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Abstract
Nonlinear partial differential equations appear in many domains of physics,
and we study here a typical equation which one finds in effective field the-
ories originated from cosmological studies. In particular, we are interested in
the equation ∂2

t u(x, t) = α(∂xu(x, t))2 +β∂2
xu(x, t) in 1+ 1 dimensions. It has

been known for quite some time that solutions to this equation diverge in finite
time, when α> 0. We study the nature of this divergence as a function of the
parameters α> 0 and β ⩾ 0. The divergence does not disappear even when β is
very large contrary to what one might believe (note that since we consider fixed
initial data, α and β cannot be scaled away). But it will take longer to appear as
β increases when α is fixed. We note that there are two types of divergence and
we discuss the transition between these two as a function of parameter choices.
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The blowup is unavoidable unless the corresponding equations are modified.
Our results extend to 3+ 1 dimensions.

Supplementary material for this article is available online
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nonlinear partial differential equations
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(Some figures may appear in colour only in the online journal)

1. Introduction

In physics, effective field theories (EFTs) are employed to describe fundamental theories at
the low energy limit in a unified form. This approach is widely used to express different phys-
ical phenomena [13, 16–18, 27]. This framework, which is constructed based on perturbative
expansion, usually leads to non-linear partial differential equations.

Recently, the EFT approach has become very popular in cosmological studies, especially to
study the late time accelerating expansion of the Universe which is driven by the so-called dark
energy component [6, 14]. Based on cosmological observations [2, 4, 32] the clustering of the
dark energy component is supposed to be small, so the linear approximations are justified [25,
37]. However, in the near future high precision measurements of the Universe will be done by
the new cosmological surveys [3, 6, 30, 36]. This motivated cosmologists [15, 20, 21] to study
non-linear partial differential equations (PDEs) arising from these EFT approaches to have
more accurate predictions of these theories. Thus, cosmologicalN-body simulations have been
developed [1, 23] which describe the evolution of structures in the Universe by solving Einstein
field equations as well as a non-linear PDE for the dark energy component. In a nutshell, this
non-linear PDE has non-linearities that sometimes are dominated by a (∂xu(x, t))2 term [24].
This motivates our current study.

Using extensive numerical simulations with k-evolution [23] it was discovered earlier in
[24] that the solutions of such equations can form violent singularities at finite time. And,
depending on the cosmological parameters, these singularities can even appear at a time before
the current epoch of the Universe. Obviously, this asks for a change of parameters, or for
regularising the models with additional smoothing terms. In [24] it is specifically argued that
appearance of the Laplace term β∂xxu(x, t) with large enough β makes the system stable. It
is worth noting that in cosmological context

√
β = cs where cs is the ‘speed of sound’ and

determines how fast the perturbations of scalar field propagate. In cosmology usually, 0⩽
cs ⩽ 1. However superluminal cases (cs ⩾ 1) are also considered in the literature [10, 12].
However, we will show that the Laplacian term does not regularise enough to avoid the finite
time blowup: it just shifts the blowup time to a later epoch. Perhaps, not seeing the instability
in the realistic cosmologicalN-body simulations might be due to the short time period, or some
other phenomena which are present in cosmological setups.
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Figure 1. The V-type divergence: the solution profile u(x, t) is shown at different times
(different colours), up to the blowup time. The curvature at the minimum diverges in
finite time. The initial conditions are: u(x,0) = 0 and ∂tu(x,0) =−exp(−30x2) on
[−π,π].

In the paper [24], employing the cosmological N-body code k-evolution, it was found that
the PDE for the EFT of dark energy (in particular, k-essence models5), for some set of paramet-
ers leads to an instability in finite time. It was shown in [33] that the main source of finite-time
instability is due to the presence of the non-linear term in

∂2u(x, t)
∂t2

= α ·
(
∂u(x, t)
∂x

)2

, (1.1)

which appears naturally in EFT theories (in cosmological studies u(x, t) is called π(x, t)). Here,
we consider only fixed α> 0 but for general theories α can be time dependent. This time
dependence appears in k-essence theories through the Hubble parameter H(t) [24] and we
have checked that the divergence persists when taking into account the time dependence ofH.
The local in space existence is guaranteed by the Cauchy–Kowalevski theorem, for (locally)
analytic initial conditions. A global in space (but of course finite in time) existence can be
obtained by considering initial conditions which are analytic in a strip around the real axis, by
reducing the widths of the strip in time6.

Beyond this setting, it is easy to see that (1.1) has solutions which diverge in finite time
[24]: in fact, for some initial conditions we can consider u of the form u(x, t) = f(t)x2. This
leads to f ′ ′(t) = 4α · f(t)2. When the initial condition is f(0) = 3

2αt20
and f ′(0) = 9

αt40
, then we

have

f(t) =
3

2α(t0 − t)2
, (1.2)

5 These are a general class of theories in which the action contains at most one temporal and one spatial derivative
acting on the field [7]. The k-essence models have been proposed as a possible explanation for the late time cosmic
acceleration. In the k-evolution code, the k-essence field and other cosmological components, such as dark matter and
baryonic matter, are implemented. The ‘k’ in ‘k-essence’ stands for ‘kinetic,’ which refers to the kinetic energy of the
theory. The idea behind k-essence is that the negative pressure of its fluid description is caused by its kinetic energy.
6 We thank Pierre Collet and Martin Hairer for helpful remarks on this point.
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Figure 2. TheM-type divergence: as time advances, the support of the function spreads,
and the function at the edge gets steeper, until the derivative will diverge at some time
T∗. The simulation is for the equation (1.3), with α= 0.15 and β= 0.05 and initial con-
ditions ∂tu(x,0) =−exp(−30x2), u(x,0) = 0 on [−π,π].

which diverges as t ↑ t0, when α> 0. As discussed in [33–35], this divergence is of a local
type and the curvature of the minima increases to infinity in a finite time. Here we call this
divergence the ‘V’ type as shown in figure 1. We give a general divergence proof in section 2.

Consider now the equation

∂2u(x, t)
∂t2

= α ·
(
∂u(x, t)
∂x

)2

+β
∂2u(x, t)
∂x2

. (1.3)

When β= 0 this is (1.1). We next consider the case when β > 0 (and α> 0 is fixed). The local
in time Cauchy problem for this equation can be solved inW1,∞ ×L∞(R) (see [8] for a similar
strategy). From the finite speed of propagation, for given initial data at t= 0, two cases appear
for the domain of definition of the solution:

• either it is {(x, t) | t⩾ 0} and the solution is said to be global;
• or it can be expressed as

D = {(x, t); | 0⩽ t< T(x)}

for some Lipschitz function x 7→ T(x) (with Lipschitz constant 1/
√
β), where the solution

is said to ‘blow up’ in finite time. (see appendix B for details). In this paper, we deal with
blow-up solutions.

As for the blow-up behaviour, there are two scenarios: when β is very small, the solution
will be of V-type but when β is larger, then it will be of a shape we call M-type, as illustrated
in figure 2.

It was seen in simulations presented in [24], that the instability seems to vanish when one
adds a Laplace term with large enough coefficient β.

However, this is not the whole story: in fact, whenever α> 0 this system is always unstable
and even large β cannot cure the instability forever, (this holds rigorously for a large class
of initial conditions, and seems to hold in numerics, for any initial condition with compact
support). However, increasing β does increase the blowup time. Actually, the blowup now
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happens at the ‘ends’ of the ‘M’ shape in the profile, whose walls get steeper and steeper, until
the derivative becomes infinity. This phenomenon was known for some time in the literature
[26, 29], and it is quite generic. In simulations, perhaps one does not wait long enough, or the
M gets too wide in the numerically allocated spatial direction, before the divergence happens.

In the following sections, we will study in more detail the domains in the α,β plane for
which ‘V’ and ‘M’ divergences will happen and the time it takes for blowup to occur. This
will tell us for which physical parameters the singularity is so far in the future that it can be
neglected, or that it is of a formwhich can easily be damped by adding additional terms to (1.3).
However, such terms do not seem to occur naturally in the case of cosmological models for
dark energy, especially within the weak-field approximation [20]. For the convenience of the
reader, we repeat in two appendices some details about the V type divergence, and we also
repeat—with small variations—a proof of the persistence of divergence for all β > 0 (when
α> 0). These appendices are based on [34] and [28, 29].

2. Blowup time as a function of α when β=0

Before we can study the dependence on β, we need to study the divergence time for the case
α> 0. The following is a slight adaptation of the results of [33, 34].

We consider the equation utt = α(ux)2 on the real line. We start by writing the solution in
the form

u(x, t) = f(x)+ g(x)t+α

ˆ t

0
dτ
ˆ τ

0
dτ ′(ux(x, τ

′))2 . (2.1)

This corresponds to the initial conditions

u(x,0) = f(x) , ut(x,0) = g(x) .

We will consider the case where f ′(0) = g ′(0) = 0, and we ask how the solution behaves near
x= 0. Depending on the curvatures f ′ ′(0) and g ′ ′(0), the second derivative uxx(x, t) will, or
will not diverge at x= 0. Of course, if the functions f and g have vanishing derivatives at some
other point(s) x0, the same discussion will apply at those points, and there can be one of these
points where uxx(x0, t) diverges before the one at x= 0. In the following proposition, we will
neglect this aspect.

Proposition 2.1. Assume f ′(0) = g ′(0) = 0. Define

c= 1
2g

′ ′(0)2 − 2
3αf

′ ′(0)3 . (2.2)

Then the following cases appear:

(i) If g ′ ′(0)> 0 then uxx(0, t) diverges in finite time t+ given by

t+ =

ˆ ∞

f ′ ′(0)

db√
4
3αb

3 + 2c
=

ˆ ∞

f ′ ′(0)

db√
α( 43 (b

3 − f ′ ′(0)3)+ g ′ ′(0)2
. (2.3)

(ii) If g ′ ′(0)< 0 then uxx(0, t) will converge to b∗ in a finite time t−, where

2
3αb

3
∗ =−c ,and t− =

ˆ f ′ ′(0)

b∗

db√
4
3αb

3 + 2c
. (2.4)

At this point in time, we will have ut(0, t−) = 0 which corresponds to (iii) and the solution
will diverge after another finite time t+ (unless c= 0).
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(iii) If g ′ ′(0) = 0, and f ′ ′(0) 6= 0 then uxx(0, t) diverges in finite time t+ given again by (2.3).
(iv) If g ′ ′(0) = 0 and f ′ ′(0) = 0 then uxx(0, t) stays constant.

Remark 2.2. When g ′ ′(0)> 0 and f ′ ′(0) = 0, then the elliptic integral can be evaluated expli-
citly and one gets

t+(α,g
′′(0)) =

A

α1/3g′′(0)1/3
,

with A≈ 2.5479.

Remark 2.3. Assume that u(x,0) = 0 and ut(x,0) is a smooth, bounded function with several
well-separated extrema. Such initial conditions are typical for questions in cosmology. In this
case, the blowup will happen first in that point x0 for which C≡ αutxx(x0,0) is maximal (and
utx(x0,0) = 0). In that case, the formula of remark 2.2 leads to t+ ∼ 2.547/C1/3.

Remark 2.4. Note that t+ + t− is the total time for an initial condition g ′ ′(0)< 0 to
diverge (only when c 6= 0, with c defined in (2.2)). And then, the divergence time is
t−( f

′ ′(0),g ′ ′(0))+ t+(b∗).

The proof of these statements is given in appendix A.

3. Crossover

The equation (1.3) can be rescaled in space and time, to eliminate either α or β. This rescaling
will be used in appendix B, when we show that blowup is unavoidable in many cases. Here,
we ask a different question as in cosmological studies it is important to know the blowup as a
function of α and β for a fixed initial perturbation. And then, the scaling cannot be used.

As we have indicated in the introduction, for a fixed α> 0 there will be a crossover between
the V-type and the M-type divergence as one varies β. This crossover is important in general,
because the nature of the divergence is different in the two cases: for the V-type divergence,
we see a localised blow-up of the second derivative in a minimum, as shown in figure 1. In the
second, M-type case, the divergence happens at some distance from the critical point of the
initial condition (see figure 2). A vertical wall forms, and this wall moves outward from the
centre, basically with the propagation speed of the wave (which is

√
β for (1.3)). The rate of

divergence for the case when β > 0 differs from that for β= 0.
The divergences in the EFT framework are mainly important, because they are either a hint

for entering the strong field regime (where the perturbative expansion is not valid anymore)
or a breakdown of the underlying fundamental theory [24]. The divergence type should cor-
respond to physical phenomena happening at high energy/small scales. Especially it may help
to introduce appropriate mechanisms to remove such instabilities. As an example the V-type
divergence is localised, and in cosmological studies (as suggested in [24]) can be used as an
origin of super massive black holes. On the other hand the M-type blowup resembles caustics
formation in the Universe [9, 11]. These two cases have different signatures in cosmological
observables [31]. And therefore it is useful to distinguish them.

We illustrate the various possibilities in figures 3–5. In figure 3 we consider initial condi-
tions with a minimum, namely −exp(−30x2). In this case, depending on α and β we can see
a V-type divergence or an M-type divergence. When α is large and β > 0 not too small, we
detect clearly an M-type divergence. But when β is too close to 0, the numerics breaks down,
and one sees something like a V-type divergence in the region ‘V’ of figure 3. However, it is
also possible that in fact for all β > 0 one has M-type divergence, with the two walls of the M
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Figure 3. Distance of singularity at divergence time as a function of α and β1/2: in the
region marked ‘V’ the numerics does not allow to distinguish between V-type and M-
type divergence, since the distance of the (two) singularities is too small to distinguish
M and V. The other white region is the set of parameters where the simulation hits the
boundary before divergence (see appendix C for an explanation). The initial condition
is u(x,0) = 0 and ut(x,0) =−exp(−30x2). The colour coded part shows the distance
of the maximum of |uxx| at blowup time.

Figure 4. Divergence time as a function of α and β: the x axis is β. The initial condition
is u(x,0) = 0 and ut(x,0) = +exp(−30x2). The white region contains those parameters
(α and β) for which the solution hits the boundary before divergence, as in figure 3. Each
colour corresponds to a different divergence time. Note that in this case, since the initial
condition satisfies the condition of theorem B.1 (we made the support finite), we know
that the solution must blow up in finite time, for all α> 0 and β ⩾ 0.
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Figure 5. Distance of singularity at divergence time as function of α and β1/2: because
the initial condition is now u(x,0) = 0 and ut(x,0) = +exp(−30x2), all divergences
seem to be of M-type (see theorem B.1, which only asserts divergence in finite type,
but the proof suggests divergence at near the advancing front). Note that for all α and
β > 10−6 considered in this graph, the distance of the singularity from x= 0 at blowup
is at least 0.1795 (in the interval [−π,π]). For this initial condition and the α, β, con-
sidered, blowup always happens before the wave hits the boundary.

so close together that the numerics gets unreliable. With our current understanding we conjec-
ture that it is always M-type when β > 0. Note that, in any case theorem B.1 shows that for all
β > 0 there is finite time divergence (the proof only applies to initial conditions of a certain
positivity type—the function M of appendix B, but we have seen the M-type divergence for
general non-trivial initial conditions with compact support).

Indeed, when α is large and β > 0 is small, then the minimum will get more and more
pointy as in figure 1, until the second derivative diverges. This happens in the white region ‘V’
in figure 3. In the coloured parameter regions, the negative initial conditions get more pointy,
until the Laplacian term regularises the central part, which then grows, becomes positive and
then diverges away from the centre, as in figure 2.

When the initial condition is positive, with a local maximum, then the situation is somewhat
simpler, because the transition from negative to positive is absent. No V singularity can form.
Note that this is consistent with the discussion of the cases (i) and (ii) in proposition 2.1. The
divergence time as function of α and β is shown in figure 4 for the divergence time, and in
figure 5 for the divergence distance, by which we mean the distance of the singularity from
the coordinate origin. We cannot offer a formula for the curves in either of the figures.

4. Conclusions and discussion

In this article we discussed the equation ∂2
t u(x, t) = α(∂xu(x, t))2 +β∂2

xu(x, t). These types
of PDEs appear naturally in the EFT descriptions of physical systems, where one approx-
imates the equations assuming weak fields. We specifically discuss the two divergence types
arise from these equations, namely the ‘V’ and the ‘M’ type. We discuss how and when these
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instabilities are generated. In some cosmological studies [22] it is suggested that the term
β∂2

xu(x, t) stabilises the system so that the instability caused by α(∂xu(x, t))2 vanishes. This
stabilisation is especially motivated by realistic cosmological studies. While our results are
in agreement with [22, 24, 33] regarding the V-type blowup which happens for small β, our
results show that even for large β the instability is unavoidable, however it is always of the
new M-type. The reasons that this instability is not seen in the realistic cosmological simula-
tions for large β (or c2s in cosmology) could probably be due to 1) the role of gravity which is
neglected in our study 2) the difference in boundary conditions or 3) the instability exists but
will appear beyond the times considered in a study. Preliminary studies show that the results
carry over to the 3+ 1 dimensional situation7.
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Appendix A. Divergence time when β= 0

Here we prove proposition 2.1.

Proof. Define

a(t) = ux(0, t) , b(t) = uxx(0, t) .

Then (2.1) leads to

a(t) = f ′(0)+ g′(0)t+ 2α
ˆ t

0
dτ
ˆ τ

0
dτ ′ux(0, τ

′)uxx(0, τ
′) ,

and therefore

ä(t) = 2αa(t)b(t) . (A.1)

Similarly,

b(t) = f ′′(0)+ g′′(0)t+ 2α
ˆ t

0
dτ
ˆ τ

0
dτ ′

(
(uxx(0, τ

′))2 + ux(0, τ
′)uxxx(0, τ

′)
)
.

From this, we deduce

b̈(t) = 2α(uxx(0, t))
2 + 2αux(0, t)uxxx(0, t)

= 2αb(t)2 + 2αa(t)uxxx(0, t) .
(A.2)

7 In the 3+ 1 dimensional case with spherical symmetry, the equation (1.3) is simply replaced by utt(r, t) =
α(ur(r, t))2 +β

(
urr(r, t)+ 2

r
ur
)
, where r is the radial coordinate. We have done the corresponding numerical exper-

iments for this case.
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Since we assume f ′(0) = g ′(0) = 0 we find from (A.1) that a(t) = 0 for all t for which b(t) is
finite. Therefore, (A.2) reduces to

b̈(t) = 2α(b(t))2 . (A.3)

We will discuss this equation. For computing the divergence time, it is useful to transform the
equation as follows: Multiplying by ḃ leads to

1
2

d
dt
(ḃ(t))2 = 2

3α
d
dt
b(t)3 ,

or, for some c,

1
2 (ḃ(t))

2 = 2
3α(b(t))

3 + c . (A.4)

Note that looking at t= 0 we find

c= 1
2 ḃ(0)

2 − 2
3αb(0)

3 = 1
2g

′ ′(0)2 − 2
3αf

′ ′(0)3 , (A.5)

which is the definition in the proposition. Note that

b(0) = f ′′(0) , and ḃ(0) = g′′(0) .

We consider first the case where g ′ ′(0)> 0. Then ḃ(0)> 0 and from (A.4) we find that

ḃ(t) =
√

4
3α(b(t))

3 + 2c , (A.6)

which means b is increasing and the quantity below the square root is always positive. Using
standard techniques, we get

dt=
db√

4
3αb

3 + 2c
.

From (A.6) we deduce the divergence time t+,

t+ =

ˆ ∞

b(0)

db√
4
3αb

3 + 2c
. (A.7)

This proves (2.3).
The case g ′ ′(0)< 0 is handled similarly, but now (A.6) is replaced by

ḃ(t) =−
√

4
3αb(t)

3 + 2c . (A.8)

This means that b is decreasing until the square root in (A.8) vanishes. This defines b∗, and
then (A.7) is replaced by

t− =

ˆ b(0)

b∗

db√
4
3αb

3 + 2c
.

This leads to (2.4).
The assertions under (iii) are a simple variant of (i) and (ii). The difference is that because

g ′ ′(0) = 0, we find now that c=− 2
3αf

′ ′(0)3, and c 6= 0 by the assumption f ′ ′(0) 6= 0. Note
that in this case, the positivity of ḃ(t) follows from the second order ODE (A.3), given that
b(0) = f ′ ′(0) 6= 0 and ḃ(0) = g ′ ′(0) = 0. The only remaining case is (iv), g ′ ′(0) = f ′ ′(0) = 0,
which implies that b(0) = ḃ(0) = 0, hence, directly leads to b(t) = b(0) = 0 by (A.3). Note
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that the proof says nothing about the divergence of ux or u. Depending on the initial condition,
one can see a divergence of ux or of u (especially if β > 0).

Appendix B. Finite time divergence

We adapt here the proof of [29] to the 1+ 1 dimensional context. The proof actually works in
the same way in higher dimensions, for which it was already spelled out in [28, 29]. Since we
deal here only with the fact that the equation will diverge in finite time, it suffices to consider
instead of α> 0, β > 0, the simpler form

utt− uxx = u2x . (B.1)

Indeed, if v(x, t) solves vtt = α(vx)2 +βvxx, then u(x, t) =
β
αv(β

−1/2x, t) satisfies (B.1). Note
that we work in R, and not, as happens in some simulations, in periodic boundary conditions.
Assume the initial conditions are

u(x,0) = f(x) , ut(x,0) = g(x) ,

with f, g having support in |x|< X. We may assume ( f,g) ∈ H for some functional space, for
example H=W1,∞(R)×L∞(R).

Using a standard fixed point technique, we can find a local in time solution u(t) ∈
C([0, t0],H) for some small t0 > 0. From the finite speed of propagation, using a cut-off tech-
nique, this global (in space) existence result extends to some local in time existence result in
slices of backward cones of slope 1. This way, we can see that our solution is defined bey-
ond the above-mentioned strip R× [0, t0], and extends to a larger domain of definition, which
happens to be a union of backward light cones, with different heights. From elementary con-
siderations, one of the following cases occurs:

(i) Either the union is the half-spaceR× [0,∞).We say in that case that the solution is ‘global’
(for forward time).

(ii) Or, the union writes as

{(x, t) | 0⩽ t< T(x)}

for some 1-Lipschitz function T : R→ R. In that case, we say that u ‘blows up in finite
time.’ Note that by construction, we have a local blow-up time for each x ∈ R, namely
T(x). For more details on the construction of the domain of definition, see [5] and also [8].

Define now, see [29], for x> 0,

M(x) = 1
2 f(x)+

1
2

ˆ X

x
g(ξ)dξ .

Theorem B.1. Assume there is an X0 ∈ (0,X) for which M(x)⩾ 0 for all x ∈ (X0,X), and alsoˆ X

X0

M(ξ)dξ ≡ ε > 0 .

Then, the solution blows up in finite time, in the sense of the definitions above.

Remark B.2. Note that the theorem is shown under the assumption that M(x)> 0. This cov-
ers cases where u(x,0) and/or ut(x,0) are positive (or positive near the edge of their sup-
port). The case of negative M is not covered by the literature, nor by our proof. However,
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we have studied many cases with negative initial M. For example, the case u(x,0) = 0 and
ut(x,0) =−exp(−C · x2) of figure 3. In all these cases we seem to see ‘M-type’ divergence.
We can consider the solution u(x, t), ut(x, t) as a new initial condition for any t. Then, we have
observed that M starts out negative, decreases, and finally crosses 0. From that point on, we
are again in the domain of validity of theorem B.1, and, indeed, the solution diverges. (This is
reminiscent of the two cases in appendix A.)

Proof. It suffices to consider the situation where u(x,0) and ut(x,0) have support in |x|⩽ X,
but we will consider only the side of positive x in the sequel. Clearly, u(x, t) = 0 for x⩾ t+X
due to the finite propagation speed. One estimates now the function

H(t) =
ˆ t

X1

(t− τ)

ˆ τ+X

τ+X0

u(ξ,τ)dξ dτ .

Here, X1 = (X−X0)/2. From the definition, we get

H ′ ′(t) =
ˆ t+X

t+X0

u(ξ, t)dξ . (B.2)

One has the explicit formula

u(x, t) = u0(x, t)+ 1
2

ˆ t

0

ˆ x+t−τ

x−t+τ

ux(ξ,τ)
2dτ dξ , (B.3)

with the ‘free evolution’

u0(x, t) = 1
2 (f(x− t)+ f(x+ t))+ 1

2

ˆ x+t

x−t
g(ξ)dξ .

When x⩾ t+X0 and X⩾ t⩾ X1, then x+ t⩾ X and therefore f(x+ t) = 0 and therefore, in
this region,

u0(x, t) = 1
2 f(x− t)+ 1

2

ˆ x+t

x−t
g(ξ)dξ .

We get from (B.3) and (B.2),

H′′(t) = G0(t)+G1(t) ,

with

G0(t) =
ˆ t+X

t+X0

u0(x, t)dx=
ˆ t+X

t+X0

M(x− t)dx=
ˆ X

X0

M(x)dx= ε ,

by the definition of ε in theorem B.1. The nonlinearity leads to

G1(t) =
ˆ t+X

t+X0

dx
ˆ t

0
dτ
ˆ x+t−τ

x−t+τ

dξ ux(ξ,τ)
2 .

In lemma B.3 below, we show that for t> X1 ≡ (X−X0)/2 one has

G1(t)⩾
1

t+X

ˆ t

0
dτ
ˆ τ+X

τ+X0

dξ (t− τ)(ξ− τ −X0)ux(ξ,τ)
2 . (B.4)

We use now the Schwarz inequality in the form
ˆ
φψ =

ˆ
φ1/2(φ1/2ψ)⩽

(ˆ
φψ2

)1/2 (ˆ
φ

)1/2

,
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with φ = (t− τ)(ξ− τ −X0) and ψ = ux. This leads to

G1(t)⩾ F 2(t)/J(t) ,

with

F(t) =
ˆ t

0

ˆ τ+X

τ+X0

(t− τ)(ξ− τ −X0)ux(ξ,τ)dξ dτ

and

J(t) =
ˆ t

0

ˆ τ+X

τ+X0

(t− τ)(ξ− τ −X0)dτ dξ =
(X−X0)

2t2

4
.

If we integrate the expression for F by parts (in ξ), we get

F(t) =−
ˆ t

0

ˆ τ+X

τ+X0

(t− τ)u(ξ,τ)dξ dτ =−H(t) .

Therefore, we find finally

H ′ ′(t)⩾ G0(t)+
H(t)2

J(t)
. (B.5)

Fix now T and we will show that the solution cannot exist for T> T∗, where T∗ will be com-
puted in the proof: we use here lemma 1 from [28] adapted to the 1d case. The ingredients are
that

H ′ ′(t)⩾ G0(t) = ε > 0 , (B.6)

for all t⩾ 0 and

H ′ ′(t)⩾ G1(t)⩾ 4
H(t)2

(X−X0)2 t2
, (B.7)

for t> X1 (as long as the solution exists). Furthermore, H(X1) = H ′(X1) = 0.
Fix now T1 = 2(X1 + 1). Then, for t> T1, we have t> 1

2 (t+ 1), and we replace from now
on (B.7) by the simpler

H ′ ′(t)⩾ K1
H(t)2

(t+ 1)2
, for t> T1 , (B.8)

with K1 = 16/(X−X0)
2.

The idea is now to deduce from (B.6) and (B.2) an inequality of the form

H ′(t)⩾ CH1+δ(t) for t> T1 with δ > 0 . (B.9)

This implies divergence in finite time, when H(T0)> 0. Indeed, if H(T0) = c−1/δ > 0, then

H(t) =
1

(c−Cδ(t−T0))1/δ
. (B.10)

One can reformulate this as follows: if H(T0) = A and A⩽ 1/e, the optimising δ in (B.10) is
⩽ 1 and therefore we find that the divergence time is proportional to − log(A). Note that, if,
for example, the leading edge of the support (at x= 0) is like |x|2 for x< 0, then this will lead
to earlier divergence compared to |x|3.

We now begin the proof proper. If B> 0, we will use repeatedly the inequality
x

x+B
⩾ 1

2 , for all x⩾ B . (B.11)
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From (B.6) we find

H(t)⩾ K2εt
2 , for all t> 0 , (B.12)

with K2 =
1
2 .

Substituting (B.12) into (B.2), we get

H ′ ′(t)⩾ K1K2εH(t)
t2

(t+ 1)2
⩾ K3εH(t) ,when t> T2 , (B.13)

for some large enough T2 = const.T1 , not depending on ε. Since H ′(t)> 0, we can mul-
tiply (B.13) by H′ and write it as

d
dt
(H′(t)2)⩾ K3ε

d
dt
(H(t)2)when t> T2 .

We integrate from T2 to t and obtain

H′(t)2 ⩾ K3ε
(
H(t)2 +H′(T2)

2 −H(T2)
2
)
= K3εH(t)

2 +K4ε when t> T2 ,

for some K4. From (B.6), we conclude that for large enough T3, one has

K3εH(t)
2 +K4ε⩾ K5εH(t)

2 ,when t> T3 .

Combining the last two equations we find

H′(t)⩾ K1/2
5 ε1/2H(t), when t> T3 .

Integrating from T3 to t leads to

H(t)⩾ H(T3)exp
(
K6ε

1/2(t−T3)
)
⩾ H(T3)exp

(
1
2K6ε

1/2t
)
,when t> 2T3, (B.14)

with K6 = K1/2
5 . Substituting again into (B.2), we get

H′′(t)⩾ K7H(t)
1+δ , for any δ > 0 ,

since the exponential in (B.14) (to the power δ > 0) will dominate the factor (t+ 1)−2 of (B.2),
only if t is sufficiently large. (Note that K7 and this new minimal time T4 will depend on δ.)
We now multiply the last equation by H′ and we obtain

d
dt
(H′(t)2)⩾ 2K7

2+ δ

d
dt

(
H(t)2+δ

)
, for t> T4 .

Integrating from T4 to t we find

H′(t)2 ⩾ 2K1

2+ δ

(
H(t)2+δ −H(T4)

2+δ
)
+H′(T4)

2 .

Taking square roots on both sides and choosing T∗ sufficiently larger than T4, we finally arrive
at (B.9) from which we see that there is a divergence in finite time, as in (B.10).
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We still need to show the inequality (B.4).

Lemma B.3. Let

G1(t) =
ˆ t+X

t+X0

dx
ˆ t

0
dτ
ˆ x+t−τ

x−t+τ

dξ ux(ξ,τ)
2 .

Let X> X0 > 0, and assume ux(x, t) = 0 for all |x|⩾ t+X, 0⩽ t⩽ T. Then one has for all
t⩾ X1 ≡ (X−X0)/2 the inequality

G1(t)⩾
1

t+X

ˆ t

0
dτ
ˆ τ+X

τ+X0

dξ (t− τ)(ξ− τ −X0)ux(ξ,τ)
2 . (B.15)

Proof. We first decompose the triple integration into 3 pieces: the original integration is over
the domain

X0 + t ⩽ x ⩽ X+ t ,

0 ⩽ τ ⩽ t ,

x− t+ τ ⩽ ξ ⩽ x+ t− τ .

(B.16)

Also note that the integrand has support in ξ ⩽ τ +X. The three pieces are

0 ⩽ τ ⩽ t−X0 ,

τ +X0 ⩽ ξ ⩽ τ +X ,

t+X0 ⩽ x ⩽ ξ+ t− τ ,

(B.17)

and

t−X0 ⩽ τ ⩽ t ,

τ +X0 ⩽ ξ ⩽ 2t− τ +X0 ,

t+X0 ⩽ x ⩽ ξ+ t− τ ,

(B.18)

and

t−X0 ⩽ τ ⩽ t ,

2t− τ +X0 ⩽ ξ ⩽ τ + x ,

ξ− t+ τ ⩽ x ⩽ ξ+ t− τ .

(B.19)

One can show that (B.17)–(B.19) defines a domain which coincides with that of (B.16), and
that the three regions are disjoint.

We now give lower bounds for the three regions. For (B.17) we get
ˆ t−X1

0
dτ
ˆ τ+X

τ+X0

dξ ux(ξ,τ)
2
ˆ ξ+t−τ

t+X0

dx ,

ˆ t−X1

0
dτ
ˆ τ+X

τ+X0

dξ ux(ξ,τ)
2 (ξ− τ −X0) .

We bound the last factor from below by

(ξ− τ −X0)⩾
t− τ

t+X
(ξ− τ −X0) .

Similarly, for (B.18), the x integration is bounded from below in exactly the same way. Finally,
for (B.19), using the support property ξ ⩽ τ +X, we find (since t> X1 and X1 < X),
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ξ− τ −X0 ⩽ X−X0 = 2X1 < t+X1 < t+X .

This leads to a bound for the x integral of the form
ˆ ξ+t−τ

ξ−t+τ

dx= 2(t− τ)⩾ (t− τ)
ξ− τ −X0

t+X
.

Collecting terms, we finally find that

G1(t)⩾
1

t+X

ˆ t

0
dτ
ˆ τ+X

τ+X0

dξ (t− τ)(ξ− τ −X0)ux(ξ,τ)
2 .

Appendix C. Numerics

We integrate all the equations by using the Dorman–Prince [19] Runge–Kutta integrator. The
functions are discretised in 213 equidistant points. Derivatives are computed by using five-point
stencils. Divergence is defined by max(|uxx|)> 106. Special care has been given to assert the
quality of the results: we compute with a tolerance (if achievable) of 10−11. There are two
situations where the integration can fail: the time steps gets too short (this happens sometimes
when α is large and β is small). The other problem is the size of the domain in x: we take
periodic boundary conditions on [−π,π], and initial data which vanish at these boundaries. If,
during time evolution, the value of |u(±π, t)| exceeds 10−4, we consider that the wave-part of
the evolution has ‘hit’ the boundary, and we stop the calculation. This happens especially if β
is large and α is small, because in this case, the wave moves with speed

√
β, and may hit the

boundary before α can lead to a divergence.

Conjecture C.1. We believe that this phenomenon might account for the idea that large β
regularises the PDE in cosmological simulations as discussed in [22]. But, as we show in
section B the mathematical fact is that all solutions diverge in a finite time (unless they are 0).
However, this will require a detailed study in a cosmological context.
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