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A nonlinear elasticity problem with no local but many global minimizers unrelated by symmetry

In this paper, dedicated to 85th birthday of R. Fosdick, we touch upon two issues which attracted considerable attention in his own research: nonuniqueness in geometrically linear elasticity and the Clapeyron theorem. To this end we consider a simple model of a solid-solid phase transition with incompatible energy wells which exhibits multiplicity of global minimizers in a hard device, unrelated to either objectivity or material symmetry. At the same time, the same example shows the absence of strong local Lipschitz minimizers which are not global minimizers. Our proof that every strong local minimizer in the corresponding variational problem is also a global one hinges on the new general sufficiency theorem, proved by means of the novel nonlinear generalization of the Clapeyron theorem.
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Introduction

The phenomenon of metastability in elastostatics, manifesting itself through the existence of strong local minimizers which are not global, is usually associated with a Neumann problem (soft device) and is linked to the incompatibility of the energy wells [START_REF] Ball | Incompatible sets of gradients and metastability[END_REF]. In this paper we present an analytically transparent example of an energy with incompatible wells for which one can prove the absence of strong local minimizers which are not global on any domain and for any Dirichlet boundary conditions (hard device).

Moreover, for the same energy one can prove dramatic nonuniqueness of global minimizers. Previously, it has been understood that to ensure uniqueness, the use of Dirichlet boundary conditions and topological, or even geometric simplicity of the domain are essential [START_REF] Post | On homotopy conditions and the existence of multiple equilibria in finite elasticity[END_REF][START_REF] Taheri | Local minimizers and quasiconvexity-the impact of topology[END_REF][START_REF] Emanuele | Non-uniqueness of minimizers for strictly polyconvex functionals[END_REF]. Uniqueness has been established for star-shaped domains, affine displacement boundary conditions, and strictly quasiconvex stored energy functions [START_REF] Knops | Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity[END_REF][START_REF] Taheri | Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations[END_REF]. Whether uniqueness holds may also depend on the regularity class in which one looks for a minimizer [START_REF] Rj Knops | Uniqueness and complementary energy in nonlinear elastostatics[END_REF], or even on its integrability class [START_REF] Ball | Discontinuous equilibrium solutions and cavitation in nonlinear elasticity[END_REF][START_REF] Sivaloganathan | Singular minimisers in the calculus of variations: a degenerate form of cavitation[END_REF][START_REF] Co Horgan | Cavitation in nonlinearly elastic solids: a review[END_REF]. For mixed boundary-value problems of nonlinear elasticity nonuniqueness is common with the most familiar examples being those associated with buckling, due to the emergence of multiple symmetry-related energy minima [START_REF] Euler | Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti, Additamentum I. De curvis elasticis[END_REF][START_REF] Grabovsky | The flip side of buckling[END_REF]. The possibility of nonuniqueness with Dirichlet boundary conditions was shown for non-homogeneous problems [START_REF] Edelstein | A note on non-uniqueness in linear elasticity theory[END_REF][START_REF] Le | An example of H 1 -unboundedness of solutions to strongly elliptic systems of partial differential equations in a laminated geometry[END_REF][START_REF] Triantafyllidis | On the comparison between microscopic and macroscopic instability mechanisms in a class of fiber-reinforced composites[END_REF]. Our simple example shows that the multiplicity of global minimizers in a hard device problem can be obtained even in the absence of geometrical complexity of the domain, non-homogeneity, and can be unrelated to either objectivity or material symmetry. It is very similar to examples related to the nonuniqueness of optimal microstructures in composites [START_REF] Avellaneda | Optimal bounds and microgeometries for elastic two-phase composites[END_REF][START_REF] Milton | Variational bounds on the effective moduli of anisotropic composites[END_REF][START_REF] Grabovsky | Bounds and extremal microstructures for two-component composites: A unified treatment based on the translation method[END_REF][START_REF] Lu | Elastic energy minimization and the shape of coherent precipitates[END_REF].

More specifically, we consider a "geometrically linearized" Hadamard material which is a simplification of the fully nonlinear Hadamard material [START_REF] Hadamard | Leçons sur la propagation des ondes et les équations de l'hydrodynamique[END_REF][START_REF] John | Plane elastic waves of finite amplitude. hadamard materials and harmonic materials[END_REF] whose energy density function is of the form

W (F ) = µ|F | 2 + h(det F ), (1.1) 
where µ is the measure of rigidity and the non-negative function h(d) is defined on (0, +∞) and has the property that h(d) → ∞, as d → 0 + . If we use the "geometric" approximation det F ≈ 1 + Tr (F -I), which is valid in the limit F → I, such formal asymptotic expansion with respect to a small parameter would also induce physical linearization and would trivialize the problem. To retain physical non-linearity we consider the energy W (H) = g(Tr H) + µ|H| 2 , H = F -I.

(1.2)

We may now perform geometric linearization in the second term as well [START_REF] Khachaturyan | Theory of structural transformation in solids[END_REF][START_REF] Budiansky | Continuum theory of dilatant transformation toughening in ceramics[END_REF][START_REF] Kaganova | Equilibrium between elastically-interacting phases[END_REF][START_REF] Abeyaratne | Dilatationally nonlinear elastic materials-I. Some theory[END_REF][START_REF] Abeyaratne | Dilatationally nonlinear elastic materials-II. an example illustrating stress concentration reduction[END_REF], replacing H with its symmetric part ε = (H + H t )/2 and, to emphasise its isotropic nature, writing the energy density as

W (ε) = f (Tr ε) + µ|dev(ε)| 2 , dev(ε) = ε - 1 3 Tr (ε)I. (1.3)
Mathematically, the analyses of (1.2) and (1.3) are very similar. We will therefore, focus on (1.3), because it preserves at least the linearized version of the frame indifference property. We assume that µ > 0 and the function f has the "double-well" shape. For analytical transparency we use in our explicit constructions the bi-quadratic potential f (θ) = min{κ 0 θ 2 , κ 0 (θ -θ p ) 2 + f 0 }, (1.4) illustrated in Fig. 1. The ensuing model describes a material capable of undergoing a purely dilatational phase transformation between two phases which are both linearly elastic. They have the same moduli and differ only by the transformation strain and the reference (chemical) energy. The relaxation of such energies has been always considered as a benchmark case for all theories of elastic phase transitions [START_REF] Khachaturyan | Theory of structural transformation in solids[END_REF][START_REF] Kohn | The relaxation of a double-well energy[END_REF][START_REF] Allen C Pipkin | Elastic materials with two preferred states[END_REF].

We recall that if the wells are rank-one connected, a quasiconvex energy would have to be convex, due to the rank-one conexity of quasiconvex functions [START_REF] Morrey | Quasi-convexity and the lower semicontinuity of multiple integrals[END_REF]. On the other hand, the incompatibility of the wells can be responsible for quasiconvexity of a non-convex energy density, as we will see in our example, where the energy wells are not rank one connected. In our example, despite the fact that the non-convexity enters (1.3) only through a scalar potential f (θ), the energy density (1.3) is non-quasiconvex for all µ > 0, if f (θ) is given by (1.4), [START_REF] Kohn | The relaxation of a double-well energy[END_REF]. Therefore, even if subjected to homogeneous loading in a hard device, the materials described by (1.4) must undergo non-homogeneous deformations by developing microstructures. In the presence of local minima, such systems can be expected to experience hysteresis [START_REF] Ball | Hysteresis during stress-induced variant rearrangement[END_REF][START_REF] Yongmei M Jin | Macroscopic energy barrier and rate-independent hysteresis in martensitic transformations[END_REF][START_REF] Roytburd | Thermodynamic hysteresis of phase transformation in solids[END_REF][START_REF] Šilhavý | the hysteresis in martensitic transformations[END_REF][START_REF] Zhang | Energy barriers and hysteresis in martensitic phase transformations[END_REF]. However, as we have already mentioned, the local minima in this model are absent. Then, the macroscopic quasistatic mechanical response in the hard device corresponding to global minimization of the total energy at each value of the loading parameter is defined uniquely, and as a result, the deformation path is reversible. The associated stress-strain relation can be obtained from the knowledge of the quasiconvex envelope of the energy (1.3) that can be characterized explicitly in the whole range of parameters and for all double-well shaped potentials f (θ). In this paper we perform the implied relaxation of the energy (1.3) using simple laminates as the optimal microstructure; a different proof based on matching of upper and lower bounds can be found in [START_REF] Grabovsky | When rank-one convexity meets polyconvexity: An algebraic approach to elastic binodal[END_REF].

One of the general results of this paper is the formulation of the necessary and sufficient conditions for global minimizers in a star-shaped domain with affine boundary conditions. This creates a tool to characterize energy minimizing configurations in examples where the energy relaxation, or at least the elastic binodal, is explicitly known. An important technical tool in this analysis is a fundamental nonlinear generalization of the Clapeyron theorem which is presented here for the first time. These results can be viewed as a generalization of optimality conditions for extremal microstructures in composites (e.g. [START_REF] Grabovsky | Bounds and extremal microstructures for two-component composites: A unified treatment based on the translation method[END_REF]).

We show that using our necessary and sufficient conditions one can reduce the problem of finding a global minimizer to the solution of a nonlinear free boundary problem involving a system of linear PDEs in a finite domain. It is remarkable that for the energy density (1.3) the solution of the ensuing problem can be found explicitly, for any double-well scalar potential f (θ), providing us with an explicit example of multiplicity of global minimizers. In particular, we were able to compute explicitly a one parameter family of low surface energy non-affine configurations in the square domain, whose boundary is piecewise smooth. In this way we showed the possibility to always generate in this class of problems an optimal microstructure with low surface area, which is physically advantageous comparing, for instance, to multiscale lamination with infinitely large surface area [START_REF] Kohn | Surface energy and microstructure in coherent phase transitions[END_REF].

The analysis of optimal microstructures suggests that, despite the absence of the total energy hysteresis in this system, the direct and the reverse transformation may follow different transformation paths in the configuration space. Therefore in this problem, in the absence of metastability and "constitutive hysteresis", we encounter a phenomenon of "morphological hysteresis", whereby the forward and reverse transformations occur along different morphological paths, while traversing energetically equivalent configurations.

The paper is organized as follows. In Section 2 we discuss the restrictions on the structure of strong local minimizers. The necessary and sufficient conditions for global minimizers are formulated in Section 3. The issue of attainment and the multiplicity of global minimizers in our model are discussed in Section 4. An explicit construction of a nontrivial global minimizer in a square domain which has expressly low surface area is presented in Section 5. The last Section 6 contains our conclusions. An Appendix A contains a technical discussion of the generic loss of ellipticity for the energy represented by a rank one convex envelope.

Local minimizers

Given that the case of interest involves hard device loading, our goal is to study strong local and global minima of the functional

E 0 (u) = Ω f (∇ • u) + µ e(u) - 1 3 (∇ • u)I 2 dx (2.1)
among all Lipschitz displacement vector fields u ∈ W 1,∞ (Ω; R 3 ) subject to the constraint

u(x) = u 0 (x), x ∈ ∂Ω, (2.2) 
where u 0 (x) is a given Lipschitz function on ∂Ω. Restricting attention to Lipschitz minimizers allows us to focus on instabilities caused by failure of quasiconvexity [START_REF] Morrey | Quasi-convexity and the lower semicontinuity of multiple integrals[END_REF][START_REF] Dacorogna | Quasiconvexity and relaxation of nonconvex problems in the calculus of variations[END_REF] and exclude some other instabilities related, for instance, to the mismatch between the integrability of the minimizing sequences and the growth of the energy density at infinity [START_REF] Ball | W 1,p -quasiconvexity and variational problems for multiple integrals[END_REF].

First we recall that one of the necessary conditions of metastability, understood here as the lack of strong local Lipschitz minimizers which are not also global minimizers, is stability with respect to nucleation of a coherent precipitate of the new phase in the interior of the old phase. That means that we must have ∇u(x) ∈ A, for a.e. x ∈ Ω, [START_REF] Taheri | Local minimizers and quasiconvexity-the impact of topology[END_REF]Proposition 4.1], where

A = {H ∈ M : W (H) = QW (H)}, (2.3) 
where M denotes the set of all 3 × 3 matrices and QW (H) is the quasiconvexification of W [START_REF] Dacorogna | Quasiconvexity and relaxation of nonconvex problems in the calculus of variations[END_REF].

In this paper we show that if u(x) is a weak solution of the Euler-Lagrange equation for the energy (2.1) with the boundary conditions (2.2) and satisfies ∇u(x) ∈ A for a.e.

x ∈ Ω then, it is necessarily a global minimizer for E 0 (u). However, before we move to the actual analysis, it is appropriate to mention that we are not aware of any examples of proper metastable states in a hard device in domains with trivial topology. Moreover it has been proved for general energies that every strong local minimizer is global in the hard device with affine Dirichlet boundary conditions in star-shaped domains [START_REF] Taheri | Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations[END_REF]. In our special example, the same result turns out to be true for all Dirichlet boundary conditions in domains with piecewise smooth boundaries and arbitrary topology.

The first step of the analysis is to characterize the set A of admissible displacement gradients for the chosen material model. It can result from the computation of QW (H) which in our case can be done explicitly.

Theorem 2.1. Suppose that W (H) is given by (1.3). Then,

QW (H) = Φ * * (Tr H) + µ 4 |H -H t | 2 -2µJ 2 (H), (2.4) 
where

Φ(θ) = f (θ) + 2 3 µθ 2 , (2.5) 2J 2 (H) = (Tr H) 2 -Tr (H 2 ) = 2 i<j h ii h ij h ji h jj (2.6)
is a quadratic null-Lagrangian, and Φ * * denotes the convexification of Φ(θ).

Proof. It will be convenient to use the definition of quasiconvexification based on periodic functions [START_REF] Dacorogna | Quasiconvexity and relaxation of nonconvex problems in the calculus of variations[END_REF]:

QW (H) = inf φ-Q-periodic - Q W (H + ∇φ(x))dx, (2.7) 
where

Q = [0, 1] 3 .
The computation of QW is based on the following formula

e(u) - 1 3 (∇ • u)I 2 = 2 3 (∇ • u) 2 + 1 2 |∇ × u| 2 -2J 2 (∇u). (2.8) Let u(x) = Hx + φ(x). Then - Q W (∇u)dx = -2µJ 2 (H) + - Q Φ(∇ • u) + µ 2 |∇ × u| 2 dx. (2.9) 
Since Φ * * (θ) ≤ Φ(θ) for all θ ∈ R, we obtain the inequality

- Q W (∇u)dx ≥ -2µJ 2 (H) + - Q Φ * * (∇ • u) + µ 2 |∇ × u| 2 dx.
Now applying the Jensen's inequality we get:

- Q W (∇u)dx ≥ -2µJ 2 (H) + Φ * * (Tr H) + µ 4 |H -H t | 2 . (2.10) Therefore, QW (H) ≥ -2µJ 2 (H) + Φ * * (Tr H) + µ 4 |H -H t | 2 . (2.11)
In order to prove equality, we need to exhibit a periodic function φ such that ∇ × φ = 0 and -

Q Φ(∇ • φ(z) + Tr H)dz = Φ * * (Tr H).
(2.12)

If Φ(θ), given by (2.5) is convex1 , then the original energy W (H) is quasiconvex (polyconvex, actually), and formula (2.4) holds. The case of interest is therefore when Φ(θ) retains the double-well shape, in which case Φ * * (θ) = Φ(θ) if and only if θ ∈ (θ 1 , θ 2 ), as in Fig. 2. For example, for the potential (1.4) we find

θ 1 = f 0 2κ 0 θ p + µθ p 3κ 0 + 2µ , θ 2 = θ p + f 0 2κ 0 θ p - µθ p 3κ 0 + 2µ . (2.13) 1 2 ( ) Figure 2: Definition of θ 1 < θ 2 via the common tangent construction. Thus, if Tr H ∈ (θ 1 , θ 2 ), then φ = 0 attains equality in (2.10). If Tr H ∈ (θ 1 , θ 2 ), then there exists ω ∈ (0, 1) such that Tr H = ωθ 1 + (1 -ω)θ 2 . (2.14)
In order to attain equality in (2.10) we need to split the period cell

Q = [0, 1] 3 into two subsets A 1 , of volume ω and A 2 of volume 1 -ω such that ∇ • u(x) = θ 1 χ A 1 (x) + θ 2 χ A 2 (x) (2.15) 
for all x ∈ Q. This is easily achieved with a laminate construction with

A 1 = [0, ω] × [0, 1] 2 and A 2 = [1 -ω, 1] × [0, 1]
2 and function ∇φ being symmetric and piecewise constant:

∇φ(x) = M 1 χ A 1 (x) + M 2 χ A 2 (x).
The symmetric matrices M 1 and M 2 are easily found from the periodicity of φ(x), that is equivalent to -Q ∇φ(x)dx = 0, and (2.15):

M 1 = (1 -ω)[[θ]]e 1 ⊗ e 1 , M 2 = -ω[[θ]]e 1 ⊗ e 1 ,
where

[[θ]] = θ 1 -θ 2 .
These choices guarantee equality in (2.12) and the symmetry of ∇φ

guarantees ∇ × φ = 0. Corollary 2.2. A = {H ∈ M : Tr H ∈ (θ 1 , θ 2 )}. (2.16)
The constructed energy density QW (H) is obviously polyconvex, and coincides with RW (H), the rank-1 convexification of W (H). Indeed, as we see from the proof of Theorem 2.1, the infimum in (2.7) can be achieved by a simple laminate. In view of the simplicity of the optimal microstructures, one can post factum conclude that computing QW (H) explicitly was not really necessary for the characterization of the set A. We could also delineate it by using inequality (2.10) and relying on the knowledge and properties of the jump set introduced in [START_REF] Grabovsky | Roughening instability of broken extremals[END_REF][START_REF] Grabovsky | Normality condition in elasticity[END_REF]. Indeed, inequality (2.10) implies that all H satisfying Φ * * (Tr H) = Φ(Tr H) are admissible, i.e. {H ∈ M : Tr H ∈ (θ 1 , θ 2 )} ⊂ A. We can then show that all H with θ 1 < Tr H < θ 2 fail rank-one convexity by looking for pairs H ± of the displacement gradient values that can occur on the two sides of a smooth jump discontinuity representing a phase boundary. We recall, [START_REF] Grabovsky | Roughening instability of broken extremals[END_REF], that these matrices satisfy the equations

[[H]] = a ⊗ n, [[W H ]]n = 0, [[W H ]] t a = 0, [[W ]] = { {W H } }, [[H]] , (2.17) 
where

[[H]] = H + -H -, { {W H } } = 1 2 (W H (H + ) + W H (H -)).
We have shown in [START_REF] Grabovsky | When rank-one convexity meets polyconvexity: An algebraic approach to elastic binodal[END_REF] that the jump set for the energy (1.3) consists of the union of two hyperplanes

J -= {H ∈ M : Tr H = θ 1 }, J + = {H ∈ M : Tr H = θ 2 },
so that if Tr H -= θ 1 , then the set of corresponding H + is a projective plane worth of points

H + = H -+ (θ 2 -θ 1 )n ⊗ n, |n| = 1.
As we have already remarked, inequality (2.10) implies that J ± ⊂ A. In this case the following lemma shows that our results from [START_REF] Grabovsky | Normality condition in elasticity[END_REF] imply that all matrices H t = tH + + (1t)H -would also fail to be rank-one convex for all t ∈ (0, 1 Then all of the matrices H t , t ∈ (0, 1) must fail rank-one convexity in the sense that they must fail to satisfy the inequality

W (H) ≥ W (H t ) + P t , H -H t ∀H : rank(H -H t ) = 1, (2.18) 
where

P t = W H (H t ).
Proof. Suppose, with the goal of getting a contradiction, that (2.18) holds. Then, since matrices H -, H t and H + all lie on the same rank-one line, we obtain

W (H -) + t P -, [[H]] ≤ W (H t ) ≤ W (H + ) -(1 -t) P t , [[H]] .
Now, using the jump set equations (2.17), we obtain

(1 -t)( P -, [[H]] -P t , [[H]] ) ≥ 0.
Using the fact that H t -H -= t[[H]] we obtain

P t -P -, H t -H -≤ 0. (2.19)
The variational significance of inequality (2.19), called the phase interchange stability inequality, was understood in [START_REF] Grabovsky | Normality condition in elasticity[END_REF], where, according to [START_REF] Grabovsky | Normality condition in elasticity[END_REF]Lemma 4.1], the pair of rank-one related matrices H -and H t would have to satisfy the jump set equations (2.17), in contradiction with the assumption (ii) of the lemma. Thus, the assumption that (2.18) holds cannot be true, and all matrices H t , t ∈ (0, 1), must fail to be rank-one convex.

Remark 2.4. The energy density QW (H) = RW (H) is non-convex as it has a double-well shape along the multiples of I, specifically, QW (εI) = Φ * * (3ε) -6µε 2 . This is clear from the fact that its bulk modulus is negative in the interval θ ∈ (θ 1 , θ 2 ), where θ 1 and θ 2 are given by (2.13) for the bi-quadratic material model (1.4). Moreover, the value of this modulus is constant and equal to -(4/3)µ, cf. [START_REF] Budiansky | Continuum theory of dilatant transformation toughening in ceramics[END_REF], which corresponds exactly to the threshold for the loss of strong ellipticity of the equilibrium equations (saturation of the Legendre-Hadamard conditions). This is associated with the generic degeneration of the acoustic tensor along rank one envelopes as we explain in our Appendix A. The vanishing of the velocity of the longitudinal waves in our example turns the phase-transforming material into an elastic aether [START_REF] Ericksen | Implications of Hadamard's conditions for elastic stability with respect to uniqueness theorems[END_REF].

We are now ready to show that for a class of energies to which our example belongs all strong local minimizers in a hard device (Dirichlet boundary conditions) must be global. The first observation, leading to this result is that any two energies W and W that have one and the same quasiconvex envelope are equivalent as far as existence of metastable states are concerned. This is because for any metastable state u

Ω W (∇u)dx = Ω QW (∇u)dx.
Thus, any metastable configuration for W is also metastable for QW . Theorem 2.1 shows that our energy has the property

QW (H) = N (H) + C(H), (2.20) 
where N (H) is a null-Lagrangian and C(H) is convex and C 1 smooth. Proof. Let v be a Lipschitz competitor that agrees with u on ∂Ω.

Then Ω N (∇v)dx = Ω N (∇u)dx, C(∇v) ≥ C(∇u) + C F (∇u), ∇(v -u) . (2.21)
Since u is an equilibrium we have

0 = ∇ • W F (∇u) = ∇ • QW F (∇u) = ∇ • N F (∇u) + ∇ • C F (∇u) = ∇ • C F (∇u).
The equality of W F (H) = QW F (H) for any H ∈ A follows from the fact that the function W (H) -QW (H) is nonnegative, C 1 smooth and attains its minimum value of 0 at all F ∈ A. Now, the integration by parts in the second term on the right-hand side in the inequality in (2.21) implies Ω C(∇v)dx ≥ Ω C(∇u)dx. It follows that

Ω QW (∇v)dx ≥ Ω QW (∇u)dx.
Remark 2.6. An important observation was made by Sivaloganathan and Spector in [START_REF] Sivaloganathan | On the uniqueness of energy minimizers in finite elasticity[END_REF] that C(H) does not need to be convex for inequality in (2.21) to hold. In fact, as the authors show, it is only required that C * * (∇u(x)) = C(∇u(x)) for all x ∈ Ω, i.e. C(F ) agrees with its convex hull at all values of ∇u.

Global minimizers

Consider next the problem of attainment in the definition of the quasiconvex envelope

QW (F ) = inf y∈F x+W 1,∞ 0 (Ω;R m ) - Ω W (∇y)dx, (3.1) 
where Ω ⊂ R d is a star-shaped Lipschitz domain. Below we show that Lipschitz equilibrium configurations for (3.1) must be global minimizers, provided they satisfy the necessary conditions for metastability and are sufficiently regular near ∂Ω.

Recall first the well-known necessary conditions for Lipschitz strong local minima of variational functionals.

The first classical necessary condition is the Euler-Lagrange equation

∇ • P (∇y) = 0, P (F ) = W F (F ), (3.2) 
which even weak local minimizers have to satisfy. The second, is the Noether equation The second classical necessary condition is quasiconvexity ∇y ∈ A for a.e. x ∈ Ω, where A is defined in (2.3). It was shown in [START_REF] Grabovsky | Normality condition in elasticity[END_REF] that for configurations, whose only singularities are smooth phase boundaries the combination of (3.2) and quasiconvexity implies stationarity. In general, however, an example in [START_REF] Kristensen | Partial regularity of strong local minimizers in the multidimensional calculus of variations[END_REF] shows that there could be weak local minimizers for strictly quasiconvex energies that are not strong local minimizers; most probably, the configuration in [START_REF] Kristensen | Partial regularity of strong local minimizers in the multidimensional calculus of variations[END_REF] fails stationarity.

∇ • P * (∇y) = 0, P * (F ) = W (F )I d -F t P (F ). (3.3) We recall that if y(x) is of class C 2 then (3.3) is a consequence of (3.2),
It turns out that in the case affine boundary conditions in a star-shaped domain, the two necessary conditions formulated above are sufficient for y(x) to be a global minimizer, provided we assume its regularity near the boundary of the domain. (

Proof. While each ingredient of the proof presented below was in one way or another already present in the uniqueness proof of Knops and Stuart [START_REF] Knops | Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity[END_REF], to express the energy of an equilibrium configuration as a boundary integral, we use a far reaching generalization of a related relation in [START_REF] Knops | Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity[END_REF] which, by itself, can be viewed as a nontrivial nonlinear generalization of the Clapeyron theorem [START_REF] Fosdick | About Clapeyron's theorem in linear elasticity[END_REF].

Lemma 3.3. Suppose y(x) is a Lipschitz stationary equilibrium in a Lipschitz domain Ω. Then E[y] = Ω W (∇y) = 1 d ∂Ω {P n • y + P * n • x}dx, (3.5) 
where P n and P * n can be regarded as trace functionals, since they act on Lipschitz functions y(x) and x, respectively.

Proof. We now apply formula (3.5) for the energy of y(x). Using the boundary condition (iv) and the assumption (v) we have at all x ∈ ∂Ω ∇y = F + a ⊗ n, a = ∂y ∂n -F n.

We therefore compute

dE[y] = ∂Ω (W (F + a ⊗ n) -P (F + a ⊗ n)n • a)(n • x)dS
next, we use the local stability condition (iii) and appeal to [START_REF] Grabovsky | Normality condition in elasticity[END_REF]Lemma 4.2]. We quote the part of the lemma we need for the sake of completeness.

Lemma 3.4. Let V (F ) be a rank-one convex function such that V (F ) ≤ W (F ). Let

A V = {F ∈ O : W (F ) = V (F )}, where O is an open subset of M on which W (F ) is of class C 1 . Then for every F ∈ A V , u ∈ R m , and v ∈ R d V (F + u ⊗ v) ≥ W (F ) + P (F )v • u. (3.6) 
We now apply Lemma 3.4 by choosing V (F ) to be QW (F ). By assumption (iii) for each x ∈ ∂Ω the field ∇y(

x) = F + a ⊗ n is in A V . Choosing u ⊗ v = -a ⊗ n, inequality (3.6) becomes QW (F ) ≥ W (F + a ⊗ n) -P (F + a ⊗ n)n • a. (3.7) 
Finally, we use the assumption of Ω being star-shaped. If we choose the origin at the star point, then the function n(x) • x is always non-negative at all points on ∂Ω. Therefore, inequality (3.7) implies

dE[y] ≤ QW (F ) ∂Ω (n • x)dS = d|Ω|QW (F ).
Since |Ω|QW (F ) is the minimal value of E[y] we conclude that E[y] = QW (F ), and y(x) is the global minimizer.

Multiplicity of global minimizers

We remark that the construction of the periodic laminate in Section 2 provides us with a minimizing sequence in (3.1) in arbitrary domains. In this section we raise the question of attainability of the minimum in (3.1). In this regard, laminates can no longer be used as the boundary conditions (4.2) are inconsistent with ∇u taking exactly two specific values everywhere in Ω. We will therefore attempt to find energy minimizers using the sufficiency conditions from Theorem 3.2. Accordingly, we only need to find solutions u(x) of (3.2) that satisfies (4.2) while respecting the stability condition

∇ • u(x) ∈ (θ 1 , θ 2 ) for a.e. x ∈ Ω. (4.1)
In what follows, in the interest of analytical transparency, we restrict our analysis to specific categories of bounded domains Ω and assume affine boundary conditions

u(x) = H 0 x, x ∈ ∂Ω. (4.2)
If Tr H 0 ∈ [θ 1 , θ 2 ] then, at least for star-shaped domain the theorem of Knops and Stuart [START_REF] Knops | Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity[END_REF] (see also [START_REF] Taheri | Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations[END_REF]) ensures that the solution u(x) = H 0 x is the unique minimizer. Therefore we only need to consider the case Tr H 0 ∈ (θ 1 , θ 2 ).

Let φ(x) = u(x) -H 0 x. Then (3.2) can be written in terms of φ as follows

µ∆φ + ∇Φ (∇ • u) = µ∇(∇ • φ), x ∈ Ω. (4.3)
Integrating the dot product of φ(x) and ( 4.3) by parts we obtain

Ω µ(|∇ • φ| 2 -|∇φ| 2 ) -Φ (∇ • u)∇ • φ dx = 0.
Now we use the algebraic identity

|∇ • φ| 2 -|∇φ| 2 = 2J 2 (∇φ) -|∇ × φ| 2
and the fact that J 2 (∇φ) given by (2.6) is a null-Lagrangian to obtain

Ω µ|∇ × φ| 2 + Φ (∇ • u)∇ • φ dx = 0. (4.4)
Now let us show that (4.1) implies that

Ω Φ (∇ • u)∇ • φ(x)dx ≥ 0. (4.5)
Indeed, from the geometric interpretation of θ 1 and θ 2 (as the points of common tangency ) we conclude that in view of (4.1) we can write

Φ(∇ • u(x)) = Φ * * (∇ • u(x)) (4.6)
for a.e. x ∈ Ω. For a convex function Φ * * (θ) the tangent line to the graph of that function lies always below the graph which means that

Φ * * (η) ≥ Φ (θ)(η -θ) + Φ(θ)
for any η ∈ R and any θ ∈ (θ 1 , θ 2 ). Substituting η = Tr H 0 and θ = ∇ • u(x) we obtain

Φ (∇ • u(x))∇ • φ(x) ≥ Φ(∇ • u(x)) -Φ * * (Tr H 0 ) = Φ * * (∇ • u(x)) -Φ * * (Tr H 0 )
for a.e. x ∈ Ω. Now (4.5) follows from Jensen's inequality for a convex function Φ * * (θ) and the fact that 1

|Ω| Ω ∇ • u(x)dx = Tr H 0 . (4.7)
Now, inequality (4.5) together with (4.4) imply that ∇ × φ = 0, and in simply connected regions we may use the representation φ(x) = ∇h(x), where h ∈ W 2,2 0 (Ω) is some scalar potential. Substituting u = H 0 x + ∇h into (4.3), we obtain ∇Φ (∇ • u) = 0. Thus, there exists a constant P 0 , such that Φ (∇ • u) = P 0 .

(4.8)

The constraint (4.1) then implies that either ∇ • u = Tr H 0 + ∆h is constant in Ω, which means that u(x) = H 0 x + a 0 , or that P 0 = Φ (θ 1 ) = Φ (θ 2 ), in which case there exists a subset A of Ω such that

∇ • u(x) = θ 1 χ A (x) + θ 2 χ Ω\A (x), (4.9) 
where θ 1 < θ 2 are the endpoints of the interval {θ ∈ R : Φ * * (θ) < Φ(θ)} (see Fig. 2).

In terms of the potential h we obtain a free boundary problem

∆h = (θ 1 -θ 2 )(χ A (x) -ω), x ∈ Ω h ∈ W 2,2 0 (Ω), (4.10) 
where

ω = |A| |Ω| = Tr H 0 -θ 2 θ 1 -θ 2 (4.11)
is the volume fraction of the phase in which ∇ • u(x) = θ 1 . As formula (4.11) indicates, the volume fraction ω of the precipitate is uniquely determined by the hard device loading H 0 , whose shear component has no effect on the precipitate morphology. We remark that only the divergence of the displacement gradient is constrained by the requirement of optimality. This explains a virtual cornucopia of optimal microstructures, the simplest of which we are going to exhibit. A solution of (4.10) can be easily found in explicit form for some particularly simple domain geometries. For instance, it is easy to construct a radially symmetric solution when Ω is the unit ball, taking as the set A to be either the concentric ball of radius r 0 = ω 1/3 , or its complement, in which case r 0 = (1 -ω) 1/3 . Then (4.10) is solved by h(x) = h ω (|x|), given by

h ω (r) =          1 6 (θ 1 -θ 2 )(1 -ω) r 2 - 3ω(1 -ω 1/3 ) ω 1/3 (1 -ω) , 0 ≤ r ≤ ω 1/3 - 1 6 (θ 1 -θ 2 )ω r 2 + 2 r -3 , ω 1/3 ≤ r ≤ 1, (4.12) 
in the former case. In the latter case, h(x) is given by the same formula (4.12) where θ 1 and θ 2 are interchanged and ω is replaced by 1 -ω, i.e. h(x) = -h 1-ω (|x|). It is not clear from the free boundary problem (4.10) if solutions exist in less symmetric domains. In fact, Hashin's "concentric sphere" construction, [START_REF] Hashin | The elastic moduli of heterogeneous materials[END_REF], shows that (4.10) has solutions in any Lipschitz domain Ω. In this construction the set A is a countable union of variously scaled copies of the radially symmetric solution (4.12) filling Ω up to a set of Lebesgue measure zero. Let B(x i , a i ) ⊂ B(x i , R i ), i = 1, 2, . . . are the concentric balls used in Hashin's construction, where

a 3 i R 3 i = ω.
The inner balls B(x i , a i ) in the construction belong to the set A, while the spherical shells

B(x i , R i ) \ B(x i , a i ) belong to Ω \ A. The function h(x) restricted to the ball B(x i , R i ) is given by h(x) = R 2 i h ω |x -x i | R i , x ∈ B(x i , R i ),
where h ω is given by (4.12). The function h(x) defined like this on each of the concentric balls does indeed solve (4.10), since on the boundary of each ball B(x i , R i ) both h(x) and ∇h(x) are zero. The problem with the above "concentric sphere" construction is the same one as with the laminate-based optimal microstructures: they all have an infinite surface area (for the "concentric spheres" see the formal proof in [START_REF] Mergelyan | Uniform approximations to functions of a complex variable[END_REF][START_REF] Wesler | An infinite packing theorem for spheres[END_REF]), which is unacceptable in physical problems of interest. However, we also expect (4.10) to have solutions with finite surface area in all piecewise smooth domains2 . For example, if Ω is an ellipsoid, then A would be a confocal ellipsoid (or its complement) [START_REF] Bergman | Exactly solvable microscopic geometries and rigorous bounds for the complex dielectric constant of a two-component composite material[END_REF][START_REF] Milton | Bounds on complex dielectric constant of a composite material[END_REF][START_REF] Tartar | Estimation fines des coefficients homogénéisés[END_REF][START_REF] Zhikov | Estimates for the homogenized matrix and the homogenized tensor[END_REF][START_REF] Grabovsky | Bounds and extremal microstructures for two-component composites: A unified treatment based on the translation method[END_REF]. In the next section we present a more complex solution with finite surface area in a two dimensional domain with piecewise-smooth boundary.

A finite perimeter global minimizer

For a square, the 2D version of (4.10) can be solved using complex variables. The actual geometry of the phase boundary can be then found numerically.

To obtain the shape of phase boundary we used the conventional complex potentials. Indeed, in view of (4.10) the functions

h + (x, y) = h(x, y) + 1 4 (θ 1 -θ 2 )ω(x 2 + y 2 ), h -(x, y) = h(x, y) - 1 4 (θ 1 -θ 2 )(1 -ω)(x 2 + y 2 )
are harmonic in Ω\A and A respectively. We can then conclude that the functions ∂ h ± /∂x-i∂ h ± /∂y are analytic in the complex variable z = x + iy on their respective domains. Thus, the functions

H + (z) = 2 θ 1 -θ 2 ∂h ∂x -i ∂h ∂y + ωz, z ∈ Ω \ A, H -(z) = 2 θ 1 -θ 2 ∂h ∂x -i ∂h ∂y -(1 -ω)z, z ∈ A
are also analytic. The boundary conditions in (4.10) and the continuity of ∇h across ∂A, representing the kinematic compatibility of the displacement, imply that

H + (z) = ωz, z ∈ ∂Ω, H + (z) -H -(z) = z, z ∈ ∂A. (5.1) 
The knowledge of Ω allows one to determine H + . If Ω is a square centered at the origin with diagonal of length 2, then along the bottom side of the square we have 

H + (x -i/ √ 2) =
ω(x + i/ √ 2) = ω(z + i √ 2). Therefore H + (z) = ω(z + i √ 2)
, while along the right side of the square we have

H + (1/ √ 2+iy) = ω(1/ √ 2-iy) = ω( √ 2-z). Thus, H + (z) = ω( √ 2-z)
. These contradictory expressions for H + (z) can only be reconciled by a structure with topology indicated in Figure 3, where the set A, in which ∇ • u = θ 1 , is shaded.

The square symmetry of a problem also suggests that we should look for a structure with square symmetry. Thus we just need to find the curve Γ that joins the top and bottom ends of the right side of the square, for example. Knowing H + (z) in all four regions adjacent to the sides of the square gives the boundary values for H -(z) on ∂A. The square symmetry of A together with (5.1) implies that

H -(iz) = -iH -(z), z ∈ ∂A. (5.2) 
There is a holomorphic function H -in A with given boundary values if and only if for every n ≥ 0 ∂A H -(z)z n dz = 0.

(5.

3)

The integral in (5.3) can easily be written as an integral along Γ because of (5.2). If n is not a multiple of 4 then the integral in (5.3) will evaluate to zero by virtue of (5.2) alone. If n = 4k, then we require that Γ H -(z)z 4k dz = 0, k ≥ 0.

(5.4)

On Γ we have H -(z) = ω( √ 2 -z) -z. Therefore, (5.4) is equivalent to Γ zz 4k dz = (-1) k iω (4k + 1)(2k + 1)
, k ≥ 0.

(5.5)

If we integrate by parts in (5.5):

Γ zz 4k dz = Γ z d z 4k+1 4k + 1 = - Γ z 4k+1 4k + 1 dz.
and parametrize the curve Γ by

z(t) = a(t) + it, t ∈ [-1/ √ 2, 1/ √ 2]. Then z (t) = z (t) -2i, we obtain Γ zz 4k dz = (-1) k+1 i (4k + 1)(2k + 1) + 2i 4k + 1 1/ √ 2 -1/ √ 2 z(t) 4k+1 dt.
Thus, the equation (5.5) becomes 

a(t) = 1 √ 2 + m(t - 1 √ 2 ) + O((t - 1 √ 2 ) 2 ), as t → 1 √ 2 .
(5.7)

Substituting the leading term in (5.6) and computing the integral explicitly we obtain

(-1) k (4k + 2)(m 2 + 1) - (1 -m) 4k+2 m 2 2k+1 (4k + 2)(m 2 + 1) ≈ (-1) k (ω + 1) 2(4k + 2) . (5.8) 
If we choose m = 1 -ω 1 + ω (5.9)

then for large k we have equality in (5.6) up to an exponentially small error. Thus, we have determined the slope m with which the curve Γ enters the corner of the square.

In order to find the function a(t) numerically, we approximate it by even polynomials at t = 0 and enforce (5.7) at every approximation. Notice that the error term in (5.8) decays very fast with k. Hence, satisfying (5.6) only for small values of k should give a very good approximate solution. With the knowledge of this, we approximate a(t) by an even polynomial

a n (t) = n j=0 a j t 2j .
In order to satisfy (5.8) we require that

n j=0 a j 2 j = 1 √ 2 , n j=1 ja j 2 j-1 = m √ 2 .
(5.10)

Observe that equation (5.6) for k = 0 is linear. Hence,

n j=0 a j 2 j (2j + 1) = ω + 1 2 √ 2 .
(5.11)

To solve the system (5.6) for k = 0, 1, . . . , K we set n = K + 2 which leaves us with an easily solvable system of K polynomial equations in K unknowns. The configurations of the sets A and Ω \ A for ω = 0.3 (left panel) and ω = 0.8 (right panel) are shown in Fig. 3. When ω is almost zero, we effectively deal with phase nucleation associated with the "direct" (1 → 2) transformation. Phase "1" appears first in the form of two infinitely thin intersecting segments; the subsequent thickening of these segments starts first around their intersection point at the center of the square domain. As ω increases, the segments turn into a 4-cornered star, which eventually takes over the whole body. Instead, at ω almost one, we deal with the nucleation of phase "2" which appears first in the form of a thin "film" along the boundary of the body. In other words, during the "reverse" (1 → 2) transformation a new phase grows away from the boundary and eventually takes over the whole body leaving phase "1" only as a star shaped subdomain centered at the origin.

However, it is important to keep in mind that phases "1" and "2" in these scenaria can be always interchanged. The complete constitutive symmetry between the two phases (the fact that θ 1 < θ 2 is irrelevant) implies that the new phase may first appear either as an infinitely thin coating of the sides of the square (unshaded regions in the right panel in Fig. 3) or as a cross located at the center of the domain and extending its arms to its corners (shaded regions in the left panel in Fig. 3).

Conclusions

In this paper we considered a classical problem of nonlinear elastostatics for a material undergoing phase transition. Mathematically it reduces to a non-convex vectorial problem of the calculus of variations. In this context we presented a simple, yet non-trivial example of an energy density (of a material) for which a large class of local minimizers could be made explicit. In particular, we exhibited a material model, where the absence of metastability coexists with a wild nonuniqueness of global minimizers.

Metastability in elastostatics, understood as the existence of strong local but not global minimizers, is an important problem in nonlinear elasticity because of the ubiquity of hysteresis in martensitic phase transitions. While in Neumann problem the existence of such local minimizers has been linked to the incompatibility of the energy wells, here we showed that in Dirichlet problem the incompatibility of the wells is not sufficient for metastability. More specifically, we presented an example of the energy density of a hyperelastic material with non-rank-one convex, double well energy, for which we could prove the lack of strong local minimizers which are not global on any domain and for any Dirichlet boundary conditions. The analytical transparency of our arguments was due to the choice of the energy density which is geometrically linear and isotropic.

For the same material model we could fully characterize the necessary and sufficient conditions for global energy minima in hard device loading, which allowed us to discover the multiplicity of global minimizers with nonuniqueness unrelated to either objectivity or material symmetry. As an important element of this analysis we used a novel way of expressing the energy of equilibrium configurations as boundary integrals which can be viewed as a nontrivial nonlinear generalization of the classical Clapeyron theorem. First of all, we showed that the quasiconvex envelope in our model can be achieved by simple lamination which can be characterized explicitly. The problem with this construction is that in real physical situations surface energy plays the role of the selection mechanism of the otherwise energetically equivalent configurations [START_REF] Klouček | Computational modeling of the martensitic transformation with surface energy[END_REF][START_REF] Kohn | Surface energy and microstructure in coherent phase transitions[END_REF][START_REF] Dolzmann | The influence of surface energy on stress-free microstructures in shape memory alloys[END_REF], ruling out such well-known optimal microgeometrs as laminates and coated sphere constructions. Therefore, of particular interest in physical applications are global minimizers with finite surface area, and we exhibited their existence for our material model.

An interesting aspect of our highly degenerate problem with elastically indistinguishable phases is a sensitivity of the morphology of the interface between the phases to the global shape of the transforming body. To illustrate this effect, we explicitly computed a one-parameter family of non-affine energy minimizing configurations for the case of a finite domain with piecewise-smooth boundary. Our analysis of this example suggests that despite the absence of metastability and the associated constitutive hysteresis in this model, the direct and the reverse transformation may follow different morphological paths while traversing energetically equivalent configurations.

Acknowledgments. YG was supported by the National Science Foundation under Grant No. DMS-2005538. The work of LT was supported by the French grant ANR-10-IDEX-0001-02 PSL. YG is grateful to Pavel Etingof who pointed out the references for the proof of the infinity of the surface area of Hashin's concentric sphere construction in 1992.

A The degeneracy of acoustic tensors of rank-1 envelopes

Here we prove that the acoustic tensor of a rank-one convex envelope RW of the non rank-one convex energy must have a degenerate direction at all points F 0 where RW (F 0 ) < W (F 0 ). We also show that in particularly simple situations, such as the one discussed in this paper, this property may be even sufficient to compute the whole rank-one convex envelope. We recall that the acoustic tensor of the energy W (F ) at F = F 0 in the direction n is a quadratic form A(n) defined by

A(n)a • a = W F F (F 0 )(a ⊗ n), a ⊗ n .
Theorem A.1. Let F 0 be fixed and suppose RW (F 0 ) < W (F 0 ), where RW denotes the rank-1 convexification of W . Assume further that W and RW are C 2 near F 0 . Let A 0 (n) be the acoustic tensor of RW at F 0 . Then there is a direction n such that det A 0 (n) = 0.

Proof. Assume that there is no such direction n. Since RW is necessarily rank-1 convex we can conclude that for any direction n the matrix A 0 (n) is positive semidefinite. Since the function n → A 0 (n) is continuous there exists a positive number α such that for every unit vector n A 0 (n) ≥ αI.

Since RW ∈ C 2 near F 0 there exists a number δ > 0 such that for every F satisfying |F -F 0 | < δ the following inequalities hold: where φ is a smooth nonnegative function supported on the unit ball in M and such that φ(0) = 1. We can choose so small that the following inequalities hold:

1. φ L ∞ < 1 2 β, 2. √ ∇ F ∇ F φ L ∞ ≤ 1 4 α,
3. supp φ( F -F 0 4 √ ) ⊂ B(F 0 , δ), where B(F 0 , δ) is the ball of radius δ around F 0 in M.

Then T (F ) ≤ W (F ) and the acoustic tensor A (n) of T (F ) satisfies

A (n) ≥ 1 4 αI
in the sense of quadratic forms. Thus T (F ) is rank-1 convex and T (F ) ≤ W (F ) but T (F 0 ) > RW (F 0 ). Contradiction. Thus our assumption is false and at every point F 0 where RW (F 0 ) < W (F 0 ) there is a direction n such that the acoustic tensor A 0 (n) is degenerate.

Remark A.2. It follows that materials that transform by forming microstructures with sharp phase boundaries to accommodate deformations produced by the propagation of sound waves will have a direction with a zero sound speed.

We can apply Theorem A.1 to the energy (1.3). Since our material is isotropic, the degeneration of the acoustic tensor may be either through µ = 0 or through λ + 2µ = 0 with the latter also meaning that the bulk modulus κ = -(4/3)µ. The possibility that µ = 0 is excluded because the tangential shear modulus is the same at every deformation.

Suppose that we have somehow guessed that if

W (H) = f (Tr ε) + µ|dev(ε)| 2 , then RW (H) = F (Tr ε) + µ|dev(ε)| 2
for some function F , yet to be determined. In that case Theorem A.1 will let us determine the function F (θ). It is easy to compute that for any unit vector n and any vector a ∈ R 3

RW HH (H)(n ⊗ a), n ⊗ a = F (Tr ε)(a, n) 
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 1 Figure 1: Double-well nonlinearity in a geometrically linear bi-quadratic Hadamard material.
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 3 Figure 3: A coherent precipitate in the square.

  A(n) is the acoustic tensor of RW at F . 2. W (F ) -RW (F ) ≥ 1 2 (W (F 0 ) -RW (F 0 )) = β > 0.Now consider a function T (F ) = RW (F ) + φ( F -

  Theorem 2.5. Let W (H) be the energy density satisfying(2.20). Then any Lipschitz strong local minimizer of Ω W (∇u)dx with prescribed Dirichlet boundary conditions is a global minimizer.

  while there are Lipschitz configurations satisfying (3.2), but not (3.3). For instance, the Maxwell relation, which is the last equation in (2.17), is a consequence of (3.3), but not of (3.2).

	Definition 3.1. A configuration y ∈ W 1,∞ (Ω; R m ) is called a stationary (or an equilibrium)
	state if it satisfies both (3.2) and (3.3).

This is never the case for the potential (1.4).

We can say that this is a conjecture, as we have no formal proof of this statement.

The function y(θ) is affine because the property of F (θ) can be written as y (θ) = 0.

Therefore, we get a formula for the acoustic tensor A(n).

We see that det A(n) = µ 2 (F (Tr ε) + 4µ/3) for all directions n. Thus, for all H for which RW (H) < W (H) we get F (Tr H) = -4µ/3. The continuity of RW H implies that at the boundary points θ 1 and θ 2 of the binodal region we have Φ (θ 1 ) = Φ (θ 2 ). Further, the continuity of W implies that the affine function 3 y(θ) = F (θ)+2µθ 2 /3 would be the equation of the common tangent to the graph of Φ(θ). Thus, we obtain that F (θ) + 2µθ 2 /3 = Φ * * (θ), and we recover the rank-one convex envelope of W (H), which in this case is seen to coincide with its quasiconvexification (2.4).