
HAL Id: hal-03872897
https://hal.science/hal-03872897v1

Submitted on 25 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transformations for Energy Efficient Accelerated Chain
Matrix Multiplication (TEE-ACM 2)

Maxim Moraru, Mina Warnet, Julien Loiseau, Vinay Ramakrishnaiah, Nirmal
Prajapati, Hyun Lim, Sumathi Lakshmiranganatha, Jamal Mohd-Yusof,

Karen Tsai, Richard Berger, et al.

To cite this version:
Maxim Moraru, Mina Warnet, Julien Loiseau, Vinay Ramakrishnaiah, Nirmal Prajapati, et al.. Trans-
formations for Energy Efficient Accelerated Chain Matrix Multiplication (TEE-ACM 2). Supercom-
puting, Nov 2022, Dallas, United States. �hal-03872897�

https://hal.science/hal-03872897v1
https://hal.archives-ouvertes.fr

RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

Transformations for Energy Efficient Accelerated Chain Matrix Multiplication (TEE-ACM2)
Maxim Moraru1, Mina Warnet1, Julien Loiseau2, Vinay Ramakrishnaiah2, Nirmal Prajapati2, Hyun Lim2, Sumathi Lakshmiranganatha2,

Jamal Mohd-Yusof2, Karen Tsai2, Richard Berger2, Patrick McCormick2

1University of Reims, 2Los Alamos National Laboratory

Matrix Chain Multiplication plays a key role in the training of deep learning models. They also
appear in physics, computer graphics, image processing, etc. Matrix Multiplications often cause
a bottleneck in terms of performance and energy because of the heavy costs in computations
and memory operations. While the runtime performance has been studied for years,
significantly less effort has been expended into optimizing energy efficiency.

Most processors weren’t built with energy in mind [3], only performance. For a supercomputer,
the cost of power is the most significant expense, and even with the most affordable energy,
the cost of a MW ends up at $1M. Moreover, the Exascale Computing Project [4] defines a
’capable’ exascale system as one that operates in a power envelope of 20–30 MW.

Thus, reducing the energy cost of these types of computations is a major challenge.

Matrix Chain Multiplication
Problem: Given a sequence of matrices {A1, A2, ... An} with sizes {P0, P1, ... Pn} , compute ς𝑘=1

𝑛 𝐴𝑘

• Multiplication order can significantly impact the performance of the algorithm
• The Optimal Parenthesization (OP_Count) algorithm in “Cormen et al. Introduction to

Algorithms.” outputs an order of matrix multiplications that minimizes the total number of
operations.

Energy Efficient GPU implementation
• Energy consumption of a GPU

can be broken down into 2 major parts:
• Energy of the operations

executing on the GPU
• Energy of the GPU itself

• Memory operations dominate the
executed operations

Our goal : optimize the total energy
consumption for Matrix Chain Multiplications

Introduction

• Less power consumption may be preferred over shorter execution times for applications
such as edge computing. This work focuses on such use cases

• For our fused kernel implementation, the energy consumption was primarily dictated by the
execution time (static power)

• Performing fewer global loads and stores significantly decreases the GPU power
consumption at the cost of increased execution time

• By using the OP_Count tree we optimize the computation order in a sequence of matrices.

• The hardware counters and APIs supplied by Nvidia provide accurate results with precision
comparable to the measurements made using the hardware power capture analysis tool
(PCAT)

• Future work: we plan to optimize the fused kernels by removing atomic operations, thus
reducing computation time. Once the fused kernels are implemented, we will generate the
fusion tree and compare the time and energy between TEE-ACM2 with and without fusion

Conclusions and Future Work

Extending the approach to three matrices

Optimal Algorithm for Matrix Chain Multiplication
• The OP_Count algorithm produces a tree decomposing a matrix chain, which indicates the

order of matrix products to minimize operations
• OP_DM_Fuse is created from OP_Count, which reduces the number of operations and then

minimizes the off-chip data transfers by using fusion
• Minimize over the options: left-fuse, right-fuse, and no-fusion

Example for fusion decision algorithm
• Input: 5 matrices with sizes 936, 1008, 552, 368, 1016, 616, 544 and M = 65,536

1. Visit each node of the OP_Count tree
2. Consider options: no fuse, left fuse, right fuse
3. Calculate the minimum number of data transfers

for each node
4. Use the optimal over all possible options

• The output tree consists of the minimum
number of computations and data transfers for multiplying the given matrix chain

Fused Matrix Multiplication[1]

P0

P1

P2

x

A1

A2

A3

T R

P0 P0

P1

P2

P2

P3

P3

y

xx

y
y

z'

z'

z

z

Global Memory Reads

(A1 , A2 , A3)

Shared Memory Reads and Writes

(T)

Global Memory Reads and Writes

(R)

Energy efficiency

GPU resources usage

• TEE-ACM2 uses more than two times on-chip memory than cuBLAS

The impact of varying the tile size

• By using larger tile sizes, the number of global loads decrease significantly
• cuBLAS performs 3 times more global loads on average than TEE-ACM2

Single Matrix Multiplication Results

Single Matrix Multiplication : Blocking Strategy

Single Matrix Multiplication[1]

Theorem:
Given the matrix sizes - P0,P1,P2 and shared memory
capacity - M, the minimum number of data transfers
is given by:

2. 𝑃0. 𝑃1. 𝑃2

𝑀
+ 𝑃0. 𝑃2

Achieved when x = y = 𝑀 , and z = [1, P1] (Figure 3)

T-matrix
No Fuse

(data
transfers)

Fuse left
(data

transfers)

Fuse right
(data

transfers)

Final Data
Transfers

Fusion decision
Tile sizes

(x, y)

T1 : (2,3) 1599696 - - 1599696 No fuse (A2,A3) (256,256)

T2 : (1,3) 4683168 - 3072693 3072693 Right fuse (A1 (A2,A3)) (304,208)

T3 : (4,5) 1799336 - - 1799336 No fuse (A4,A5) (256,256)

T4 : (4,6) 3116960 2942313 - 2942313 Left fuse ((A4,A5), A6) (216,296)

T5 : (1,6) 8243798 9364761 9136171 8243798 No fuse (T2,T4) (256,256)

T5

T2

T1
A1

A2 A3

T4

T3

A4 A5

A6

Input Tree

Output Tree

T5

T2

A1 A2 A3

T4

A4 A5 A6

Figure 11 : Energy savings of TEE-
ACM2 over cuBLAS (lower is better)

• The number of global loads are reduced by 66% compared to cuBLAS. This results in 30%
power saving and 8% energy saving on average, and up to 21% savings

• The average execution time overhead of TEE-ACM2 is 20%

*Present results were obtained on a Darwin node equipped with v100 GPUs and Cascade Lake CPUs (averaged over 10 samples of 10 runs each)

Figure 10 : Power savings of TEE-ACM2 over
cuBLAS (lower is better)

LA-UR-22-28472
Special thanks to David Rich for his assistance with Darwin Cluster.

We also would like to thank Scot Halverson, Nyle Usmani, and Roland Tarrazo from. Nvidia for supplying the Power Capture Analysis Tool

References
[1] Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to

algorithms. MIT press, 2022.

[2] Dally, Bill. "Challenges for future computing systems. Keynote speech at The 10th HiPEAC." (2015).

[3] Kathy Yelick, Exascale computing: opportunities and challenges, NERSC, 2017

[4] Exascale Computing Project, https://insidehpc.com/ecp/

[5] Prajapati, Nirmal. Analytical Cost Metrics: Days of Future Past. Doctoral Dissertation. Colorado State

University. Fort Collins, Colorado. 2019.

OP_Count Tree effect on MCM execution time

Best case : the matrix sizes are increasing → in order computation is most efficient
Worst case : the matrix sizes are decreasing → in order computation is least efficient
Random : the matrix sizes are generated at random between 8k and 24 k

Matrix Chain Multiplication Results

*Present results were obtained on a Darwin’s node equipped with v100 GPUs and Cascade Lake CPUs The plots shows the results from 3 kernels

usage per matrix multiplication

Tools used for power measurements
Software
• Nvidia Management Library (NVML)
Hardware
• Power Capture Analysis Tool (PCAT)

Hardware vs software power measurements

Energy Measurement Accuracy

Figure 8 : Installation of PCAT device on
GPU for hardware power measurement

PCIe Riser

PCAT

Notation:

P0xP1, P1xP2 P0,P1,P2

Low level TEE-ACM2 optimizations
• Double level buffering : use of registers
• Loop unrolling
• Large shared memory tiles

• Using cuBLAS decreases execution time by a factor of two
• Using TEE-ACM2, we save up to 10% energy

Total number of global data transfers (reads + writes) :

𝑃1𝑃2 + 𝑃0𝑃1𝑃2 ∗
(𝑥 + 𝑦)

𝑥𝑦

Minimize !

Fused-Kernel Results

*Present results were obtained on a Darwin node equipped with v100 GPUs and Cascade Lake CPUs (averaged over 10 samples of 10 runs each)

• Our implementation of fused-kernel approach uses atomic adds that drastically impact the
execution time

• Also, when multiplying three matrices, the GPU resources are distributed across 4 tiles
compared to 3 in the case of a single matrix multiplication

R = A1 A2 A3

= 10×30×5 + 10×5×60

= 4,500 multiplications

(A1 A2) A3

Sizes 10×30, 30×5, 5×60

= 27,000 multiplications

A1 (A2 A3) = 30×5×60 + 10×30×60

Figure 1: Data transfers vs arithmetic operations

(Bill Dally, Challenges of Future Computing Systems,
HiPEAC 2015)

P0

P2

P1

P0

P2

A1

A2

R

x x

z y

z

y

P1

Figure 2: Blocking strategy for

single matrix multiplication

y

x

1 P0

1

P2

xy = M

Figure 3 : Minimum number of global loads
achieved when x=y

y

xG
lo

b
al

 M
em

o
ry

Sh
ar

ed
 M

em
o

ry

R
eg

is
te

rs

C
o

m
p

u
te

Figure 4 : Double level buffering

To compute (A1A2)A3,
the intermediate
result produced, T
=A1 A2 is consumed
directly from the on-
chip memory to
produce values of the
final matrix, R = T A3.
This avoids writing of
the intermediate
matrix, T to off-chip
memory.

Figure 5: Fused matrix multiplication approach, where

three matrices are multiplied in a single GPU kernel.

Figure 6: Left fuse strategy

Right fuse strategy for Ai…j

Figure 7: Left fuse strategy

Figure 13 : The number of registers used
by TEE-ACM2 compared to cuBLAS

Figure 12 : The amount of shared memory
used by TEE-ACM2 compared to cuBLAS

Figure 15 : The number of global loads
performed by TEE-ACM2 compared to cuBLAS

Figure 14 : The number of global loads
decreases when the tile size increases

• We observed less than 3%
difference in power between PCAT
and NVML measurements on
average

Figure 9 : NVML power precision on an
entire run

Figure 17 : TEE-ACM2 consume more energy
than cuBLAS for a fused strategy (lower is

better)

Figure 16 : Power savings of TEE-ACM2 over
cuBLAS for a fused strategy (lower is better)

Figure 18 : Execution time of creation and
computation for a sequence of 6 matrices

Figure 19 : Execution time of creation and
computation for a sequence of 12 matrices

Problem sizes for best and worst:
8,10,12,14,16,18,20k
Problem sizes for random:
10, 20 ,15, 9, 9, 22, 21k

Problem sizes for best and worst:
8 ,9, 10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20k

Problem sizes for random:
20, 16, 17, 10, 16, 19, 9, 24, 16, 16, 12, 8, 10k

Figure 20 : Energy consumption of
computation for a sequence of 6 matrices

Figure 21 : Energy consumption of
computation for a sequence of 12 matrices

• When computing with the best case, cuBLAS without the tree is 2% faster because of the
overhead of building and traversing the tree

• In the worst case, the creation of the matrices is longer without the tree because the
parenthesizing isn’t optimal, the temporary matrices are bigger, thus the longer execution
time

• The blue percentages indicate the energy consumption ratio between TEE-ACM2 and
cuBLAS using OP_Count. By using our optimized kernel, we end up with 5 to 10% energy
savings with the optimal tile sizes of 224

• The orange percentages indicate the energy consumption ratio between cuBLAS with and
without the tree. In the best case, we consume 1.5% more energy with the tree, but in the
worst case, using the tree allows us to save up to 50% energy on average

https://insidehpc.com/ecp/

