Maxim Moraru

Mina Warnet

Julien Loiseau

Vinay Ramakrishnaiah

Nirmal Prajapati

Hyun Lim

Sumathi Lakshmiranganatha

Jamal Mohd-Yusof

Karen Tsai

Richard Berger

Patrick Mccormick

Transformations for Energy Efficient Accelerated Chain Matrix Multiplication (TEE-ACM 2)

Matrix Chain Multiplication plays a key role in the training of deep learning models. They also appear in physics, computer graphics, image processing, etc. Matrix Multiplications often cause a bottleneck in terms of performance and energy because of the heavy costs in computations and memory operations. While the runtime performance has been studied for years, significantly less effort has been expended into optimizing energy efficiency.

Most processors weren't built with energy in mind [3], only performance. For a supercomputer, the cost of power is the most significant expense, and even with the most affordable energy, the cost of a MW ends up at $1M. Moreover, the Exascale Computing Project [4] defines a 'capable' exascale system as one that operates in a power envelope of 20-30 MW.

Thus, reducing the energy cost of these types of computations is a major challenge.

Matrix Chain Multiplication

Problem: Given a sequence of matrices {A 1, A 2, ... A n } with sizes {P 0, P 1, ... P n } , compute ς 𝑘=1 𝑛 𝐴 𝑘 • Multiplication order can significantly impact the performance of the algorithm • The Optimal Parenthesization (OP_Count) algorithm in "Cormen et al. Introduction to Algorithms." outputs an order of matrix multiplications that minimizes the total number of operations.

Energy Efficient GPU implementation

• Energy consumption of a GPU can be broken down into 2 major parts:

• Energy of the operations executing on the GPU • Energy of the GPU itself • Memory operations dominate the executed operations

Our goal : optimize the total energy consumption for Matrix Chain Multiplications

Introduction

• Less power consumption may be preferred over shorter execution times for applications such as edge computing. This work focuses on such use cases • For our fused kernel implementation, the energy consumption was primarily dictated by the execution time (static power) • Performing fewer global loads and stores significantly decreases the GPU power consumption at the cost of increased execution time • By using the OP_Count tree we optimize the computation order in a sequence of matrices.

• The hardware counters and APIs supplied by Nvidia provide accurate results with precision comparable to the measurements made using the hardware power capture analysis tool (PCAT)

• Future work: we plan to optimize the fused kernels by removing atomic operations, thus reducing computation time. Once the fused kernels are implemented, we will generate the fusion tree and compare the time and energy between TEE-ACM 2 with and without fusion

Conclusions and Future Work

Extending the approach to three matrices Optimal Algorithm for Matrix Chain Multiplication

• The OP_Count algorithm produces a tree decomposing a matrix chain, which indicates the order of matrix products to minimize operations • OP_DM_Fuse is created from OP_Count, which reduces the number of operations and then minimizes the off-chip data transfers by using fusion • Minimize over the options: left-fuse, right-fuse, and no-fusion Example for fusion decision algorithm • The output tree consists of the minimum number of computations and data transfers for multiplying the given matrix chain Fused Matrix Multiplication [START_REF] Cormen | Introduction to algorithms[END_REF] P 0 Energy efficiency

P 1 P 2 x A 1 A 2 A 3

GPU resources usage

• TEE-ACM 2 uses more than two times on-chip memory than cuBLAS

The impact of varying the tile size

• By using larger tile sizes, the number of global loads decrease significantly • cuBLAS performs 3 times more global loads on average than TEE-ACM 2

Single Matrix Multiplication Results

Single Matrix Multiplication : Blocking Strategy Single Matrix Multiplication [START_REF] Cormen | Introduction to algorithms[END_REF] Theorem: Given the matrix sizes -P 0 ,P 1 ,P 2 and shared memory capacity -M, the minimum number of data transfers is given by:

Fused-Kernel Results

*Present results were obtained on a Darwin node equipped with v100 GPUs and Cascade Lake CPUs (averaged over 10 samples of 10 runs each)

• Our implementation of fused-kernel approach uses atomic adds that drastically impact the execution time • Also, when multiplying three matrices, the GPU resources are distributed across 4 tiles compared to 3 in the case of a single matrix multiplication

R = A 1 A 2 A 3 = 10×30×5 + 10×5×60 = 4,500 multiplications (A 1 A 2) A 3
Sizes 10×30, 30×5, 5×60

= 27,000 multiplications • When computing with the best case, cuBLAS without the tree is 2% faster because of the overhead of building and traversing the tree • In the worst case, the creation of the matrices is longer without the tree because the parenthesizing isn't optimal, the temporary matrices are bigger, thus the longer execution time

A 1 (A 2 A 3) = 30×5×60 + 10×30×60
• The blue percentages indicate the energy consumption ratio between TEE-ACM 2 and cuBLAS using OP_Count. By using our optimized kernel, we end up with 5 to 10% energy savings with the optimal tile sizes of 224 • The orange percentages indicate the energy consumption ratio between cuBLAS with and without the tree. In the best case, we consume 1.5% more energy with the tree, but in the worst case, using the tree allows us to save up to 50% energy on average

•

 Input: 5 matrices with sizes 936, 1008, 552, 368, 1016, 616, 544 and M = 65,536 1. Visit each node of the OP_Count tree 2. Consider options: no fuse, left fuse, right fuse 3. Calculate the minimum number of data transfers for each node 4. Use the optimal over all possible options

Figure 11 :

 11 Figure 11 : Energy savings of TEE-ACM 2 over cuBLAS (lower is better)

Figure 8 :

 8 Figure 8 : Installation of PCAT device on GPU for hardware power measurement

Figure 1 :Figure 2 Figure 3 :Figure 4 :

 1234 Figure 1: Data transfers vs arithmetic operations (Bill Dally, Challenges of Future Computing Systems, HiPEAC 2015)

Figure 5 :

 5 Figure 5: Fused matrix multiplication approach, where three matrices are multiplied in a single GPU kernel.

Figure 6 :

 6 Figure 6: Left fuse strategy

Figure 7 :Figure 16 :

 716 Figure 7: Left fuse strategy

Figure 20 :

 20 Figure 20 : Energy consumption of computation for a sequence of 6 matrices