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Topological systems furnish a powerful way of localizing wave energy at edges of a structured
material. Usually this relies on Bragg scattering to obtain bandgaps with nontrivial topological
structures. However, this limits their applicability to low frequencies since that would require very
large structures. A standard approach to address the problem is to add resonating elements inside
the material to open gaps in the subwavelength regime. Unfortunately, one usually has no precise
control on the properties of the obtained topological modes, such as their frequency or localization
length. In this work, we propose a new construction to couple acoustic resonators such that acoustic
modes are mapped exactly to the eigenmodes of the Su-Schrieffer-Heeger model. The relation
between energy in the lattice model and the acoustic frequency is controlled by the characteristics
of the resonators. This allows us to obtain Su-Schrieffer-Heeger topological modes at any given
frequency, for instance in the subwavelength regime. We also generalize the construction to obtain
well-controlled topological edge modes in alternative tunable configurations.

Keywords: Wave scattering, Topological insulators, Acoustic metamaterials, Su-Schrieffer-Heeger model.

I. INTRODUCTION

The field of topological insulators has now found
a large set of interests outside of electronic sys-
tems where it was first discovered, and it offers a
powerful new approach for wave control in various
contexts [1–4]. Among them, acoustic waves pro-
vide an ideal platform to implement and test the
exotic properties of topological phases due to their
high degree of tunability. For instance, several sys-
tems with non-trivial topology have been obtained
based on appropriately chosen phononic crystal
structures in one dimensions [5–8] or higher [6, 9–
11]. Such an approach usually relies on Bragg
scattering, and hence, leads to structures that are
several times larger than the typical wavelength,
which can be rather large, especially in audible
acoustics.

To remedy this issue, various works have pro-
posed to combine phononic crystal structures with
subwavelength resonators [12–14]. In particular,
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in one dimensional systems, several works have
obtained topologically protected localized modes
in the subwavelength regime using a chain of
Helmholtz resonators [15, 16]. The distances be-
tween pairs of resonators are then shifted, which
opens a gap through a band folding mechanism
and with distinct topology depending on whether
the shift puts the resonators closer of further. A
big limitation to this approach is that one has no
control a priori on the characteristics of the topo-
logical mode, such as its eigenfrequency or localiza-
tion length. Moreover, the associated topological
invariant (the Zak phase) is protected by mirror
symmetry, and hence, is usually not robust to the
introduction of spatial disorder.

In this work, we propose an alternative approach
based on an exact mapping to the Su-Schrieffer-
Heeger (SSH) model recently developed [17]. We
consider (subwavelength) resonators placed at the
middle of segments of waveguides of equal length,
but with cross sections that alternate between two
values. We show that in the limit of narrow
tubes [18, 19], the acoustic modes of the system
can be exactly mapped to the spectrum of the SSH
model, known for its topological properties [20, 21].
The characteristics of the resonators simply change
the correspondence between SSH eigenvalues (the
pseudo-energy E in the the following) and acoustic
eigenfrequencies, which allows us to modify the fre-
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quency of the topologically protected edge modes
at will. Similarly, the localization length of the
topological mode is directly controlled by the cross-
section change. In addition, edge modes of the
SSH model are protected by chiral symmetry and
characterized by a winding number, which means
that the topological modes are robust to the intro-
duction of symmetry preserving disorder. Again,
through the exact mapping, we have a large range
of frequencies where the acoustic waveguide mim-
ics the discrete SSH model and we have a direct
control on the allowed class of disorder against
which the topological mode is robust [17].
This paper is organized as follows. In section II,

we introduce the general formalism to describe
acoustic modes in varying cross-section waveguides
with scatterers, and map it to the SSH model. In
section III we use Helmholtz resonators to obtain
topologically protected modes localized near the
edges of the system and we display direct finite el-
ement results confirming the existence of this kind
of mode. In section IV, we present an alternative
configuration based on Helmholtz resonators put
in series rather than in parallel.

II. FROM ACOUSTIC WAVEGUIDES TO
THE SU-SCHRIEFFER-HEEGER MODEL

FIG. 1: (a) Representation of an acoustic waveguide
with cross-section changes. Each cross section change
is labelled with j = {A,B} such that the cross section
on the right side of j is Sj . (b) Same as (a) but each
segment contains a scatterer (indicated by a circle) in-
ducing a nontrivial Bloch phase.

A. Reminder: SSH model in acoustic
waveguides

For the sake of clarity, we remind briefly the di-
rect mapping approach proposed in [17]. We con-
sider the propagation of acoustic waves at fixed
frequency ω = kc0, with the harmonic conven-
tion e−iωt. k is the wavenumber and c0 the speed

of sound. The waves propagate inside a waveg-
uide obtained by connecting segments of alter-
nating cross sections SA and SB , as illustrated
in Fig. 1(a). All segments have the same length
ℓ. The waveguide is assumed to be sufficiently
narrow so that propagation is one-dimensional
(monomode propagation) along the x-axis. More
precisely, we assume that the longitudinal length is
much larger than the transverse ones. We describe
the propagation using the transfer matrix formal-
ism. By construction, the transfer matrix relates
the acoustic pressure p(x) and its derivative p′(x)
from one side to the other of a segment:(

p(xB
n )

p′(xB
n )

)
= M ·

(
p(xA

n )
p′(xA

n )

)
, (1a)(

p(xA
n+1)

p′(xA
n+1)

)
= M ·

(
p(xB

n )
p′(xB

n )

)
, (1b)

where

M =

(
cos(kℓ) sin(kℓ)

k
−k sin(kℓ) cos(kℓ)

)
. (2)

Now, to relate the propagation inside one segment
to nearby ones, we use the continuity of pressure
and acoustic flow rate at each cross section change.
This gives the junction conditions

[p] = 0 and [Sp′] = 0. (3)

The idea is to start at a given cross section change,
and relate the pressure there to the left and to the
right pressures using the transfer matrix. Consid-
ering the section change at xA

n , this leads to the
pair of equations

p(xB
n ) = cos(kℓ)p(xA

n ) +
sin(kℓ)

k
p′+(x

A
n ), (4a)

p(xB
n−1) = cos(kℓ)p(xA

n )−
sin(kℓ)

k
p′−(x

A
n ), (4b)

where p′±(x) is short for the limit ϵ → 0± of p′(x+

ϵ). Similarly, starting from x = xB
n , we obtain

p(xA
n+1) = cos(kℓ)p(xB

n ) +
sin(kℓ)

k
p′+(x

B
n ), (5a)

p(xA
n ) = cos(kℓ)p(xB

n )−
sin(kℓ)

k
p′−(x

B
n ). (5b)

Now, in both pairs of equations (4) and (5), we can
eliminate the pressure derivative term by using the
flow rate continuity. This leads to an eigenvalue
problem for the discrete set of pressure amplitudes
An ≡ p(xA

n ) and Bn ≡ p(xB
n ):

cos(kℓ)An = sBn + tBn−1, (6a)

cos(kℓ)Bn = sAn + tAn+1, (6b)

with

s =
SA

SA + SB
, (7a)

t =
SB

SA + SB
. (7b)
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The eigenvalue problem obtained in equation 6 is
exactly the SSH model [20, 21]. For finite waveg-
uides, say made of an odd number 2N − 1 of seg-
ments and closed at both ends, the problem re-
duces to finding the eigenvalues of a 2N × 2N
matrix, analogous to the SSH Hamiltonian. At
the closed ends the acoustic velocity vanishes,
which imposes the condition cos(kℓ)A1 = B1, and
cos(kℓ)BN = AN (this can be directly obtained
from equations (4a) and (5b) 1). Hence, the eigen-
value problem of Eq. (6) has the form

HX = EX, (8)

with

H =



0 1 0 . . . 0

s 0 t
...

0 t 0
. . . 0

...
. . .

. . . s
0 . . . 0 1 0


, (9)

and X =
(
A1, B1, . . . AN , BN

)T
. The eigenvalue

E then gives the acoustic eigenfrequencies through
the relation

E(k) = cos(kℓ). (10)

The correspondence between waveguides of alter-
nating cross sections was already established and
studied in [17], and also used to obtain two di-
mensional generalizations [22–25]. In such a setup,
properties of the SSH model are directly realized in
acoustics. In particular, the SSH model is known
to host a topologically protected mode at E = 0,
which, from Eq. (10), induces topologically pro-
tected acoustic modes at kℓ = ±π/2 + 2nπ with
n ∈ N. Unfortunately, this mapping limits the
wavelength of theses modes to be at least of the
order of a segment size. The novelty of the present
work is to modify the energy-frequency relation of
Eq. (10) in order to obtain SSH-like modes in dif-
ferent frequency ranges. With a proper configura-
tion, we now show that kℓ in Eq. (10) is replaced
by a phase ϕ(k) that can be tailored to induce a
topological mode with a lower frequency.

B. Generalized waveguides

We now consider a broader class of waveguide
generalizing section IIA, where each waveguide
segment can host various scatterers, as shown in

1 We refer the reader to [17] section III for an extended
discussion on boundary conditions. In particular, it is
explained how H can be made hermitian by a rescaling
of pressure values.

Fig. 1(b). Propagation in each segment is given in
terms of a transfer matrix:(

p(xB)
p′(xB)

)
= MA ·

(
p(xA)
p′(xA)

)
, (11a)(

p(xA)
p′(xA)

)
= MB ·

(
p(xB)
p′(xB)

)
. (11b)

The key point of our generalization is to assume
that the scattering induced is identical in each seg-
ment irrespectively of the cross section value, i.e.

MA = MB . (12)

We also assume that the scattering is reciprocal,
and each segment is mirror symmetric. Under
these assumptions, the transfer matrix has the gen-
eral form:

M =

(
α β

β̃ α

)
, (13)

with det(M) = 1. The diagonal elements are equal
due to mirror symmetry. Note that mirror symme-
try is necessary to obtain a chiral symmetric dis-
crete system such as the SSH model. As we shall
see, the coefficient α plays a key role in our con-
struction, and it is therefore useful to notice that it
gives the dispersion relation of a medium obtained
by connecting periodically segments described by
M (i.e. without cross section changes). Indeed, in
this case solutions can be given in terms of Bloch
waves satisfying p(xA

n+1) = eiϕp(xA
n ), with ϕ the

Bloch phase. Since Bloch waves are also eigenvec-
tors of the transfer matrix [26], the two eigenvalues
are e±iϕ. Since their sum is the trace of M , the
dispersion relation is simply given by cos(ϕ) = α.
Hence, the transfer matrix can be written under a
form very similar to Eq. (2) with the help of the
Bloch phase ϕ:

M =

(
cos(ϕ) sin(ϕ)

Y
−Y sin(ϕ) cos(ϕ)

)
, (14)

where Y is a complex number. Notice that by con-
vention, we will now focus on ϕ > 0. We now follow
exactly the same steps as in section IIA. We first
write the propagation inside the segments

p(xB
n ) = αp(xA

n ) + βp′+(x
A
n ), (15a)

p(xB
n−1) = αp(xA

n )− βp′−(x
A
n ), (15b)

and

p(xA
n+1) = αp(xB

n ) + βp′+(x
B
n ), (16a)

p(xA
n ) = αp(xB

n )− βp′−(x
B
n ). (16b)

Again, using continuity of pressure and flow rate,
one can get rid of pressure derivative in the preced-
ing equations. Doing so, we obtain the exact same
eigenvalue problem of Eq. (8) with the Hamilto-
nian H of Eq. (9). However, the energy eigenvalue
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is now related to the acoustic frequencies through
the Bloch phase ϕ(k), hence, Eq. (10) is replaced
by

E(k) = α(k) = cos(ϕ(k)). (17)

What we have shown is that for each eigenvalue E
of the SSH model (6) corresponds a set of eigenfre-
quencies of the waveguide obtained from Eq. (17)
controlled by the Bloch phase ϕ(k).

C. Tuning the Bloch phase ϕ(k)

As mentioned before, when the waveguide seg-
ments are made of straight tubes with no scatterer,
as in Fig. 2(a), the Bloch phase is simply given
by ϕ(k) = kℓ. Hence, to obtain the spectrum of
a finite waveguide with cross-section changes, we
look for frequencies such that kℓ = ϕn = acos(En)
with En the eigenvalues of the SSH Hamiltonian of
Eq. (9). This is illustrated in Fig. 2(b). In particu-
lar, since the SSH model has a gap around E = 0,
the cross-section changes induce the opening of a
gap around kℓ = π/2.

We now consider the waveguide configuration
where a Helmholtz resonator is put on the upper
wall at the middle of each segment, as shown in
Fig. 2(c). We use a low frequency model for the
Helmholtz resonators [23], based on the following
assumptions: (i) we only consider the lowest reso-
nance frequency, (ii) we assume that the neck ra-
dius is much smaller than the typical wavelength
(hence, r ≪ ℓ), (iii) we neglect dissipation. Under
these assumptions, the resonators are character-
ized by two parameters: their resonance frequency
ω0 = k0c0 and their coupling to the waveguide g.
In the limit of a small neck, these parameters can
be approximated by

k0 =

√
πr2

Vch
, (18a)

g =
πr2

S0h
, (18b)

where Vc is the volume of the cavity, r the radius
of the neck, h its length, and S0 the cross section
of the waveguide. Since the neck radius is much
smaller than the typical wavelength, the resonators
induce a jump of the acoustic velocity from one side
and the other of the hole, while the pressure p is
continuous. This jump translates into a jump for
the pressure derivative [p′] = Y0p with

Y0 =
gk2

k2 − k20
. (19)

Now, to apply the results of section II, the transfer
matrices of each segment must be equal as required
in Eq. (12). For this, we need to make sure that
all resonators have the same resonance frequency

k0 and the same coupling constant g. Since the
latter depends on the section of the segment, we
need to adjust the geometries of the resonators ac-
cordingly. In a regime where Eq. (18) is valid, we
might take r2A/SA = r2B/SB and r2A/VA = r2B/VB .

FIG. 2: (a) Simple waveguide configuration with alter-
nating cross-section where each segment is a straight
tube. (b) Dispersion relation of a periodic arrange-
ment of one of the two segments (shown in inset),
i.e. ϕ(k) = kℓ mod 2π. We then consider a cavity
made of 9 segments (N = 5) and SA/SB = 3: the
dashed lines shows the values of ϕ giving associated
with the Hamiltonian (9), from which we obtain the
acoustic eigenfrequencies (circles). (c) Representation
of the acoustic waveguide with Helmoltz resonators at
the middle of each segment. The changes of geom-
etry between resonators A and resonators B is illus-
trated to scale. However, the neck radii are exagger-
ated to illustrate these changes, but they must both
verify rA, rB ≪ ℓ. (d) Same as (b) for configuration
with resonators shown in (c) (N = 5 and SA/SB = 3).

We can now compute the transfer matrix of a
segment of length ℓ with a resonator at the mid-
dle point. Under the form of Eq. (13), the matrix
coefficients are given by

α = cos(kℓ) +
Y0

2k
sin(kℓ), (20a)

β =
1

k
sin(kℓ)− Y0

2k2
(cos(kℓ)− 1), (20b)

β̃ = −k sin(kℓ) +
Y0

2
(cos(kℓ) + 1). (20c)
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As in the preceding section (Eq. (14)), the disper-
sion relation is directly obtained from the diagonal
elements of M . This gives the Bloch phase as a
function of the frequency k:

cos(ϕ(k)) = cos(kℓ)− gk

2(k20 − k2)
sin(kℓ). (21)

The acoustic eigenfrequencies of a finite waveguide
can now be obtained by using the dispersion re-
lation with the spectral values of the phase (see
Fig. 2(c,d)).

III. TOPOLOGICALLY PROTECTED
EDGE MODE IN THE SUBWAVELENGTH

REGIME

We now show that the topological edge mode of
the SSH model induces a topologically protected
acoustic mode whose eigenfrequency can be con-
trolled by the Bloch phase ϕ(k).

A. Reminder: Su-Schrieffer-Heeger edge
modes

The SSH model is classical for its topological
properties. In particular, the bulk-edge correspon-
dence guarantees that when it is in its topologi-
cal phase, edge modes are present in the middle
of the gap, more specifically at E = 0. This can
be seen either by computing the appropriate topo-
logical invariant, the winding number or the Zak
phase [21], or by explicitly computing the edge
mode. In particular, in the limit of a semi-infinite
waveguide (N → ∞) where the right end is sent to
infinity, a direct verification shows that the mode(

An

Bn

)
= −(s/t)n

(
1
0

)
(22)

is a solution of the eigenvalue problem (6) with
E = 0. Moreover, it is localized on the left edge if
s < t, which corresponds to the topological phase.
In Fig. 3(a), we show the spectrum of the SSH
model for varying parameter s and t = 1 − s. As
we just argued, for t < s we only have extended
modes in the passing bands (trivial phase), while
for s < t, we have two edge modes localized on
each end of the chain (topological phase). From
relation (17), for each of the eigenvalues En cor-
responds a value of the Bloch phase ϕn > 0 and
vice-versa. This is shown in Fig. 3(b). One can
then obtain the frequency spectrum of the acous-
tic system from the dispersion relation (14). In
particular, when s < t, we will obtain two topo-
logically protected edge modes (one is symmetric
and the other antisymmetric) for two frequencies
corresponding to ϕ ≃ π/2, as we see in Fig. 3(b).

0 0.5 1
-1

0

1

0 0.5 1
0

0.5

1

1 2 3 4 5 6 7 8 9 10
-1

0

1

FIG. 3: (a) Eigenvalues of an SSH chain with 2N = 10
sites for varying s and t = 1 − s. The bands of the
infinite chain are shown in light grey. (b) Bloch phase
values corresponding to the spectrum (a). (c) Profil of
the discrete edge modes Xn for s = 0.25 (marked by a
black cross in (a) and (b)).

B. Subwavelength topological edge modes

Turning back to the configuration of Fig. 2(c),
the zero energy mode of the SSH model (seen
in equation (22)) induces a localized topological
acoustic mode each time ϕ(k) = π/2. This is illus-
trated in Fig. 4(a). The isolated eigenfrequencies
we see near ϕ = π/2 (when s < t) correspond to
edge modes. We compare this configuration with a
waveguide of alternating cross sections and with-
out resonators, shown in Fig. 2(c). We see that
the presence of Helmholtz resonators opens a gap
near the resonance frequency k0, which in turn, in-
duces extra edge modes at low frequencies k < k0.
This means that, by taking k0 very small, we can
obtain topological acoustic modes at arbitrary low
frequencies. This is our main result: by changing
the scatterer inside each segment, the mapping to
the SSH model is exact and realized for any desired
frequency range through Eq. (17). In Fig. 4(c), we
compare the pressure profile of the edge mode on
the left for waveguides with (red curve) or without
resonators (purple curve).

To confirm this subwavelength topological edge
wave we have performed the numerical computa-
tion of eigenfrequencies and eigenmodes of a cavity
closed by hard walls. It solves the 2D Helmholtz
equation △p + k2p with Neumann boundary con-
ditions at the walls, using Finite Element Method.
We follow the approach described previously, but
take an even number of segments (N = 8), which
allows us to isolate one unique edge mode [17] at
the extremity with the smallest width (here SA).
Each segment is decorated by an Helmholtz res-
onator with neck width r, neck length h and a
cavity of width Lx and height Ly. These ge-
ometrical parameters are finely tuned to get an
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0 0.5 1
0

2

4

0 0.5 1
0

2

4

0 1 2 3 4 5 6
-1

0

1

FIG. 4: (a) Dispersion relation (blue line): frequency
as a function of the Bloch phase (equation (21)). We
took k0ℓ = 0.8, gℓ = 1, and SA/SB = 1/3. Spectrum
(red circles) for 9 segments with open ends. Gaps are
shown in light grey. (b) Dispersion relation (blue line)
and spectrum (purple circles) for 9 segments in the
absence of Helmholtz resonators and for SA/SB = 1/3.
(c) Pressure profiles of the left edge mode for both cases
(a) and (b).

equal Bloch phase following equation (21) in the
range of frequencies 0 ≤ kℓ ≤ π, for both seg-
ments of cross section SA and SB . The values of
these tuned paramters are found to be SA = 0.1ℓ,
rA = 0.0217ℓ, hA = 0.2ℓ, LxA = 0.2ℓ, LyA = 0.3ℓ
and SB = 0.2ℓ, rB = 0.05ℓ, hB = 0.2ℓ, LxB = 0.3ℓ,
LyB = 0.4ℓ; they correspond to resonance fre-
quency k0ℓ = 1.226 and a coupling parameter
gℓ = 0.914. The corresponding edge mode is con-
firmed to appear (it is the fifth mode of the cavity)
and is displayed in Fig. 5. It can be remarked that
the amplitude is strongly concentrated in the first
resonator at the left.

0

1

0.5

FIG. 5: Numerical computation of the edge mode in
a 2D geometry with resonators for SA/SB = 0.5 (and
thus s = 1/3). The corresponding eigenfrequency is
kℓ = 0.30π.

IV. REMARK: RESONATORS IN SERIES
BY INVERSE DESIGN

Interestingly, now that we understood the struc-
ture of the subwavelength edge mode (shown in

Fig. 4(c)), we can reverse engineer it to obtain al-
ternative structures also hosting a subwavelength
edge mode.

We now show how this can be done in an array of
only waveguide segments of changing cross-section.
First, we assume that we work at low frequencies,
such that the pressure profile is piecewise linear
(as in Fig. 4(c)). Let us start at the left wall,
where the pressure derivative vanishes. Because
of that boundary condition, the pressure profile in
the first segment, of section S1 is flat. We then put
a segment of section S2 ≪ S1, so that the pressure
derivative at x = ℓ jumps from a near-zero value
to a non-zero one. Since the profile in the first seg-
ment is not exactly flat, a small shift of frequency
changes the near-zero derivative at x = ℓ. The
edge mode is such that the pressure slope in the
second segment leads to a vanishing pressure at
x = 2ℓ. Here, we put another segment S3 > S2,
so that the pressure derivative decreases in am-
plitude. Now, the fourth segment has a section
satisfying S4 ≫ S3, so that the pressure derivative
becomes almost zero in that segment. Doing so, at
the fifth section change, pressure is maximum and
hence no jump of derivative occur, and we can put
a segment of section S1 again. However, we need
to flip the sign of the (near-zero) derivative, and
hence, we must use S1 ≲ S4. Doing so, the pro-
file is back to its initial structure with an overall
decrease of amplitude. By repeating the construc-
tion, we see that the pressure amplitude decreases
for each set of four segment, and hence we obtain
an edge mode, which by construction has a low
(subwavelength) frequency.

Because a picture is worth a thousand words,
we show the edge mode in such a configura-
tion in Fig. 6. Notice that each large change
of cross-section can be seen as a Helmholtz res-
onator. Hence, the described configuration amonts
to Helmholtz resonators in placed in series, and
inducing an edge mode near their resonance fre-
quency.

Remarkably, while we have built a construction
made of a set of four segments repeated along the
waveguide, the same construction can be general-
ized to any values of cross-sections (e.g. in dis-
ordered configurations) as long as the inequalities
exposed above are still valid. Explicitly, if we
call Sn the section of the nth segment, we need
S4j+2 ≪ S4j+1, S4j+3 > S4j+2, S4j+4 ≫ S4j+3,
and S4j+5 ≲ S4j+4. For completeness, we now
give the discrete set of equation relating pressure
at each cross-section change (more details for the
derivation can be found in [17], section IV):
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cos(kℓ)p4j+1 =
S4j

S4j + S4j+1
p4j +

S4j+1

S4j + S4j+1
p4j+2, (23a)

cos(kℓ)p4j+2 =
S4j+1

S4j+1 + S4j+2
p4j+1 +

S4j+2

S4j+1 + S4j+2
p4j+3, (23b)

cos(kℓ)p4j+3 =
S4j+2

S4j+2 + S4j+3
p4j+2 +

S4j+3

S4j+2 + S4j+3
p4j+4, (23c)

cos(kℓ)p4j+4 =
S4j+3

S4j+3 + S4j+4
p4j+3 +

S4j+4

S4j+3 + S4j+4
p4j+5, (23d)
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FIG. 6: (a) Pressure profile of the lowest frequency
edge mode (in blue) in the configuration of panel (b).
(b) Waveguide configuration with repeating sets of four
segments.

V. CONCLUSION

In a previous work it was shown that a one-
dimensional acoustic waveguide with alternating
cross sections can be mapped exactly to the SSH
lattice model [17]. Here, we extend this mapping
by adding extra scatterers inside each segment of
the waveguide. We show that the mapping is gov-
erned by a relation between the energy eigenvalue
of the lattice model and the acoustic frequency,
which now involves the Bloch phase accumulated
along a segment (equivalently, the acoustic path),
see equation 17. Using this extended relation,
we consider a configuration where Helmholtz res-

onators are added on the wall of each segment.
Near the resonance frequency, it is now possible to
obtain large Bloch phases. As a consequence, the
topological edge mode of the SSH model, which
has zero energy, is mapped to an acoustic mode
whose frequency can be tuned at will. In particu-
lar, we obtain topologically protected modes at an
arbitrarily low frequency.

Moreover, our setup offers a much larger de-
gree of control of the mode properties than pre-
vious proposals of a subwavelength topological
mode [15, 16]. Indeed, based on the exact map-
ping to the SSH model, the cross section changes
and the Helmholtz resonators parameters govern
distinct and well identified aspects of the system.
For instance, the eigenfrequency of the edge mode
is entirely controlled by the resonators character-
istics, but insensitive to the cross section values,
which in turn can be used to change the size of the
corresponding gap.
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