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Solid-solid phase transitions in the 'near-liquid' limit

In this paper, dedicated to the memory of J. Ericksen, we address the fundamental difference between solid-solid and liquid-liquid phase transitions while remaining within the Ericksen's nonlinear elasticity paradigm. To this end we assume that rigidity is weak and explore the nature of solid-solid phase transitions in a 'near-liquid' limit. In the language of calculus of variations we probe limits of quasiconvexity in an 'almost liquid' solid by comparing the thresholds for cooperative (laminate based) and noncooperative (inclusion based) nucleation. We consider a 2D problem and work with a prototypical two-phase Hadamard material. Using these two types of nucleation tests we obtain for this material surprisingly tight two-sided bounds on the elastic binodal without computing the quasi-convex envelope.

Introduction

In 1975 J. Ericksen posed the problem of equilibrium for solids undergoing first order phase transitions in the framework of nonlinear elasticity theory. In this way he effectively reformulated the classical problem of physics into a problem of vectorial calculus of variations. The contemporaneous physical theory viewed non-hydrostatically stressed solids as metastable and therefore did not distinguish between solid-solid and liquid-liquid phase transitions. J. Ericksen realized that at normal conditions the assumption of complete relaxation of nonhydrostatic stresses is impractical and his pioneering research program of studying materials with non-rank-one convex energies revolutionized elasticity theory. The goal of this paper is to elucidate the difference between solid-solid and liquid-liquid phase transitions within the Ericksen's nonlinear elasticity paradigm.

From the perspective of elasticity theory, the main difference between liquids and solids is that liquids do not resist shear [START_REF] Paul M Chaikin | Principles of condensed matter physics[END_REF][START_REF] Driscoll | The role of rigidity in controlling material failure[END_REF]. This degeneracy in the elastic constitutive structure of liquids is responsible for their peculiar behavior during first order phase transitions vis a vis the behavior of solids, characterized by finite rigidity [START_REF] Golubović | Nonlinear elasticity of amorphous solids[END_REF]. While in both cases reaching phase equilibrium usually leads to the formation of phase mixtures, in the case of solids 1 the knowledge of phase fractions carries considerably more information about the geometry of the resulting microstructure than in the case of liquids. More specifically, if the phase organization in liquid phase transitions is largely controlled by surface tension, in solid phase transitions the dominance of elastic long-range interactions leaves to surface tension only a minor role of a scale selection.

First order phase transitions in liquids are well understood at both physical and mathematical level [32,[START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF]. The reason is that the scalar problem confronted in the liquid case is fully solvable [START_REF] Dacorogna | A relaxation theorem and its application to the equilibrium of gases[END_REF]. Instead, despite many dedicated efforts, largely inspired by the pioneering contributions of J. Ericksen himself [START_REF] Ericksen | Equilibrium of bars[END_REF][START_REF] Ericksen | Some phase transitions in crystals[END_REF][START_REF] Ericksen | Twinning of crystals. I. In Metastability and incompletely posed problems[END_REF][START_REF] Ericksen | On kinematic conditions of compatibility[END_REF][START_REF] Ericksen | Bifurcation and martensitic transformations in Bravais lattices[END_REF], the mathematical understanding of elastic phase transitions in solids is still far from being complete as the underlying nonconvex vectorial problems of the calculus of variations remain highly challenging.

To set the stage, we recall that in nonlinear elasticity the energy functional can be written in the form E[y] = Ω W (F )dx, where F = ∇y and y : Ω → R n is the deformation. For the energy minimizing configurations the conventional physically informed energy density W (F ) can be replaced by a relaxed one QW (F ) = inf φ∈C ∞ 0 (D;R n ) |D| -1 D W (F + ∇φ)dx which is known as quasiconvexification of W (F ) [START_REF] Dacorogna | Quasiconvexity and relaxation of nonconvex problems in the calculus of variations[END_REF]. To construct the function QW (F ) one must know the energy minimizing phase microstructures. In the case of liquids the geometry of such microstructures is irrelevant and the construction of QW (F ) reduces to convexification. In solids the task of finding the equilibrium microstructures in a generic case is hardly tractable [START_REF] Ball | Some open problems in elasticity[END_REF][START_REF] Ball | Progress and puzzles in nonlinear elasticity[END_REF].

With the aim of building a bridge between elastic phase transitions in liquids and solids, we consider a special limit of 'near-liquid' solids which are characterized by an arbitrarily weak resistance to shear. While we pose the general question of how in such a limit the tight control on the geometry of optimal microstructures by elastic interactions is progressively lost, we address a simpler problem of describing in this limit the boundary of the set of stable single-phase configurations. In the case of liquid-liquid phase transitions the incipient microstructures do not have any special features. The problem also simplifies in the case of 'strongly-solid' elastic phase transitions when the equilibrium microstructures are just simple laminates [START_REF] Grabovsky | Explicit relaxation of a two-well hadamard energy[END_REF]. The goal of the present paper is to understand the opposite, 'weaklysolid' limit, when some of the simplest laminate-based microstructures are proved to be suboptimal.

In the physics of phase transformations, the Maxwell-Gibbs critical/equilibrium conditions [START_REF] Maxwell | On the dynamic evidence of the molecular composition of bodies[END_REF][START_REF] Gibbs | On the equilibrium of heterogeneous substances[END_REF], defining the incipient transitions in liquids, are designed to account for the possibility of phase nucleation. In other words, their role is to delimit the homogeneous configurations that are unstable to perturbations that are small only in extent and the set of such configurations is known in physics as the binodal region [START_REF] Van Der Waals | The equilibrium between a solid body and a fluid phase, especially in the neighbourhood of the critical state[END_REF]. From the perspective of the mathematical theory of elastic phase transitions the analog of the binodal region would incorporate the homogeneous states that fail to be strong minima of the energy functional. Therefore, the binodal region is a subset in the configurational space of strain measures where the quasi convex envelope lays below the energy density. Locating the boundaries of the binodal region (known simply as a binodal) in the 'near-liquid' limit constitutes the main task of the present paper. While remaining nontrivial, this task appears, a priori as more tractable than the task of constructing the actual quasiconvex envelope.

In our prior work we have developed a general method for identifying the subsets of the binodal supporting the laminate type energy minimizing configurations [START_REF] Grabovsky | Roughening instability of broken extremals[END_REF][START_REF] Grabovsky | Legendre-Hadamard conditions for two-phase configurations[END_REF][START_REF] Grabovsky | When rank-one convexity meets polyconvexity: An algebraic approach to elastic binodal[END_REF]. Behind this method is the study of stability of the jump set-a codimension one variety in the phase space that has a dual nature. On the one hand it determines the set of pairs F ± that could be the traces of the deformation gradient at the phase boundary in a stable configuration.

On the other, the jump set consists of points that are at most marginally stable in the sense that their every neighborhood contains points where quasiconvexity fails. Therefore, if one can prove quasiconvexity at a point on the jump set, then this point must lie on the binodal.

In addition, we have also developed tools to constrain the location of the binodal by means of addressing nucleation phenomenon directly [START_REF] Grabovsky | Marginal material stability[END_REF]. As we show in this paper, combined together, these two types of approaches can produce in the 'near-liquid' limit a rather good practical understanding of the whole structure of the binodal, and even allow one to obtain the exact formulas for the quasiconvex envelope.

To highlight ideas we focus here only on the simplest family of non-quasiconvex energy densities known as Hadamard materials [START_REF] Hadamard | Leçons sur la propagation des ondes et les équations de l'hydrodynamique[END_REF][START_REF] John | Plane elastic waves of finite amplitude. hadamard materials and harmonic materials[END_REF]:

W (F ) = µ 2 |F | 2 + h(det F
). Specifically, we'll be interested in the case of two space dimensions and assume that the function h(d) describes a generic double-well potential modeling isotropic-to-isotropic phase transitions (see Fig. 1). The main advantage of this class of elastic materials is that one can identify a single parameter µ, scaling the effective rigidity; by varying this parameter we can study the entire range of intermediate rigidity responses from 'strong' (µ 1) to 'weak' (µ 1). A notable feature of the Hadamard materials is that the phase with the larger value of det F (smaller density) is characterized by a larger tangential (effective) rigidity than the phase with the smaller value of det F (larger density). As a result, the latter is more 'liquid-like' than the former and therefore the incipient phase transformation induced by compression can be expected to be different from the incipient phase transformation induced by stretching. As we show in what follows, this asymmetry leads to a coexistence of 'strongly-solid' and 'weakly-solid' responses inside a single material model as, even in the absence of hysteresis, the direct and reverse solid-solid phase transitions proceed according to morphologically different transformation mechanisms.

While for an Hadamard material the double well energy structure is described by the simplest scalar potential h(d), the results of relaxation of W (F ) are nontrivial due to the inherent incompatibility of the energy wells [START_REF] Ball | Incompatible sets of gradients and metastability[END_REF]. We recall that W (F ) is quasiconvex if and only if h(d) is convex [START_REF] Ball | W 1,p -quasiconvexity and variational problems for multiple integrals[END_REF]. The relaxation of W (F ) with non-convex h(d) is known for the 'infinitely-weak' solids (effectively fluids) with µ = 0, where QW (F ) = h * * (det F ) [START_REF] Dacorogna | A relaxation theorem and its application to the equilibrium of gases[END_REF]. Previously we explicitly constructed the quasiconvex envelope for W (F ) in the 'stronglysolid' limit assuming that the shear modulus µ is sufficiently large and the corresponding quadratic term dominates the double-well term. In this case the formula for QW (F ) couples |F | and det F and the relaxed energy is sandwiched between W (F ) above and [START_REF] Grabovsky | Explicit relaxation of a two-well hadamard energy[END_REF].

U (F ) = µ 2 |F | 2 + h * * (det F )
In this paper we show that the constraint on µ in [START_REF] Grabovsky | Explicit relaxation of a two-well hadamard energy[END_REF] was not a technical limitation, and that, as µ decreases, our formula for QW (F ) ceases to be valid in the subsets of the binodal region close to the 'liquid-like' phase with smaller rigidity. In the limit of small µ, we show that the relaxation of W (F ) goes through a chain of structural transitions with simple lamination persisting only in the vicinity of the pure 'solid-like' phase, being replaced by very different phase arrangements close to the 'liquid-like' phase.

Our main technical approach is to generate bounds on the binodal surface.

The simplest bounds is obtained by probing the binodal by means of nucleating first rank laminates. Their optimality is proved by establishing their polyconvexity (and therefore quasi-convexity). In this setting this is an algebraic problem, because the supporting null-Lagrangians can be constructed explicitly, [START_REF] Grabovsky | When rank-one convexity meets polyconvexity: An algebraic approach to elastic binodal[END_REF]. In contrast with the strongly solid regime of large µ analyzed in [START_REF] Grabovsky | Explicit relaxation of a two-well hadamard energy[END_REF], in the near liquid regime of small µ, not all of the first rank laminate bounds are optimal.

These bounds are then improved by nucleating second rank laminates. However, as shown in [START_REF] Grabovsky | Ubiquity of infinite rank laminates[END_REF], the second rank laminate bounds are not optimal either, and are further improved for hydrostatic strains by means of nucleating a bounded circular inclusion in the infinite plane. We conjecture that this bound is optimal. If our conjecture is true, then the values of the deformation gradient in the exterior of the circular nucleus would provide a bound on the binodal from the outside of the binodal region. Another consequence of the assumed optimality of the inclusion-based nucleation bound is the explicit formula for the quasiconvex envelope QW (F ) at all hydrostatic strains.

By juxtaposing the hypothetical bound provided by the study of bounded inclusions and unbounded second rank laminates we derive tight two-sided bounds on the binodal. As we demonstrate in [START_REF] Yury Grabovsky | Rank one convex envelope for hadamard material: numerical and analytical study[END_REF], both bounds remain tight in the full range of parameters for which the bounds are meaningful. Moreover, the hypothetical bound being in complete agreement with the numerically computed rank-one convex binodal.

The paper is organized as follows. In Section 2 we recall some general results from the calculus of variations for nonconvex vectorial problems, used in the rest of the paper. In Section 3 we specialize these results for the Hadamard material and present the numerical illustrations of the obtained bounds. Analytical results for the limiting case µ → 0 are presented in Section 4 where we also compare them with numerical computations. In Section 5 we demonstrate the far reaching consequences of the assumed optimality of the nucleation bound. The paper ends with a general discussion and conclusions in Section 6.

Preliminaries

Binodal region. Hyperelastic materials in a d-dimensional space have the following form of the energy stored in the deformed elastic body

E[y] = Ω W (∇y(x))dx,
where Ω ⊂ R d is the reference configuration, and y : Ω → R d is the deformation. In order to understand the stable (i.e. experimentally observable) configurations of the body it is often necessary to replace the energy density W (F ) with a relaxed one QW (F ), called quasiconvexification. Even though, there is a formula for QW (F ) [START_REF] Dacorogna | Quasiconvexity and relaxation of nonconvex problems in the calculus of variations[END_REF]:

QW (F ) = inf φ∈C ∞ 0 (D;R n ) 1 |D| D W (F + ∇φ)dx, (2.1) 
there is no systematic approaches to compute it. A simpler, but just as useful an object, is the elastic binodal.

Definition 2.1. An elastic binodal is the boundary of the binodal region

B = {F : W (F ) < QW (F )}. (2.2) 
Definition 2.2. We say that the matrix

F is stable, if W (F ) = QW (F ).
Thus, the binodal is the boundary separating the binodal region from the set of stable points.

Jump set. While we acknowledge that there could be rank-one convex, non quasiconvex functions, most cases of practical interest in elastic phase transitions feature multiwell energies that are not rank-one convex and possess a non-trivial jump set, stable points of which form a part of the binodal (or the entire binodal, if one is lucky). The jump set is the set of solutions F = F -of the equations

         F + = F -+ a ⊗ n, [[P ]]n = 0, [[P T ]]a = 0, [[W ]] -{ {P } }, [[F ]] = 0, (2.3)
where a = 0 and |n| = 1 are thought to be excluded from the above system resulting in a single scalar equation for F . We refer the reader to [START_REF] Grabovsky | Ubiquity of infinite rank laminates[END_REF] for a discussion of the geometry of the solution set of (2.3). Here we used the standard notations

P ± = W F (F ± ), [[F ]] = F + -F -, { {P } } = P + + P - 2 , A, B = Tr (AB T ),
where W F indicates the matrix of partial derivatives

P ij = ∂W/∂F ij .
The points on the jump set belong either to the binodal or to the binodal region B, [START_REF] Grabovsky | Roughening instability of broken extremals[END_REF]. Hence, the jump set always represents a bound on the binodal region from within. One of the easy ways to detect the unstable parts of the jump set is to use the Weierstrass condition, which is necessary for stability.

W • (F , b ⊗ m) ≥ 0, ∀b ∈ R n , |m| = 1, (2.4) 
where

W • (F , H) = W (F + H) -W (F ) -W F (F ), H .
We have proved in [START_REF] Grabovsky | Normality condition in elasticity[END_REF] that the pairs of points F ± on the jump set are either both stable or both unstable. Hence, a point F + satisfying (2.4) can be still classified as unstable, if F - fails (2.4). While there are other conditions of stability that don't follow from (2.4) (see [START_REF] Grabovsky | Legendre-Hadamard conditions for two-phase configurations[END_REF]) we will only make use of an easily verifiable corollary of(2.4) that restricts the rank-one test fields b ⊗ m to an infinitesimally small neighborhood of

[[F ]] = a ⊗ n.
Currently, the only general tool for establishing stability is polyconvexity, which is sufficient but rather far from necessary. In two dimensions it reduces to finding a constant m ∈ R, such that

W • (F , H) -m det H ≥ 0, ∀H ∈ R 2×2 . (2.5)
If (2.5) holds, then F is stable in the sense of Definition 2.2. For points F ± on the jump set, however, the only value of m that could possibly work is, as shown in [START_REF] Grabovsky | When rank-one convexity meets polyconvexity: An algebraic approach to elastic binodal[END_REF],

m = [[P ]], cof[[F ]] |[[F ]]| 2 . ( 2.6) 
Secondary jump set. An improved bound on the binodal is provided by the secondary jump set corresponding to the nucleation of a rank-two laminate in the infinite homogeneously strained space. Thus, the secondary jump set is defined by the system of equations

           F = F + b ⊗ m, P m = P m, P T b = P T b, W (F ) -W = P m • b, (2.7) 
where the pair F ± , to be determined, is assumed to satisfy the primary jump set equations (2.3), while

W = λW (F + ) + (1 -λ)W (F -), P = λP + + (1 -λ)P -, (2.8) 
for some λ ∈ [0, 1], which also plays the role of a variable to be solved for in (2.7), along with F , b = 0, and |m| = 1. Once again, the secondary jump set represents a bound on the binodal region from within. Nucleation criterion. Let us now recall another method of probing the binodal: nucleation of inclusions either of a prescribed shape [START_REF] Barnett | The strain energy of a coherent ellipsoidal precipitate[END_REF][START_REF] Lee | The elastic strain energy of coherent ellipsoidal precipitates in anisotropic crystalline solids[END_REF][START_REF] Kublanov | Nuclei of a solid phase in a deformable material[END_REF] or of an optimal inclusion, whose shape must be determined [START_REF] Kardonski | On the shape of coherent precipitates[END_REF][START_REF] Pineau | Influence of uniaxial stress on the morphology of coherent precipitates during coarsening -elastic energy considerations[END_REF][START_REF] Khachaturyan | Theory of structural transformation in solids[END_REF]. The theory justifying why these tests probe the binodal was developed in [START_REF] Grabovsky | Marginal material stability[END_REF]. In the case of "nucleation of a bounded inclusion", the criterion for F 0 to be "marginally stable", i.e. to lie in the closure of B, is the existence of a field

φ ∈ S = {φ ∈ L 2 loc (R d ) : ∇φ ∈ L 2 (R d ; R d )}, such that ∇ • P (F 0 + ∇φ) = 0, ∇ • P * (F 0 + ∇φ) = 0 (2.9)
in the sense of distribution in R d , where

P (F ) = W F (F ), P * (F ) = W (F )I d -F T P (F ).
We also need to verify the non-degeneracy of the solution φ:

R d W • F (F 0 , ∇φ)dx = 0. (2.10)
In the case of nucleation of an actual inclusion ω with smooth boundary the verification of (2.9) consists in verifying that the field φ ∈ S solves ∇ • P (F 0 + ∇φ) = 0 both inside and outside of ω, together with the condition that the traces F ± (x) = F 0 + ∇φ ± (x) on the two sides of ∂ω form a corresponding pair on the jump set for each x ∈ ∂ω. If, in addition, we can somehow prove that F + ∇φ(x) is stable in the sense of Definition 2.2, for each x ∈ R d , then F 0 must lie on the binodal. Conversely, if it is known that that at some x 0 ∈ R d the matrix F 0 + ∇φ(x 0 ) is unstable, then F 0 must lie in the interior of B.

Hadamard material

In this paper we focus our attention on a particularly simple, yet nontrivial energy

W (F ) = µ 2 |F | 2 + h(d), F ∈ {F ∈ GL(n) : det F > 0}, d = det F , (3.1) 
where h(d) is a C2 (0, +∞) function with a double-well shape. In our explicit computations and illustrations we use the quartic double-well energy

1 h(d) = (d -d 1 ) 2 (d -d 2 ) 2 , (3.2) 
which affords certain simplification of general formulas. Jump set. We recall (see [START_REF] Grabovsky | Explicit relaxation of a two-well hadamard energy[END_REF]) that in two dimensions the jump set of (3.1) consists of matrices F ± , whose two singular values labelled ε 0 and ε ± satisfy the equations

ε 0 [[h ]] + µ[[ε]] = 0, [[h]] -{ {h } }[[d]] = 0, d ± = det F ± = ε 0 ε ± . (3.3)
The notation reflects that for each pair F ± on the jump set there is a frame in which both matrices are diagonal and share the same singular value ε 0 with the same eigenvector. 

ε 0 (d + ) = -µ[[d]] [[h ]] , ε + (d + ) = d + ε 0 (d + )
. In the case of potential (3.2) we obtain

[[h]] -{ {h } }[[d]] = [[d]] 3 (d 1 + d 2 -d + -d -). Hence, d -= d 1 + d 2 -d + = D(d + ). It follows that { {h } } = 0, ε + + ε -= d 1 + d 2 ε 0 . (3.4)
In particular, we can eliminate h (d ± ) from our formulas by means of (3.3) and (3.4):

h (d ± ) = { {h } } ± 1 2 [[h ]] = ∓ µ 2 [[ε]] ε 0 . (3.5) 
For quartic energy (3.2) we can also write the equation of the jump set explicitly as

ε ± = ε ± (ε 0 ). Indeed, ε ± = d ± /ε 0 , while d ± solves (d ± -d 1 )(d ± -d 2 ) = - µ 4ε 2 0 (3.6)
The two roots of (3.6) are the values of d ± , where, by convention, we denote by d + the larger root. Equation (3.6) has exactly two real roots whenever

ε 0 > √ µ/(d 2 -d 1 ). Hence, explicitly, ε ± = 1 2ε 0 d 1 + d 2 ± (d 2 -d 1 ) 2 - µ ε 2 0 . (3.7) 
In our calculations we will use equations (3.5) to eliminate all occurrences of h (d ± ) and equations (3.7) to eliminate ε ± , since the pair ε ± is uniquely determined by a single parameter ε 0 . Numerical illustrations. When µ is large we have shown in [START_REF] Grabovsky | Explicit relaxation of a two-well hadamard energy[END_REF] that the jump set [START_REF] Grabovsky | Roughening instability of broken extremals[END_REF] comprises the entire binodal, each point of which corresponds to the nucleation of a simple laminate, leading to an explicit formula for the relaxation QW (F ). As the shear modulus µ decreases, parts of the jump set will become unstable. The jump set will then undergo a topological change at µ = µ top and in the limit µ → 0, which is the main focus of this paper, a specific portion of it will remain stable, as we will show using methods from [START_REF] Grabovsky | When rank-one convexity meets polyconvexity: An algebraic approach to elastic binodal[END_REF]. Fig. 2 shows the jump sets and indicates their unstable parts for four different values of the shear modulus µ. The values of µ in Fig. 2 are chosen to be µ = 0, µ top /3, 0.9µ top , and 1.5µ top . Dotted lines indicate "convexification hyperbolas", i.e., hyperbolas

ε 2 = d 1 /ε 1 and ε 2 = d 2 /ε 1 , where the interval [d 1 , d 2 ]
is the interval on which h(d) differs from its convex hull. All points outside of the region bounded by the convexification hyperbolas are well-known to be stable (see e.g. [START_REF] Dacorogna | Direct methods in the calculus of variations[END_REF]), since they are obviously polyconvex. W-points. In [START_REF] Grabovsky | Legendre-Hadamard conditions for two-phase configurations[END_REF] we have shown that the easily computable corollary of the Weierstrass condition (2.4) for the energy (3.1) has the form

ε 0 ≥ ε ± . (3.8)
In [START_REF] Grabovsky | Explicit relaxation of a two-well hadamard energy[END_REF] we have shown that this condition is always satisfied for large values of µ as is evident from the lower right panel in Fig. 2, while it has an obvious geometric interpretation in the two panels in which the part of the jump set failing (3.8) is shown as a dashed line. The points marked by red dots in Fig. 2 that delimit the part of the jump set satisfying (3.8) will be called the Weierstrass points or W-points, for short. We have shown in [START_REF] Grabovsky | Ubiquity of infinite rank laminates[END_REF] that the solid portion of the jump set delimited by W-points is polyconvex for all sufficiently small µ. As we show below, one can provide an almost explicit characterization of all values of µ for which W-points are also points of polyconvexity assuming the quartic nonlinearity (3.2). As discussed above, in order to prove the polyconvexity of W-points we need to establish (2.5), where m is given by (2.6). This problem has been already analyzed in [START_REF] Grabovsky | Explicit relaxation of a two-well hadamard energy[END_REF], where we showed that (2.5) can be written as Φ(x, y) ≥ Φ(ε ± , ε 0 ) for all x, y, where

Φ(x, y) = µ 2 (x 2 + y 2 ) -αx -βy -h(xy) -mxy, α = 2 √ µR{ {d} }, β = µ 2 + R 4 d + d - R √ µ , m = [[h d]] [[d]] , R = - [[h ]] [[d]] .
According to the equations of the jump set (3.3) R = √ µ/ε 0 . Hence, we also have

α = µ(ε + + ε -), β = µ ε 0 + ε + ε - ε 0 , m = { {h } } -µ { {ε} } ε 0 .
When we minimized Φ(x, y) over all (x, y), such that xy = d we have concluded that the minimizer is (d/y, y), where y = y(d) is the largest root of

y 4 -β 0 y 3 + dα 0 y -d 2 = 0, α 0 = ε + + ε -, β 0 = ε 0 + ε + ε - ε 0 , (3.9) 
while the minimum of Φ(x, y) is achieved at a finite point corresponding to a critical point of φ(d) = Φ(d/y(d), y(d)).

In the special case of W-points we have ε + = ε 0 and therefore α 0 = β 0 = ε -+ ε 0 . In this case equation (3.9) factors (y

2 -d)(y 2 -α 0 y + d) = 0. The largest root is y = 1 2 (α 0 + α 2 0 -4d), provided 0 < d ≤ α 2 0 /4. If d > α 2 0 /4
, then the quartic has only two real roots y = ± √ d. Thus,

y(d) = (α 0 + α 2 0 -4d)/2, d ≤ α 2 0 /4, √ d, d > α 2 0 /4.
In [START_REF] Grabovsky | Explicit relaxation of a two-well hadamard energy[END_REF] we have also computed

φ (d) = µ y(d) 2 -β 0 y(d) d + h (d) -m.
In the case of W-points for which β 0 = α 0 we see that

y(d) 2 -β 0 y(d) d = -1 when d ≤ α 2 0 /4.
Hence, any critical points of φ(d) in this regime would have to satisfy

h (d) -µ -m = 0.
One of the solutions is d -, which always satisfies d -≤ α 2 0 /4. If this equation has 3 solutions, the the middle one corresponds to a local maximum of φ(d), while the third d * > d + always fails to satisfy

d * ≤ α 2 0 /4 because d + = ε 2 0 > (ε -+ ε 0 ) 2 /4.
We conclude that the only critical points of φ(d) that need to be checked are the ones that satisfy d > α 2 0 /4, while

φ (d) = µ 1 - α 0 √ d + h (d) -m.
Observe that φ (d) > 0 when d ≥ max(α 2 0 , d + ), where d + is the largest root of h (d) -m. Hence we only need to check for critical points in a specific bounded interval. In fact, if h(d) is given by (3.2), then it is easy to see that φ (d) > 0 for all d ≥ α 2 0 . Hence, we only need to check for critical points of φ(d) on (α 2 0 /4, α 2 0 ). In addition, since { {h } } = 0 for h(d), given by (3.2) we have m = -µ{ {ε} }/ε 0 = -µα 0 /(2ε 0 ). Thus, we obtain the following characterization of polyconvexity of W-points.

Theorem 3.1. Let h(d) be given by (3.2), then W-points are polyconvex whenever

min d∈ α 2 0 4 ,α 2 0 h(d) + µ d + α 0 d 2ε 0 -2α 0 √ d = h(ε 2 0 ) -µε 0 ε 0 2 + 3ε - 2 . (3.10)
where α 0 = ε 0 + ε -, with (ε 0 , ε -), (ε -, ε 0 ), and (ε 0 , ε 0 ) being the coordinates of W-points.

The right-hand side in (3.10) is just φ(ε 2 0 ), where φ(d) is the function being minimized in (3.10). For quartic energy (3.2) we compute the coordinates of W-points by solving

-4d(d -d 1 )(d -d 2 ) = µ.
Then ε 2 0 is the largest root, and

ε -= d 1 + d 2 -ε 2 0 ε 0 .
We can compute the largest value of µ for which (3.10) holds by substituting

µ = -4ε 2 0 (ε 2 0 - d 1 )(ε 2 0 -d 2 ) into (3.10) and regarding ε 0 ≤ √ d 2 as a parameter. When ε 0 = √ d 2 , φ(d)-φ(d 2 ) is a positive polynomial in x = √ d.
We then seek numerically the largest value of ε 0 < √ d 2 for which the polynomial P (x) = (φ(x 2 ) -φ(ε 2 0 ))/(x -ε 0 ) 2 develops a double root. Algebraically this means seeking the largest root ε 0 < √ d 2 of the discriminant (computed in Maple). This solution gives the largest value of µ below which the W-points are polyconvex. For example, when d 1 = 1, d 2 = 3, we have polyconvexity of W-points for all µ < 6.35888. In this paper we will be interested exclusively in the case when W-points are quasiconvex. In Fig. 2 the W-points are polyconvex in the top right panel and unstable in the bottom left panel.

Secondary jump set. The algebraic equations (2.7) describing the secondary jump set can generally be solved only numerically. By contrast, when µ is small, the asymptotics of the solutions can be computed explicitly, providing an excellent approximation to the computed secondary jump set for µ < 3, with d 1 = 1, d 2 = 3. While the entire secondary jump set is unstable [START_REF] Grabovsky | Ubiquity of infinite rank laminates[END_REF], we will see that it provides an excellent (inside) bound for the binodal.

Suppose that F 0 lies on the secondary jump set. Then there exists ε ± , y and λ ∈ [0, 1], such that the pair F 0 , F , where

F = ε 0 0 ε 0 , ε = λε + + (1 -λ)ε -,
satisfies the jump set equations (2.7). We compute

P = λP + + (1 -λ)P -= µε + h ε 0 0 0 µε 0 + εh .
We have

P 0 = µF 0 + h (d 0 )cofF 0 = µ ε 0 0 ε 0 + µb ⊗ m + h (d 0 ) ε 0 0 0 ε + b ⊥ ⊗ m ⊥ .
Thus, the second and the third equations in the jump set system (2.7) become

                     (h (d 0 ) -h )ε 0 0 0 h (d 0 )ε -εh   m = -µb,   (h (d 0 ) -h )ε 0 0 0 h (d 0 )ε -εh   b = -µ|b| 2 m.
These equations result in 3 possibilities

(a) (h (d 0 ) -h )ε 0 = h (d 0 )ε -εh = -γ, µb = γm, m ∈ S 1 (b) (h (d 0 ) -h )ε 0 = -(h (d 0 )ε -εh ) = -γ, µb = γI -m, I -= 1 0 0 -1 , m ∈ S 1 (c) (h (d 0 ) -h )ε 0 = ±(h (d 0 )ε -εh )
Possibility (c) implies that F 0 must be diagonal, and will be our main focus. In [START_REF] Grabovsky | Ubiquity of infinite rank laminates[END_REF] we show that possibilities (a) and (b) have no solutions. Let us therefore assume that F ± is diagonal and has the form

F ± = ε ± 0 0 ε 0 .
This implies that F -F 0 = βe 2 ⊗ e 2 . In particular

F 0 = x 0 0 0 y 0 , x 0 = ε = λε + + (1 -λ)ε -, λ ∈ (0, 1).
Let us compute the diagonal matrices P ± using equations (3.4) and (3.5).

P 11 ± = µε ± + h (d ± )ε 0 = µ{ {ε} } = µ(d 1 + d 2 ) 2ε 0 , P 22 ± = µε 0 + h (d ± )ε ± = µ ε 0 ∓ [[ε]]ε ± 2ε 0 .
Let us compute the diagonal matrix P 0 .

P 11 0 = µx 0 + h (d 0 )y 0 = µε + h (d 0 ) d 0 ε , P 22 0 = µy 0 + h (d 0 )x 0 = µd 0 ε + h (d 0 )ε.
Traction continuity equation (P -P 0 )e 2 = 0 then becomes

ε 0 + [[ε]] 2ε 0 (ε --2λ{ {ε} }) - d 0 ε - h (d 0 ) µ ε = 0.
It will be convenient to use ε as a variable in place of λ. Replacing λ above using ε

= ε -+λ[[ε]] we obtain d 0 ε = ε 0 + 1 ε 0 (ε + ε --{ {ε} }ε) - h (d 0 ) µ ε. (3.11)
Let us now compute all the terms in the last equation in (2.7).

W (F 0 ) = µ 2 (ε 2 + y 2 0 ) + h(d 0 ) = µ 2 ε 2 + d 2 0 ε 2 + h(d 0 ).
Next we compute

W = W -+ λ[[W ]] = W -+ λµ[[ε]]{ {ε} } = W -+ µ(ε -ε -){ {ε} }, where [[h]] = -{ {h } }[[d]] = 0 has been used. We compute h(d -) = [(d --d 1 )(d --d 1 )] 2 = µ 2 16ε 4 0 ,
according to (3.6). Therefore,

W -= µ 2 (ε 2 -+ ε 2 0 ) + µ 2 16ε 4 0 .
We then compute F 0 -F = (y 0 -ε 0 )e 2 ⊗ e 2 . Therefore

P , F 0 -F = µ d 0 ε -ε 0 ε 0 + 1 ε 0 (ε + ε --{ {ε} }ε) .
Finally, the Maxwell equation W (F 0 ) -W = P , F 0 -F can be written as

1 2 ε 2 + d 2 0 ε 2 + h(d 0 ) µ -(ε-ε -){ {ε} }- 1 2 (ε 2 -+ε 2 0 )- µ 16ε 4 0 = d 0 ε -ε 0 ε 0 + 1 ε 0 (ε + ε --{ {ε} }ε) .
(3.12) Next we replace in the above form of the Maxwell relation the expression d 0 /ε by its expression from (3.11) As a result of such a substitution the Maxwell relation will also become a quadratic equation in ε. This permits us to eliminate this variable as a rational expression in terms of ε 0 and d 0 , while the Maxwell relation will also reduce to a rational relation between d 0 and ε 0 . This calculation can only be done with the aid of a computer algebra system, since the remaining equation F (ε 0 , d 0 ) = 0 is very long and complicated. Now for a given choice of numerical values of µ, d 1 and d 2 we can solve F (ε 0 , d 0 ) = 0 numerically and then extract those solutions which satisfy λ ∈ [0, 1]. The result for d 1 = 1, d 2 = 2 and µ = µ top /3 is shown as a green curve in Fig. 3. As we can see, it identifies all points between the green curve and the dashed lines of the primary jump set as a part of the binodal region-an improvement over the primary jump set bound.

While, it is not apparent from Fig. 3, the secondary jump set consists of two curves related by symmetry with respect to the bisector of the first quadrant. Each of the curves are cut-off at their intersection with each other at the bisector. Each curve starts at a Wpoint and ends at a point (not shown) on the dashed part of the jump set. The endpoints of the secondary jump set correspond to the extreme values 0 and 1 of the volume fraction λ in (2.8). The corresponding points on the secondary jump set must lie on the primary jump set. There are two possibilities. Either F = F or F = F at λ = 0 or 1. In the former case the limiting position F + of F is rank-one related to two different points on the jump set: F -(layer normal e 1 ) and F (layer normal e 2 ). W-point F + is the only one with this property. All other points F + on the jump set have a unique counterpart F -. In the latter case a detailed asymptotic analysis shows that that the common limit point of F and F must achieve equality in the "Legendre-Hadamard for phase boundaries" inequality from [START_REF] Grabovsky | Legendre-Hadamard conditions for two-phase configurations[END_REF]. This point lies on the dashed part of the jump set and is used in numerical calculations. The details of the analysis will be spelled out in a forthcoming paper [START_REF] Yury Grabovsky | Rank one convex envelope for hadamard material: numerical and analytical study[END_REF]. Circular nucleus. In [START_REF] Grabovsky | Ubiquity of infinite rank laminates[END_REF] it is shown that the secondary jump set (green curve in Fig. 3) is unstable. That means that the corresponding bound on the binodal is not optimal. We can improve the bound using another method of probing the binodal: nucleation of equilibrium energy-neutral inclusions. The theory justifying why such nucleation tests probe the binodal was developed in [START_REF] Grabovsky | Marginal material stability[END_REF]. In the case of the isotropic, objective energy (3.1) and a hydrostatic loading it is natural that the shape of an optimal precipitate should be circular. The deformation gradient inside the circular precipitate must be a constant hydrostatic field F 0 = ε W 0 I 2 , since that field is rank-one connected to an infinite family of fields

F R = R ε W - 0 0 ε W 0 R T , R ∈ SO(2),
where (ε W -, ε W 0 ) is a coordinate of one of the W-points. The deformation gradient outside of the circular inclusion must solve an Euler-Lagrange equation for the energy (3.1) µ∆y + (cof∇y)∇h (det ∇y) = 0,

x ∈ R 2 \ B(0, 1), (3.13) and agree with F R at the point Re 1 on the boundary of the circular inclusion:

∇y(x) = ε W -n ⊗ n + ε W 0 τ ⊗ τ ,
x ∈ ∂B(0, 1). (3.14) In this case both equations (2.9) will be satisfied for the possibly marginally stable matrix

F ∞ = lim |x|→∞ ∇y(x) = ε ∞ I 2 .
We also know that that the values of ∇y(x) inside the circular inclusion and its trace on the outside boundary of the inclusion are stable. Our results from [START_REF] Grabovsky | Marginal material stability[END_REF] then say that either F ∞ lies on the binodal and all values ∇y(x) in the exterior of the inclusion are stable, or F ∞ lies in the interior of the binodal region B.

In our special radially symmetric case we look for a radially symmetric solution of (3.13)

y = η(r) x, |x| > 1.
The the unknown function η(r) must solve

η r d dr h ηη r + µ η + η r = 0, r > 1, η (1) = ε W -, η(1) = ε W 0 .
(3.15)

The nonlinear second order ODE (3.15) cannot be integrated explicitly, but can be solved numerically. In order to do so, we need to convert the infinite range r > 1 into a finite one by means of the change of the independent variable x = 1/r 2 . It will also be convenient to change the dependent variable v = η/r, so that v(x) would have a finite limit, when x → 0. Then v(x)

solves v = - (v ) 2 vh (v 2 -2xvv ) µ + v 2 h (v 2 -2xvv ) , x ∈ [0, 1], v(1) = ε W 0 , v (1) = ε W 0 -ε W - 2 . (3.16)
The value ε ∞ = v(0)I 2 found numerically is shown as a blue dot in Fig. 4. It provides an improved bound on the binodal compared to the secondary jump set (green line in Fig. 4) by showing that hydrostatic strains between the blue dot and the green line are unstable. This conclusion holds, provided the non-degeneracy condition (2.10) is verified. A calculation shows that

R d W • F (F 0 , ∇φ)dx = -I 2 R 2 h (ε 2 ∞ )ε 2 ∞ η (r) + η(r) r -2ε ∞ dx.
Thus,

R d W • F (F 0 , ∇φ)dx = -2πh (ε 2 ∞ )ε 2 ∞ I 2 lim r→∞ (rη(r) -ε ∞ r 2 ).
To see that the limit above exists and is non-zero, at least for small µ > 0, we simply solve (3.15) for µ = 0, for which

ε W 0 = √ d 2 , ε W -= d 1 √ d 2 . The solution is η(r) = √ d 1 r 2 + d 2 -d 1 ,
and we easily see that

lim r→∞ (rη(r) -ε ∞ r 2 ) = d 2 -d 1 2 √ d 1 .
Hence, the non-degeneracy condition (2.10) will hold, at least for sufficiently small µ > 0.

The non-degeneracy will also hold for all µ below the topological transition, because if we write η(r) = η(r) -ε ∞ r, then (assuming that η (r) → 0, as r → ∞) η(r) will solve, when r is large, the differential equation

ε ∞ h (ε 2 ∞ ) ε ∞ η + η r + η η r + µ η + η r = 0. This integrates to ε ∞ h (ε 2 ∞ )(2ε ∞ r η + η 2 ) + 2µr η = 2c
. Since η, satisfying η (r) → 0, as r → ∞, cannot be zero (it is the leading term of η(r)-ε ∞ r), we conclude that the constant of integration c cannot be zero either. Hence, we obtain that

lim r→∞ (rη(r) -ε ∞ r 2 ) = lim r→∞ r η(r) = c µ + ε 2 ∞ h (ε 2 ∞ ) = 0.
Polyconvexity limits along εI 2 . We now turn to the problem of proving polyconvexity at points F = εI 2 . To succeed we need to find a constant m ∈ R, such that (2.5) holds. For our energy we compute

W • (F , H) = µ 2 |H| 2 + h(ε 2 + d + εθ) -h(ε 2 ) -εh (ε 2 )θ, θ = Tr H, d = det H.
We also have

|H| 2 = 1 2 |H -H T | 2 -2d + θ 2 .
Hence we need to find m ∈ R, such that

µθ 2 2 + h(ε 2 + d + εθ) -h(ε 2 ) -εh (ε 2 )θ ≥ (m + µ)d, ∀d ≤ θ 2 4 . (3.17) 
In particular the inequality must hold for d = θ 2 /4. In that case we must have

m ≤ µ + 4 min θ∈R h(ε 2 + θ 2 /4 + εθ) -h(ε 2 ) -εh (ε 2 )θ θ 2 = m * . (3.18) 
The infimum of the smooth function

F (d, θ) = µθ 2 2 + h(ε 2 + d + εθ) -h(ε 2 ) -εh (ε 2 )θ -(m + µ)d
must be attained either at a critical point or at infinity. Obviously, if along the minimizing sequence the quantity δ = ε 2 + d + εθ goes to infinity, then the values of F must also go to +∞, which cannot happen along a minimizing sequence. Hence, (d, θ) go to infinity so that δ stays bounded. Hence, we can switch variables and instead of the pair (d, θ) consider the pair (δ, θ). In this case d = δ -εθ -ε 2 . Hence,

F (δ, θ) = µθ 2 2 + h(δ) -h(ε 2 ) -εh (ε 2 )θ -(m + µ)(δ -εθ -ε 2 ),
where δ ≤ (θ/2 + ε) 2 . Minimizing F (δ, θ) with respect to θ we obtain

θ = - ε(m + µ -h (ε 2 )) µ .
Hence we need to minimize

f (δ) = h(δ) -h(ε 2 ) -(m + µ)(δ -ε 2 ) - ε 2 (m + µ -h (ε 2 )) 2 2µ , over all δ satisfying δ ≤ ε 2 (h (ε 2 ) + µ -m) 2 4µ 2 . ( 3.19) 
We remark that taking θ = -4ε in (3.18) we conclude that m * ≤ µ + h (ε 2 ). Thus, the right-hand side of (3.19) is monotone decreasing in m, when m ≤ m * . Now, the minimum is achieved either at the boundary, where equality in (3.19) holds, or at a critical point. It cannot be "achieved" at infinity, where f (δ) is +∞. If the minimum is achieved at the boundary then f (δ) ≥ 0 for all δ, provided m ≤ m * . If the minimum is achieved at a critical point h (δ) = m + µ, then several possibilities need to be considered. Let us first assume that the equation

h (δ) = m * + µ (3.20) 
has a single root δ * . If that root fails to satisfy (3.19) with m = m * , then for m = m * the function f (δ) has no critical points and polyconvexity holds. If that root satisfies (3.19), then all values δ < δ * are admissible. We then substitute m = h (δ) -µ, δ ≤ δ * into f (δ). The resulting function

f (δ) = h(δ) -h(ε 2 ) -h (δ)(δ -ε 2 ) - ε 2 (h (δ) -h (ε 2 )) 2 2µ (3.21) 
can be plotted on (-∞, δ * ] versus m = h (δ) -µ to see if there are values of m above which all values of f (δ) are positive. Yet another possibility is when equation (3.20) has 3 real roots. If even the smallest root δ * fails to satisfy (3.19) with m = m * , then there are no critical points and polyconvexity holds. Otherwise, all values of δ ≤ δ * are admissible and we can prove failure of polyconvexity by plotting (3.21) versus m(δ) = h (δ) -µ on δ ≤ δ * and checking that it is negative. In fact, we believe that polyconvexity fails in all cases when δ * satisfies (3.19). In order to exhibit this failure we only need to produce a single value of admissible δ for which f (δ), given by (3.21), is negative. Hence, if (3.21) is negative for all δ ≤ δ * , then there is no need to examine other intervals of admissible δ, since for any m ≤ m * there is always an admissible δ ≤ δ * , which makes f (δ) negative. However, if f (δ) has a region where it is positive, then one needs to examine other areas of admissibility and check whether f (δ) is negative for the same values of m. Thus, we obtain an algorithm that can prove polyconvexity or failure of it in many, but not all cases. Polyconvexity holds whenever

δ * > ε 2 (h (ε 2 ) + µ -m * ) 2 4µ 2 .
for all solutions δ * of h (δ) = µ + m * . Polyconvexity fails whenever f (δ) < 0 for all δ < δ * , provided

δ * ≤ ε 2 (h (ε 2 ) + µ -m * ) 2 4µ 2 .
If ε 2 = d 1 , then the minimization problem (3.18) simplifies:

min θ∈R h(d 1 + θ √ d 1 + θ 2 /4) θ 2 .
We first observe that in general θ = 0 is not a minimizer. Then there are 3 minimizers:

θ = -4 d 1 , θ = ±2 d 2 -2 d 1 .
When ε = √ d 1 + x, then the minimizer θ(x) must be located near one of the above 3 minimizers. We can then write θ = θ 0 + y for the minimizer, where θ 0 denotes one of the 3. If we write the function under the minimum as H(ε, θ), then at the minimum we must have ∂H/∂θ = 0, which gives the equation

x ∂ 2 H ∂θ∂ε + y ∂ 2 H ∂θ 2 = 0.
After solving for y and substituting this solution back into H we obtain

H = x    ∂H ∂ε - ∂H ∂θ ∂ 2 H ∂θ∂ε ∂ 2 H ∂θ 2    ,
where derivatives are evaluated at ( √ d 1 , θ 0 ). Maple calculation yields

H =      x 2
This shows that θ = 2

√ d 2 -2 √ d 1 + y is the minimizer, while m * = µ - 4xd 1 √ d 2 - √ d 1 h (d 1 ).
In particular, the equation h (δ) = m * + µ will have 3 real roots. The smallest one δ * will be near d 1 :

δ * = d 1 + µ + m * h (d 1 )
.

Finally, polyconvexity will hold if (3.19) fails when δ = δ * and m = m * . In other words we must have (asymptotically)

ε ≤ d 1 + µ h (d 1 ) √ d 1 √ d 2 - √ d 1 √ d 2 + √ d 1 . (3.22) 
Fig. 4 showing the right-hand side of (3.22) as a red dot implies that ε ∞ I 2 fails to be polyconvex, but by a very slim margin. The ordering of the bounds in Fig. 4 persists on the entire range of µ. We see that the gap between established stability (along the bisector below the red dot) and established instability (along the bisector above the blue dot) is very small.

4 Limiting case µ → 0

In this section we derive explicit asymptotics of the secondary jump set and the nucleation bound.

Secondary jump set. Expanding equation (3.7) to first order in µ we obtain

ε + = d 2 ε 0 - µ 4ε 3 0 (d 2 -d 1 ) + O(µ 2 ), ε -= d 1 ε 0 + µ 4ε 3 0 (d 2 -d 1 ) + O(µ 2 ). (4.1)
When d 1 and d 2 are fixed we think of ε ± as functions of ε 0 and µ, even if we suppress this in the notation. Clearly, when µ → 0 we have

ε + → d 2 /ε 0 , ε -→ d 1 /ε 0 .
The parametric equations (x 0 (ε 0 ; µ), y 0 (ε 0 ; µ)) of secondary jump set converge, when µ → 0, to the hyperbola x 0 y 0 = d 1 . In particular, d 0 (ε 0 , µ) → d 1 , as µ → 0. The volume fraction λ of the rank-one laminate used in the second rank laminate is also a function of ε 0 and µ and must have a limit (at least along a subsequence) λ(ε 0 ; µ) → λ 0 (ε 0 ), as µ → 0. Equation (3.11) shows that d 0 = d 1 + µδ + O(µ 2 ), while δ satisfies

d ε 0 ε 0 + 1 ε 0 d 1 d 2 ε 2 0 - d 1 + d 2 2ε 2 0 d -d 1 -2δ(d 2 -d 1 ) 2 d 2 ε 2 0 = 0, (4.2) 
where d = λd 2 + (1 -λ)d 1 . Equation (4.2) was obtained simply by passing to the limit as µ → 0 in equation (3.11). When we pass to the limit as µ → 0 in (3.12) we obtain

(d -d 1 ) 2 (ε 4 0 + d 2 -2d 2 d) 2ε 2 0 d 2 = 0. (4.
3)

The dependence of d on the volume fraction λ is essential and should not disappear in the limit µ → 0. Therefore, the solution of (4.3) that we are after is

d = d 2 -d 2 2 -ε 4 0 , (4.4) 
where the choice of the root was dictated by the requirement that d ≤ d 2 . Combining this with the requirement that d ≥ d 1 shows that

4 d 2 2 -(d 2 -d 1 ) 2 ≤ ε 0 ≤ d 2 . (4.5) 
Substituting (4.4) into (4.2) gives the explicit formula for δ:

δ = ε 4 0 (d 2 -d 1 ) -2(d 2 2 -ε 4 0 )(d 2 -d 2 2 -ε 4 0 ) 4ε 2 0 (d 2 -d 1 ) 2 (d 2 -d 2 2 -ε 4 0 ) 2 . ( 4.6) 
It seem that in order to obtain the correct asymptotics of the secondary jump set we need to obtain the first order asymptotics of ε:

ε = d 2 -d 2 2 -ε 4 0 ε 0 + εµ + O(µ 2 ). (4.7)
In fact, this is not necessary because the leading order asymptotics of d 0 is a constant d 1 .

In that case, as far as the first order asymptotics as µ → 0 is concerned, using (4.7) simply corresponds to reparametrizing the curve

       x 0 = d 2 -d 2 2 -ε 4 0 ε 0 , y 0 = d 1 + µδ(ε 0 ) x 0 . (4.8)
Indeed, if we change the curve parameter ε 0 to ε 0 + µ ε/x 0 (ε 0 ), then

x 0 ε 0 + µ ε x 0 (ε 0 ) = x 0 (ε 0 ) + µ ε + O(µ 2 ).
At the same time We conclude that equation (4.8) correctly describes the asymptotics of the secondary jump set with O(µ 2 ) error, where the parameter ε 0 varies according to (4.5). When ε 0 = √ d 2 , the secondary jump set enters one of the W-points, while when ε

y 0 ε 0 + µ ε x 0 (ε 0 ) = d 1 x 0 (ε 0 ) - µd 1 ε x 0 (ε 0 ) 2 + µδ(ε 0 ) x 0 (ε 0 ) + O(µ 2 ) = d 1 + µδ x 0 + µ ε + O(µ 2 ).
0 = 4 d 2 2 -(d 2 -d 1 )
2 the secondary jump set enters its other end at the "Legendre-Hadamard for phase boundaries" bound that for small µ lies on the dashed part of the jump set in Fig. 3. The plot of (4.8) is in Fig. 3 and is indistinguishable from the numerically obtained curve using the full (non-asymptotic) versions of secondary jump set equations.

Circular nucleus. In the near-liquid limit µ → 0 we can find the asymptotics of the solution explicitly. We know that in the limit µ → 0 the field d(x) = det ∇y(x) must approach d 1 . Hence,

ηη r = d 1 + µδ(r) + O(µ 2 ), r > 1. That implies η(r) = d 1 r 2 + c 0 + µ η(r) + O(µ 2 ), (4.9) 
and therefore,

δ(r) = 1 r η(r) d 1 r 2 + c 0 .
Substituting this ansatz into (3.15) we obtain µ 

√ d 1 r 2 + c 0 r h (d 1 )δ (r) + µ d 1 r √ d 1 r 2 + c 0 + √ d 1 r 2 + c 0 r + O(µ 2 ) = 0. ( 4 
c 0 = d 2 -d 1 , η(1) = - d 2 -d 1 4d 3/2 2 h (d 2 ) , η (1) = d 1 (d 2 -d 1 ) 2d 3/2 2 1 d 1 h (d 1 ) + 1 2d 2 h (d 2 )
.

Equation (4.10) is easy to integrate (observing that

√ d 1 r 2 + c 0 /r is decreasing from √ d 2 to √ d 1
and is therefore uniformly bounded away from zero and ∞).

h (d 1 ) η(r) = c 1 r 2 + c 2 √ d 1 r 2 + c 0 - r 2 2 √ d 1 r 2 + c 0 ln √ d 1 r 2 + c 0 r . (4.11) 
From initial conditions for η(r) we obtain

c 1 = 1 2 ln d 2 , c 2 = - (d 2 -d 1 )h (d 1 ) 4d 2 h (d 2 ) ,
and hence

ε ∞ = d 1 + µ 2h (d 1 ) √ d 1 ln √ d 2 √ d 1 I 2 + O(µ 2 ). ( 4 
.12)

Figure 5 shows the quality of the asymptotics for the entire range of shear moduli µ. The numbers on the y-axis indicate that even for values of µ that are not particularly small the asymptotics (4.12) gives a good approximation of the actual value of ε ∞ . For example, for µ = 3 the relative discrepancy is only around 0.1%.

A glimpse into the relaxed energy

Hypothetical bounds on the binodal. We have seen in the foregoing discussion that the energy W (F ) is not polyconvex at F = ε ∞ I 2 . This is not very surprising, since polyconvexity is usually strictly stronger that quasiconvexity and we expect and conjecture that F = ε ∞ I 2 lies on the binodal-at the very edge of quasiconvexity. Here we recall our observation that if someone could prove that F = ε ∞ I 2 is stable, then we would immediately conclude that for every |x| > 1

∇y(x) = η (r) x ⊗ x + η(r) r (I 2 -x ⊗ x)
would be stable in the sense of Definition 2.2, providing a bound on the binodal from the outside. For the entire range of µ for which W-points are polyconvex the union of the curves

ε 1 = η(r) r , ε 2 = η (r),
and

ε 1 = η (r) ε 2 = η(r) r , r > 1 (5.1)
are indistinguishable from the secondary jump set curves shown in green in Fig. 3. Fig. 6 shows the same blown-up part of the strain space as in Fig. 4, where the curves (5.1) shown in magenta are passing through the blue point from Fig. 4. Assuming the conjectured stability of ε ∞ I 2 , the magenta curve must lie outside of binodal region, while secondary jump set lies in its interior [START_REF] Grabovsky | Ubiquity of infinite rank laminates[END_REF]. Thus, the binodal of the energy (3.1) would have to lie between the green and the magenta curves. We will even go so far as to conjecture that the magenta curve is in fact the actual binodal of the energy (3.1). Regardless, under the assumption of stability of ε ∞ I 2 , the magenta line represents a rather tight outside bound on the binodal region. Another byproduct of the assumed stability of ε ∞ I 2 would be the formula for the quasiconvex envelope QW (F ) for hydrostatic strains F . If F = ε ∞ I 2 is stable, then our radial solution ∇y(x) = η(r) x of (3.15) is also a global minimizer in every finite ball B(0, R), where it satisfies the affine boundary condition y(x) = (η(R)/R)x, x ∈ ∂B(0, R) [START_REF] Grabovsky | Delicate regularity and sufficient conditions for lipschitz minimizers of integral functionals[END_REF]. The energy of such configurations must necessarily be QW (η(R)I 2 /R)|B(0, R)|. This permits us to compute QW (εI 2 ) for all ε, as the energy of y(x) = η(r) x in B(0, R). Using the Clapeyron-type formula for the nonlinear elastic energy stored in an equilibrium stationary configuration we obtain for F = η(R)I 2 /R: [START_REF] Grabovsky | Delicate regularity and sufficient conditions for lipschitz minimizers of integral functionals[END_REF] |B(0, R)|QW (F ) = 1 2 ∂B(0,R) {P (∇y)n • y + P * (∇y)n • x}dS.

(5.2)

Substituting n = x, y = η(r) x into (5.2) we obtain

QW η(R) R I 2 = 2(µ -h (d))d -µη (R) 2 + (2h (d) + µ) η(R) 2 R 2 + 2h(d), (5.3) 
where

d = η (R)η(R) R .
When µ is small we can use the explicit asymptotic formulas (4.9), (4.11) for η(r) to obtain an explicit asymptotics for QW (εI 2 ). The plot of QW (εI 2 ), coming from the numerical solution of (3.15), as well as its explicit asymptotic approximation, superposed on the plot of W (εI 2 ) is shown in Fig. 7. 

Conclusions

In this paper our far reaching goal was to solve analytically the relaxation problem for the double well Hadamard energy (3.1) in two space dimensions when the rigidity measure µ is sufficiently small. An apparently more attainable target was to locate the corresponding binodal region inside the strain space. The study of the limit µ → 0 was expected to show how the 'cooperative' , rigidity-controlled microstructures, dominating the quasiconvex envelope at large µ, give rise to more arbitrary and less controlled microstructures characterizing first order phase transitions in zero rigidity liquids. We used some of our previously developed methods to pinpoint a substantial portion of the binodal. While our general methods apply for Hadamard materials in the entire parameter range and are amenable to numerical implementation, here we were able to obtain the explicit asymptotic formulas only in the 'near-liquid' regime. In particular, we showed that in an 'almost liquid' limit, a subset of the jump set adjacent to the high strain phase remains stable which ensures that simple lamination delivers the corresponding part of the binodal. This means that even when the reference measure of rigidity µ is small, the high strain phase maintains its tangential rigidity at the level which ensures solid-solid like nature of the incipient phase transition. Instead, our analysis showed that the subset of the jump set adjacent to the low strain and low rigidity phase is unstable in the µ → 0 limit. Moreover, the secondary jump set is also unstable in this limit. This result suggests that laminates of any finite rank are unstable near the corresponding subset of the binodal. As we've demonstrated for hydrostatic strains, the reduced rigidity control in this range allows the incipient phase transformation to proceed non-cooperatively through the formation of isolated nuclei of the more rigid phase inside the matrix of the less rigid phase. Such transformation mechanism is already very similar to the one believed to be operating in purely fluid-fluid phase transitions.

Whether the revealed asymmetry of the transformation mechanism between the direct and reverse transformation is a peculiarity of the Hadamard material or whether this striking phenomenon has a more general nature, remains to be established. It shows, however, the intricate role of rigidity in structural transformations which, even if weak, can produce rather complex structure of the relaxed energy. This complexity will then reflect a gradual transition from geometrically ordered microstructures, controlled by long range elastic interactions, to more 'fluid' microstructures whose spatial organization is mostly affected by molecular interactions operating at short range. In other words, in this limit the direct and reverse solid-solid phase transitions can operate through different transformation mechanisms. The fact that the ensuing complex structure of the relaxed energy at 'almost-liquid' solid-solid phase transitions is ultimately replaced by a simple energy convexification at fluid-fluid phase transitions points to a singular nature of the limit µ → 0.
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 1 Figure 1: Double-well structure of the energy density h.

Equations ( 3 . 3 )

 33 can be used to derive the semi-explicit parametric equations of the jump set, where, say d + = ε 0 ε + , can serve as a parameter. Given d + we can use the second equation in(3.3) to compute d -= D(d + ). Then, multiplying the first equation in(3.3) by ε 0 we obtain the parametric equations   
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 2 Figure 2: Jump sets for h(d) given by (3.2) with d 1 = 1, d 2 = 3, and different values of µ.

Figure 3 :

 3 Figure 3: Secondary jump set computed by numerically solving equations (3.11) and (3.12).
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 4 Figure 4: Bounds on the binodal from the inside and the outside of the binodal region along hydrostatic strains.

Figure 5 :

 5 Figure 5: Comparison between the asymptotics (4.12) and ε ∞ obtained from the numerical solution of (3.15).
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 10 Initial conditions from (3.15) imply that

Figure 6 :

 6 Figure 6: A hypothetical bound on the binodal region from the outside, assuming stability of ε ∞ I 2 .

Figure 7 :

 7 Figure 7: Quasiconvex envelope of W (F ) restricted to hydrostatic strains F = εI 2 .

Formula (3.2) only needs to hold in an arbitrary neighborhoodof [d 1 , d

]. The potential h(d) can be modified outside of that neighborhood arbitrarily, as long as h * * (d) = h(d) there. In particular, the singular behavior of h(d) as d → 0 + , required in nonlinear elasticity, can be easily assured.

d 2 , θ 0 = -2 √ d 2 -2 √ d 1 , xd 1 h (d 1 ) √ d 1 -√ d 2 , θ 0 = 2 √ d 2 -2 √ d 1 .

Acknowledgments. YG was supported by the National Science Foundation under Grant No. DMS-2005538. The work of LT was supported by the French grant ANR-10-IDEX-0001-02 PSL.