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Dominant ACO2 mutations are a frequent
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Isabelle Meunier,14 Nicole Weisschuh,15 Simone Schimpf-Linzenbold,16 Felix Tonagel,17

Ulrich Kellner,18,19 Patrick Yu-Wai-Man,7,8,9,10 Valerio Carelli,5,6 Bernd Wissinger,15

Patrizia Amati-Bonneau,1,3 Pascal Reynier,1,3 European ION Group* and Guy Lenaers1

* For European ION Group members, see Appendix.

Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative

syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening

European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants

in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 mono-

allelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive

cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and

11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants

predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant

and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mito-

chondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a

normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial

genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data

position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and

emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.
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Introduction
Mitochondrial diseases represent a group of complex

pathologies affecting several organs, sometimes presenting

with a single symptom, but often combining multiple

symptoms.1 This complexity depends on the dual genetic

contribution of the nuclear and the mitochondrial genome

(mtDNA). To date, mutations in all mitochondrial genes

and in more than 400 nuclear genes have been reported,

sometimes in combinations. In most cases, the mitochon-

drial respiratory chain driving ATP production is

affected, but alterations of alternative mitochondrial

mechanisms as metabolic pathways, protein import and

membrane dynamics have been identified in many dis-

eases, mainly disrupting neuronal physiology.

Aconitase 2 nuclear gene (ACO2; MIM#100850)

encoding the mitochondrial aconitase 2 (ACO2; EC#

4.2.1.3) is involved in the reversible isomerization of

citrate into iso-citrate, through the cis-aconitate intermedi-

ate,2 as part of the second step of the Krebs cycle.

Recessive pathogenic variants in ACO2 were initially

identified in the infantile cerebellar retinal degeneration

syndrome (ICRD, MIM#614559), a severe early-onset

autosomal recessive neurodegenerative condition with

seizures and profound psychomotor retardation related to

progressive cerebral and cerebellar degeneration, and

ophthalmologic abnormalities involving optic nerve and

retinal degeneration.3–7 Additional clinical presentations

related to recessive ACO2 variants were subsequently

reported in individuals with a neuromuscular condition8,9

and syndromic presentations of hereditary spastic para-

plegia8,10,11 (Table 1). Most of these patients presented

with optic atrophy, and this predilection for optic nerve
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involvement is further highlighted by the identification of

recessive ACO2 mutations in seven individuals from four

independent families that developed isolated optic atrophy

(OPA9; MIM#616289).6,12–14

Inherited optic neuropathies (IONs) are an important

cause of blindness in children and young adults. The

pathological hallmark is the degeneration of the retinal

ganglion cells (RGCs), whose axons converge to form

the optic nerve, allowing the fast transmission of visual

information from the retina to the brain. IONs are

mainly transmitted as a dominant trait as in the case of

Kjer disease or dominant optic atrophy (DOA). In the

majority of cases, DOA is caused by OPA1 mutations,15

and more rarely by pathogenic variants in additional

genes involved in mitochondrial dynamics, including

MFN2, DNM1L, OPA3, AFG3L2 and SPG7,16–21 or in

SSBP1, a gene involved in mtDNA replication.22–24

Recessive ION has also been identified in few individu-

als with isolated recessive optic atrophy (ROA), due to

biallelic mutations in genes involved in the respiratory

complex I assembly and activity, including RTN4IP1,

TMEM126A and NDUFS2,18,25,26 and in WFS1, a gene

involved in calcium transfer and interorganellar interac-

tions between the endoplasmic reticulum and mitochon-

dria.27 In both DOA and ROA cohorts, 10–20% of

individuals with optic atrophy present additional extra-

ocular features, such as sensorineural deafness, periph-

eral neuropathy, encephalopathies, movement disorders

and myopathies.28,29

About 40% of individuals with IONs still do not have a

confirmed molecular diagnosis,30 which prompted us to

screen the ACO2 gene in multicentre patient cohorts to

determine its contribution to the overall disease burden.

Here, we report the identification of 50 index cases carry-

ing heterozygous pathogenic ACO2 variants, together with

11 index cases with biallelic ACO2 mutations. In vitro

and in silico analyses of identified variants confirmed

pathogenicity and deleterious effects on the first steps of

the tricarboxylic citrate acid cycle and on the maintenance

of the mitochondrial genome.

Materials and methods

Consent for genetic investigations

Written informed consent was obtained from each subject

involved in this study or from the parents of subjects

under 18 years of age, according to protocols approved

by the different institutions involved in this study, and in

agreement with the Declaration of Helsinki.

Nomenclature

ACO2 variants are described according to the NCBI

transcript reference sequence NM_001098.2, including 18

exons, encoding a protein of 780 amino acids (reference

sequence NP_001089.1). The numbering of the nucleoti-

des reflects that of the cDNA, as recommended by the

version 2.0 nomenclature of the Human Genome

Variation Society (HGVS): http://varnomen.hgvs.org.31

Molecular genetic analysis

After extraction of genomic DNA from peripheral blood

cells, ACO2 mutations were screened using resequencing

gene panels dedicated to the molecular diagnosis of IONs

or of mitochondrial inherited diseases. Variants were ana-

lysed by applying various prioritization filters described

elsewhere.21,32 All dominant variants were absent or had

minor allele frequency (MAF) threshold of <0.0001 in

the Genome Aggregation Database (gnomAD v.2.1.1,

https://gnomad.broadinstitute.org), while recessive variants

were considered with an MAF threshold <0.005. All can-

didate pathogenic variants were validated by Sanger

Table 1 Pathologies associated to ACO2 dominant and recessive variants, with the number of individuals (ind) and

families (fam) referenced

Pathology Transmission Number of cases reported References

ICRD Recessive 8 ind from 2 fam Spiegel et al.5

3 ind from 2 fam Metodiev et al.6

1 ind Srivastava et al.7

9 ind from 3 fam Sharkia et al.4

1 ind Blackburn et al.8

Neuromuscular Recessive 1 ind Sadat et al.9

1 ind Blackburn et al.8

HSP ‘þ’ Recessive 1 ind Marelli et al.11

11 ind Bouwkamp et al.10

1 ind Blackburn et al.8

Ataxia, dysarthria, dev. delay Recessive 2 ind from 1 fam Blackburn et al.8

ROA Recessive 12 ind from 11 fam This work

2 ind from 1 fam Metodiev et al.6

2 ind from 1 fam Kelman et al.12

1 ind Chen et al.13

2 ind from 1 fam Gibson et al.14

DOA Dominant 66 ind from 50 fam This work
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sequencing, and their segregation assessed in DNA from

relatives, when available.

In silico analysis of ACO2 missense
mutations

The pathogenicity of ACO2 missense variants was

assessed using the SIFT,33 Polyphen-234 and Mutation

Taster35 prediction tools, and splice-site mutations were

analysed by the dbscSNV programme. All variants were

analysed using ACMG rules and classification (https://var

some.com/) (Supplementary Table 1). The impact of

ACO2 missense variants on the protein structure and

function was determined first, by comparing the three-di-

mensional (3D) structure of the native and mutated

ACO2 proteins,36 second, by performing the molecular

dynamics simulation using Gromacs 5.1.4 software to de-

termine the impact of variants on protein stability, amino

acid flexibility and global protein dimension37 and third,

by performing a molecular docking analysis using

Autodock 4.2 to identify the impact of variants on the

interaction between ACO2- [4Fe, 4S] (SF4) clusters and

the interaction of the complex [ACO2-SF4] with the cit-

rate, cis-aconitate and isocitrate ligands.38

Fibroblast analysis

Fibroblasts from the dominant ACO2 P15 patient (c.1253-

1254insA) and the recessive P51 patient (c.36þ 5del;

c.719G>C), as well as from an ICRD patient with biallelic

ACO2 variants (c.487G>A; c.2048G>A), were generated

from skin biopsies and compared throughout the study to

two wild-type fibroblast cell lines. Cells were cultivated in

2/3 Dulbecco’s Minimum Essential Medium (DMEM,

Gibco) supplemented with 1/3 AmnioMAX (Gibco), 10%

foetal calf serum (Lonza) and 1% Penicillin-Streptomycin-

Amphotericin B (Lonza).

Western blotting

Cellular proteins (20 lg) solubilized in Laemmli buffer

were resolved by SDS-polyacrylamide gel electrophoresis

and transferred to polyvinylidene difluoride membranes

(GE Healthcare). For immune-detection, an anti-ACO2

monoclonal antibody (#ab110321, Abcam, 1/1000) was

used. Monoclonal anti-VDAC and anti-a-tubulin antibodies

were used as mitochondrial and cytosolic reference

markers, respectively (Supplementary Fig. 1).

Mitochondrial respiration rates

Mitochondrial oxygen consumption measurements were

performed at 37�C and atmospheric pressure using a

high-resolution oxygraph (O2K, Oroboros Instrument,

Innsbruck, Austria).

Respiration rates on permeabilized cells were measured

in respiratory buffer RB (10 mM KH2PO4, 300 mM man-

nitol, 10 mM KCl, 5 mM MgCl2, 0.5 mM EGTA and

1 mg/ml bovine serum albumin, pH 7.2) using different tri-

carboxylic citric acid cycle intermediates and different sub-

strates of CI, CIþCII and CII as followed: First, state 2

(non-phosphorylating) respiration was measured after add-

ing 5 mM citrate. Following the stimulation of the phos-

phorylating respiration by saturating ADP concentration

(1.5 mM), 2.5 mM pyruvate was added, followed by 5 mM

malate. Finally, 5 mM glutamate was added to check

whether the CI-linked maximal phosphorylating respiration

was reached. Succinate (10 mM) was then added to meas-

ure the combined CI and CII-linked respiration with con-

vergent CI þ II electron flow into the Q-junction

corresponding to the maximal stimulated phosphorylating

respiration (OXPHOS capacity). Rotenone (5mM) was

used to inhibit CI activity and thus to obtain the maximal

CII-linked respiration. Oligomycin (F0F1-ATP synthase in-

hibitor, 4mg/ml) and 1mM of the mitochondrial uncoupler

carbonyl cyanide p-trifluoromethoxyphenylhydrazone were

sequentially added to ensure that the cells were fully per-

meabilized. Finally, antimycin A addition (2mg/ml) was

used to check for the non-mitochondrial oxidation.

Enzymatic measurements

The activities of aconitase 2, fumarase and citrate syn-

thase (CS) were measured at 37�C with an UVmc2 spec-

trophotometer (SAFAS, Monaco) on the mitochondrial

enriched fraction. Cells were re-suspended in cell buffer

[250 mM saccharose, 20 mM tris(hydroxymethyl)amino-

methane, 2 mM EGTA, 1 mg/ml bovine serum albumin,

pH 7.2; 50 ll/106 cells], disrupted by two freezing-thaw-

ing cycles, washed, centrifuged for 1 min at 16 000 g to

eliminate the cytosolic fraction and re-suspended in the

cell buffer (125 ll/106 cells). Aconitase activity was imme-

diately assayed according to39 in Tris-HCl buffer

(50 mM, pH 7.4) supplemented with 0.5 mM MnAcetate

and containing 0.1% Triton-X100. One hundred millimo-

lar isocitrate were used to initiate the reaction and cis-

aconitate production was followed at 240 nm. Fumarase

activity was measured in KH2PO4 buffer (50 mM, pH

7.4) supplemented with 0.1 mM EDTA and containing

0.1% Triton-X100. Ten millimolar malate was used to

initiate the reaction and fumarate production was fol-

lowed at 250 nm. CS activity was assayed by a standard

procedure.40 The protein content was determined with

the bicinchoninic assay kit (Uptima, Interchim,

Montluçon, France) using bovine serum albumin as

standard. Aconitase 2 activity was normalized to fumar-

ase and CS as mitochondrial content markers. Enzymatic

measurements were performed at least twice in duplicate,

on two different cell pellets from different passages.

Quantification of mtDNA copy
number

For mtDNA quantification, total DNA was isolated from

fibroblasts by using a High Pure PCR Template Preparation
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Kit (Roche ref 11796828001). Q-PCRs were performed in

triplicate in 96-well reaction plates (Applied Biosystems).

Each reaction (final volume 10ml) contained 25 ng DNA,

5ml of Power SYBR-Green PCR Master Mix (Applied

Biosystems) and 0.5mM of each forward and reverse pri-

mer. COX1 and MT-ND4, mitochondrial encoded genes,

were amplified and b2 microglobulin (b2 m) and GAPDH

nuclear-encoded genes were used as a normalizing control.

Primers were COX1: F-50-TCCACTATGTCCTATCAATA-

30 and R-50-GGTGTAGCCTGAGAATAG-30; ND4: F-50-

CGCACTAATTTACACTCA-30 and R-50-GCTAGTCATAT

TAAGTTGTTG-30; b2m: F-50-CAGCTCTAACATGATAA

CC-30 and R-50-CCTGTAGGATTCTTCTTTC-30. GAPDH:

F-50-CCCTGTCCAGTTAATTTC-30 and R-50-CACCCTTT

AGGGAGAAAA-30.

Statistical analyses

Molecular data concerning the mutation types (Fig. 1)

and clinical data, including age at diagnosis, visual acuity

and segment of atrophy of the optic nerve (Fig. 2) were

statistically compared between the dominant and recessive

cases, using the Fisher exact test.

Biochemical data generated from the analysis of the

mitochondrial respiration parameters, mtDNA amounts

and protein abundancies were statistically compared

between the dominant, recessive, ICRD and control

samples, using the two-tailed paired t-test.

All data from this work are available upon request.

Results

Identification of ACO2 variants in
individuals with ION

Cohorts including about 1000 molecularly undiagnosed

ION individuals from France, Germany, Italy, Spain,

Belgium and the UK were screened by targeted sequenc-

ing for the presence of ACO2 variants. Among individu-

als with a single ACO2 variant, we selected cases with

an MAF lower than 0.0001, whereas in individuals with

biallelic heterozygous composite or homozygous variants,

we selected the cases with an MAF lower than 0.005 for

each variant. This led to the identification of 50 individu-

als harbouring 1 of 43 different heterozygous mutations,

among which 29 were novel, as well as 11 individuals

with biallelic mutations, among which 8 were novel. A

compilation of these variants and the associated amino

acid changes are displayed on ACO2 primary sequence

and 3D structure in Fig. 1A and C and listed in the

Supplementary Table 1. Notably, four dominant variants

p.(Arg474Gly), p.(Trp603Ser), p.(Ser669Leu) and

p.(Arg671Trp) were identified in two unrelated individu-

als and p.(Arg671Gln) in four unrelated individuals,

while one recessive variant, p.(Leu74Val), with an MAF

value of 0.00369, was found in five unrelated ROA

individuals, and also formerly described in eight individu-

als with syndromic ACO2 presentations. This

p.(Leu74Val) variant was associated once with

p.(Gly661Arg) in the P56 individual, a combination al-

ready reported in an ROA family.6 Segregation analysis

was performed where available. In DOA cases, all

affected relatives carried the variant, whereas some rela-

tives in the families of patients P6, P8, P9, P13 and P33

carrying the variant were asymptomatic, as occasionally

observed in families with OPA1 mutations.15,41

Moreover, segregation analysis revealed de novo muta-

tions in the P15 and P18 index cases.

Analysis of the types of mutations identified in ACO2

(Fig. 1B) revealed that two-third of all variants were mis-

sense mutations, irrespective of the dominant or recessive

mode of inheritance, while nonsense, frame-shift, splice-

site mutations and deletions accounted together for the

third part of all mutations identified, without significant

difference between the distribution of the mutation types

between dominant and recessive cases (P-value: 0.80).

Notably, the identification of null alleles in dominant

cases suggests that ACO2 haploinsufficiency contributes

mainly to DOA pathophysiology.

Clinical examination of individuals
with ACO2 mutations

All individuals harbouring ACO2 mutations had an oph-

thalmological examination. Optic atrophy was identified

by fundus examination and confirmed by optical coher-

ence tomography, which showed decreased retinal nerve

fibre layer thickness (Fig. 2A and B). Additional ophthal-

mological features are summarized in Supplementary

Table 1 and Fig. 2C. Age at first diagnosis of optic atro-

phy symptoms occurred essentially during the first two

decades, without significant difference between dominant

and recessive cases (P-value: 0.54; Fig. 2C). The distribu-

tion of the visual acuity from all eyes revealed that the

recessive cases were significantly (P-value: 0.001) more

severely affected than the dominant ones, with more than

60% of eyes from the ROA group having a visual acuity

lower than 0.1, whereas more than 80% of eyes from

the DOA group have a visual acuity above 0.1 (Fig. 2D).

Analysis of the optic disc by optical coherence tomog-

raphy and retinal nerve fibre layer thickness measure-

ments indicate a preferential involvement of the temporal

quadrant in both the dominant and recessive patient

groups (Fig. 2E), suggesting a similar pattern of RGC de-

generation, irrespective of the mode of transmission (P-

value: 0.88). Assessment of colour vision revealed highly

divergent alterations, including protan, deutan and tritan

types of dyschromatopsy (data not shown). Notably,

eight patients with DOA or ROA showed additional ret-

inal alterations, including macular microcysts and a

macular dystrophy in one case. In 6/50 (12%) of the

dominant cases and 3/11 (27%) of the recessive cases,

additional extraocular symptoms were found in addition
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to optic atrophy, with a single case showing hearing loss

(P38) and two cases showing a late-onset cerebellar

ataxia (P19 and P53).

Evaluating the pathogenicity of
ACO2 variants

In silico analysis was performed in order to ascertain the

pathogenicity of identified ACO2 variants. Each variant

was evaluated by using Sift, Polyphen-2 and Mutation

Taster prediction tools (Supplementary Table 1). All dom-

inant variants, with the exception of the c.1454A>G

[p.(Glu485Gly), P23] and c.1898G>A [p.(Arg633His),

P32], were predicted to be either deleterious or disease

causing by all three software. Similarly, the ACMG clas-

sification tool predicted that 19 were pathogenic (class

5), 10 likely pathogenic (class 4) and 13 with uncertain

significance (class 3). Prediction results were less clear-cut

regarding the recessive variants, with five classified as

pathogenic (class 5), six likely pathogenic (class 4) and

five with uncertain significance (class 3), suggesting

that they might have milder effect on the protein activity.

The seven variants affecting splice-sites were predicted to

be deleterious by the dbscSNV tool, while only five

affecting the 61 or 62 splicing position were classified

as pathogenic, and two affecting the þ5 position as of

uncertain significance according to the ACMG rules

(Supplementary Table 1).

To gain further insights on the effects of the missense

variants on the ACO2 biophysical properties, we ana-

lysed each variant in silico using three sets of predictive

tools. To infer the 3D structure of the human ACO2 pro-

tein, the 780 amino acids of the human sequence were

aligned and positioned on the 3D crystal structure of the

Sus scrofa ACO2 protein42 using the SwissModel server.

Then, the ACO2 3D structure was modified with the

PyMOL software to visualize all mutated proteins and

minimized using the GROMACS software. Comparison

of native and mutated ACO2 proteins showed that all

variants affect the 3D structure by acquiring and/or los-

ing hydrogen bonds and/or hydrophobic interactions,

with the exception of the dominant p.(Gly240Ser) and
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p.(Gly431Ser), and the recessive p.(Gly240Ala) and

p.(Val761Met) variants. Results of the molecular dynamic

simulation revealed that all variants increased protein sta-

bility (RMSD), with the exception of the dominant

p.(Val247Ala) variant, which decreased protein stability,

and the dominant p.(Ile172Leu) and the recessive

p.(Arg56Cys) variants, which displayed no change in pro-

tein stability. All variants were affected for the amino

acid flexibility parameter (RMSF), and all had decreased

protein dimension (Rg) except the dominant

p.(Ile172Leu) and p.(Val247Ala) variants and the reces-

sive p.(Arg56Cys) variants, which displayed a normal

protein dimension. Molecular docking analysis of the na-

tive and mutated proteins complexed to the iron-sulphur

cluster [ACO2-SF4] did not evidence a significant differ-

ence of their binding energy (�3.43 kcal/mol for the na-

tive ACO2 and from �3.81 to �3.38 kcal/mol for

mutated proteins). All variants had also normal binding

energies for citrate, isocitrate and cis-aconitate, with the

exception of the dominant p.(Ser669Leu), p.(Arg671Gln),

p.(Arg671Trp), p.(Gly703Arg) and p.(Ala710Pro) variants

that displayed increased binding energy and/or alteration

of the substrate binding to the SF4 complex (see

Supplementary Table 2). Altogether, these in silico analy-

ses reveal that all ACO2 variants display altered biophys-

ical properties, although our results did not identify a

single criterion discriminating dominant from recessive

mutations.
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ACO2 mutated fibroblasts show
reduced ACO2 abundance and
activity, with alterations in the first
steps of the Krebs cycle and depletion
of mtDNA copy number

In order to analyse the effects of dominant and recessive

ACO2 variants on the mitochondrial physiology, we gen-

erated skin fibroblasts from a DOA (P15) and an ROA

(P51) patient, as well as from an ICRD patient carrying

the c.487G>A/p.(Val163Met) and c.2048G>A/

p.(Gly683Asn) variants. All cells displayed a normal

growth in standard culture media, compared to controls

(not shown). Western blot analysis revealed that ACO2

amounts were similarly reduced by half in the three

mutated ACO2 cell lines (Fig. 3A), while the CS

remained unchanged, witnessing a regular amount of

mitochondria in all cell lines (Fig. 3B). Assessment of the

mitochondrial aconitase activity, relatively to the CS or

the fumarase activity, disclosed a 50% decrease in both

dominant and recessive backgrounds, whereas the activity

was drastically reduced in the ICRD cell line (Fig. 3C

and D). Assessment of mitochondrial oxygen consump-

tion in the maximal phosphorylation condition from

permeabilized fibroblasts, in the presence of citrate as the

sole substrate evidenced a significant reduction of the

respiration rate in the three mutated cell lines, which was

more severe in the ICRD cell line. Addition of pyruvate

stimulated the respiration by the production of one

NADH related to the pyruvate to acetyl-coA reaction,

but to a lower level in all ACO2 cell lines compared to

wild-type cells, with values remaining significant for the

recessive ACO2 and ICRD cells (Fig. 3E). Further add-

ition of malate restored the respiration up to the level of

the wild-type cell lines, and the subsequent CI-linked

respiration with maximal substrate supply (pyruvate,

malate, glutamate), or CI þ CII-linked respiration (suc-

cessive addition of succinate) were maintained to levels

comparable to the wild-type cell lines, suggesting that an

adaptation process by-passes the Krebs cycle bottleneck

due to the reduced ACO2 activity. Finally, the CII-linked

respiration did not significantly differ between the DOA

and ROA cell lines, compared to controls, but was

decreased for the ICRD cell line (Fig. 3E), witnessing a

normal FADH2 production and complex II activity in

both DOA and ROA. Further evaluation of the enzymat-

ic activities of the respiratory complexes I to V did not

reveal any significant difference in comparison with con-

trols, irrespective of the ACO2 genotype (Fig. 3F).

Measurements of mtDNA abundance in the three ACO2

mutated cell lines disclosed a significant reduction of

more than 50% in the three mutated cell lines compared

to the control cells (Fig. 3G), as already reported for cells

lacking the mitochondrial aconitase activity.9 Further

evaluation of the mitochondrial network shape did not

reveal modification of the fusion–fission ratio in the dom-

inant and recessive ACO2 cells (data not shown).

Altogether, these data indicate that the ACO2 domin-

ant and recessive mutations affect significantly the mito-

chondrial aconitase activity and consequently the first

steps of the Krebs cycle and the pyruvate/citrate depend-

ent respiration, with a further depletion of the mitochon-

drial genome. Nevertheless, they also indicate that the

mitochondrial respiration based on alternative Krebs cycle

substrates can be restored to a normal level, by circum-

venting the metabolic bottleneck due to ACO2 deficiency

in both DOA and ROA genetic backgrounds.

Discussion
IONs are genetically heterogeneous, and reaching a con-

firmed molecular diagnosis can be challenging. In order

to improve diagnostic pathways, we have screened large

cohorts of European individuals with molecularly undiag-

nosed optic neuropathy to determine whether ACO2 var-

iants account for a proportion of cases. In addition to

the seven ION cases that were found to harbour recessive

ACO2 mutations as previously described,6,12–14 this study

highlights, for the first time, the important contribution

of mono-allelic ACO2 variants as a cause of isolated

optic atrophy, with 50 independent cases carrying domin-

ant pathogenic variants. Clearly, both dominant and re-

cessive mutations in ACO2 can cause the very same

ophthalmological presentation with a pathological predi-

lection for RGCs within the inner retina. Analyses of the

clinical data indicate that ACO2 mutations result in oph-

thalmological and optical coherence tomography features

similar to those seen in the context of OPA1 muta-

tions,15,43 with the preferential involvement of the papil-

lomacular bundle. There was variable disease severity

with visual acuity ranging from normal in clinically

asymptomatic individuals to severe visual impairment

meeting the criteria for legal blindness. The age at which

the diagnosis was first made mainly occurred during the

first two decades of life in both dominant and recessive

individuals. Notably, in 8 out of the 61 individuals with

ACO2 mutations mild retinal alterations, including macu-

lar microcysts and macular dystrophy, were noticed.

While macular microcysts are a non-specific retinal alter-

ation, possibly of mechanical origin, also reported in

severely affected DOA and Leber Hereditary Optic

Neuropathy cases,44,45 macular dystrophy, a truly degen-

erative process, converges with the retinal features

described in ICRD and other syndromic clinical presenta-

tions related to ACO2 recessive variants.6,10,46 In add-

ition, 12% of dominant and 27% of recessive cases

displayed extraocular symptoms that can either be inci-

dentally related to the ACO2 individuals, or as in OPA1

cases, related to highly specific mutations. This could

also be the consequence of ageing with an ACO2

mutated genetic background, as individuals P19 aged 73

8 | BRAIN COMMUNICATIONS 2021: Page 8 of 12 M. Charif et al.



and P53 aged 61 both showed cerebellar related symp-

toms, mirroring a late-onset ICRD condition. Thus, al-

though the ACO2 dominant and recessive presentations

that we identified are clinically similar, disclosing in most

cases an isolated optic atrophy, the recessive cases do ap-

pear more severely affected than the dominant ones,

suggesting that the combination of bi-allelic ACO2 var-

iants compromise to a higher level the aconitase 2

functions.

Concerning the dominant cases, we have identified

43 variants, among which 30 have not been referenced

(absence of rs number). Two-thirds of these variants are
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Figure 3 Analysis of dominant and recessive ACO2 mutated fibroblasts, compared to an ACO2-related ICRD fibroblast

cell line. All experiments were performed at least in two independent replicates for each control (ctr.) and dominant (dom.) and recessive (rec.)

ACO2 fibroblasts, and compared to one ACO2-related ICRD fibroblast cell line (ICRD). Results are mean 6 SD. Statistical analysis of results from

all the following experiments was performed using the two-tailed paired t-test. (A) Western blots with antibodies against ACO2 and VDAC

proteins. The quantification of the relative ratio shows a significant decrease of ACO2 protein in all patient fibroblasts (*P-value <0.05). (B) CS

activity is not affected by ACO2 mutations. (C and D) Relative ACO2 activity normalized to the CS (C) and to the fumarase (D) activities shows a

tendency to decrease in the dominant and recessive ACO2 fibroblasts, and a significant decrease in the ICRD fibroblasts (*P-value <0.05).

(E) The assessment of fibroblast respiration (mitochondrial oxygen rates related to maximal phosphorylation condition in permeablized

fibroblasts) by oxygraphy, using the Krebs cycle substrates, Citrate (C), pyruvate (P), malate (M), glutamate (G), succinate (S), followed by the

inhibition of complex I by rotenone (R), show that the respiration related to the use of citrate is decreased in all ACO2 fibroblasts, partially

increased by pyruvate, and fully restored by malate. Further stimulation by glutamate and succinate is limited, and only the ICRD fibroblasts are
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fibroblasts normalized to control fibroblasts reveals a significant decrease in the mitochondrial genome in all ACO2 cells (*P-value <0.05).
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missense changes that are predicted to be pathogenic,

with the exception of the p.(Glu485Gly) and

p.(Arg633His) amino acid changes that were identified in

individuals (P23 and P32, respectively) with an asymmet-

ric optic atrophy. The remaining third of the variants are

essentially nonsense, frame-shift and splice mutations,

most probably behaving as null alleles. This suggests that

haploinsufficiency in ACO2 activity is the basic patho-

physiological mechanism that drives RGC loss and optic

nerve degeneration secondary to ACO2 mutations, simi-

larly to what is observed in OPA1 cases. This should

prompt an in-depth ophthalmological examination of

parents of the recessive ACO2 patients carrying such null

alleles.

Regarding the recessive cases, among the 11 individuals

with bi-allelic ACO2 mutations, we identified eight novel

variants, including three missense, three splice-site, one

frame-shift, and one nonsense mutations. We also identi-

fied five individuals harbouring the previously reported

p.(Leu74Val) variant which is the disease-associated vari-

ant most frequently observed in population databases

(MAF ¼ 0.00369). The p.(Leu74Val) variant was found

in combination with the p.(Gly661Arg) variant in one in-

dividual, a genotype previously described in an ROA pa-

tient.6 For the four other individuals, the p.(Leu74Val)

variant was combined with splice site and nonsense

mutations, therefore, suggesting that the p.(Leu74Val)

amino acid change has a mild effect on ACO2 function.

This also applies for the p.(Gly240Ala) variant in patient

P51, since this allele is associated with a splice-site muta-

tion identified in our ROA cohort. Otherwise, all other

recessive individuals displayed a combination of missense

mutations that were never reported in any other ACO2

associated clinical phenotype. Notably, the in silico ana-

lysis of all recessive missense mutations using the Sift,

PolyPhen-2 and Mutation Taster software disclosed a

combination of one variant with predicted pathogenicity

with a second variant of less clear-cut pathogenicity in

compound heterozygous individuals. Conversely, the two

homozygous variants p.(Arg56Cys) and p.(Pro227His),

identified in patients P52 and P55, respectively, were pre-

dicted to be deleterious and likely pathogenic, requiring

further analyses to decipher their respective effects on

ACO2 functions.

Additional biophysical analyses of the changes in the

structure, in the molecular dynamics and the protein–lig-

and interactions of the missense mutated proteins

revealed that all mutated proteins were altered with at

least one out of the set of three criteria investigated,

being affected. Nevertheless, none of these criteria could

discriminate between dominant and recessive variants.

However, some dominant variants affecting the ACO2

catalytic site located between the 669 and 710 amino

acid positions, showed a clear alteration of the energy

binding with aconitase substrates, emphasizing their key

role for the aconitase enzymatic activity.

The functional consequences of the dominant and re-

cessive ACO2 variants identified in our study were

probed further in patient-derived skin fibroblasts. As al-

ready observed for ROA individuals with biallelic ACO2

mutations,5,46 the aconitase abundance and activity were

reduced by half both in recessive and dominant cell lines,

suggesting a common pathophysiological mechanism

related to ACO2 mutations irrespective of the mode of

inheritance. This had a significant consequence on the

oxidative process when using citrate and pyruvate sub-

strates, with the first steps of the Krebs cycle being sig-

nificantly impaired by the reduced aconitase activity, thus

leading to a metabolic bottleneck for the OXPHOS pro-

cess. Nevertheless, the addition of substrates involved

downstream of the ACO2 step, restored a normal

OXPHOS respiration, suggesting that the production of

NADH and FADH2 is compensated by the reactions

occurring downstream of isocitrate production. This fur-

ther suggests that the mitochondrial respiratory chain

complexes are intact in these cells given that no alteration

of the maximal enzymatic activity of complexes I to V

was observed, irrespective of the ACO2 genetic back-

ground. Finally, similarly to what was already reported

in other models and cellular conditions,9 we observed a

significant depletion of the mtDNA, reinforcing the role

of ACO2, or of its substrates, in the maintenance of the

mitochondrial genome. This in the context of fibroblasts

apparently did not impinge directly on the OXPHOS

setup, however, most probably may become relevant in

high energy-dependent tissues and cell types, in particular

in RGCs. In fact, the partial but consistent reduction in

mtDNA copy number provides an interesting link to the

pathophysiological mechanism recently discovered in the

SSBP1-related DOA, for which the instability of the mito-

chondrial genome is the primary alteration responsible

for the disease.22,24 Congruently, as for the SSBP1-mutant

patients, from the clinical standpoint in addition to optic

atrophy, some retinal symptoms may also occur, such as

peculiar retinal dystrophic changes.22–24

In conclusion, our study highlights the importance of

dominant and recessive ACO2 mutations in patients with

isolated or syndromic optic atrophy phenotypes.

Dominant mutations are far more frequent than recessive

ones at least in European populations, placing ACO2 as

the third most frequent genetic cause of IONs, after

OPA1 and WFS1. This also adds a new pathophysio-

logical pathway involving mitochondria, as responsible

for RGC degeneration, after the alterations of the mito-

chondrial dynamics in DOA and of the complex I assem-

bly in ROA, connecting the first steps of the Krebs cycle

to the OXPHOS respiration and the maintenance of the

mitochondrial genome integrity. The next challenge is to

investigate the underlying pathophysiological mechanisms

in greater detail, to develop potential therapeutic inter-

ventions that will promote RGC survival in the presence

of ACO2 mutations.
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