x| β u n L q (R d ) n are bounded. Then, up to a subsequence, |x| γ u n n converges in L τ (R d ).

Here are the variants for radial functions, whose proof are almost the same and omitted.

Proposition 5.3. Let d ≥ 2, 0 < s < 1, p > 1, q ≥ 1, τ ≥ 1, 0 < a < 1, α, β, γ ∈ R, and Λ > 1 be such that 1/τ + γ/d > 0. Define σ by (1.3). Assume (1.7), α -σ > -(d -1)s, and

1 p + α -s d = 1 q + β d .
Assume that the embedding W s,p (B 1 ) ∩ L q (B 1 ) into L τ (B 1 ) is compact. Let (u n ) n ⊂ L 1 loc (R d ) be radial such that the sequences u n Ẇ s,p,α,Λ (R d ) n and |x| β u n L q (R d ) n are bounded. Then, up to a subsequence, |x| γ u n n converges in L τ (R d ).

  Nguyen and Squassina[START_REF] Nguyen | Fractional Caffarelli-Kohn-Nirenberg inequalities[END_REF] Theorem 1.1] proved, for some positive constant C,i) if 1 τ + γ d > 0, then for all u ∈ C 1 c (R d ), it holds |x| γ u L τ (R d ) ≤ C ˆRd ˆRd |u(x) -u(y)| p |x| α 1 p |y| α 2 p |x -y| d+sp dxdy ii) if 1 τ + γ d < 0, then for all u ∈ C 1 c (R d \ {0}), it holds |x| γ u L τ (R d ) ≤ C ˆRd ˆRd |u(x) -u(y)| p |x| α 1 p |y| α 2 p |x -y| d+sp dxdy

Theorem 4 . 2 .

 42 Let d ≥ 1, p ≥ 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1,and α, β, γ ∈ R, and µ > 1. Assume that τ ≤ µ. Define σ by (1.3). Assume (1.2) and (4.2) 0 ≤ α -σ ≤ 1.

Theorem 4 . 4 .

 44 Let d ≥ 2, p ≥ 1, q ≥ 1, τ ≥ 1, 0 < a ≤ 1, α, β, γ ∈ R, and µ > 1. Assume that τ ≤ µ. Define σ by (1.3). Assume (1.2) and (4.5). There exists a positive constant C such that for all u ∈ L 1 loc (R d \ {0}) and for all 0

  and supp u ∩ B R 1 = ∅, then (4.4) holds. Remark 4.1. The convention in Remark 1.1 is also used in Theorem 4.1, Theorem 4.2, Theorem 4.3, and Theorem 4.4. In these theorems, the quantity |x| α ∇u L p (R d \{0}) is also considered as infinity if ∇u ∈ [L p loc (R d \ {0})] d . Remark 4.2. By similar considerations as in Remark 1.5, we can conclude that the log-term is necessary in Theorem 4.4. Theorem 4.3 and Theorem 4.4 are direct consequences of Theorem 4.1 and Theorem 4.2 in the one dimensional case. The proofs are as in the spirit of the proof of Theorem 1.1 and Theorem 1.2 but simpler where a variant of Lemma 3.1 is not required. The details are left to the reader.Concerning the optimality of the condition of (4.5), we have the following result whose proof is similar to the one of Proposition 4.1 and omitted.

Proposition 4 . 1 .

 41 The condition α -σ ≥ -(d -1) in (4.5) is necessary for the assertions in Theorem 4.3 to hold.

  1.2. The condition α -σ ≥ -(d -1)s is in fact optimal, see Proposition 4.1.

	Remark 1.3. Combing (1.10), (1.11), and Theorem 1.1 yields that, in the radial case, (1.10) and
	(1.11) hold if one replaces (1.8) and (1.9) by the condition -(d -1)s ≤ α -σ and (1.9).

  and Λ > 1. Assume that τ ≤ µ. Define σ by (1.3). Assume (1.7) and (1.17). There exists a positive constant C such that for all radial u ∈ L 1 loc (R d \ {0}) and for all R 1 , R 2 > 0, we have i) if 1 τ + γ d = 0 and supp u ⊂ B R 2 , then it holds;

Proposition 5.4. Let d ≥ 2, p ≥ 1, q ≥ 1, τ ≥ 1, 0 < a < 1, and α, β, γ ∈ R. Define σ by (1.3). Assume (1.2), α -σ > -(d -1), and

Assume that the embedding W 1,p (B 1 )

) be radial with compact support such that the sequences |x| α ∇u n L p (R d ) n and |x| β u n L q (R d ) n are bounded. Then, up to a subsequence, |x| γ u n n converges in L τ (R d ).

We obtain the following corollary after using the density of the radial functions

Then the embedding W s,p (R d ) into L τ (|x| γ j , R d ) for radial functions is compact. As a consequence, the embedding W s,p (R d ) into L τ (R d ) in the class of radial functions is compact.

Remark 5.1. The fact that the embedding W s,p (R d ) into L τ (R d ) in the class of radial functions is compact is known, see e.g., [5, [START_REF] Lions | Symétrie et compacité dans les espaces de Sobolev[END_REF][START_REF] Walter | Existence of solitary waves in higher dimensions[END_REF] in the case s = 1 and [START_REF] Sickel | Radial subspaces of Besov and Lizorkin-Triebel classes: extended Strauss lemma and compactness of embeddings[END_REF] in the case 0 < s < 1 (whose proof is based on the atomic decomposition). The ideas to derive the compactness as presented here are quite standard, see, e.g., [START_REF] Bellazzini | Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems[END_REF].
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