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a b s t r a c t 

We propose a semi-supervised learning approach to annotate a dataset with reduced requirements for

manual annotation and with controlled annotation error. The method is based on feature-space projection

and label propagation using local quality metrics. First, an auto-encoder extracts the features of the sam- 

ples in an unsupervised manner. Then, the extracted features are projected by a t -distributed stochastic

neighbor embedding algorithm into a two-dimensional (2D) space. A selection of the best 2D projection

is introduced based on the silhouette score. The expert annotator uses the obtained 2D representation

to manually label samples. Finally, the labels of the labeled samples are propagated to the unlabeled

samples using a K-nearest neighbor strategy and local quality metrics. We compare our method against

semi-supervised optimum-path forest and K-nearest neighbor label propagation (without considering lo- 

cal quality metrics). Our method achieves state-of-the-art results on three different datasets by labeling

more than 96% of the samples with an annotation error from 7% to 17% . Additionally, our method allows

to control the trade-off between annotation error and number of labeled samples. Moreover, we combine

our method with robust loss functions to compensate for the label noise introduced by automatic label

propagation. Our method allows to achieve similar, and even better, classification performances compared

to those obtained using a fully manually labeled dataset, with up to 6% in terms of classification accuracy.
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. Introduction

According to the World Health Organization, stroke is one of 

he leading causes of disability worldwide ( Johnson et al., 2016 ), 

nd cerebral emboli have been related to the risk of stroke 

 Wallace et al., 2015 ). Cerebral emboli can be generated by several 

edical procedures, such as transcatheter aortic valve implantation 

 Aggarwal et al., 2018 ), cerebral angiography ( Markus et al., 1993 ),

nd patent foramen ovale tests ( Serena et al., 2010 ), and they can

ccur as a result of a variety of conditions, such as carotid artery 

tenosis ( Rosenkranz et al., 2006 ). 

Several techniques can be used to detect emboli ( Wallace et al., 

015 ), such as magnetic resonance imaging and computed tomog- 

aphy. The main drawbacks of these techniques are that they are 

nvasive and expensive, and they do not allow long-duration moni- 
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oring of the cerebral blood flow. A well-suited alternative to solve 

hese drawbacks is transcranial Doppler (TCD) monitoring. TCD 

onitoring is a non-invasive and relatively cheap ultrasound tech- 

ique that allows the cerebral blood flow to be monitored over 

ong periods of time (from a few minutes, to a few hours). Dur- 

ng the monitoring, high-intensity transient signals (HITS), corre- 

ponding to emboli or artifacts, can be detected. In this paper we 

ork with TCD data that were acquired with a portable robotic 

robe worn by the patient, allowing them free movement and 

ong-duration monitoring without loss of signal. 

Moreover, the HITS can be used to discriminate between emboli 

solid or gaseous) and artifacts (see Fig. 1 ). Many studies have tried 

o detect emboli using TCD data through classical signal-processing 

echniques such as Fourier transforms and wavelet transforms 

 Markus and Punter, 2005; Gencer et al., 2013; Serbes and Aydin, 

014; Karahoca and Tunga, 2015; Sombune et al., 2016 ), and also 

hrough machine-learning techniques such as support vector ma- 

hine (SVM) algorithms ( Guépié et al., 2017; Guepie et al., 2019 ) 
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Fig. 1. Examples of spectrograms of high-intensity transient signals. Top row: solid emboli; middle row: gaseous emboli; bottom row: artifacts. Solid emboli usually have

lower intensities and shorter durations than gaseous emboli, which are usually ’v’-shaped with higher intensities than solid emboli (they have higher energies). Artifacts are

usually symmetric.
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1 Also known as cluster or manifold assumptions, which say that samples that are

in the same structure ( i.e. , manifold or cluster) are likely to have the same labels.
nd deep-learning techniques such as convolutional neural net- 

orks (CNNs) ( Sombune et al., 2017; Tafsast et al., 2018 ). These 

tudies have shown impressive results in cerebral emboli detec- 

ion and its discrimination from artifacts, although only Guépié

t al. (2017) ; Guepie et al. (2019) used portable TCD data. This is a

ey point, because portable TCD monitors are more prone to arti- 

acts, making the detection and discrimination task more complex 

han with conventional TCD data. 

Furthermore, one of the main difficulties in real-world deep 

earning applications is that data acquisition and annotation is 

ostly. More specifically, data annotation can be expensive, time- 

onsuming and often requires expert knowledge (this is partic- 

larly true in the medical field). Some semi-supervised learn- 

ng approaches have tried to address this problem using label 

ropagation ( Zhu and Ghahramani, 2002; Benato et al., 2018; 

021 ), generative models ( Kingma et al., 2014 ), and self-training 

 Rosenberg et al., 2005 ). Only a few reports in the literature have

pplied these methods to TCD data ( Vindas et al., 2021 ). Neverthe- 

ess, these approaches work in a high-dimensional space or project 

he data into a lower-dimensional space, without taking into ac- 

ount the local quality of the projected points to guide the label 

ropagation. Additionally, even if automatic data annotation meth- 

ds introduce some errors in the labels, not many studies have 

aken this into account when they have trained their models. 

In this study, we propose a framework for semi-automatic 

ata annotation (label propagation) and classification using semi- 

utomatically labeled datasets and we evaluated it on three tasks: 

mboli classification, organ classification and digit classification. 

urthermore, our method relies on three assumptions (structure 

ssumption ( Chapelle et al., 2009 ), the preservation of the local 

tructure during projection and the annotation space coverage) and 

ombines: (1) representation learning and dimensionality reduc- 

ion techniques; (2) projection quality evaluation; and (3) noise- 

olerant loss functions. These concepts are detailed in the following 

ections. 

.1. Related work 

In this subsection, we present four domains that are related 

o our work: representation learning and dimensionality reduc- 

ion; semi-supervised learning; noisy-labels learning; and semi- 

utomatic data annotation. 

.1.1. Representation learning, dimensionality reduction, and their 

ualities 

Auto-encoders Tschannen et al. (2018) have been widely used 

n several problems to extract features from high-dimensional 

ata ( Doersch et al., 2015; Chen et al., 2017 ), and even for

nomaly detection ( Zhou and Paffenroth, 2017 ). Representation 

earning by deep neural networks is close to human perception 

 Zhang et al., 2018 ); however, it remains very high dimensional. 

 commonly used technique is to project the learned represen- 

ations into a lower dimensional space that can be visualized 

sing some dimensionality reduction techniques ( Packer et al., 

013 ), such as t -distributed stochastic neighbor embedding (t-SNE) 

 Maaten and Hinton, 2008 ), principal component analysis (PCA) 

 Jolliffe and Cadima, 2016 ), isometric feature mapping (ISOMAP) 

 Tenenbaum, 20 0 0 ), and uniform manifold approximation and pro- 

ection (UMAP) ( McInnes et al., 2020 ). Moreover, it has been shown 

hat working on lower dimensional spaces facilitates manual an- 

otation and label propagation ( Benato et al., 2018; 2021 ). Thus, 

hese lower dimensional spaces can then be used for interactive 

nd semi-automatic data annotation ( Benato et al., 2018; 2021; 

indas et al., 2021 ). Furthermore, in the context of data annota- 

ion, to reduce annotation errors and have reliable projections, it 
3

s important to be able to evaluate the quality of the final pro- 

ection using global and local projection quality evaluation metrics 

 Lueks et al., 2011 ). 

.1.2. Semi-supervised learning and label propagation 

Data annotation can be a time consuming and expensive task, 

articularly for medical applications. This can lead to partially an- 

otated datasets that can be difficult to handle. Semi-supervised 

earning methods are good candidates to exploit both labeled and 

nlabeled data. Indeed, while it is possible to use only the la- 

eled data, the rationale behind semi-supervised learning is that 

nlabeled data can bring important information to the developed 

odels. Different methods have been proposed to propagate the 

abels from labeled samples to unlabeled samples (these meth- 

ds often make structure assumptions 1 ( Chapelle et al., 2009 )): 

rom label propagation ( Zhu and Ghahramani, 2002 ), to generative 

odels ( Kingma et al., 2014 ) and self-training ( Rosenberg et al., 

005 ). Label propagation Zhu and Ghahramani (2002) gives the 

ame label to close samples using a K-nearest neighbor (KNN) 

trategy; generative models ( Kingma et al., 2014 ) treat the labels 

f the unlabeled samples as latent variables that can be generated 

sing a learned distribution; and self-training ( Rosenberg et al., 

005 ) trains a model several times with a dataset that is con- 

inuously improved and annotated over the iterations through the 

rained model of the previous iteration. A lot of these methods use 

achine-learning and deep-learning algorithms, plus some em- 

edding representations as regularization to exploit both the la- 

eled and unlabeled samples ( e.g. , Laplacian SVMs ( Belkin et al., 

0 06; Sindhwani et al., 20 05 ), deep semi-supervised embedding 

 Weston et al., 2008 )). Other methods, such as optimum-path for- 

st semi-supervised (OPF-semi) ( Amorim et al., 2014 ), propagate 

abels using a graph structure: the training set (which is composed 

f labeled and unlabeled samples) is transformed into a graph, 

hen representers of the different classes are computed, and finally, 

he unlabeled samples are annotated by assigning to them the la- 

el of their closest labeled representer. However, to the best of our 

nowledge, none of these methods take into account the quality of 

he learned embedding. 

.1.3. Noisy-labels learning and noise-tolerant loss functions 

Another aspect encountered with semi-automatic annotation 

and more generally, with the annotation of a lot of unlabeled 

ata) is that some errors (or noise) are introduced on the la- 

els. Therefore, we have to find strategies to compensate for this 

oise that is added to the labels. Several methods allow this prob- 

em to be tackled ( Song et al., 2021 ). Robust loss function meth- 

ds use loss functions that are noise tolerant, such as general- 

zed cross entropy (GCE) ( Zhang and Sabuncu, 2018 ) and symmet- 

ic CE ( Wang et al., 2019 ). A similar family of methods known 

s loss adjustment can lower the negative influence of noisy la- 

eled samples by adjusting them before updating the weights 

f the model ( Song et al., 2019 ). Robust architecture methods 

stimate the label-transition matrix, using noise adaptation lay- 

rs ( Goldberger and Ben-Reuven, 2017 ) or dedicated architectures 

 Xiao et al., 2015 ). Robust regularization uses regularization to im- 

rove the generalization capability of a model trained on noisy- 

abel data ( Pereyra et al., 2017 ). Finally, other families of methods 

an be used to select the correctly labelled samples ( Song et al., 

019 ) or to use a set of weak models to re-build the labels of the

amples ( Yan et al., 2016 ). 
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.1.4. Semi-automatic data annotation 

Deep neural networks have been shown to be efficient in 

earning representations that can be close to human perception 

 Zhang et al., 2018 ). This can justify why some semi-automatic an- 

otation methods start by extracting features in an unsupervised 

anner using auto-encoders, before projecting the obtained fea- 

ures into a 2D space for manual and automatic annotation ( Benato 

t al., 2018; 2021 ). To improve the classification performances of 

odels on unseen data, Benato et al. ( Benato et al., 2018 ) pro-

osed the combination of semi-supervised learning with interac- 

ive guided manual annotation on a 2D feature space, as images 

rom the modified dataset from the National Institute of Stan- 

ards and Technology (MNIST) and from microscopic images. Their 

ipeline relies on an auto-encoder to extract the features, t-SNE to 

roject the data in the 2D space that is used to interactively/ man- 

ally label samples, and a Laplacian SVM and OPF to automatically 

ropagate labels from the labeled samples to the unlabeled sam- 

les. The same group Benato et al. (2021) improved this pipeline 

y incorporating the concept of ’confidence’ of the classifiers when 

arrying out the automatic label propagation. This allows the man- 

al annotators to focus just on the difficult samples that classifiers 

annot correctly predict with high confidence. Moreover, these two 

ast methods are the closest to our proposed method, along with 

abel propagation ( Zhu and Ghahramani, 2002; Vindas et al., 2021 ), 

hich are based on a KNN strategy. To our knowledge, these meth- 

ds do not propose to take into account the quality of the 2D pro-

ection to do label propagation, nor a strategy to select the optimal 

rojection, nor a strategy to compensate the noise in the labels in- 

roduced by automatic annotation. 

.2. Contribution 

As discussed above, the combination of semi-automatic anno- 

ation (based on representation learning), dimensionality reduc- 

ion, and label propagation is a promising solution to overcome 

he difficulty of data annotation. Indeed, representation learning 

llows to extract features from raw data in an unsupervised man- 

er; dimensionality reduction allows to get lower dimensional 

paces easier for the expert to interact with; and label propaga- 

ion allows to take advantage of the few labeled samples to auto- 

atically annotate some unlabeled samples. To do this, we start 

y extracting features from the data using a deep convolutional 

uto-encoder ( Tschannen et al., 2018; Chen et al., 2017 ), and then 

roject these features onto a 2D space using dimensionality re- 

uction techniques ( i.e. , t-SNE ( Maaten and Hinton, 2008 )). We 

hen select the best projection using the silhouette score metric 

 Rousseeuw, 1987 ), and finally propagate the labels based on both 

lobal and local quality measures of the projection ( Lueks et al., 

011 ) and a KNN strategy. Furthermore, we use the obtained 

ataset, which is composed of the original labeled samples and 

he new labeled samples (with our label propagation method), 

o train a deep CNN (DCNN) to do classification using a robust 

oss function that allows compensation for the noise introduced in 

he labels by our semi-automatic data-annotation method. Thereby, 

ur proposed method is general and composed of flexible blocks 

hich can adapt to different types of dataset (as shown exper- 

mentally in Section 3 ). More specifically, the core elements of 

ur contribution (optimal projection selection and label propaga- 

ion steps) are generic, automatic and only depend on the feature 

pace obtained from the raw data. Moreover, thanks to the hyper- 

arameters of our propagation method, the user is able to control 

he trade-off between annotation error and proportion of labeled 

amples. 

To summarize, the main contributions of this paper are as fol- 

ows: 
4

• We propose a novel methodology for semi-automatic data

annotation based on global and local quality metrics with

controlled annotation error;
• We introduce a selection strategy to select the best projec- 

tion for data annotation (obtained using a dimensionality re- 

duction technique);
• We propose to use robust loss functions to improve the

classification performances of a classifier trained on a

noisy semi-automatic labeled dataset obtained by a semi- 

automatic annotation method.

The rest of the paper is structured as follows. In Section 2 , the

emi-automatic data annotation method is presented in detail. In 

ection 3 , the data and experimental evaluation are presented. In 

ection 4 , we discuss the results of the different experiments, and 

n Section 5 , we conclude and give some guidelines to our future 

ork. 

. Proposed method: Semi-supervised data annotation and

lassification

Let us begin by specifying the three assumptions on which our 

ethod is based: the structure assumption ( Chapelle et al., 2009 ); 

he preservation of the local structure during projection; and the 

nnotation space coverage . The first assumption establishes that 

amples belonging to the same structure are likely to be part of 

he same class. The second assumption says that if samples are 

rojected from a high-dimensional space to a lower-dimensional 

pace, their neighborhood should be preserved (even if some er- 

ors can be tolerated). Finally, the third assumption means that the 

ew available labeled samples should cover as much as possible the 

hole annotation space. 

Let us assume that we have a dataset D composed of a large 

umber of unlabeled samples U ( |U | = U , where |U| is the cardinal

f U), and a small number of labeled samples L ( |L| = L ) with N

lasses. Our method ( Fig. 2 ) combines the different approaches that 

re presented in Section 1.1 , and is composed of four steps: 

• Feature extraction : We start by extracting features in an

unsupervised manner using an auto-encoder adapted to our

data. Using unsupervised learning techniques allows hand- 

crafted features to be avoided and allows to use all of the

available samples from D.
• Dimensionality reduction : We reduce the dimension of the

latent space of the previous step to obtain a 2D space. This

allows more efficient automatic and manual labeling of the

samples, as shown in Benato et al. (2021) . In this step, we

compute different projections and we select the optimal

projection using the silhouette score.
• Automatic label propagation : By considering the local pro- 

jection quality of each sample in the 2D space, we propagate

the labels of high-quality labeled samples to high-quality

unlabeled samples. This allows the creation of a richer train- 

ing set ( i.e. , it increases the size of L ) with reduced effort.
• Classification with noisy labels : Finally, classification is car- 

ried out using noisy-label techniques to compensate for the

noise introduced by the automatic label propagation.

.1. Feature extraction 

To extract data-specific features from the input samples, we use 

n auto-encoder, an unsupervised way to obtain a compressed rep- 

esentation of data. It is composed of two parts: an encoder that 

ncodes the information into a latent feature space (in our case, 

ith dimension >> 2 ), and a decoder that uses the extracted fea- 

ures of the input to reconstruct it. Although the principle of our 

ethod is generic and can be used for multiple types of data ( e.g. ,
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Fig. 2. Proposed semi-supervised annotation pipeline. Our label propagation method (LQ-KNN) is composed of four parts: (a) Feature extraction, where a latent feature space

is learned from the input samples; (b) Dimensionality reduction, where the latent feature space of the previous step is projected into a 2D space; (c) Manual annotation,

where an expert uses the 2D space obtained with the previous step together with some sample metadata to annotate some samples; (d) Automatic label propagation with

a KNN strategy and local quality measures using the previously obtained manually labeled dataset.
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ime-series, audio, volumes), as we work with images, we use a 

onvolutional auto-encoder to reduce the number of parameters of 

he model, and to exploit the spatial context of the images. 

Moreover, as our objective is to annotate data, the convolutional 

uto-encoder is trained on the labeled and unlabeled data, which 

llows the use of all of the available data to improve the learning 

rocess. 

.2. Dimensionality reduction 

Although the previous step provides considerable reduction of 

he dimensionality of our problem, it still remains too large for 

ur main objectives: automatic and interactive manual annotation. 

ndeed, Benato et al. (2021) showed that working on a lower- 

imensional space allows to obtain better automatic and manual 

nnotations than working on the original high-dimensional space. 

hat is why a dimensionality reduction technique is used to project 

he latent feature space extracted by the encoder of the auto- 

ncoder to a smaller 2D space that can be used for visualiza- 

ion and manual annotation purposes. Following the recommen- 

ations of Benato et al. (2018) and Benato et al. (2021) , we used

-SNE as the dimensionality reduction technique. This choice is

ell justified, as we are more interested in the local structure of

he data than in the global structure, so t-SNE is preferred over

ethods such as PCA and UMAP. However, t-SNE has three hyper- 

arameters: the perplexity, the learning rate and the early exagger- 

tion. Therefore, special care needs to be taken when applying t- 

NE. To do this, we perform a grid search over the different hyper- 

arameters of t-SNE, to obtain different 2D projections of the auto- 

ncoder latent feature space. Furthermore, we need to have some 

riterion to identify ’good’ projections for our task (which is label 

ropagation), because visually it can be difficult to distinguish be- 

ween two ’good’ projections, as they can be very similar. The sil- 

ouette score ( Rousseeuw, 1987 ) allows this to be done, because it 

easures the compactness of each class cluster ( i.e. , cluster of sam- 

les belonging to the same class), as well as their distances with 

espect to the other class clusters. Moreover, for label propagation 

sing KNN strategies, it is ideal to increase the inter-cluster dis- 

ance and to reduce the intra-cluster distance, because annotation 

rrors mainly come from samples that are located at the bound- 
5

ries of close class clusters, or from samples located in the wrong 

lass cluster. 

Let us now recall the definition of the silhouette score that we 

ropose to use. Let us assume that we have N classes c 1 , . . . , c N ,

nd f 1 , . . . , f L + U embedded representations obtained by a t-SNE 

rojection P . Let us denote for all j ∈ [1 , L ] , y j the label of sample

j, and for all i ∈ [1 , N] , C i = { j ∈ [1 , L ] / y j = c i } the set of indices of

he samples of class c i . The silhouette score, S, compares the simi- 

arity of a sample k ∈ C p between the samples of its own class and

he samples of the other classes: 

(P ) = 

1 

L 

L ∑ 

k =1

s (k ) 

here 

 k ∈ [1 , L ] , s (k ) =
{

μinter (k ) − μintra (k ) 

max (μinter (k ) , μintra (k )) 
if | C p | ≥ 2

0 else 

(1) 

nd where μinter (k ) is the smallest mean distance between the la- 

eled sample k and all of the labeled samples for the other classes, 

hereas μintra (k ) is the mean distance between the labeled sam- 

le k and all of the labeled samples of the same class. The best 

rojection P B is then the one that has the highest silhouette score. 

t is important to note that only the labeled samples are used to 

ompute the silhouette score as these are the only samples with 

nown labels. 

Additionally, as in the previous step, all of the training data ( i.e. , 

abeled and unlabeled) are used to optimize the method, because 

e are interested in data annotation and we separate this task 

rom the classification task. Indeed, the reconstruction part of the 

uto-encoder model is only used to learn representations ( i.e. , the 

raining step of the auto-encoder) and the t-SNE algorithm is only 

sed to project the learned representations onto a 2D space. 

.3. Automatic label propagation 

Our label propagation method is based on the concept of the 

ocal quality ( lq ) of a projected point onto a lower-dimensional 

pace, as introduced by Lueks et al. (2011) . In simple terms, this 

etric measures how well the neighborhood of a sample is pre- 

erved when projected from a high-dimensional space ( i.e. , the 
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uto-encoder space) onto a lower-dimensional space ( i.e. , the 2D 

pace obtained by t-SNE); higher values indicate good preservation 

f the neighborhood of a point, and lower values indicate modifi- 

ations in the neighborhood of the point. Moreover, we propose 

o use the local quality lq of a projected point as the selection 

etric to obtain the labeled samples to be used for label propa- 

ation, and the unlabeled samples to annotate during label propa- 

ation. The idea is to use the co-ranking framework ( Lee and Ver- 

eysen, 2009 ) to quantify how well the global and local structure 

f a high-dimensional manifold is preserved when projected onto a 

ower dimension using a dimensionality reduction technique such 

s t-SNE. The principle is the following. Let us define the rank of 

ample A with respect to sample B as the index of A in a sorted

ist (by increasing distance) of the neighbours of B. The idea is 

o compute the ranks of all of the samples (with respect to all 

f the other samples) in the high-dimensional manifold and in 

he lower-dimensional manifold, and to compare them, to quantify 

ow much they change. The hypothesis is that if the neighborhood 

f a sample is unchanged when it is projected onto the lower- 

imensional manifold, then its ranks will also remain unchanged 

so ideally the structure assumption ( Chapelle et al., 2009 ) should 

e verified in both spaces). The computation of the global and lo- 

al quality metrics introduced by Lueks et al. (2011) depends on 

wo parameters: k s and k t . Here, k s controls the size of the neigh-

orhood that we are going to look for when comparing the neigh- 

orhoods 2 in the high- and low-dimensional manifolds. Then, k t 
ontrols the rank error ( i.e. , the rank changes that we are going to

olerate 3 ). 

Furthermore, once we have computed the global and local qual- 

ties of the selected projection P B , we can start using these to prop-

gate labels from labeled samples to unlabeled samples. To for- 

alize our method, we are going to build on ( Zhu and Ghahra- 

ani, 2002 ). Let us denote Y ∈ R (L + U,N) as the label matrix, where

he first L rows correspond to the labeled samples and the last U

ows correspond to the unlabeled samples. As we work with prob- 

bilistic labels, Y i j is the probability that sample i belongs to class 

j. Let us denote, T K,τ ∈ R (L + U,L + U) as a probabilistic transition ma- 

rix, where T K,τ
i j

is the probability to jump from sample i to sample

j, which depends on K , the size of the neighborhood used to search

or labeled neighbours for an unlabeled sample (not to be confused 

ith k t , which was used before to compute the local quality of the 

D points), and τ , the threshold used to determine whether the 

ocal quality of a point is considered acceptable or not (not to be 

istaken for k s ). We define T K,τ based on the nearest-neighbors 

ethod and the local quality: 

 i, j ∈ [1 , L + U] , T K,τ
i j 

= 

⎧⎪ ⎨
⎪⎩

1 if (i, j ∈ [1 , L ] and i = j) 
or (i, j ∈ P K,τ ) 
or (i = j and i ∈ C τ ) 

0 else 

(2) 

ith 

• P K,τ = { i ∈ [ L + 1 , L + U] , j ∈ [1 , L ] s.t. f i ∈
V K ( f j ) , lq ( f i , k s , k t ) > τ, lq ( f j , k s , k t ) > τ, ∀ f ∈
V K ( f i ) , lq ( f j , k s , k t ) > lq ( f, k s , k t ) } , where

- f i ∈ V K ( f j ) means that the embedded representation of

the unlabeled sample i is in the K-neighborhood of the

embedded representation of the labeled sample j;

- lq ( f i , k s , k t ) > τ, lq ( f j , k s , k t ) > τ means that the local

quality of samples i and j are greater than the defined

threshold τ ;
2 the higher k s , the more demanding it is in terms of global quality 
3 the higher k t , the more errors we tolerate, but the less informative in the local 

uality

6

- ∀ f ∈ V K ( f i ) , lq ( f j , k s , k t ) > lq ( f, k s , k t ) means that the

embedded representation of the labeled sample j is the

one that has the best local quality in the K-neighborhood

of the unlabeled sample i .
• C τ = { i ∈ [ L + 1 , L + U] s.t. lq ( f i , k s k, k t ) < τ } is a set contain-

ing all of the unlabeled samples with a local quality score

smaller than the defined threshold τ . These samples will not

be taken into account for label propagation.

The set P K,τ allows propagation of the labels from the labeled 

amples to their unlabeled neighbors based on a local quality cri- 

erion, while the set C τ avoids labeling samples that do not respect 

he local quality criterion. We can now define our label propaga- 

ion algorithm as in Zhu and Ghahramani (2002) : 

• Propagate the labels from the good local quality labeled

samples to the good local quality unlabeled samples: Y ←
T K,τ × Y ;

• Row normalize Y (by construction of T K,τ , Y is row- 

normalized);
• Update T K,τ by considering adding the new labeled samples

to L ;
• Repeat the process until there are no more samples to label

(or until some number of iterations is reached).

Due to the formalism introduced in Zhu and Ghahra- 

ani (2002) and used here, we can see the difference between 

ur introduced method and the method introduced by Benato et al. 

2018, 2021) : in our method, the transition matrix T is computed 

hrough KNN and local quality measures, whereas with Benato 

t al. the transition matrix T is computed using Laplacian SVM and 

PF. 

Intuitively, our algorithm finishes when there are no more sam- 

les to label, or when there are no more unlabeled samples with 

ocal quality greater than the established threshold. The final algo- 

ithm of our method is presented in Algorithm 1 . 

Algorithm 1: Local quality with KNN (LQ-KNN) label propaga- 

tion. 

Input : D = L ∪ U , k s , k t , K, τ
Output : New labeled dataset ˜ D 

Iterations : 

• Extract features of ALL of the samples using an auto-encoder

model.
• Dimensionality reduction of the previous representations:

– Apply t-SNE with grid search;

– Select the best projection P B using the silhouette score;

– Obtain the embedded representations f 1 , . . . , f L + U of the

samples using P B ;

– Compute the local quality lq (., k s , k t ) of each sample;

– Sort the representations obtained by decreasing the local

quality.

• Propagate the labels using the local quality of the embedded

representations:

while P K,τ � = ∅ do 

Y ← T K,τ × Y ; 

Row normalize Y ; 

Update L , U , T K,τ and P K,τ ; 

end 

• Define ˜ D = L
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.4. Classification with noisy labels 

Once we obtain a new labeled dataset with our proposed 

ethod, we perform another task: naming classification, to take 

dvantage of having more labeled data. However, as expected, our 

ethod introduces some noise into the labels, which can dis- 

upt the learning process of the classification model. To overcome 

his, we propose to use one noise robust loss function, GCE loss 

 Zhang and Sabuncu, 2018 ), which behaves well under noisy-label 

ituations, and allows the trained models to maintain good gen- 

ralization performances for unseen data. If we note, for all sam- 

les x ∈ L of label y ∈ { 0 , 1 } C , g(x ) the prediction of a classification

odel, the GCE loss is defined as: 

 q (g(x ) , y i ) = 

1 − g i (x ) q

q 
(3) 

here y i and g i (x ) are the i -th components of the true label y and

he predicted label g(x ) . The hyper-parameter q allows control of 

he noise tolerance and the convergence speed; when q → 1 , we 

et (ignoring a multiplication factor) the mean absolute error loss 

unction, which is known to be noise tolerant but with slow con- 

ergence speed, whereas when q → 0 , we get the CE loss func- 

ion, which is known to have fast convergence speed but which 

s not noise tolerant. Moreover, following the recommendations of 

 Zhang and Sabuncu, 2018 ), we are going to fix q = 0 . 7 , as this rep-

esents a good trade-off between noise tolerance and convergence 

peed. 

. Experiments and results

In order to validate our proposed method, we test it on three 

ifferent datasets: MNIST ( LeCun and Cortes, 2010 ), OrganCMNIST 

 Yang et al., 2021; Bilic et al., 2019 ) and a private dataset com-

osed of TCD HITS. Without loss of generality, the models used 

or feature extraction and classification tasks were adapted to each 

ataset. The core of our method (dimensionality reduction, label 

ropagation, robust loss function) is applied using the same pa- 

ameters for all the datasets. 

.1. Data 

We used two public datasets, MNIST and OrganCMNIST. The 

rst one is a subset of the MNIST dataset ( LeCun and Cortes, 2010 ),

hich includes 15,0 0 0 labeled samples for training, and 10,0 0 0 

abeled samples for testing. The second one is the OrganCMNIST 

 Yang et al., 2021; Bilic et al., 2019 ) dataset, which includes 15,392

abeled samples for training and 8,268 labeled samples for testing. 

his dataset is composed of 28 × 28 computed tomography images 

f 11 different organs. 

The HITS dataset includes 52 patients (20 men, 25 women, and 

 unknown; median age 69, range 21 to 91, computed with the 

vailable information) from 11 hospitals from France, Switzerland, 

elgium, England, and The Netherlands. Some of the patients were 

n Neurovascular Units and Cardiovascular Units, and we identi- 

ed two pathologies: stenosis and patent foramen ovale. Addition- 

lly, the data of some of the patients were acquired during surgi- 

al procedures: transcatheter aortic valve implantation and atrial 

brillation ablation. Furthermore, some of the patients received a 

ontrast agent during the recording, which were mainly Sonovue 

an ultrasound contrast agent) for the hospitals in Lyon (France), 

nd Iobitridol (an iodine-containing contrast agent) for the hospi- 

als in Belgium. 

The recordings were acquired using two TCD devices (TCD-X, 

AKIe; Atys Medical) under different conditions and for different 

urations, and the recording conditions and parameters were dif- 

erent across all of the patients. However, according to the device 
7

ettings ranges and the recommendations for monitoring the mid- 

le cerebral artery and performing emboli detection, we have the 

ollowing information: 

• Pulse repetition frequency: 6.2 kHz;
• Transmitted ultrasound frequency: 1.5 MHz;
• Insonation depth: 45 − 55 mm ;
• Sample volume: 8 − 10 mm 

3 .

The data obtained from the TCD recordings, as the raw data, 

ere then processed to obtain suitable representations for the 

odels we developed. 

.2. Pre-processing 

From each TCD recording, we detect HITS and extract images 

using the data management software, ADMS; Atys Medical), which 

epresents the HITS spectrograms. The detection and extraction pa- 

ameters were fixed (and were equal for all of the samples in the 

atabase). We used a high-pass filter of 150 Hz, a detection thresh- 

ld for the HITS of 9 dB, a gain of 6 dB, and no noise reduction

the question of the value of the detection threshold was reported 

n Guepie et al. (2019) ). In summary, a HITS was detected if it sat-

sfied the criteria of ( Spencer et al., 1995 ) and if its signal intensity

as greater than 9 dB. This procedure provided 68 492 HITS in 

otal, from which 1545 were manually labeled by an expert (403 

rtifacts, 569 gaseous emboli, 569 solid emboli, 4 unknown) us- 

ng the 2D reduced space obtained using our pipeline (figure 2 ). 

his labeled dataset is henceforth referred to as the HITS dataset 

hereas the partially labeled dataset (6 8 4 92 HITS, 1545 labeled) 

s referred to as the large HITS dataset. 

.3. Baselines 

For each label propagation experiment, we used a standard 

NN strategy (Std-KNN) ( Vindas et al., 2021 ), where the labels are 

ropagated using only a KNN algorithm without local quality (so 

he computation of the transition matrix T K depends only on K, 

he neighborhood considered to propagate the labels). Additionally, 

e compare our method (LQ-KNN) to OPF-semi ( Amorim et al., 

014 ), which is commonly used for data annotation. We use the 

ython library OPFython ( de Rosa and Papa, 2021 ) to implement 

he OPF-semi models. For the classification experiments, our base- 

ines are: (1) models that use only the original labeled dataset; and 

2) models that use the augmented dataset trained without noise- 

olerant loss functions.

.4. Evaluation strategy 

Evaluation of label propagation To evaluate our label propagation 

ethod, we used the annotation accuracy, which is defined as the 

atio between the number of correctly labeled samples and the to- 

al number of labeled samples provided by the method. We also 

sed the percentage of labeled samples, which is defined as the 

atio between the number of automatically labeled samples and 

he initial number of unlabeled samples. For label propagation ex- 

eriments using a fully annotated dataset, we considered only 10% 

f the training samples as originally labeled ( i.e. , L is composed 

f 10% of the available labeled samples, and U is composed of the 

emaining samples). Then, we select the optimal projection using 

nly the labeled samples and we propagate the labels from these 

amples to the rest of the samples using the selected projection. 

he selection of the originally labeled samples is carried out us- 

ng random sampling. For statistical purposes, we repeat each la- 

el propagation run 50 times. In addition to these 50 repetitions, 

or the MNIST experiment, we train 10 auto-encoder models, to get 

ighter statistical results. 
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Fig. 3. Auto-encoder architectures used. (a) Architecture for the MNIST and OrganCMNIST datasets. (b) Architecture for the HITS dataset.

Table 1

Training parameters of the auto-encoders of experiment 1. MSE stands for mean squared error loss.

Dataset Epochs Batch Size Learning rate Optimizer Weight Decay Loss function

MNIST

50 32

5e-2 1e-5

Adamax MSEOrganCMNIST 5e-5 1e-7

HITS 5e-3 1e-2

3

t

o

o

t

f

F

p

e

t

a

p

a

g

H

(

t

t

u

s

l

s

s

a

t

d

c  

d

r

w  

w  

i

n  

s

o

d

3

3

t

t

a

s

p

s

p

b

p

g  

e

c

d

t

u

.4.1. Evaluation of the classification task 

Furthermore, we also evaluate the impact of our label propaga- 

ion method through the performance change of a classifier trained 

n datasets obtained without and with label propagation. More- 

ver, we use robust loss functions to compensate for the noise in 

he labels introduced by the label propagation methods. Two dif- 

erent evaluation strategies were used based on the dataset type. 

or the MNIST and OrganCMNIST datasets we used 50 times re- 

eated holdout as evaluation method with general accuracy as 

valuation metric. The training set was obtained by propagating 

he labels from 10% of the training samples (15,0 0 0 for MNIST 

nd 15,392 for OrganCMNIST) to the rest of the training sam- 

les, whereas the test set was fixed and composed of the manu- 

lly labeled testing samples (10,0 0 0 for MNIST and 8,268 for Or- 

anCMNIST) which are not used for label propagation. For the 

ITS datasets, we used the Matthews correlation coefficient (MCC) 

 Hicks et al., 2021 ) and class accuracies as evaluation metrics 4 and 

he evaluation strategy was based on leave-one-subject-out evalua- 

ion. First, we propagate the labels from the labeled samples to the 

nlabeled samples (for the HITS dataset we considered 10% of the 

amples as labeled and for the large HITS dataset we used all the 

abeled samples i.e. 1545 samples). Secondly, different train/test 

plits are created by taking as test samples the manually labeled 

amples of a fixed subject and as train samples all the (manually 

nd automatically) labeled samples of the remaining subjects. In 

his way, we get 39 train/test splits. Finally, we train and evaluate 

ifferent models using the created splits and we repeat this pro- 

ess 10 times for the large HITS dataset and 20 times for the HITS

ataset. 
4 We use class accuracy as the noise that we introduce in the labels is asymmet- 

ic, mainly between the gaseous emboli and solid emboli classes

f

f

f

t

f

8

Moreover, for all of the experiments using local quality metrics, 

e fixed k s = 10 and k t = 10 . We choose these values because: (1)

e saw experimentally that the values of k s and k t do not have an

mportant influence on the annotation accuracy for values that are 

ot too large ( i.e. , less than 50); (2) we want good local qualities in

mall neighborhoods to better propagate labels; (3) higher values 

f k s and k t could lead to ’false’ good local-quality points. Further 

iscussion can be found in Section 4 . 

.5. Experimental set-up 

.5.1. Experiment 1: Label propagation evaluation 

The objective of this experiment was to test our method using 

hree datasets: a subset of the MNIST dataset verifying the struc- 

ure assumption; and two medical datasets, as the OrganCMNIST 

nd the HITS datasets. The auto-encoder architectures used for un- 

upervised feature extraction are shown in Fig. 3 and its training 

arameters are given in Table 1 . As regards the optimal projection 

election, we did the grid search over three hyper-parameters (per- 

lexity, early exaggeration and learning rate) and their ranges can 

e found in Table 2 . Finally, the parameters of the different label 

ropagation experiments are given in Table 3 , and the results are 

iven in Table 4 and shown in Figs. 4 , 5 , and 14 . Several phenom-

na can be observed. 

First, from Table 4 , we can see that our method, LQ-KNN, is 

omparable to OPF-semi. Indeed, although Std-KNN and LQ-KNN 

o not annotate all the available samples for the hyper-parameters 

ested (contrary to OPF-semi), they annotate more than 96% of the 

nlabeled samples with an annotation accuracy greater than 90% 

or the MNIST dataset, 79% for the OrganCMNIST dataset, and 81% 

or the HITS dataset compared to 82% , 75% and 78% for OPF-semi 

or the MNIST, OrganCMNIST and HITS datasets, respectively. Addi- 

ionally, we can see that our method is faster than OPF-semi, by a 

actor of 10 2 − 10 3 . 
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Table 2

Parameters for the grid search in experiment 1. As the HITS and OrganCMNIST datasets are more complex than the MNIST

dataset, a more complete grid search is needed to find optimal projections.

Dataset Perplexity Early Exaggeration Learning rate

MNIST [10, 30, 50] [50, 250, 500] [10, 100, 1000]

OrganCMNIST [5, 10, 15, 20, 25, 30, 35, 40, 45, 50] [5, 10, 25, 50, 75, 100, 200, 500] [10, 50, 100, 500, 1000]

HITS

Table 3

Parameters for label propagation in experiment 1. The Dataset corresponds to the dataset used as the basis to test the label propagation method. We

select 10% of the samples as labeled ( L ), and we consider the rest of the samples as unlabeled ( U). We then propagate the labels from the samples of 

L to some of the samples of U using one of the propagation methods, to obtain the final dataset. The experiments using the HITS and OrganCMNIST 

datasets were repeated 50 times. The experiments using the MNIST dataset were repeated 50 times for 10 different auto-encoders (500 repetitions

in total), except for OPF-semi, where we did 20 repetitions for each auto-encoder. K corresponds to the size of the neighborhood used to search for

labeled neighbours for an unlabeled sample.

Exp. name Dataset |L| |U| Propagation K τ Repetitions

Std-KNN

MNIST 1,496 13,504

Std-KNN

1 ≤ K ≤ 20 

- 500

HITS 152 1,393 - 50

OrganCMNIST 1,534 13,858 - 50

LQ-KNN- τ

MNIST 1,496 13,504

LQ-KNN 0 . 1 ≤ τ ≤ 0 . 5 

500

HITS 152 1,393 50

OrganCMNIST 1,534 13,858 50

OPF-semi

MNIST 1,496 13,504

OPF-semi

- - 200

HITS 152 1,393 - - 50

OrganCMNIST 1,534 13,858 - - 20

Table 4

Experiment 1: Label propagation results using the MNIST, OrganCMNIST and HITS datasets. L corresponds to the set of initially (manually) labeled 

samples, U corresponds to the set of initially unlabeled samples, τ corresponds to the local quality threshold that defines if a sample is considered as 

of good quality, K corresponds to the size of the neighborhood used to search for labeled neighbours for an unlabeled sample. Our proposed method

LQ-KNN outperforms OPF-semi ( Amorim et al., 2014 ) and the baseline Std-KNN, at the expense of a smaller number of labeled samples. Additionally,

LQ-KNN and Std-KNN are faster than OPF-semi by a factor of 10 3 .

Dataset Propagation |L| |U| τ K Annotation Final % of Annotation

method accuracy labeled time

samples ( % ) (ms/sample)

MNIST

Std-KNN 1496 13,504 - 5 91 . 83 ± 1 . 47 95 . 39 ± 1 . 05 (30 . 98 ± 5 . 84) × 10 −3 

- 10 90 . 74 ± 1 . 45 99 . 43 ± 0 . 23 ( 28 . 78 ± 5 . 13 ) × 10 −3 

LQ-KNN 0.1 5 93 . 12 ± 1 . 36 93 . 88 ± 0 . 66 (59 . 10 ± 12 . 35) × 10 −3 

10 92 . 66 ± 1 . 30 98 . 16 ± 0 . 42 (50 . 48 ± 11 . 32) × 10 −3 

OPF-semi - - 82 . 32 ± 6 . 17 100 . 0 ± 0 . 0 102 . 71 ± 17 . 52 

OrganCMNIST

Std-KNN 1534 13,858 - 5 81 . 87 ± 0 . 76 90 . 26 ± 2 . 64 (26 . 33 ± 2 . 65) × 10 −3 

- 10 79 . 86 ± 0 . 67 99 . 00 ± 0 . 20 ( 23 . 41 ± 1 . 98 ) × 10 −3 

LQ-KNN 0.1 5 84 . 46 ± 0 . 57 85 . 62 ± 1 . 99 (53 . 00 ± 7 . 47) × 10 −3 

10 82 . 73 ± 0 . 44 96 . 24 ± 1 . 09 (44 . 36 ± 5 . 69) × 10 −3 

OPF-semi - - 75 . 22 ± 4 . 48 100 . 0 ± 0 . 0 86 . 52 ± 0 . 51 

HITS

Std-KNN 152 1393 - 5 82 . 12 ± 2 . 37 95 . 99 ± 1 . 70 (10 . 39 ± 0 . 20) × 10 −2 

- 10 81 . 36 ± 1 . 81 99 . 58 ± 0 . 63 ( 10 . 04 ± 0 . 18 ) × 10 −2 

LQ-KNN 0.1 5 82 . 84 ± 2 . 12 94 . 48 ± 1 . 72 (16 . 87 ± 0 . 48) × 10 −3 

10 82 . 67 ± 2 . 02 98 . 50 ± 0 . 80 (16 . 13 ± 0 . 35) × 10 −2 

OPF-semi - - 78 . 40 ± 13 . 44 100 . 0 ± 0 . 0 9 . 48 ± 1 . 1 
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curacies than the methods that do not take into account the an- 
Secondly, from Table 4 , we can see that our proposed method 

LQ-KNN) yields an annotation accuracy greater than 92% for 

NIST, 82% for OrganCMNIST and 82% for the HITS dataset, which 

s 10% , 7% , and 4% greater than with OPF-semi respectively. Fur- 

hermore, the methods using the local quality with neighborhood 

ropagation yield better results than using just Std-KNN. Indeed, 

ith the HITS dataset, Std-KNN with K = 10 gives an annotation 

ccuracy of 81 . 36% , with labeling of 99 . 58% of the samples, against

n annotation accuracy of 82 . 67% and labeling of 98 . 50% of the

amples for LQ-KNN with τ = 0 . 1 and K = 10 . This can also be ob-

erved for the MNIST and OrganCMNIST datasets. 

Thirdly, from Figs. 4 and 14 , we can see that the annotation 

ccuracy and the proportion of labeled samples depends on the 

eighborhood K within which we propagate the labels; the higher 

, the more samples we annotate, but the smaller the annotation 

ccuracy; inversely, the smaller K, the fewer samples we annotate, 

ut the greater the annotation accuracy. Moreover, these quantities 
9

epend on the local quality threshold τ used to define good qual- 

ty samples: the higher τ , the higher the annotation accuracy, but 

he smaller the number of labeled samples. 

Fourthly, in Fig. 4 , we can identify two regimes in the behav- 

or of our method. The first regime, which we term the ’dynamic’ 

egime, is obtained at the beginning for relatively small values of 

, where the number of newly labeled samples increases with 

he value of K. The second regime, which we term the ’perma- 

ent’ regime, is obtained for higher values of K, and in this case 

he number of labeled samples and the annotation accuracy reach 

lateaus. 

Finally, we studied the importance of the label propagation or- 

er by fixing a projection and propagating the labels using LQ-KNN 

ith and without sorting the samples by decreasing local quali- 

ies. Fig. 5 shows that the LQ-KNN method that starts by labeling 

he samples with higher local qualities yields better annotation ac- 
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Fig. 4. Experiment 1: Comparing LQ-KNN propagation with different hyper-parameters. (a) MNIST dataset annotation accuracy. (b) MNIST dataset labeled samples (in % ). (c)

OrganCMNIST dataset annotation accuracy (in % ). (d) OrganCMNIST dataset labeled samples (in % ). (e) HITS dataset annotation accuracy. (f) HITS dataset labeled samples (in

% ). τ corresponds to the threshold used to define good local-quality samples. For LQ-KNN: green curves, τ = 0 . 1 ; blue curves, τ = 0 . 3 ; red curves, τ = 0 . 5 . The proportion 

( % ) of unlabeled samples that were labeled by the methods converges with K, hence we show here the results for K ≤ 11 . 
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otation order. The difference between the two methods becomes 

ore pronounced when we increase the neighborhood size K used 

or label propagation. 

.5.2. Experiment 2: Validation of the projection selection strategy 

The objective of this experiment is to validate our proposed 

rojection selection strategy (see Section 2.2 ). To do this, we start 

y selecting the bests and worsts 2D projections obtained with t- 

NE according to the silhouette scores ( Fig. 6 ). Here, the selected 

est 2D projections have a silhouette score of 0.54, with the worsts 

t −0 . 23 . Then, we propagate the labels using the same strategy as

n experiment 1 for the HITS dataset. These results are given in 

able 5 . We can see that both propagation methods achieve con- 

iderably higher annotation accuracies for the best projection com- 

ared to the worst projection for all values of K. Furthermore, even 

or the worst projection, LQ-KNN provides higher annotation accu- 

acies at the expense of the number of labeled samples. 

.5.3. Experiment 3: Evaluation through a classification task on a 

ataset with known label noise 

We evaluate the results of the previous experiment on a clas- 

ification task. The objectives of this experiment are two-fold: 

o determine the improvement in the classification performances 

hrough to the use of new automatically labeled data; and to 

how the interest in using robust loss functions to compensate 
10
or the annotation error from the automatic label propagation. We 

rained a CNN ( Fig. 7 ) on different datasets (see Table 6 ) with

ifferent training parameters based on the dataset (see Table 7 ). 

ig. 8 shows the MNIST dataset results, Fig. 9 shows the OrganCM- 

IST dataset results, and Figs. 10 and 11 show the results using the 

ITS datasets. 

On the one hand, from the OrganCMNIST results, three inter- 

sting points can be noted. First, from Fig. 9 , we can see that the

est classification performances are achieved with the dataset ob- 

ained with our label propagation method, LQ-KNN, and trained 

ith a robust loss function, GCE, which yields a global accuracy of 

5 . 76% against 74 . 58% with OrganCMNIST Std-KNN and GCE, and 

0 . 62% without label propagation and GCE. Secondly, Fig. 9 also 

hows that the best results are obtained with the GCE loss func- 

ion with label propagation (Std-KNN or LQ-KNN). Finally, we can 

ee that even when we do not use a robust loss function ( i.e. ,

hen we use CE), our label propagation method provides better 

erformances ( 72 . 73% ) than the baseline OrganCMNIST Std-KNN 

 71 . 71% ). The same behaviour is observed in Fig. 8 for the MNIST

ataset. 

On the other hand, the classification results for the HITS dataset 

 Figs. 10 , 11 ) also reveal the following. First, LQ-KNN and Std-KNN

abel propagation improve the performances of the model with re- 

pect to the model trained using less labeled samples, for all of the 

lasses (in terms of MCC, HITS LQ-KNN-K10 with CE outperforms 
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Fig. 5. Experiment 1: Evaluation of the propagation order. (a) Annotation accuracy (in % ). (b) Labeled samples (in % ). For LQ-KNN with τ = 0 . 1 : blue curves, starting by 

labeling the higher local quality samples (the samples are sorted by decreasing local qualities); red curves, without taking into account the propagation order (the samples

are not sorted by decreasing local qualities). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5

Experiment 2. Label propagation for the HITS dataset using the best and worst selected 2D projections according to the silhou- 

ette scores. The best selected projection allows automatic annotation of more samples with higher annotation accuracy. L , set 

of initially (manually) labeled samples; U , set of initially unlabeled samples; τ , local quality threshold that defines if a sample 

is considered as of good quality.

K Propagation Projection Silhouette |L| |U| τ Annotation Final labeled

method Score accuracy samples %

5 Std-KNN Best 0 . 53 ± 0 . 05 - 82 . 11 ± 2 . 37 95 . 99 ± 1 . 70 

Worst −0 . 26 ± 0 . 07 58 . 43 ± 8 . 95 98 . 03 ± 1 . 22 

LQ-KNN Best 0 . 53 ± 0 . 04 152 1,393 0.1 82 . 84 ± 2 . 12 94 . 47 ± 1 . 72 

Worst −0 . 25 ± 0 . 09 70 . 87 ± 7 . 18 68 . 57 ± 10 . 16 

15 Std-KNN Best 0 . 53 ± 0 . 05 - 80 . 31 ± 2 . 03 99 . 97 ± 0 . 07 

Worst −0 . 26 ± 0 . 07 56 . 44 ± 9 . 83 99 . 66 ± 0 . 20 

LQ-KNN Best 0 . 53 ± 0 . 04 0.1 82 . 82 ± 1 . 96 98 . 84 ± 0 . 67 

Worst −0 . 25 ± 0 . 09 66 . 16 ± 8 . 76 79 . 92 ± 7 . 531 

11
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Fig. 6. Experiment 2: Examples of best and worst 2D chosen projections of the HITS dataset (1545 samples) obtained with respect to the silhouette scores. (a) Best projection

(silhouette score, 0 . 54 ± 0 . 05 ). (b) Worst projection (silhouette score, −0 . 23 ± 0 . 09 ). The best selected projection gives more distinct clusters per class than the worst. Art., 

artifact; GE, gaseous emboli; SE, solid emboli.

12
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Table 6

The different datasets used to train the models in experiment 3. The Core dataset corresponds to the dataset used as the basis to test the

label propagation method. We select 10% of the samples as labeled ( L ), and we consider the rest of the samples as unlabeled ( U). We then 

propagate the labels from the samples of L to some of the samples of U , to obtain the final dataset. K corresponds to the neighborhood that we 

consider to propagate the labels, and τ corresponds to the local quality threshold that defines if a sample is considered of good quality. None,

no labeled propagation used to obtain the final dataset. The mean annotation accuracy correspond to the accuracy of the label propagation

method, not to be confused with the classification accuracy obtained by training classification models on these datasets ( Figs. 8 - 11 ).

Dataset Core dataset Propagation

method

|L| |U| # of

automatically

labeled samples

Mean

annotation

accuracy

K τ

MNIST No propagation MNIST None 1496 13,504 - - - -

MNIST Std-KNN Std-KNN 13426 ± 31 90 . 74 ± 1 . 45 10 -

MNIST LQ-KNN LQ-KNN 13256 ± 56 92 . 66 ± 1 . 30 10 0.1

OrganCMNIST No

propagation

OrganCMNIST None 1534 13,858 - - - -

OrganCMNIST Std-KNN Std-KNN 13720 ± 28 81 . 87 ± 0 . 76 10 -

OrganCMNIST LQ-KNN LQ-KNN 13336 ± 151 82 . 73 ± 0 . 44 10 0.1

HITS Whole HITS None 1,545 0 - - - -

HITS No propagation 152 1393 - - - -

HITS Std-KNN-K2 Std-KNN 591 ± 42 84 . 95 ± 2 . 61 2 -

HITS Std-KNN-K10 1387 ± 8 . 7 81 . 36 ± 1 . 81 10 -

HITS LQ-KNN-K3 LQ-KNN 554 ± 63 89 . 88 ± 2 . 77 3 0.3

HITS LQ-KNN-K4 700 ± 54 89 . 65 ± 2 . 36 4 0.3

HITS LQ-KNN-K10 1372 ± 11 82 . 67 ± 2 . 02 10 0.1

Fig. 7. Convolutional neural network architectures used for classification for the different datasets. (a) Architecture for the MNIST and OrganCMNIST datasets. (b) Architecture

for the HITS dataset.
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ITS with no propagation with CE by 5 . 68% , and HITS LQ-KNN-

10 with GCE outperforms HITS with no propagation with GCE by 

 . 71% ). 

Secondly, when we propagate the labels to annotate less than 

0% of the unlabeled samples ( i.e. , when we use HITS Std-KNN- 

2, and HITS LQ-KNN-K4 datasets in Table 6 ), LQ-KNN propaga- 

ion outperforms Std-KNN for both loss functions. Interestingly, we 

an see that even though HITS LQ-KNN-K3 has fewer labeled sam- 

les than HITS Std-KNN-K2, it provides better classification perfor- 

ances, when using a nonrobust loss function. Indeed, the classi- 

er trained on HITS LQ-KNN-K3 with CE outperforms that trained 

n HITS Std-KNN-K2 with CE by a margin of 1 . 90% in terms of

CC. This is not observed when using a robust loss function.

Finally, HITS LQ-KNN-k10 CE and HITS LQ-KNN-k10 GCE outper- 

orm HITS Std-KNN-k10 GCE and HITS Std-KNN-k10 CE in terms of 
l

13
CC and class accuracy. For both loss functions, HITS LQ-KNN-k10 

utperforms HITS Std-KNN-k10 in terms of solid emboli accuracy 

y a margin of over 3 . 5% . This is particularly interesting as solid

mboli are the most critical class, because solid emboli can cause 

schemic stroke. Additionally, HITS LQ-KNN-k10 GCE performs sim- 

larly to HITS Whole CE and HITS Whole GCE, which are fully man- 

ally labeled datasets. 

.5.4. Experiment 4: Classification using a semi-automatically labeled 

ITS dataset with unknown label noise 

The objective of this experiment was to study the behavior 

f our method, LQ-KNN, on a larger-scale real medical dataset 

ith unknown label noise. We used our semi-automatic label- 

ng method to create different datasets using all of the available 

abeled samples ( i.e. , the 1,545 samples) and part of the avail- 
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Fig. 8. Experiment 3: Comparison of the accuracy of the different label propagation methods on the MNIST dataset. The best performing classification model is the one

trained on the dataset obtained with our proposed method, LQ-KNN, and with a robust loss function. When using nonrobust loss functions, the best performing classifier is

the one trained with the dataset obtained using LQ-KNN.

Fig. 9. Experiment 3: Comparison of the test accuracy of the different label propagation methods on the OrganCMNIST dataset. The best performing classification model is

the one trained on the dataset obtained with our proposed method, LQ-KNN, and with a robust loss function. When using nonrobust loss functions, the best performing

classifier is the one trained with the dataset obtained using LQ-KNN.

Fig. 10. Experiment 3: Test Matthews correlation coefficient (MCC) as comparisons using the semi-automatically labeled HITS dataset with known label noise. Both label

propagation methods increase the classification performances of the trained model, with similar performances to a model trained with a fully manually labeled dataset. Our

proposed method, LQ-KNN, globally outperforms the baseline model.

14
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Table 7

The different training parameters used in experiment 3. q represents the hyper-parameter of the GCE loss function giving a trade-off between convergence

speed and robustness to label-noise. The higher the value of q , the more robust GCE but the smaller the convergence speed; the smaller the value of q the

faster the convergence but the smaller the robustness to label-noise.

Dataset Epochs Batch Size Learning rate Weight Decay Optimizer Loss function q

MNIST 100 32 7e-3 1e-7 CE -

GCE 0.7

OrganCMNIST 150 7e-3 1e-5 Adamax CE -

GCE 0.5

HITS 50 2e-2 1e-7 CE -

1e-3 GCE 0.7

Table 8

New datasets used in experiment 4. The objective of the experiment was to study the behavior of our method on a larger-scale real

medical dataset with unknown label noise.

Dataset Propagation

Method

|L| |U| # of

automatically

labeled samples

Samples per

class

K τ

HITS Std-KNN Large Std-KNN 1,545 66,947 13,653 4,551 10 -

HITS LQ-KNN Large LQ-KNN 1,545 66,947 14,970 4,990 10 0.1

Fig. 11. Experiment 3: Solid emboli test accuracies as a comparison of semi-automatically labeled HITS datasets with known label noise. Our proposed method, LQ-KNN,

outperforms the baseline model with the proposed hyper-parameters.
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ble unlabeled samples (with unknown labels). To avoid imbal- 

nced dataset problems, we balanced the classes based on the fi- 

al numbers of labeled solid emboli: we sample in the artifacts 

nd gaseous emboli classes to get the same number of samples as 

he number of labeled solid emboli (this is possible, as we have 

ore artifacts and gaseous emboli than solid emboli). We evalu- 

te the different datasets on a classification task, proceeding in the 

ame way as in experiment 3. To do this, we trained a classifi- 

ation CNN with the architecture in Fig. 7 b on two new datasets, 

ITS Std-KNN Large and HITS LQ-KNN Large, plus the datasets of 

xperiment 3 (see Table 8 ). The training was carried out using two 

oss functions, CE and GCE, with a learning rate of 1 e − 3 , a batch

ize of 32, a weight decay of 1 e − 7 , during 50 epochs. The results

re shown in Figs. 12 and 13 . Three main points can be noted. 

First, we can see that HITS LQ-KNN-Large trained with CE and 

CE outperforms all of the Std-KNN and LQ-KNN methods in terms 

f MCC and SE accuracy (including those of experiment 3). If we 

ook at the MCC, HITS LQ-KNN-Large outperforms HITS Std-KNN- 

arge by a margin greater than 2% (where HITS LQ-KNN-Large GCE 

utperforms the other datasets). We observe similar behavior for 

he SE accuracies. 

Secondly, we can see that with respect to the results in exper- 

ment 3, the performances of the model trained using HITS Std- 

NN-Large increases significantly for the solid emboli class, de- 
15
reases for the artifact and gaseous emboli classes, while the vari- 

bility is reduced when using more samples. On the other hand, 

he performances of the model trained using LQ-KNN improve sig- 

ificantly for the solid emboli and gaseous emboli classes, and de- 

rease for the artifact class, while the variability is reduced. 

Finally, in terms of MCC, the best performing model for this ex- 

eriment is obtained using the GCE loss function and the HITS LQ- 

NN-Large dataset, which outperforms the best performing model 

f experiment 3 trained on the HITS Whole dataset that was fully 

anually labeled and without label noise. However, when using 

 nonrobust loss function ( i.e. , CE), HITS LQ-KNN-Large and HITS 

hole have similar behaviors, even though HITS LQ-KNN is a 

arger dataset. Moreover, HITS LQ-KNN-Large improves the general 

olid emboli accuracy with respect to HITS Whole for both loss 

unctions. This comes at the expense of significant decrease in the 

rtifacts accuracy. Nonetheless, when we use robust loss functions 

o compensate for the noise (mainly between the gaseous emboli 

nd solid emboli classes) introduced with LQ-KNN, this also out- 

erforms the HITS Whole dataset for the gaseous emboli class. 

Implementation details 

All of the codes were implemented using Pytorch ( Paszke et al., 

019 ) and Scikit-Learn Pedregosa et al. (2011) . The different exper- 

ments were carried out on a high-performance computing clus- 

er with 25 heterogeneous machines (each machine with between 
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Fig. 12. Experiment 4: Tests Matthews correlation coefficient (MCC) as comparisons using semi-automatically labeled HITS datasets with unknown label noise. We propagate

the labels from 1545 manually labeled samples to part of the remaining 66 947 unlabeled samples. Based on the label propagation method used, we obtain datasets with

different numbers of samples (however, the classes are always balanced): 15 198 samples when using the baseline Std-KNN with K = 10 , and 16 515 when using LQ-KNN 

with K = 10 and τ = 0 . 1 . 

Fig. 13. Experiment 4: Solid emboli test accuracies as comparisons using semi-automatically labeled HITS datasets with unknown label noise. We propagate the labels from

1545 manually labeled samples to part of the remaining 66 947 unlabeled samples. Based on the label propagation method used, we obtain datasets with different numbers

of samples (however, the classes are always balanced): 15 198 samples when using the baseline Std-KNN with K = 10 , and 16 515 when using LQ-KNN with K = 10 and 

τ = 0 . 1 . 
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6 Gb and 128 Gb of RAM, CPUs with 8 to 32 cores, and dif-

erent types of Nvidia Quadro RTX and Tesla GPUs). The GitHub 

or the MNIST experiments can be found at: https://github.com/ 

amilvindas/LQ-KNN _ DataAnnotation . 

. Discussion

Experiment 1 

This experiment confirms that our method, LQ-KNN, is com- 

arable to the state-of-the-art, as it outperforms OPF-semi, which 

s commonly used for data annotation. Indeed, LQ-KNN achieves 

igher annotation accuracy at the expense of a smaller number 

f annotated samples (from 1 . 5% to 3 . 8% fewer samples labeled

y LQ-KNN) for all the tested datasets. Another advantage of our 

ethod over OPF-semi is its annotation speed; it is faster than 

PF-semi by a factor of 10 2 − 10 3 , which can be nonnegligible 

hen annotating large datasets. This difference in annotation time 

s explained on the basis that using OPF-semi implies training a 

lassifier using all of the available samples ( i.e. , labeled and un- 

abeled), and then predicting the labels of the unlabeled samples 

sing this classifier, which are time-costly tasks. Furthermore, this 
16
xperiment shows that our method, LQ-KNN, with τ = 0 . 1 behaves 

etter than the baseline Std-KNN. This is even more evident when 

e increase τ , to reach annotation accuracies of 99 . 34% to label 

5 . 51% of samples for τ = 0 . 5 and K = 20 for the MNIST dataset.

hat is more, we observe smaller annotation accuracies for the 

ITS dataset for all methods. For Std-KNN and LQ-KNN this can be 

xplained on the basis that gaseous emboli and solid emboli can 

e easily confused in some cases, such that the two clusters/ man- 

folds can overlap. Moreover, when we propagate labels using sam- 

les that are at the boundary between solid emboli and gaseous 

mboli, we make more annotation errors. However, as the anno- 

ation accuracies show, the use of the local quality of the projec- 

ion allows the label propagation to be more cautious, so samples 

hat were wrongly projected at the boundary are not used for la- 

el propagation. By the same token, this experiment also reveals 

ne key advantage of our proposed method: the annotation er- 

or control. Indeed, due to the hyper-parameters of our method, 

e can reduce the annotation error at the expense of the number 

f labeled samples. Fig. 14 gives a clear example where by reduc- 

ng the local quality threshold τ and the neighborhood K consid- 

red for label propagation, we reduce the number of annotation 

https://github.com/yamilvindas/LQ-KNN_DataAnnotation


Y. Vindas, B.K. Guépié, M. Almar et al. Medical Image Analysis 79 (2022) 102437

Fig. 14. Experiment 1: Label propagation for the HITS dataset using LQ-KNN with K = 3 and τ = 0 . 3 , and with K = 10 and τ = 0 . 1 . (a) LQ-KNN results with K = 3 and 

τ = 0 . 3 ( 36 . 32% of labeled samples, with 96 . 44% accuracy). (b) LQ-KNN results with K = 10 and τ = 0 . 1 ( 98 . 85% of labeled samples, with 92 . 52% accuracy). The diamonds 

corresponds to the wrongly labeled samples. The manually labeled samples are not shown here, for clarity. We note that the most of errors are located at the boundaries

between two clusters of different classes.
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rrors by labeling fewer samples. Additionally, Fig. 14 also shows 

hat most of the annotation errors are located between the bound- 

ries of clusters of different classes; if we increase the local quality 

hreshold, incorrectly projected samples that are at the boundaries 

etween clusters are not going to be used for label propagation, 

hus reducing the number of propagated errors. 

Moreover, in general, the higher the annotation accuracy, the 

ess samples are automatically labeled, which is why when we in- 

rease τ , we have higher annotation accuracies but fewer newly 

abeled samples. The success of our method strongly depends on 

he structure assumption ( Chapelle et al., 2009 ). The local quality 

riterion ( Lueks et al., 2011 ) that we use allows it to be guaran-

eed that if the structure assumption is true in the feature space 

btained by the auto-encoder model, then it should be true in the 

D reduced space obtained by t-SNE if the local quality criterion is 

erified. We introduce some flexibility to the local quality criterion 

y using a threshold τ that allows us to tolerate more changes in 

he projected space, and also allows us to label more samples. That 

s why the higher τ , the fewer samples we annotate, because the 

pace of samples that can be annotated is reduced to only ’good 

uality’ samples. Furthermore, we can see that choosing good val- 

es for K and τ is not trivial, and it depends on the application: if 

he quality of the labels is crucial for the application, higher values 

f τ should be favored ( e.g. , 0 . 3 ≤ τ ≤ 0 . 7 ) and/or smaller values of

( e.g. , K ≤ 5 ), paying with fewer labeled samples, whereas if the 
17
uality of the labels is not crucial and the number of samples is, 

igher values of K should be favored ( e.g. , K > 5 ) and/or smaller

alues of τ ( e.g. , τ ≤ 0 . 3 ). Finally, one last interesting point high-

ighted by this experiment is the importance of the propagation 

rder. Indeed, in our method we propose to start labeling the sam- 

les of higher local qualities to establish an annotation order. The 

ationale behind this is that high local quality samples better rep- 

esent the local space where they are located than lower quality 

amples, so it is more likely that the samples located in that zone 

ave the same label as the highest local quality samples, rather 

han the lowest ones. For the results obtained, this can be seen 

specially for high values of K, whereas for small values, there is 

o important difference. This means that for applications that need 

o consider large neighborhoods for label propagation, the labeling 

rder is very important. 

Experiment 2 

This experiment confirms the interest of automatically select- 

ng the best 2D projection using the silhouette score. Indeed, both 

ropagation methods achieve considerably better performances for 

he best selected projection than for the worse selected projec- 

ion. As our method relies on the structure assumption, it is im- 

ortant to try to keep the high-dimensional structures in the 

ower-dimensional space. The silhouette score selection strategy 

 i.e. , highest score) does this by selecting the projection that al- 
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ows the samples with the same label in the same structure to be 

ept. Moreover, this experiment shows an advantage of LQ-KNN 

ith respect to Std-KNN. Indeed, LQ-KNN is more cautious when 

ropagating the labels, as it labels fewer samples but with higher 

ccuracy. This result is interesting, as it shows that LQ-KNN is more 

obust than Std-KNN against bad 2D projections. 

Experiment 3 

This experiment confirms that our method improves the clas- 

ification performances. On the one hand, for the three tested 

atasets, we observe that training a CNN on the dataset obtained 

ith LQ-KNN ( i.e. , K = 10 , τ = 0 . 1 ) gives better results than train-

ng a CNN on a dataset obtained without label propagation or with 

td-KNN label propagation. Additionally, this experiment also con- 

rms that using robust loss functions is beneficial when using au- 

omatically labeled data, as they allow annotation error to be com- 

ensated for. This also explain why, when using robust loss func- 

ions, Std-KNN and LQ-KNN have similar performances. Indeed, the 

oise in the labels introduced by both methods is similar (for the 

hosen parameters LQ-KNN is slightly better) so the robust loss 

unction allows to compensate this difference. However, when the 

nnotation error difference increases between the two label prop- 

gation methods, the robust loss function does not allow to com- 

ensate this gap, giving better classification performances to LQ- 

NN datasets than to Std-KNN datasets, as the OrganCMNIST re- 

ults showed it. On the other hand, this experiment also confirms 

he interest in using label propagation methods to automatically 

nnotate data and to increase the test performances of the mod- 

ls developed for a real medical dataset. Label propagation allows 

he performances of a CNN to be increased, to give better results 

han a CNN trained on a limited dataset. When we start by prop- 

gating the labels to less than 50% of the available labeled sam- 

les, LQ-KNN outperforms Std-KNN. When the proportion of la- 

eled samples increases, both LQ-KNN and Std-KNN have similar 

lobal behaviors, even if the LQ-KNN datasets give classifiers with 

etter mean performances, specially when using robust loss func- 

ions. 

Experiment 4 

This experiment shows the stability of our method for a large- 

cale dataset, and the benefits of LQ-KNN propagation to improve 

he final classification performances of a model. Models trained 

n the LQ-KNN-Large dataset outperformed all of the Std-KNN 

rained models for both loss functions (including those of exper- 

ment 3). Additionally, by using a robust loss function to compen- 

ate for the introduced label noise, we were able to outperform 

ITS Whole CE/GCE in terms of MCC, gaseous emboli and solid 

mboli accuracies. However, this comes at the expense of a de- 

rease in the artifact accuracy. Our hypothesis that, in this larger- 

cale dataset, our 2D representations of the original HITS do not 

erify the structure assumption anymore (this might be because in 

he original high-dimensional space the structure hypothesis is not 

erified neither or because our auto-encoder model is not adapted 

o this new dataset). Due to this, when we automatically propa- 

ate the labels from the labeled samples to the unlabeled sam- 

les, we introduce an unexpectedly high noise in the labels of 

he artifact class that the robust loss functions cannot compen- 

ate for. However, as the results show, our LQ-KNN label propaga- 

ion method is more stable, as its artifact accuracy is higher than 

hat obtained with Std-KNN, and its gaseous emboli accuracy re- 

ains similar (or even better) to the HITS Whole gaseous emboli 

ccuracy. 

Choice of k s and k t 
We discuss the choice of k s = 10 and k t = 10 for all of the ex-

eriments. These parameters have an influence on the computa- 

ion of the global and local quality measures of the projection; k s 
18
ontrols the size of the neighborhood that we use to evaluate the 

tructure preservation during the projection, while k t controls the 

rrors in terms of the rank change. As shown in Lueks et al. (2011) ,

he global quality varies smoothly for increasing values of k s and 

 t , and between consecutive values of k s and k t there is little vari-

tion of the global quality. For high values of k s and k t we have

igh values of global quality, as we tolerate more errors and we 

onsider wider neighborhoods to compute the quality. However, 

 high value of the global quality by itself does not necessarily 

ean that, globally, the neighborhood of the samples was well pre- 

erved during the projection step. Indeed, the value of the global 

uality should be interpreted with the values of k s and k t : the 

maller k s and k t , the more the neighborhood structure of the sam- 

les is preserved during projection, which is why we have smaller 

lobal quality values (dimensionality reduction always modifies 

he neighborhood of samples, as it reduces the number of de- 

rees of freedom). We choose k s = 10 and k t = 10 , as we prop-

gate labels from labeled samples to their unlabeled neighbors, 

o it is important to have a meaningful value of the global and 

ocal qualities to select the samples that can benefit from label 

ropagation (which means that we prefer smaller values of k s 
nd k t ). 

Limitations 

Our approach has several limitations. First, the validation of 

he framework was limited to 3 datasets, and one type of classi- 

er. Evaluating our method on more types of data (not only im- 

ges) and models would help to better study its genericity and ef- 

ectiveness. Secondly, a simple feature extraction model (AE) was 

sed, and the influence of different types of models has not been 

uantitatively measured. Thirdly, our optimal selection strategy can 

e expensive to compute and only takes advantage of the la- 

eled samples, which can lead to sub-optimal projections for la- 

el propagation. Fourthly, even if we show that the choice k s = 10 ,

 t = 10 , K = 10 and τ = 0 . 1 tend to give good results for differ-

nt datasets, more efforts need to be done to propose an eas- 

er strategy for hyper-parameter selection. Finally, for classification, 

nly one robust loss function was tested, but other loss functions 

an be used such as symmetric CE ( Wang et al., 2019 ) and other

trategies can be adopted to deal with noisy-labels ( Song et al., 

021 ). 

. Conclusions

We proposed a semi-supervised learning approach for semi- 

utomatic data annotation from sparsely annotated datasets with 

ontrolled annotation errors. To do this, we start by extracting fea- 

ures from the data in an unsupervised manner, using an auto- 

ncoder. Then, we use t-SNE as the dimensionality reduction tech- 

ique to project the learned representations of the auto-encoder 

nto a 2D space, and we select the best projection using the sil- 

ouette score. Then, we propagate the labels from the few labeled 

amples to some unlabeled samples using a local quality criterion 

ased on ( Lueks et al., 2011 ). This criterion allows the labels from 

abeled samples to be propagated to their neighbors only if both 

amples ( i.e. , labeled and unlabeled) are close not only in the 2D 

pace, but also in the higher-dimensional space learned by the 

uto-encoder. Finally, to compensate for the errors made by the 

abel propagation method, we use a robust loss function for classi- 

cation, the GCE loss. 

Our experiments show several results. First, our label propaga- 

ion method outperforms state-of-the-art methods such as OPF- 

emi. Secondly, the choice of the hyper-parameters of our pro- 

osed method allows us to control the annotation errors. Thirdly, 

e show that the combination of our label propagation method 

ith robust loss functions improves the final classification perfor- 
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ances of the trained models on the semi-automatically labeled 

atasets obtained. Fourthly, our method allows similar (and even 

etter) classification performances to be achieved than those ob- 

ained using a fully manually labeled dataset. This last point is 

articularly interesting, as our method takes less than 0.2 ms to 

nnotate one sample with high accuracy, compared to 8 s for a 

uman expert (HITS dataset). Finally, we showed that our method 

s applicable to different datasets by evaluating it on three differ- 

nt datasets (two of which are publicly available). The two blocks 

hat need to be adapted to each dataset are the feature extraction 

lock and the classification block. 

As perspectives, we would like to incorporate a self-training 

 Rosenberg et al., 2005 ) strategy into our method, using robust 

oss functions and Bayesian approaches. Moreover, during the self- 

raining step, we would like to directly learn the 2D representa- 

ion used to propagate the labels, instead of using t-SNE, which 

ould allow us to avoid the expensive search of the optimal pro- 

ection space, one of the main weaknesses of our approach. Fur- 

hermore, as our method allows manual annotation of any sam- 

les, we would like to proceed as ( Benato et al., 2021 ), to manu-

lly annotate the samples that our method cannot label with high 

onfidence. Finally, as our main goal is to improve the classifica- 

ion performances of TCD data, we would like to incorporate the 

se of audio signals, to improve the learned representations (auto- 

ncoder and 2D space) and the classification performances. 
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