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Plastic deformations in crystals often produce textures in the form of randomly oriented patches
of the unstressed lattice. We use a novel mesoscopic Landau model of crystal plasticity to show
that in such textures particularly large crystallographic lattice rotations originate from inelastic slip
at the microscale. Our numerical experiments suggest that the process of the formation of plastic
textures is inherently unstable and involves quasi-turbulent motions with power-law distributed
spatial correlations.

The emerging experimental evidence of intermittent
avalanches and scale-free dislocation patterns triggered
a shift from macro- to micro-scale modeling efforts in
crystal plasticity [1–3]. The recorded temporal and spa-
tial correlations were interpreted as evidence of coopera-
tive dynamics at sub-continuum scales [4–6], and the ob-
served hierarchically organized deformation fields were
likened to scale-free turbulent flows [7–12]. Since fluid
turbulence largely relies on vortices, the question arises
whether large rotations play similarly crucial role in crys-
tal plasticity [13–17].

When crystalline specimens are deformed plastically,
small elastic rotations are known to be necessary to en-
sure lattice compatibility [18, 19]. The energetically neu-
trality rigid rotations are also used to explain the local-
ization of dislocations in wall structures [20–25]. Yet, the
actual microscopic mechanism of large rotations involved
in some of the ensuing textures remains obscure.

New insights emerged from recent molecular dynamic
simulations of single-crystal plasticity suggesting that the
patchy local reorientation of the crystal lattice may be
due to deformation induced micro- or nano-twinning [26–
30]. In physical experiments similar effects were found,
for instance, in [31, 32]. In this Letter, we corroborate
the idea of inelastic rotations theoretically and show ex-
plicitly how some crystallographically specific collective
micro-deformations of twinning type can disguise them-
selves as large crystal rotations.

Our main tool is the novel mesoscopic tensorial model
of crystal plasticity [33, 34]. It represents a crystal as
a collection of finite elements whose deformation is gov-
erned by periodic potentials. The latter are designed
to respect the geometrically nonlinear kinematics of the
lattice, as originally envisioned in [35–41]. From the
perspective of the resulting Landau theory with an in-
finite number of energy wells, plastically deformed crys-
tals represent coherent mixtures of equivalent ’phases’
[34, 42]. The corresponding computational approach to
crystal plasticity bears some resemblance to the local ver-
sion of the quasi-continuum model [43–45] and also has
features in common with tensorial generalizations of the
phase-field approach to dislocational plasticity [46–50].

As a proof of principle, in this Letter, we studied in
detail a single plastic avalanche resulting from a brittle-

like yield of a homogeneously deformed pristine crystal
[42]. During such an event, multiple dislocations nucleate
collectively, and the lattice rearranges itself into patches
of the original lattice with different orientations. Our
numerical experiments provided a compelling evidence
that in most of such patches, the apparent rigid rotations
are achieved through distributed lattice invariant shears
resulting in the formation of micro-twinned laminates.
The idea of energy minimizing macro-scale laminates in
crystal plasticity has been already explored in [51, 52],
and here we show that such laminates can already form
at the micro-scale. Moreover, by tracking the deforma-
tion history of individual elements, we were able to show
that the underlying micro-twins self-organize to appear
as macro-rotations. Therefore, the resulting macroscale
textures are fundamentally inelastic as they ultimately
emerge from the collective motion of dislocations at the
microscale.

Furthermore, our numerical experiments suggest that
the formation of disoriented patches of the unstressed lat-
tice during discontinuous avalanches is inherently unsta-
ble even though the sizes and the misorientations of the
individual patches remain correlated. These observations
are reminiscent of fluid turbulence and point towards the
necessity of probabilistic description of crystal plasticity.

To emphasize ideas, we limit our analysis to the sim-
plest nontrivial 2D problem. We represent the crystal as
a collection of N2 discrete elements organized in a square
lattice. The internal scale of order N−1 is viewed as a
physical parameter defining the (Kolmogorov-type) cut-
off beyond which the deformation is considered homoge-
neous. To describe continuum deformation of such lattice
we introduce the piecewise smooth mapping y = y(x),
where y are actual and x are reference coordinates. We
then associate with each element an elastic energy den-
sity φ which depends on the metric tensor C = FTF,
where F = ∇y is the deformation gradient.

In view of the presence of lattice invariant shears, the
function φ(C) takes the form of a multi-well (periodic)
Landau potential. It can be computed from a micro-
scale theory using the Cauchy-Born local homogeneity
hypothesis [53]. For instance, if V is a pairwise poten-
tial, we can write φ(C) = Ω−10

∑
r V (r (C)), where r is

the distance between the sites of the deformed lattice and
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Ω0 is a representative volume, see [54] for details. As the
representative volume increases, the function φ(C) de-
velops a periodic structure with minima associated with
lattice invariant shears [55, 56]. In view of the emerg-
ing symmetry, φ(C) = φ(mTCm) where m is a matrix
with integral entries and determinant ±1, the space of
metric tensors C describing area preserving deformations
(detC = 1) partitions into equivalent domains. There-
fore, after the function φ(C) is known in one of such
domains, say D = {0 < C11 ≤ C22, 0 ≤ C12 ≤ C11/2},
it can be extended by symmetry [34].

To visualize the implied tensorial periodicity of the
function φ(C), it is convenient to stereo-graphically
project the hyperbolic surface detC = 1 on a 2D disk
of unit radius (Poincaré disk), see [54] for details. The
resulting tessellation of the configuration space is illus-
trated in Fig. 1(a); for the graph theory and the crys-
tallographic aspects of the underlying energy wells struc-
ture, see [49, 57]. The particular periodic energy land-
scape used in subsequent numerical experiments, is illus-
trated in Fig. 1(b); it is based on an interatomic potential
from the literature constructed to ensure that the ground
state is a square lattice [58].

FIG. 1: (a) The configurational space of metric tensors with
detC = 1 (Poincaré disc). Infinite families of equivalent square
and triangular lattices are shown by squares S and triangles T,
respectively; D is the minimal periodicity domain; (b) The en-
ergy landscape obtained using an interatomic potential from [58];
a cutoff was applied to improve the visibility of the low-energy val-
leys. Blue circles: simple shears paths F(α, 0) (continuous) and
F(α, π/2) (dashed). Dotted straight line: pure shear path F (α).
The dark oval in (b) represents the effective yield surface.

The low energy valleys in the ensuing (constitutive)
landscape correspond to simple shears F(α, θ) = I +
αR(θ)e1 ⊗ e2, where ei is the orthonormal basis of the
reference lattice, R(θ) is a counter-clockwise rotation by
the angle θ, and α is the magnitude of the shear. Con-
ventional plastic ’mechanisms’ for a square lattice cor-
respond to θ = 0, π/2 and the associated simple shears
are aligned along the two close packed crystallographic
(slip) planes; as α varies, the corresponding metric ten-
sors C trace circular trajectories, see Fig. 1(b). The
matrices F(α, 0) and F(α, π/2) with integer entries cor-
respond to lattice invariant shears and mark the bottoms
of the equivalent energy wells.

A pristine crystal, represented by a homogeneous
square domain made by NxN elements aligned with coor-

dinate axes, was loaded quasi-statically in a hard device
by applying on the boundary incremental affine deforma-
tion while performing incremental energy minimization,
see [42] for the details on the numerical implementation.
We used the ’hard’ loading path corresponding to pure
shear

F (α) =

[
cosh(α2 )− sinh(α2 ) 0

0 cosh(α2 ) + sinh(α2 )

]
(1)

This mapping transforms squares into rectangles and we
rely here on its natural parametrization α = 2 log(λ),
where (λ, λ−1) are the two principal stretches [59]; the
corresponding path in the configurational space is shown
by the dashed line in Fig. 1(b).

A dislocation free crystal, loaded along (1), follows the
elastic branch of equilibrium as long as the latter re-
mains stable. The branch switching event (dislocation
avalanche) takes place at a critical value of the load-
ing parameter α which can be approximated using the
macroscopic Legendre-Hadamard criterion detA = 0,
where Aik = aijklnjnk is the acoustic tensor and aijkl =
FjRFlS∂

2ϕ/∂FiR∂FkS is the Eulerian tensor of elastic
moduli [60, 61]. A union of such (spinodal) thresholds
for a family of loading paths can be viewed as represent-
ing an effective ”yield surface”, see the black oval around
the reference state in Fig. 1(b).

FIG. 2: (a) A fragment of the post-avalanche pattern in real space;
colors indicate the level of energy. (b) The distribution of elements
in the configurational space for the whole post-avalanche pattern
obtained by counting the number of elements inside individual con-
figurational bins. The dark ovals in (b) show the effective yield
surfaces around the equivalent energy wells (pristine crystal and
its four copies obtained by the smallest lattice invariant shears).

The empirically obtained instability threshold along
the loading path F (α) is αc ≈ 0.176 which is in excel-
lent agreement with the theoretical prediction; the crit-
ical orientation of the unstable mode n practically coin-
cides with predicted value e01 and the direction of shear
(polarization vector) is almost parallel to the theoreti-
cally predicted direction e02.

The breakdown of the affine state takes the form of
an abrupt drop of both stress and energy as the homo-
geneously deformed lattice is replaced by a complex tex-
ture of disoriented patches of the unstressed lattice, see
the fragment in Fig. 2 (a). Our Fig. 2 (b) shows the
post-avalanche distribution of the deformed elements in
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the configurational space (Poincaré disk). During the
avalanche, some of the rectangular (stretched) elements
snap back to the reference well S, however, the majority
of the elements redistribute among the four neighboring

wells; S0
1 = F(1, 0), S0

−1 = F(−1, 0), S
π/2
1 = F(1, π/2)

and S
π/2
−1 = F(−1, π/2). While the first two of these

wells correspond to the same slip system, the presence
of the other two indicates the parallel activation of the
complimentary slip system. Some elements appear to be
locked in the shallow local minima T and T0

−1 describ-
ing the triangular lattice with hexagonal symmetry; such
elements appear mostly as the components of Shockley-
type partials [62]. The limited overall spreading of the
elements beyond the low energy valleys reflects the pres-
ence of dislocation cores and other highly inhomogeneous
defect structures.

The ensuing large scale post-avalanche pattern in the
physical space is illustrated in Fig. 3(a); for the tran-
sients, see Movies S1 and S2 in [54]. Upon magnification
we see a complex arrangement of apparently randomly
rotated unstressed square lattice patches circumscribed
by dislocated boundaries, see Fig. 3(b-d); the fragments
of triangular lattice serve as elements of the stacking
fault-type interfaces. As we show in [54], the emerging
patterns at small scales are qualitatively similar to the
ones obtained in molecular statics simulations employing
the same interatomic potential.

FIG. 3: Post-avalanche pattern shown at different scales. Col-
ors indicate the level of energy. Insets (1-3): relative rotation of
unstressed square patches. Inset (4): a fragment of a metastable
triangular lattice. Here N=600.

The microscopic nature of large rotations in Fig. 3 can
be understood if we follow the deformation of the in-
dividual elements. In Fig. 4 we show two representative
fragments of the distorted network of such elements illus-
trating different types of interfaces between misaligned
patches of the original lattice.

The elemental triangulation in Fig. 4(a), showing co-
existing patches of the type 1-3, reveals that an appar-
ent rigid rotation at the macroscale is, in fact, a dis-
guised micro-twin mixture of the elements of the types

FIG. 4: Magnified fragments of the post-avalanche pattern from
Fig. 3 showing the actual affine distortions of individual elements;
(a) patches of the type 1-3, (c) patches of the type 1-2; (b,d) illus-
tration of the corresponding solutions of the compatibility equation,
see [54] for more details.

R(π/2)S0
1 and S0

−1. To build such a laminate involv-
ing symmetry related deformation gradients F and G,
the latter must satisfy the compatibility condition RF =
(I + a⊗ n)G, where R is a rotation and a · n = 0 [63].
The necessary condition for the existence of such R, a
and n is that the product of the eigenvalues of the ma-
trix G−TFTFG−1 6= I is equal to unity, which is satisfied
for F = S0

1 and G = S0
−1. The resulting rotation R1 at

the angle π/2 is illustrated in Fig. 4(b).
A more conventional case of misoriented coexisting

patches of the original lattice (patches of the type 1-2)
is shown in Fig. 4(c). Here the homogeneous deforma-
tion gradients correspond to the bottoms of the energy
wells S0 and S0

1. They are microscopically compatible,
however the associated micro-twin laminates were not ob-
served and instead, we see in Fig. 4(c) macroscopically
compatible but microscopically semi-coherent low-energy
interface known as Σ5 grain boundary [64], see Fig. 4(d).
Despite the full stress relaxation inside the patches, here
the apparently rigid rotation is again achieved through
shear, see also [65] for related experimental observations.

To accentuate the inelastic mechanism of ’rotation by
micro-twinning’, shown Fig. 4(a,b), we used an artificial
energy density which ensures that only one slip mecha-
nism involving the energy wells S0

1 and S0
−1 is activated.

Such bias can be achieved if we sufficiently strongly pe-
nalize volumetric distortions. The corresponding model
is constructed in [54] and our Fig. 5(a) shows that it
indeed produces an elongated effective yield surface fa-
voring, under our loading protocol, only one slip mecha-
nism. In Fig. 5(b) we show that during the avalanche in
such a system an apparently rigid π/4 rotation develops
behind a propagating transition front, which then sepa-
rates the (rectangularly) stresses configuration S and the
unstressed stable laminate involving the states R(π/2)S0

1

and S0
−1, for transients see Movie S3 in [54]. Since the

lattice scale micro-twinning is accomplished here through
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the side motion of dislocations, the resulting rotation is
an inelastic, dissipative process.

FIG. 5: The unfolding of the dislocation avalanche in the single-
slip-biased version of the model. (a) Energy landscape showing the
post-avalanche spreading of configurational points; (b) the struc-
ture of the moving front separating the initially stretched rectangu-
lar lattice and the growing micro-twinned (rotated) square lattice
(colors indicate the level of energy); (c) the distribution of the shear
strain C12 across the transformation front shown in (b); (d) prop-
agating front of lamination in the one dimensional toy model with
parameters β = 3 × 10−6, η = 0.0017, γ = 10−6, A = −0.001, see
[54] for details.

An even more schematic, 1D description of a propa-
gating transition front from Fig. 5(b), can be obtained
if we neglect the transversal motion of dislocations and
focus instead on the development of a laminate stabi-
lized by competing interactions. To this end we can con-
sider a toy potential f(ε) = (A/2)ε2 − (1/4)ε4 + (1/6)ε6,
where ε = ux. This potential can have up to three en-
ergy wells with the higher-symmetry state playing the
role of the deformed configuration S, and the two lower-
symmetry states representing the symmetric variants S0

1

and S0
−1. Introducing viscoelastic dissipation, we obtain

the dynamic equation ηuxxt = −f ′′(ux)uxx+βuxxxx+γu.
Here η is the viscosity coefficient, while the parameters
β and γ represent lattice induced nonlocality and con-
straining elastic environment, respectively, see [54] for
details. The numerical solution of this equation, model-
ing growth of a stable micro-laminate at the expense of
an unstable homogeneous state [66], is compared in Fig.
5(c,d), see also Movie S4 in [54], with the corresponding
inter-avalanche dynamics in the single-slip-biased version
of our 2D model.

FIG. 6: Turbulent-like structure of the deformation field resulting
from a dislocation avalanche. The displacement vectors connect
pre- and post-avalanche positions of the individual nodes.

FIG. 7: (a) Fourier transform of auto-correlation function (power
spectrum density) of the horizontal u and vertical v components of
the displacement field; we interpret both components as surfaces
which due to averaging are transitionally invariant and isotropic;the
dashed lines show the power-law fit; insets show probability distri-
butions p(u) and p(v). (b) Probability distribution p(∂v/∂x) of
the horizontal derivative of the displacement field exhibiting non-
Gaussian wide tails.

In contrast to these intentionally simplified scenario,
the original problem exhibits much larger complexity of
the post-avalanche dislocation distribution. The avail-
ability in such a problem of a broad variety of low en-
ergy configurations, enabled by inelastic rotations, fo-
ments the development of imperfection-sensitive grain
structure and makes plastic avalanches inherently unsta-
ble. To reveal the spatially intermittent nature of the
deformation field in Fig. 6, we show in Fig. 6 the fluc-
tuating part of the induced total nodal displacements
u(x) = y(x) − F (αc)x with two correlated turbulent-
type ’eddies’ emphasized in the inset. In Fig. 7(a) we
show the (radially averaged) power spectral density of
the field u(x), illustrating the coexistence of a hierarchy
of scales and revealing collective behavior of dislocations.
The observed scaling C(q)/q ∼ q−2H−2, where q = |q|,
with noninteger (Hurst) exponent H ≈ 0.75 indicates the
self-affine (rough) nature of the surfaces representing the
components of the displacement field which both exhibit
the same fractal dimension D = 3−H ≈ 2.25 [67–70].

The robust algebraic tails in the probability distribu-
tion of displacement derivatives, shown in Fig. 7(b), are
also strongly indicative of a quasi-turbulent nature of the
distribution of plastic eddies in real space. For related ob-
servations in other models of crystal plasticity, see [71–
74]; similarly complex turbulent-like motions involving
vortex structures and scale free displacement fields have
been recorded in granular flows [10, 75–77].

While the physical nature of the quasi-turbulence in
crystal plasticity is clearly different from the classical in-
ertial turbulence in fluids, the instability-driving nonlin-
earity may be as universal. Thus, the (quadratic) ge-
ometric nonlinearity is essential for capturing the finite
rotations correctly [78–80]. The main constitutive non-
linearity of the energy density is also geometric as its
main goal is to capture lattice invariant shears [81]. Sim-
ilar to the case of high-Reynolds-number fluid turbulence,
the model is conservative outside intermittent avalanches
with dissipation remaining finite even as the microscopic
viscosity tends to zero [82]. Furthermore, behind the
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emerging scaling is the fact that in the limit N →∞ the
governing equations of the model become scale-free. The
parallel power law statistics of temporal correlations has
been already obtained in the scalar version of the model
[6].

To conclude, we used a novel mesoscopic approach to
crystal plasticity to reveal the microscopic nature of the
complex whirling motions involved in intermittent dis-
location avalanches. Our analysis showed that behind
the implied rotations are collective shears arising from
dissipative motion of individual dislocations. The inher-
ent instability of the underlying dynamics explains the
quasi-turbulent nature of atomic displacements during
the avalanches and suggests that the adequate descrip-
tion of plastic flows should be, as in fluids, probabilistic.
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Energy density from interatomic potential. Suppose that material points in a reference domain Ω0 undergo an
affine deformation yi(x) = xi + ui(x), where ui(x) is the displacement vector. The deformation gradient is then
Fij = ∂yi/∂xj = δij +∂ui/∂xj , the metric tensor is Cij = FkiFkj . To compute the energy density φ(C) we first define
the relative position vectors between two atoms in the reference Ri = xi−x′i and deformed ri = yi−y′i configurations.
Then, since the deformation is affine, we have ri = FijRj In case of pair interactions we can use the interatomic
potential V (r) = V (r), where r is the distance between the atoms and, in particular, in the 2D case, it reduces to
V (
√
R2

1C11 + 2R1R2C12 +R2
2C22). The strain energy density φ(C) averaged over the domain Ω0 can be written as a

sum

φ(C) =
1

Ω0

∑

x

∑

x′∈N (x)

V
(√

RiCijRj

)
, (1)

where the internal summations involves all x′ belonging to the cutoff neighborhood N (x). In our numerical experi-
ments we used the potential

V (r) = −2/e−8(−1.425+r)
2 − 2/e−8(−1+r)

2

+ 2/r12 (2)

constructed in [1]. In order to perform the sum in (1), we used the reference square lattice composed of 8× 8 atoms
with the lattice distance r0 = 1.0658. In view of the global symmetry, it is sufficient to construct the potential φ(C)
in the minimal periodicity domain D = {0 < C11 ≤ C22, 0 ≤ C12 ≤ C11/2}. Then we can use the appropriate
symmetry transformations m to map an arbitrary metric tensor C on its prototype in D. This is achieved by replacing
C in (1) with its reduced version C̃ = mTCm.

Projection on Poincaré disk. Configurational space detC = 1 is a hyperboloid described by the equation C11C22−
C2

12 = 1. In Fig. 1(a) of the main text the tessellation of this configurational space into invariant subdomains is
illustrated using the projection onto the Poincaré disk which is bounded by a circle of unit radius. In this mapping
the point (x, y) on the disk represents the point (x̂, ŷ, ẑ) = ((C11 − C22)/2, C12, (C11 + C22)/2) on the hyperbolic
surface with

x =
(C12

C22
)2 + ( 1

C22
)2 − 1

(C12

C22
)2 + (( 1

C22
) + 1)2

, (3)

y =
2(C12

C22
)

(C12

C22
)2 + (( 1

C22
) + 1)2

. (4)

We recall that in these relations, once C22 and C12 are given, the component C11 is determined by the condition
C11C22 − C2

12 = 1.

Evolving lattice configuration. In Fig. 1 (a,b,c) we show the snapshots of the evolving lattice configuration in the
fast numerical time of the system-size avalanche. The spreading of the corresponding cloud of configurational points
in the space of metric tensors is illustrated in Fig. 1 (d,e,f).

The system was loaded quasi-statically in a hard device by applying on the boundary affine deformation F (α). In
homogeneous response, such mapping transforms squares into rectangles. After the instability, many of the rectangu-
larily stretched elements snaps back to the reference energy well S but a significant percentage of elements also ends
up in the two symmetric energy wells S0

1 = F(1, 0) and S0
−1 = F(−1, 0) which corresponds to the activation of single

slip plasticity. The other two symmetric energy wells Sπ/21 = F(1, π/2) and S
π/2
−1 = F(−1, π/2) also get populated but

only at the end of the avalanche, indicating that the second main slip system is now also activated.
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FIG. 1. The unfolding of a dislocation avalanche: (a,b,c) in real space (colors indicate the level of strain energy density), (d,e,f) in
the configurational space of metric tensors. Large red/yellow region in (a) corresponds to elastically stressed homogeneous rectangular
configuration of the original lattice. Large blue cells in (c) correspond to symmetry related versions of unstressed square lattices. White
dots in (d,e,f) show the progressive spreading of the configurational points representing individual elastic elements. The dark ovals show
the effective yield surfaces around the energy well corresponding to pristine crystal

Molecular statics simulations. To test the basic predictions of the mesoscale model we also performed the parallel
molecular statics simulations. The role of elastic elements in such simulations was played by individual atoms. In the
corresponding numerical experiments the positions of the atoms for the given boundary conditions were determined
by minimizing the total potential energy of a system composed of NA atoms. It can be written in the form Π =
W int −W ext, where the internal energy is W int = 1

2

∑NA

α

∑NA

β,β 6=α V (rαβ), while the external energy of the loading
device is W ext, which will vanish in our case since we use hard device boundary conditions to mimic the loading
protocol of the mesoscopic model. The interatomic potential is taken to be the same as in the mesoscopic theory
V (rαβ) where rαβ is the distance between the atoms α and β. The equilibrium positions of the atoms were found
by solving the equations dΠ/drλ = 0, where λ = 1, . . . , NA. To solve the equilibrium equations we used the L-BFGS
algorithm [2] which builds a positive definite linear approximation of these equations allowing one to make a quasi-
Newton step lowering the total energy Π. In order to impose the hard device type boundary conditions in molecular
statics experiments, which were also used in the mesoscale model, we applied affine displacements (of a pure shear
type) to the atoms within the boundary layer of a small thickness. The amplitude of the loading was incrementally
increased and kept fixed during each relaxation step. Similar to the experience with the mesoscopic modeling, in the
parallel molecular statics test the pristine crystal was deforming homogeneously till the critical value of the loading
parameter α was reached at which the system size plastic avalanche took place. In Fig. 2 we present a fragment of a
post avalanche configuration showing the typical grain structure with disoriented micro-twinned domains which are
practically unloaded while the energy is localized on the highly dislocated inter-grain boundaries. The inset shows a
magnified version of the apparent π/2 rotation of a grain with respect to the original square lattice. Other differently
oriented patches are visible as well forming a complex crystallographic texture. The overall picture is very similar to
the one obtained in the mesoscopic model which corroborates its basic predictions. In this Letter we do not perform
quantitative comparison that would require the discussion of the role of the internal scales in the two models.

FIG. 2. Final positions of the atoms in a molecular statics experiment following the system size plastic avalanche. Atoms are colored
according to the level of their potential energy: red-high, blue-low. The magnification shows the inelastically rotated (micro-twinned)
domains representing the unloaded square lattice coexisting with slightly (elastically) rotated original square lattice. These low energy
domains are separated by high-energy dislocation-rich interfaces.
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Solution of the twinning equation. Suppose that the constant deformation gradients G and F correspond to two
equivalent minima of the strain-energy φ(C). To generate piece wise affine continuous deformation, across an invariant
discontinuity plane they must satisfy on such a plane the kinematic (Hadamard) compatibility conditions [3]:

RF = G + a⊗ n∗ = G (I + a∗ ⊗ n∗) = (I + a⊗ n)G (5)

where R ∈ SO(2) is a rotation. The Eulerian vector a (normal to the discontinuity plane) and covector n must satisfy
a ·n = 0; their Lagrangian counterparts are a∗ = G−1a and n∗ = GTn. If we assume further that detF = detG = 1
and exclude reflections, the deformation gradients satisfying (5) form a mechanical twin. If, in addition, the rotation R
belongs to the point group of the lattice, such twinning structure produces the undistorted zero energy configuration.
This is what happens in the case when F = S0

1, G = S0
−1. The resulting microtwinned laminates are sometimes

referred to as pseudotwins [3].
The twinning equation (5) was studied extensively, see for instance [4]. It was shown that (5) admits either no

solutions or two solutions. The two solutions exist when the matrix G−TFTFG−1 6= I and its ordered eigenvalues
µ1 < µ2 are such that µ1µ2 = 1. In that case, the two solutions are given explicitly by the formulas:

a = ρ

(√
µ2(1− µ1)

µ2 − µ1
v1 + κ

√
µ1(µ2 − 1)

µ2 − µ1
v2

)
, (6)

n =
1

ρ

(√
µ2 −√µ1√
µ2 − µ1

)(
−
√

1− µ1v1 + κ
√
µ2 − 1v2

)
, (7)

where v̂1 and v̂2 are the normalized eigenvectors of G−TFTFG−1, ρ > 0 is a constant ensuring that |n| = 1 and
κ = ±1. Once a and n are known, the rotation R can be obtained directly from (5).

FIG. 3. The two solutions of the twinning equation (5) for the deformation gradients F = S0
1 and G = S0

−1.

FIG. 4. The two solutions of the twinning equation (5) for the deformation gradients F = S0
1 and G = S0 = I.

For the case when F = S0
1 and G = S0

−1 the solution corresponding to κ = 1 is the one observed in the post-
instability patchy pattern. It is characterized by the parameters

aT = {−
√

2,
√

2} nT = {cos ζ, sin ζ} ζ = π/4 (8)

with R a counter-clockwise rotation of ψ = 2ζ = π/2. For κ = −1, the solution is different

aT = {−2, 0} nT = {cos ζ, sin ζ} ζ = −π/2 (9)

with R(ψ = 0), see Fig. 3. The corresponding micro-twins were not observed in our simulations.
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Another type of microstructure, observed in our simulation results, corresponds to the case when G = S0 and
F = S0

1. The two solutions with κ = −1 and κ = 1 are, see Fig. 4:

κ = 1; aT = {− sin ζ, cos ζ}, (10)

nT = {cos ζ, sin ζ}, R(2ζ), ζ = arctan(1/2) (11)

κ = −1; aT = {1, 0}, (12)

nT = {cos ζ, sin ζ, } R(ψ = 0), ζ = −π/2, (13)

The solution associated corresponding to κ = 1 was observed in our post-avalanche patchy pattern, while the solution
corresponding to κ = −1 was not.
Polynomial energy density. The energy density, which we used in the main text to obtain Figs. 5(a-b), is chosen

to ensure an independent control of volumetric and deviotoric contributions. To this end, it is taken in the additive
form

φ(C) = φv(detC) + φd(C/(detC)1/2). (14)

We took the volumetric part in the artificial form φv(s) = µ(s − log(s)) (with µ = 25) which precludes physically
anticipated softening in tension but still bans configurations with infinite compression. As we explained in the main
text, the volume preserving term φd needs to be specified only inside a single domain of periodicity and then extended
by global symmetry. Inside such a domain we used for φd the lowest order polynomial expression which which ensures
the global continuity of the elastic moduli. More specifically, we used the expression first proposed in [5]:

φd(C̃) = βψ1(C̃) + ψ2(C̃) (15)

where ψ1 = I1
4 I2 − 41 I2

3/99 + 7 I1 I2 I3/66 + I3
2/1056, and ψ2 = 4 I2

3/11 + I1
3 I3 − 8 I1 I2 I3/11 + 17 I3

2/528. The
(hexagonal) invariants here have the structure: I1 = 1

3 (C̃11 + C̃22− C̃12), I2 = 1
4 (C̃11− C̃22)2 + 1

12 (C̃11 + C̃22−4C̃12)2,
and I3 = (C̃11− C̃22)2(C̃11 + C̃22− 4C̃12)− 1

9 (C̃11 + C̃22− 4C̃12)3. The choice β = −1/4 enforces the square symmetry
on the reference state. Importantly, it is not the particular structure of φd which is fully controlled by symmetry,
but rather the assumption regarding φv that is ultimately responsible for getting the highly elongated effective ’yield
surface’.
1D prototypical model. Consider a continuum 1D system described by a scalar displacement field u(x) where

0 6 x 6 L. The energy of the system is taken in the form

E =

∫ 1

0

[f(ux) +
β

2
u2xx +

γ

2
u2]dx, (16)

where the first term f(ux) represents a triple well potential depending on the strain variable ε = ux. The higher
order second term uxx depends on the strain gradient εx = uxx and brings the internal length scale. The last term
u2, representing the energy of the constraining elastic environment, brings another (competing) length scale into the
problem. Introducing the Rayleigh type dissipation

R =
η

2

∫ 1

0

u̇2xdx, (17)

we obtain the main dynamic equation used in the main text

ηuxxt = −f ′′(ux)uxx + βuxxxx + γu. (18)

To solve this equation numerically, we first approximate spatial derivatives by finite differences using a fixed grid
with size h and utilize semi-implicit forward Euler discretization in time with a time step dt. The resulting discrete
set of equations in Fourier space takes the form

ût+dt(q) =
ηM̂3(q)ût(q)− dtM̂1(q)f̂ ′(q)

ηM̂3(q)− dt(βM̂2(q) + α)
, (19)

where M̂1(q) = i sin(q)/(2h), M̂2(q) = 16 sin(q)4/h4 and, M̂3(q) = (2 cos(q) − 2)/h2. The nonlinear function f ′ =

∂f/∂ux is first evaluated in real space and then Fourier transformed to obtain f̂ ′(q). The discrete Fourier transform
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FIG. 5. Evolution of the strain field ε(x) at times t = 390, 480, 580, 760, 970, 1350 × dt. The system ultimately evolves to the
fully transformed state, which is a mixture of ε(x) ≈ ±1.

on a unit grid is defined as û(q) = N−1
∑

i uie
−iqx with x = i and q = 2πk/N , where i = 0, 1, ..., N − 1 and,

k = 0, 1, ..., N − 1. In our simulations, we used the parameter values: h = 0.04, N = 8192, the time step dt = 0.004,
β = 3 × 10−6, η = 0.0017 and α = 10−6. The initial data were chosen in the form a localized strain increment
ε(x) = 0.5e−(x−xm)2 centered around xm = 0.5. The Fourier image of the corresponding displacement field is
û(q) = ε̂(q)/M̂1(q) for q 6= 0. The time evolution of the resulting strain field ε(x, t) is shown in Fig. 5.
Supplemental movies. The first three movies reveal the fast time dynamics behind the plastic avalanche starting

from the loss of stability of a homogeneous state at a critical load and until the equilibrium post-avalanche pattern is
reached.

Movie S1 : the deformation field y(x);
Movie S2 : the non-affine displacement field : u(x) = y(x)− F (αc)x;
Movie S3 : the evolution of the deformation field y(x) in the case of an artificial polynomial strain-energy density.
The forth movie shows the time evolution of the strain field in the prototypical 1D model
Movie S4 : The field ε(x, t) showing the growth of a lamainate starting from an initial strain inhomogeneity.
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