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Looptree, Fennec, and Snake of ICRT.

Arthur Blanc-Renaudie

May 5, 2022

Abstract

We introduce a new theory of plane R-tree, to define plane ICRT (inhomogeneous contin-
uum random tree), and its looptree, fennec (a Gaussian free field on the looptree), and snake.
We prove that a.s. the looptree is compact, and that a.s. the fennec and snake are continuous.
We compute the looptree’s fractal dimensions, and the fennec and snake’s Hölder exponent.
Alongside, we define a Gaussian free field on the ICRT, and prove a condition for its continuity.
In a companion paper [8], we prove that the looptrees, fennecs, and snakes of trees with fixed
degree sequence converge toward the looptrees, fennecs and snakes of ICRT.

1 Introduction

1.1 Motivations and overview of the results

We construct the looptree, "fennec" (a gaussian free field on the looptree), and snake of the ICRT.
We also compute the fractal dimensions (Minkowski, Packing, Hausdorff) of the looptree, and the
Hölder exponents of the fennec and snake. In a companion paper [8] we show that these objects are
the scaling limits of the looptrees, fennecs, and snakes of "D-trees" (uniform rooted trees with fixed
degree sequence D).

Informally, a looptree, introduced by Curien, Kortchemski [15], is constructed by replacing
each vertex of a tree by a cycle of size proportional to its degree, while keeping the tree structure.
Then the fennec (for field+snake) is a Gaussian free field on the looptree. Finally, the snake is the
real process obtained by turning around the looptree clockwise, and reading the value of the fennec.
Those definitions are made formal in Section 2, using a new theory of plane R-tree.

Those objects are mainly motivated by scaling limits of maps with fixed face degree sequence.
Indeed, the bijections of Bouttier, Di Fransesco, Guitter [12] and Janson-Stefánsson [21] yield
together a bijection between those maps and D-trees with a discrete fennec. It is now well known
that the convergence of the snakes implies the tightness of the maps. However, although Le Gall
[23] developed a general approach to prove the universality, this question remains open in general.
In the stable case, this key problem is under active investigation by Curien, Miermont, Riera [16].
We refer to Marzouk [27, 26, 28] for elaborate discussions on the subject.

Let us already mention, that independently, Marzouk [28] also proves scaling limits of looptrees
and snakes of D-trees toward objects constructed from processes with exchangeable increments.
We strongly believe that both approaches are useful to study the limits, which thus coincide, from
the point of views of processes with exchangeable increments, and stick-breaking constructions.

In this direction, our theory of plane R-tree builds a bridge between those two points of view.
Indeed, we extend many discrete notions to R-trees, to construct several real processes directly
from the trees. As a result, those processes can now be studied from stick-breaking constructions.
This completes the pioneer ideas of Le Gall (see e.g. [22]), which allow to construct and study trees
from real process. By analogy with this theory, we construct the height process and Lukasiewicz
walk of ICRT, and we will study them in a forthcoming paper [7].
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1.2 Theory of plane R-tree: an overview

A discrete plane tree is a rooted tree with an ordering of the children of each vertex. Aldous [2]
extended this notion to binary continuum trees, by using signs -/+, to construct the height process.
The height process is then constructed by Duquesne [17] for general order.

However an order is not enough to construct several objects, and notably the Lukasiewicz walk.
This walk was essential in the work of Le Gall, Le Jan [25, 24], and Le Gall, Duquesne [19, 18]
to study Lévy trees. For P-trees and ICRT, Aldous, Miermont, Pitman [3, 4], developed a similar
theory based on processes with exchangeable increments, but those processes are far less understood.

Still their construction of the depth first walk of P-trees led us to two intuitions: First, P-trees
are infinite. This is confirmed in [9] since P-trees are the limits of D-trees in the "condensation
case" (when the largest degrees have the same order as the total degree, see [9] Theorem 5 (a), 6 (a)).
Then, this process can be seen as a Lukasiewicz walk. This interpretation of this "half-discrete-half
continuum" tree led us to the theory of plane R-tree below:

First we define a notion of angle, which can be seen as numbering the children of each vertex.
With those angles, we can rewrite the discrete definitions of the looptree and fennec for the ICRT.
Then, we define a notion of left and right, which we use to define a contour path in the looptree:
morally start at the root, then turn around each cycle clockwise, and stop after a complete circuit.
Finally we construct many processes, by composing this path with some functions on the looptree.

1.3 Stick breaking and the chaining method

Our approach is based on the stick-breaking construction of the ICRT from [10], which is adapted
from Aldous, Camarri, Pitman [5, 13]. Stick-breaking constructions, first introduced by Aldous [1],
generate a R-tree and are separated in two steps:
• the line R+ is first cut into the segments ("sticks" or "branches") [0, Y1], (Y1, Y2], (Y2, Y3] . . .
• then for every i ∈ N the segment (Yi, Yi+1] is glued at position Zi ≤ Yi.

In [10] we study the compactness and fractal dimensions of ICRT. We now use similar methods,
which can be split into simple topological/logical arguments, and many uses of the chaining method.

This method has found many applications in concentration theory (see e.g. Talagrand [31], or
[11] Chapter 13), and to study random metric spaces, and notably stick-breaking constructions (see
e.g. Aldous [1] ; Amini, Devroye, Griffiths, Olver [6] ; Curien, Haas [14] ; Sénizergues [30]).

Let us explain its main principle: The goal is to estimate the max of a function f on a space S.
To this end, consider a sequence of increasing subspaces1 (Si)i∈N of S "approximating" S, and for
every i ∈ N, a projection pi : Si+1 → Si. The main idea is that if (Si)i∈N are properly chosen:

max
x∈S

f(x) ≤
∑
i∈N

max
x∈Si+1

(f(x)− f(pi(x))).

As a result, one can decompose a complex estimate into many simpler ones. Moreover, when
(Si)i∈N are well chosen, it tends to give optimal bounds 2.

In most of our proofs S is the looptree, and (Si)i∈N are the sub-looptrees obtained after gluing
a certain number of branches. Then f can be the distance between a vertex and a fixed set to prove
compactness, or compute fractal dimensions. f can also be some partial sums to prove uniform
convergence, or continuity. In [9], it was also used to prove the tightness of D-trees.

In this paper we often re-decompose for every i ∈ N, the estimate of maxx∈Si+1 f(x)−f(pi(x)):
On the one hand, we estimate the maximum number of branches separating x ∈ Si+1 from Si. On
the other hand, we estimate how f vary on each branches. Finally we multiply the worst cases.

1For more complex algorithms one may want to consider general (Xi)i∈N and a family of functions fi on Xi.
2Reverse bounds tends to be much harder to prove. See e.g. [10] for ICRT in the non compact case.
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Plan of the paper: In Section 2, we define our objects and state our main results. We also deduce
the Hölder continuity of the fennec and snake from our other results. In Section 3, we recall several
technical results from [10]. In Section 4, we prove the compactness of the looptree. In Section 5,
we study the notions of left and right. In Section 6, we construct the contour path and prove its
Hölder continuity. In Section 7, we compute the fractal dimensions of the looptree. In Section 8,
we study the Gaussian free field on the ICRT. In Section 9, we prove that the fennec is well defined,
and extend its definition to other fields. Both Sections 8, 9 can be read right after Section 3.

Acknowledgment I am grateful to Cyril Marzouk for the interesting discussions we got at CIRM.

2 Model and main results.

2.1 Basic notions on R-trees and plane R-trees.

A Polish space is a separable, complete, metric space. A R-tree is a geodesic, loopless, Polish space
(see Le Gall [22]). A rooted R-tree is a R-tree with a distinguished vertex.

For every R-tree T , and x, y ∈ T , let Jx, yK denote the geodesic path between x and y. The
closest common ancestor of x, y ∈ T is the vertex x∧ y ∈ Jρ, xK∩ Jρ, yK which maximizes d(ρ, z).
For every x ∈ T , the degree deg(x) of x in T is the number of connected components of T \{x}.

An angle function on a rooted R-tree (T , d, ρ) is a function u : T 2 → [0, 1] such that:
• For all x ∈ T , ux,ρ = ux,x = 0.
• For all x ∈ T , y, z ∈ T \{x}, ux,y = ux,z iff y and z are connected in T \{x}.

A plane R-tree is a rooted R-tree equipped with an angle function.
To avoid measurability issues, we further assume in the definition that a plane R-tree is balanced:

for every x, y ∈ T if deg(x) = 2 then ux,y ∈ {0, 1/2}.

2.2 ICRT, and plane ICRT

We first introduce a generic stick breaking construction. It takes for input two sequences in R+

called cuts y = (yi)i∈N and glue points z = (zi)i∈N, which satisfy

∀i < j, yi < yj ; yi−→∞ ; ∀i ∈ N, zi ≤ yi,

and creates an R-tree by recursively "gluing" segment (yi, yi+1] on position zi , or rigorously, by
constructing a consistent sequence of distances (dn)n∈N on ([0, yn])n∈N.

Algorithm 1. Generic stick-breaking construction of R-tree.
– Let d0 be the trivial metric on [0, 0].
– For each i ≥ 0 define the metric di+1 on [0, yi+1] such that for each x ≤ y:

di+1(x, y) :=


di(x, y) if x, y ∈ [0, yi]

di(x, zi) + |y − yi| if x ∈ [0, yi], y ∈ (yi, yi+1]

|x− y| if x, y ∈ (yi, yi+1]

where by convention y0 := 0 and z0 := 0.
– Let d be the unique metric on R+ which agrees with di on [0, yi] for each i ∈ N.
– Let SB(y, z) be the completion of (R+, d).

Let Ω be the space of sequences {θi}i∈N in R+ with
∑∞

i=0 θ
2
i = 1 and θ1 ≥ θ2 ≥ . . . The

ICRT of parameter Θ ∈ Ω is the random R-tree constructed via the following algorithm.
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Algorithm 2. Construction of Θ-ICRT (from [10])
- Let X = (Xi)i∈N a family of independent exponential random variables of parameter (θi)i∈N.
- Let µ be the measure on R+ defined by µ = θ2

0dx+
∑∞

i=1 δXiθi.
- For each l ∈ R+ let µl be the restriction of µ to [0, l], and let pl := µl/µ[0, l].
- Let Y = (Yi)i∈N be a Poisson point process on R+ of rate µ[0, l]dl.
- Let Z = (Zi)i∈N be a family of independent random variables with laws (pYi)i∈N.
- The Θ-ICRT is defined as (T , dT ) = SB(Y,Z) (see Algorithm 1).

Remarks. •When θ0 = 1, the ICRT is the Brownian CRT.
•When θ0 = 0 and

∑∞
i=1 θi <∞, T "is" a P-tree with a modified distance (see [9] Section 5.2).

•When Θ is random and corresponds to the jumps and brownian part of a Lévy bridge, the ICRT
"is" a Lévy tree. (Equal in GP distribution, by unicity of the limit of D-trees, see [9] Section 8.1.)
•Morally, (Xi)i∈N and (θi)i∈N corresponds to the vertices of highest degrees with their degrees.
On the other hand, θ0 corresponds to vertices with small degrees.

We root ICRT at 0. Recall that to define a plane R-tree, we need an angle function U . This is
equivalent to define for each x ∈ T , and for each connected component C of T \{x} with 0 /∈ C,
the value of Ux,y ∈ [0, 1] for a unique y ∈ C. So, the following algorithm a.s. does well define an
angle function on the ICRT. Also, the last line below insure that a.s. (T , dT , 0, U) is balanced.

Algorithm 3. Construction of the uniform angle function U on the ICRT.
- Let (UX,i)i∈N, (UZ,i)i∈N be independent uniform random variables in [0, 1].
- Let U be the unique angle function on T such that:

- For every i ∈ N, U(Xi, Yinf{a∈N:Ya>Xi}) = UX,i
- For every i ∈ N, U(Zi, Yi+1) = UZ,i.
- For every x ∈ R+\

⋃
i∈N{Xi, Yi}, we have U(x, Yinf{a∈N:Ya>x}) = 1/2.

2.3 The ICRT looptree

To extend the discrete setting, we want to replace each vertex by a loop. So we define L as T × [0, 1]
with a proper pseudo-distance dL corresponding to the cycles.

To define dL we need the sizes of the cycles, which in the discrete correspond to the degrees.
For ICRT, although the degrees are infinite, the only vertices with high degrees are (Xi)i∈N and
their degrees are morally proportional to (θi)i∈N.

Thus we may define L by concatenating some cycles of perimeter (θi)i∈N. Actually, this is not
enough, since we forget the vertices of small degrees. Morally their degrees corresponds to θ0dl.
Then by concatenating the corresponding cycles we get segments of length θ2

0/4dl. (The factor 1/4
is the mean distance between two points in a cycle of perimeter 1.)

So, we formally define the ICRT looptree as follows: Let c be the distance in the torus [0, 1].
Then for every x, y ∈ T , u ∈ [0, 1], let Ux,y,u = Ux,y if x 6= y and let Ux,y,u = u otherwise. We
define a pseudo-distance dL on T × [0, 1] such that for all (x, u), (y, v) ∈ T × [0, 1] (see Figure 1),

dL((x, u), (y, v)) :=
θ2

0

4
dT (x, y) +

∑
i∈N

θic(UXi,x,u, UXi,y,v). (1)

Finally let (L, dL) be the completion of the pseudo-metric space (T × [0, 1], dL).

Theorem 2.1. Almost surely dL is finite on T × [0, 1], and (L, dL) is compact.

Remark. When θ1 = 1, L is a cycle of size 1. When θ0 = 1, L is the Brownian CRT.

Sadly, several of our notions are initially defined in R+ × [0, 1] or in T × [0, 1], but not in L.
So, to avoid any issues, we extend the above notions to L:
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(x; u)
(y; v)

Figure 1: A continuum looptree L. The geodesic between (x, u), (y, v) ∈ L is red. The distance
between (x, u) and (y, v) is the sum of the length of all potential cords that lies in this geodesic.
This is a simplified picture, since L usually has infinitely many cycles which can have size null.

Proposition 2.2. Almost surely the following assertions hold:
(a) L is the completion of (R+ × [0, 1], dL).
(b) If T is compact, then L = T × [0, 1], and pT ,L : (x, u) ∈ L → x ∈ T is continuous.
(c) For every i ∈ N with θi > 0, α ∈ T × [0, 1] 7→ UXi,α extends to a continuous function from

(L, dL) to ([0, 1], c).
(d) For every α, β ∈ L, writing when θ0 > 0 dT : (x, u), (y, v) ∈ L 7→ dT (x, y),

dL(α, β) =
θ2

0

4
dT (α, β) +

∑
i∈N

θic(UXi,α, UXi,β).

Remark. If T is not compact, then L morally contains the "ends of the infinite branches" of T (see
Section 5.4). Those points are dense in L (cf [10] Lemma 6.6), so pT ,L is nowhere continuous.

We now give the fractal dimensions of L, whose definitions are recalled in Section 7.1. Let,

d := 1 + lim inf
l→∞

logE[µ[0, l]]

log l
; d := 1 + lim sup

l→∞

logE[µ[0, l]]

log l
. (2)

Remark. l 7→ lE[µ[0, l] is an analog of the Laplace exponent ψ for Lévy processes (see [4, 10]).
Also, by Lemma 3.1 (b), 1 ≤ d ≤ d ≤ 2.

Theorem 2.3. Almost surely the upper Minkowski dimension, and Packing dimension of L are d.
Almost surely the lower Minkowski dimension, and Hausdorff dimension of L are d

2.4 The ICRT fennec

To mimic the discrete setting, we want to define the ICRT fennec F as a Gaussian free field (a
random function) on L. We construct it explicitly by mimicking our construction of the looptree.

First, to deal with vertices of small degree we construct a Gaussian free field on T . To this end,
we adapt Algorithm 1: Let B : R+ → R be a Brownian motion. Then define inductively G on R+

such that for every i ∈ N and Yi < x ≤ Yi+1,

G(x) := G(Zi) + B(x)−B(Yi). (3)

To construct the fennec F, we need to show that G extends to a continuous function on T if θ0 > 0.
We actually prove the much stronger result:

Theorem 2.4. Almost surely G extends to a continuous function on T if∫ ∞ dl

l
√
E[µ[0, l]]

<∞. (4)
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Remark. By [10], T is almost surely compact iff
∫∞

dl/(lE[µ[0, l]]) <∞, so G is well defined on
most compact ICRT. Also, we believe one can adapt [10] Section 6.3 to show that (4) is necessary.
Moreover, in [18] Chapter 4.5, Duquesne and Le Gall prove the equivalence for Lévy trees.

We now adapt (1). Beforehand, recall that if θ0 > 0, by Proposition 2.2 (b), that L = T × [0, 1]
and that pL,T : (x, u) ∈ L → x is continuous. Then the fennec is

F : α ∈ L 7→ θ0√
6
G ◦ pL,T (α) +

∞∑
i=1

√
θiBi(UXi,α). (5)

Theorem 2.5. Almost surely the sum in (5) converges uniformly on L, so F is continuous.

We will actually prove a stronger statement where the functions (Bi)i∈N are replaced by more
general random functions under a moment condition for their maximums (see Section 9 for details).
We believe that this extension may have applications to study more complex fields on D-trees.

A direct corollary of Theorem 2.5 is that F is indeed a Gaussian free field on L:

Proposition 2.6. Almost surely, conditionally on X,Y,Z, U , for every α, β ∈ L, F(α)− F(β) is
Gaussian with variance

d′L(α, β) :=
θ2

0

6
dT (α, β) +

∑
i∈N

θi|UXi,α − UXi,β|(1− |UXi,α − UXi,β|).

Remark. 1
2dL ≤ d

′
L ≤ dL so d′L is equivalent to dL.

2.5 Left, Front, Right (see Figure 2)

In this section (T , d, ρ, u) denote an arbitrary plane R-tree. For every x ∈ T , (y, w) ∈ T × [0, 1] let
ux,y,w := ux,y if x 6= y and let ux,y,w := w otherwise. For all α = (x, v), β = (y, w) ∈ T × [0, 1],
we say that α is at the left of β (or β is at the right of α) and write αy β if ux∧y,x,v < ux∧y,y,w.
We say that β is in front of α and write α�β if x ∈ J0, yK and ux,y,w = v.

x

v

Left

Front

Right

0

Figure 2: A vertex (x, v) ∈ T × [0, 1] with its left (red), front (purple), right (blue) are represented.

Lemma 2.7. Let≺ be the binary relation defined on T × [0, 1] such that for every α, β ∈ T × [0, 1]:

α ≺ β ⇐⇒ (αy β) or (α�β).

Then ≺ is a total order relation on T × [0, 1] and is called the contour order.

Proof. See Appendix C.

Finally let ν be a σ-finite borel measure on T . Let νL := µ× 1l∈[0,1]dl. The mass on the left,
front, right of α ∈ T × [0, 1] are denoted by, (see Appendix C for definiteness)

νx(α) := νL{β : β y α} ; νO(α) := νL{β : α�β} ; νy(α) := νL{β : αy β}.
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2.6 The contour path, and the ICRT snake

Recall that for every l ∈ R+, µl is the restriction of µ to [0, l], and that pl = µl/µ[0, l]. Also by
[10] a.s. (pl)l∈R+ converges weakly toward a probability measure p. We prove that a.s. px extends
to a function continuous at L\(R+ × [0, 1]) (see Section 5.3), and that px has an "inverse": Below
∼L denote the equivalent relation on L such that for every α, β ∈ L, α ∼L β iff dL(α, β) = 0.

Theorem 2.8. Almost surely there exists a continuous function C : [0, 1] 7→ L such that for every
α ∈ L, C(px(α)) ∼L α. We call C the contour path on L (see Figure 6).

Figure 3: A continuum looptree L, with its contour path C : [0, 1] 7→ L in red. The path start at the
root (0, 0) then "turn around" each cycle clockwise. It is continuous, "surjective", not "injective".

The density of {px(α), α ∈ L} (see Lemma 5.3) implies that C is unique up to ∼L. Moreover
it also implies with the existence of C that:

Proposition 2.9. Almost surely for every continuous function F : L 7→ R, F ◦ C is the unique
continuous function f such that for every α ∈ L, f(px(α)) = F (α).

In particular, we define the ICRT snake as Z := F ◦ C.
Remark. Similarly, if T is a.s. compact, we can define the height process of the ICRT as follows.
First by Proposition 2.2 (b), L = T × [0, 1], and pT ,L : (x, u) ∈ L → x is continuous. Then we
define the contour path on T as CT := pT ,L ◦ C. This path is a.s. continuous by continuity of C.
Finally, the height process is

H : x ∈ [0, 1] 7→ dT (0,CT (x)).

Also by first defining

L : (x, u) ∈ L 7→ θ2
0

2
dT (0, x) +

∑
i∈N:Xi∈J0,xK

θi(1− UXi,x,u),

we may define the Lukasiewicz walk as X := L ◦ C. We will study H and X in [7].
We now consider the Hölder continuity. Our first point is that for any continuous function F ,

the Hölder continuity of F ◦ C can be deduced from the Hölder continuity of F and C. Moreover:

Theorem 2.10. Recall (2). A.s. C is Hölder continuous with any exponent smaller than 1/d.

Remark. The bound is optimal. Indeed, if C is α-Hölder continuous then L have Minkowski upper
dimension at most 1/α (see Lemma 7.3).

Thus, since by Proposition 2.6, a.s. F is a Gaussian free field on (L, d′L), which have by
Theorem 2.3 finite upper Minkowski dimension, we deduce (see Lemma A.1):

Theorem 2.11. Almost surely F is Hölder continuous with any exponent smaller than 1/2, and Z
is Hölder continuous with any exponent smaller than 1/2d.
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3 Recalls from [10] Section 4

We prove the following results in [10] Section 4: (Actually in [10] we focus on the case where
θ0 > 0 or

∑∞
i=1 θi =∞, but the proof is exactly the same in the complementary case. Also (d) is

slightly modified from Lemma 4.6 using Lemma 4.5.)

Lemma 3.1. The following assertions hold a.s.:
a) The map l 7→ E[µ[0, l]] is concave.
b) As l→∞, µ[0, l] ∼ E[µ[0, l]] = θ2

0l + o(l).
c) For every l large enough, #([0, l] ∩ {Yi}i∈N) ≤ 2µ[0, l]l ≤ 2l2.
d) For every i large enough, µ[Yi−1, Yi] ≤ log(Yi)

2/Yi.

We now adapt [10] Lemma 4.7. First let us define a metric, which morally counts the number
of branches between two points. To do so, we adapt Algorithm 1: First let dN,0 be the trivial metric
on [0, 0]. Then for every i ≥ 0, define dN,i+1 as the metric on [0, Yi+1] such that for every x < y,

dN,i+1(x, y) :=


dN,i(x, y) if x, y ∈ [0, Yi]

dN,i(x, Zi) + 1 if x ∈ [0, yi], y ∈ (Yi, Yi+1]

1 if x, y ∈ (Yi, Yi+1]

Finally let dN be the unique metric on R+ which agrees with dN,i on [0, Yi] for every i ∈ N.

Lemma 3.2. Almost surely, for every n large enough, for every x ≤ 2n+1, dN(x, [0, 2n]) ≤ 4n.

Proof. We adapt the proof of [10] Lemma 4.7. Let F := σ(µ, {Yi}i∈N). Let z be a random variable
F-measurable in [0, 2n+1]. Let us follow the geodesic path between z and [0, 2n] (see Figure 4):
Let z0 := z, then for every i ≥ 0, let ki := max{k ∈ N : Yk < zi} and let yi := Yki , and let
zi+1 := Zki . Finally note that dN (x, [0, 2n]) = T := inf{t ∈ N, zt ≤ 2n}.

zT

Glue

[0; 2n]

y0 y1 y2 y3

z1
z2

z3

z0 := z

Figure 4: A typical construction of (zi, yi)i∈N. Each segment represents a branch.

Then for every i ≥ 0 let Fi := σ(F , z0, . . . , zi). Recall that conditionally on F , (Zi)i∈N are
independent so ((yi, zi),Fi)i≥0 is a Markov chain. Also T is a stopping time for this Markov chain.
Moreover by definition of (Zi)i∈N, if zi ≥ 2n,

P(zi+1 ≤ 2n|Fi) =
µ[0, 2n]

µ[0, yi]
≥ µ[0, 2n]

µ[0, z]
≥ µ[0, 2n]

µ[0, 2n+1]
≥ 1/3,

where the last inequality holds a.s. for every n large enough by Lemma 3.1 (a) (b). Thus,

P(T ≥ 4n) = P(z4n−1 > 2n) ≤ (2/3)4n−1.

Therefore by an union bound,

P
(
∃1 ≤ i ≤ 22n+3 : Yi ≤ 2n, dN(Yi, [0, 2

n+1]) ≥ 4n
∣∣F) = O(1/n2).

Hence, by the Borel–Cantelli Lemma, and by Lemma 3.1 (c), a.s. for every n large enough,

max{dN(Yi, [0, 2
n]) : i ∈ N, Yi ≤ 2n+1} ≤ 4n− 1.

Finally simply note that dN(·, [0, 2n]) is constant among branches.
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4 Basic properties on L.

4.1 Proof of the compactness of L.

We first show an upper bound on dL. Then we introduce the projections on Ll := [0, l] × [0, 1].
Then we show that for every l ∈ R+, (Ll, dL) is a.s. compact. Then we upper bound for n ∈ N,
dH(L2n ,L2n+1). Finally, we show that L is a.s. compact with the chaining method.

Lemma 4.1. Almost surely for all (x, u), (y, v) ∈ T × [0, 1], we have dL((x, u), (y, v)) ≤ µJx, yK.
Also for every x ∈ T , (y, v) ∈ T × [0, 1], we have dL((x, Ux,y,v), (y, v)) ≤ µKx, yK.

Proof. We focus on the second assertion as the first can be proved similarly. Let u = Ux,y,v. Recall
that by definition, writing c for the distance on the torus [0, 1],

dL((x, u), (y, v)) =
θ2

0

4
dT (x, y) +

∑
i∈N

θic(UXi,x,u, UXi,y,v).

Then note that for every i ∈ N such that Xi /∈ Jx, yK, x, y are connected in T \{Xi}, hence
UXi,x,u = UXi,x = UXi,y = UXi,y,v. Also Ux,x,u = u = Ux,y,v. Therefore,

dL((x, u), (y, v)) ≤ θ2
0dT (x, y) +

∑
i∈N:Xi∈Kx,yK

θi = µKx, yK.

Remark. Note that Lemma 3.1 (c) (d) implies µ[Yi, Yi+1] = O(i−1/2+o(1)). Also by Lemma 4.1
the diameter of the branches of the looptree is bounded by (µ[Yi, Yi+1])i∈N. Thus we are close
from the compact setting of Curien and Haas [14] and of Sénizergues [30].

We now introduce the projections on T and on L (see Figure 5). For every x ∈ T , and l ∈ R+,
let ρ̄l be the projection of x on Tl := [0, l], that is the unique z ∈ Tl which minimizes dT (x, z).

(x; u) ρ̊l(x; u)x

ρ̄l(x)

Uρ̄l(x);x

u

0 (0; 0)

Figure 5: Two representations of ρ̊l, from the tree on the left, and from the looptree on the right. Tl
and Ll are in blue. T \Tl and L\Ll are in black dashed. Here Uρ̄l(x),x,u = Uρ̄l(x),x since ρ̄l(x) 6= x.

Lemma 4.2. For every (x, u) ∈ T × [0, 1] and l ∈ R+, β ∈ Ll 7→ dL((x, u), β) reach its minimum
at ρ̊l(x, u) := (ρ̄l(x), Uρ̄l(x),x,u). We call ρ̊l(x, u) the projection of x on Ll.

Proof. Note that, since T is a R-tree, for every y ∈ [0, l], for every z ∈Kρ̄l(x), xK, Uz,y = 0. Thus,
for every (y, u) ∈ Ll, since dT (x, y) ≥ dT (x, ρ̄l(x)),

dL((x, u), (y, v)) ≥ θ2
0

4
dT (x, ρ̄l(x)) +

∑
i:Xi∈Kρ̄l(x),xK

θic(UXi,x,u) = dL(x, ρ̊l(x)), (6)

where the last inequality is obtained by a small modification of the proof of Lemma 4.1.
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Lemma 4.3. Fix l > 0. Almost surely, dL is finite on Ll = [0, l]× [0, 1], and (Ll, dl) is compact.

Proof. The finiteness of dL directly follows from Lemma 4.1 since for every (x, u), (y, v) ∈ Ll,
Jx, yK ⊂ [0, l], and since almost surely µ is locally finite. So let us focus on the compactness.
Let ((xn, un))n∈N ∈ (Ll, dL)N. Up to extraction, we may assume that (xn)n∈N converges for dT
toward x ∈ [0, l]. Then note that, for every X 6= x and for every n large enough, xn and x are
connected in T \{X}, so UX,x,u = UX,xn,v. Furthermore, up to extraction, we may also assume
that Ux,xn,un → u ∈ [0, 1] as n→∞. Therefore, by dominated convergence, a.s.

dL((xn, un), (x, u)) =
θ2

0

4
dT (xn, x) +

∑
i∈N:Xi≤l

θic(UXi,x,u, UXi,y,v)→ 0.

We now show that (L2n)n∈N is a Cauchy sequence for dH .

Lemma 4.4. The following assertions hold a.s. for every n large enough:
a) maxx∈[0,2n+1] miny∈[0,2n] µKy, xK ≤ 4n3/2n.
b) dH(L2n ,L2n+1) ≤ 4n3/2n.

Proof. Let (x, u) ∈ L2n+1 . By lemma 4.1,

dL((x, u), ρ̊2n(x, u)) ≤ µKρ̄2n(x), xK.

Also, a.s. for every n large enough, by Lemma 3.2 Kρ̄2n(x), xK morally consists in the union of a
part of at most 4n branches of the form ]Yi, Yi+1], which have by Lemma 3.1 mass at most n2/2n.
Hence µKρ̄2n(x), xK ≤ 4n3/2n. Since (x, u) ∈ L2n+1 is arbitrary, this concludes the proof.

We will reuse the following intermediate result in [7]:

Lemma 4.5. Almost surely x 7→ µJ0, xK is bounded on T .

Proof. First by Lemma 4.4 (a) almost surely, for every n large enough,

max
x∈[0,2n+1]

µJ0, xK ≤ max
x∈[0,2n]

µJ0, xK + 4n3/2n.

Thus since
∑

4n3/2n <∞, x 7→ µJ0, xK is bounded on R+. Moreover for every x ∈ T \R+, by
monotone convergence, and since µ(T \R+) = 0, as y → x, y ∈ J0, xJ,

µJ0, yK−→µJ0, xJ= µJ0, xK. (7)

Proof of Theorem 2.1. By Lemma 4.5 and (7), for every x ∈ T , miny∈R+ µJy, xK = 0. Hence, by
Lemma 4.1, dH(T × [0, 1],R+ × [0, 1]) = 0. So, since L is the completion of (T × [0, 1], dL), we
have dH(L,R+ × [0, 1]) = 0.

Then by Lemma 4.4, (L2n)n∈N is a Cauchy sequence for the Hausdorff pseudo-distance. Also,
by Lemma 4.3, for every n ∈ N, L2n is compact. Hence, since L is complete, (L2n)n∈N converges
toward a compact subset of L. This subset contains R+× [0, 1]. And since dH(L,R+× [0, 1]) = 0,
it is at distance 0 of L. Therefore, L is compact.

In passing note that we also prove the following result, which we will reuse in [8].

Proposition 4.6. Almost surely as l→∞, dH(Ll,L)→ 0.
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4.2 Proof of Proposition 2.2

Toward (a), simply recall that dH(L,R+ × [0, 1]) = 0.
Toward (b), to show that T × [0, 1] = L it is enough to prove that (T × [0, 1], dL) is compact.

Let ((xn, un))n∈N be a sequence in T × [0, 1]. Since T is compact, we may assume up to extraction
that xn → x ∈ T , and Ux,xn,un → u ∈ [0, 1]. Let us prove (xn, un)→ (x, u). There is two cases:

Either x /∈ R+. In this case, for every l ∈ R+, for every n large enough, x and xn are connected
in T \[0, l]. And it follows, by Lemma 4.2, that for every n large enough,

dL((xn, un), (x, u)) ≤ 2dH([0, l]× [0, 1],L),

which converges a.s. to 0 as l→∞, by Proposition 4.6.
Or x ∈ R+. In this case, for every l ≥ x, as n → ∞, by Lemma 4.2, ρ̊l(xn, un) → (x, u).

Thus a.s.
lim sup
n→∞

dL((xn, un), (x, u)) ≤ dH(Ll,L) −→
l→∞

0.

Then we show that pT ,L : (x, u) ∈ T × [0, 1] 7→ x is continuous on T × [0, 1]. We argue by
contradiction. Assume that there exists (xn, un) ∈ LN such that as n→∞, (xn, un)→ (x, u) ∈ L
but xn 9 x. Since T is compact we may assume up to extraction that xn → y ∈ T .

Since x 6= y, there exists a < b ∈ R+\{x, y} such that [a, b] ⊂Kx, yJ. Then by density of µ on
R+ (see proof of Theorem 3.1 [10]), either θ0 > 0, so

lim inf
n∈N

dL((xn, un), (x, u)) ≥ θ2
0

4
dT (y, x) > 0,

or there exists i ∈ N with θi > 0 and Xi ∈ [a, b]\{x ∧ y}, so for every n ∈ N large enough,

dL((xn, un), (x, u)) ≥ θiUXi > 0,

where the last inequality holds almost surely. Both cases contradict dL((xn, un), (x, u))→ 0.
Toward (c), note that by definition of dL, for every i ∈ N with θi > 0, α 7→ UXi,α is 1/θi

Lipschitz from T × [0, 1] to ([0, 1], c), and so extends by continuity on L.
Toward (d), by (c) and definition of dL on T × [0, 1], it is enough to show that as n → ∞,

α, β ∈ L2 7→
∑n

i=1 θic(UXi,α, UXi,β) converges uniformly as n→∞. To this end, first note that
by dominated convergence, for every l ∈ R+, as n,m→∞, a.s. (see proof of Lemma 4.1)

∆n,m,l := max
α,β∈Ll

m∑
i=n

θic(UXi,α, UXi,β) ≤
∞∑
i=n

θi1Xi∈[0,l] → 0.

Then, by definition of dL, and the triangular inequality, for every l ∈ R+, as n,m→∞, a.s.

∆n,m := max
α,β∈T ×[0,1]

m∑
i=n

θic(UXi,α, UXi,β)

≤ 2dH(Ll,L) + max
α,β∈T ×[0,1]

m∑
i=n

θic(UXi,ρ̊l(α), UXi,ρ̊l(β))

≤ 2dH(Ll,L) + ∆n,m,l

→ 2dH(Ll,L). (8)

By Proposition 4.6 a.s. dH(Ll,L)→ 0. Thus by (8) as n,m→∞ a.s. ∆n,m → 0. The maximum
in (8) is then directly extended to L by (c). This yields the desired uniform convergence.
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5 Preliminary results on left, front, right

In this section is we prove the technical results necessary to construct and study C in Section 6.
In Section 5.1, 5.2 we prove generic results on y,�, and on px, pO, py. In Section 5.3, 5.4 we
extend respectively (ρ̊l)l>0 and px to L. In Section 5.5 we estimate pl,x.

5.1 Properties of y, �.

Recall Section 2.5. The following lemma is proved in Appendix C:

Lemma 5.1. � is a partial order. y is a strict partial order. � raises ≺ (see Figure 6): for every
β y γ ∈ T × [0, 1], for every α ∈ T × [0, 1], γ�α⇒ β y α and β�α⇒ αy γ.

β γ

α

β γ

α

β y γ

α y γβ y α
γ C α β C α

β y γ

Figure 6: The cases of Lemma 5.1. The assumptions are blue. The conclusions are red.

Lemma 5.2. Recall ρ̄, ρ̊ from section 4.1. For every l > 0 and α = (x, a), β = (y, b) ∈ T × [0, 1]:
(a) If ρ̊l(α) y ρ̊l(β) then αy β.
(b) If ρ̊l(α)� ρ̊l(β) and ρ̊l(α) 6= ρ̊(β) then α = ρ̊l(α)�β.

Proof. First by definition of ρ̊, ρ̊l(α) = (ρ̄l(x), Uρ̄l(x),α)�α and similarly ρ̊l(β)�β. (a) follows
since � raises y. Toward (b), ρ̊l(α)�α, and ρ̊l(α)� ρ̊l(β), so either:
• x = ρ̄l(x).
• ρ̄l(y) = ρ̄l(x) and then by ρ̊l(α)� ρ̊l(β), we have ρ̊l(α) = ρ̊l(β).
• x, ρ̄l(y) are connected in T \{ρ̄l(x)} which is absurd by definition of ρ̄.

Hence, x = ρ̄l(x). So since ρ̊l(α)�α, by definition of �, α = ρ̊l(α). Finally α� ρ̊l(β)�β.

5.2 Generic properties on px, pO, py

In this section (T , d, ρ, u) denotes a plane R-tree, and p denotes a probability Borel measure on T .

Lemma 5.3. The following assertions hold:
(a) For every α ∈ T × [0, 1], px(α) + pO(α) + py(α) = 1.
(b) px is increasing for ≺.
(c) If A is a random variable with law p× 1l∈[0,1]dl, then almost surely pO(A) = 0.
(d) With the same notations, px(A) is uniform in [0, 1].
(e) {px(α)}α∈T ×[0,1] is dense in [0, 1].

Proof. Toward (a), note that for every α ∈ T × [0, 1], we have the following partition,

T × [0, 1] = {β : β 6= α, β�α} ∪ {β : αy β} ∪ {β : α�β} ∪ {β : β y α}. (9)

Then by Fubini’s theorem since for every y ∈ T , #{v ∈ [0, 1], (y, v)�α} ≤ 1, we have
µL{β : β�α} = 0. (a) follows from (9).

Toward (b), by Lemma 5.1, for every α ≺ β ∈ L, {γ : γ y α} ⊂ {γ : γ y β}.
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Toward (c), let A,A′ be independent random variables with law µL. Since T is separable, and
balanced, the events Ay A′, A�A′ are measurable (see Lemma C.4). The measurability of the
other random variables in the proof is then due to Fubini’s Theorem.

Then note that a.s. pO(A) = P[A�A′|A], and by (a) a.s. p{α : α�A′} = P[A�A′|A′] = 0.
Hence, by Fubini’s theorem, a.s. pO(A) = 0.

Toward (d), let (Ai)i∈N be a family of independent random variables with law p× 1l∈[0,1]dl.
By the weak law of large number a.s.

1

n

n∑
i=1

P(Ai y A1|A1) −→
n→∞

px(A1). (10)

Furthermore, by (b) for every i 6= j ∈ N,

P(Ai�Aj) = E[P(Ai�Aj |Ai)] = E[pO(Ai)] = 0.

Hence, since ≺ is a total order, a.s. for every i, j ∈ N either Ai y Aj or Aj y Ai. Moreover,
the law of (Ai)i∈N is invariant by permutations. Hence for every n ∈ N, #{i ≤ n : Ai y A1} is
uniform in {0, 1, 2, . . . , n− 1}. Finally (d) follows from (10). (e) directly follows from (d).

5.3 Extension of ρ̊l to L

Recall notations ρ̄, ρ̊ from section 4.1. Although for all l > 0, ρ̊l is continuous on T × [0, 1], we do
not want to extend it by continuity. Indeed, a continuous extension is only defined up to ∼L, while
y, � are not. So we prove instead that ρ̊l is locally constant around each vertex of L\(T × [0, 1]),
and extend it naturally. First, we prove that ρ̊ is piecewise constant:

Lemma 5.4. For every l > 0, for every C connected component of T \[0, l], ρ̄ is constant on C,
and ρ̊ is constant on C × [0, 1].

Proof. The first assertion is classic, so we leave it to the reader as an exercise. Let x, y ∈ C and
let a, b ∈ [0, 1]. ρ̄(x) = ρ̄(y). Since x, y 6= ρ̄(x), Uρ̄l(x),x,a = Uρ̄l(x),x and Uρ̄l(x),y,b = Uρ̄l(x),y.
Also since x, y are connected in T \{ρ̄(x)}, we have Uρ̄l(x),x = Uρ̄l(x),y. So Uρ̄l(x),x,a = Uρ̄l(y),y,b.
Therefore, ρ̊(x, a) = ρ̊(y, b).

For every α ∈ L, and ε > 0 let B(α, ε) denote the open ball for dL of center α and radius ε.

Lemma 5.5. For every l > 0, for every α ∈ L, ρ̊l is constant on (T ×[0, 1])∩B(α, dL(α, [0, l])/2).

Proof. We argue by contradiction. Let l > 0, α ∈ L, β = (y, b), γ = (z, c) ∈ T × [0, 1].
Assume that ρ̊l(β) 6= ρ̊l(γ), and dL(β, α) < dL(α, [0, l])/2, and dL(γ, α) < dL(α, [0, l])/2. Let
D = dL(α, [0, l]). By the triangular inequality,

d(β, [0, l]) > D/2 ; d(γ, [0, l]) > D/2 ; dL(β, γ) < D. (11)

Moreover, since ρ̊l(β) 6= ρ̊l(γ), by Lemma 5.4, y, z are disconnected in T \[0, l]. Hence,
Jy, ρ̄l(y)J∩Kρ̄l(z), zJ= ∅. As a result, writing

Sβ :=
θ2

0

4
d(y, ρ̄l(y)) +

∑
i:Xi∈Jy,ρ̄l(y)J

θic(UXi,β, UXi,γ), (12)

and similarly for Sγ , we have dL(β, γ) ≥ Sβ + Sγ .
Also, for every Xi ∈ Jy, ρ̄l(y)J, ρ̄l(y) and z are connected in T \{Xi} so UXi,γ = UXi,ρ̊l(β).

Hence, by (12), (6), Sβ = dL(β, ρ̊l(β)). and similarly for Sγ . Therefore, since dL(β, γ) ≥ Sβ+Sγ ,

dL(β, γ) ≥ dL(β, ρ̊l(β)) + dL(γ, ρ̊l(γ)).

This contradicts (11).
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Lemma 5.6. For every 0 < r ≤ s, ρ̊r ◦ ρ̊s = ρ̊s ◦ ρ̊r = ρ̊r.

Proof. First since ρ̊r have value in Lr ⊂ Ls and ρ̊s is the identity on Ls, we have ρ̊s ◦ ρ̊r = ρ̊r.
Then, since ρ̊r, and ρ̊s are locally constant around each vertex of L\T × [0, 1], and since T × [0, 1]
is dense, it is enough to show that ρ̊r ◦ ρ̊s = ρ̊r on T × [0, 1].

Let (x, a) ∈ T × [0, 1]. By definition of ρ̄, ρ̄r ◦ ρ̄s(x) is the vertex z in J0, ρ̄sK ∩ [0, r] which
maximizes dT (0, z). Moreover, since T is a R-tree, Kρ̄s, xK ⊂ T \[0, s]. Hence, since r ≤ s,
ρ̄r ◦ ρ̄s(x) is the vertex z in J0, xK ∩ [0, r] which maximizes dT (0, z), which is ρ̄r(x). Finally by
definition of ρ̊, we have ρ̊r ◦ ρ̊s(x, a)� ρ̊s(x, a)�(x, a). So,

ρ̊r ◦ ρ̊s(x, a) = (ρ̄r(x), Uρ̄r(x),x,a) = ρ̊r(x, a).

5.4 Continuous extension of px to L

Lemma 5.7. Recall the notation pL := p× 1x∈µ[0,1]dx. The map

α ∈ L 7→ pL

(⋃
l>0

{β ∈ T × [0, 1], ρ̊l(β) y ρ̊l(α)}

)
(13)

is well defined and coincide with px on T × [0, 1].

Remark. One may see each α ∈ L\(T × [0, 1]) as the "end" of the infinite branch (see Figure 7)
{pT ,L ◦ ρ̊l(α), l ∈ R+}, and the relations of T × [0, 1] may be extended to those missing points.

α

ρ̊l(α)

Figure 7: A simplified non compact ICRT, with a spinal representation of α ∈ L\(T × [0, 1]). The
infinite branch {pT ,L ◦ ρ̊l(α), l ∈ R+} is in red. (13) estimates p of the blue part, on the left.

Proof. First by Lemmas 5.2 and 5.6, for every 0 < l ≤ l′ and β ∈ T ×[0, 1] such that ρ̊l(β) y ρ̊l(α)
we have ρ̊l ◦ ρ̊l′(β) y ρ̊l ◦ ρ̊l′(α) so ρ̊l′(β) y ρ̊l′(α). Thus ({β ∈ T × [0, 1], ρ̊l(β) y ρ̊l(α)})l>0

is increasing. Furthermore, those sets are measurable (see Appendix C). Hence (13) is well defined.
Next let α = (x, a), β = (y, b) ∈ T × [0, 1]. If there exists l > 0 such that ρ̊l(β) y ρ̊l(α)

then by Lemma 5.2, β y α. Reciprocally, assume that β y α and either x ∈ R+ or x 6= y. Then
y ∧ x ∈ R+, ρ̄x∧y(x) = x and ρ̄x∧y(y) = y. Also, since β y α, we have Ux∧y,y,b < Ux∧y,x,a. So,

ρ̊x∧y(y, b) = (x ∧ y, Ux∧y,y,b) y (x ∧ y, Ux∧y,x,a) = ρ̊x∧y(x, a). (14)

As a result, for every (x, a) ∈ T × [0, 1],

{β, β y (x, a)} ⊂
⋃
l>0

{β, ρ̊l(β) y ρ̊l(x, a)} ⊂ {β, β y (x, a)} ∪ {x} × [0, 1],

and the first inclusion is an equality when x ∈ R+. Finally for every x ∈ T \R+, p(x) = 0. (Indeed,
when θ0 = 0,

∑
θi <∞, p have support {Xi}i∈N ⊂ R+. In the other case see [10] Theorem 3.1.)

So px coincide with (13).
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Lemma 5.8. Let px denote (13). px is continuous around each vertex of L\{R+ × [0, 1]}.

Proof. Fix α ∈ L\{R+ × [0, 1]}. First, recall that the sets of (13) are increasing so, as l→∞,

pL({β ∈ T × [0, 1], ρ̊l(β) y ρ̊l(α)})→ px(α).

Furthermore, recall that by Lemma 5.5 ρ̊l is locally constant, hence for every l > 0,

lim inf
β→α

px(β) ≥ pL({β ∈ T × [0, 1], ρ̊l(β) y ρ̊l(α)})→l→∞ px(α).

Let us show the other inequality. For every β ∈ L let

Sβ :=
⋃
l>0

{γ ∈ T × [0, 1], ρ̊l(γ) y ρ̊l(β)}.

Let l > 0. Let β ∈ L such that ρ̊l(β) = ρ̊l(α). Let (z, c) ∈ Sβ . By Lemma 5.2 there exists r > l
such that ρ̊r(z, c) y ρ̊r(β). Let (y, b) = ρ̊r(β). By Lemma 5.6, ρ̊l(y, b) = ρ̊l(β) = ρ̊l(α).

If y ∧ z > ρ̄l(y), then y and z are connected in T \{ρ̄l(y)}. So ρ̄l(y) ∈ J0, zK and Uρ̄l(y),y,b =
Uρ̄l(y),z,c. Also, ρ̊l(y, b) = (ρ̄l(y), Uρ̄l,y,b). Hence, ρ̊l(α) = ρ̊l(y, b)�(z, c).

If y ∧ z ≤ ρ̄l(y), then by Lemma 5.6,

ρ̊y∧z(y, b) = ρ̊y∧z ◦ ρ̊l(y, b) = ρ̊y∧z ◦ ρ̊l(α) = ρ̊y∧z(α).

Moreover, we have ρ̊r(z, c) y (y, b) so by Lemma 5.3 (z, c) y (y, b). Then by (14), we have
ρ̊y∧z(z, c) y ρ̊y∧z(y, b). Hence, ρ̊y∧z(z, c) y ρ̊y∧z(α). And (z, c) ∈ Sα.

To sum up, for all l > 0, and β ∈ L such that ρ̊l(β) = ρ̊l(α),

Sβ ⊂ Sα ∪ {(z, c) ∈ T × [0, 1], ρ̊l(α)�(z, c)}.

Let Il denote the right most set above. By Lemma 5.5, to show that lim supβ→α px(β) ≤ px(α),
it suffices to show that as l→∞, pL(Il)→ 0. First since � is an order, and since for every l ≤ l′,
ρ̊l(α)� ρ̊l′(α), (Il)l>0 is decreasing. Then for every z ∈ T , ρ̄l → z as l → ∞. So for every
(y, b) 6= (z, c) ∈ T × [0, 1] such that y 6= z or z ∈ R+, for every l large enough ρ̊l(y, b) 6= ρ̊l(z, c).
Thus, ∩l>0Il is included in a set of the form {z} × [0, 1] with z ∈ T \R+, or of the form {(z, c)}.
Finally recall that for every z ∈ T \R+, p(z) = 0. Hence, pL(

⋂
l>0 Il) = 0. This shows the other

desired inequality and thus concludes the proof.

5.5 Some preliminary results on pl,x

For every ν, σ-finite Borel measure on T and α, β ∈ T ×[0, 1], let νx(α, β) denote νx(β)−νx(α).

Lemma 5.9. Almost surely for every l > 0, α, β ∈ Ll = [0, l] × [0, 1], |µl,x(α, β)| ≥ dL(α, β).
(See Figure 8.)

Proof. Let α = (x, a), β = (y, b) ∈ [0, l]× [0, 1]. By symmetry we may assume (x, a) ≺ (y, b).
By Lemma C.1 (a), (b), {γ ∈ Ll, γ x α} ⊂ {γ ∈ Ll, γ x β}. Then writing

S := {γ ∈ Ll, γ x β}\{γ ∈ Ll, γ x α},

we have µl,x(α, β) = µ(S).
For every z ∈Kx ∧ y, xK, c ∈ (Uz,x,a, 1), we have x ∧ z = z, and Uz,x,a < c = Uz,z,c. So

(x, a) y (z, c). Also, z and x are connected in T \{x ∧ y} so z ∧ y = x ∧ y, and Uz∧y,x,a =
Ux∧y,x,a < Ux∧y,y,b. Hence, (z, c) y (y, b). Therefore,

S1 := {(z, c) : z ∈Kx ∧ y, xK, c ∈ (Uz,x,a, 1)} ⊂ S.
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α

β

0; 0

Figure 8: An informal proof of Lemma 5.9: α ≺ β. The set S = {γ, γ x β}\{γ, γ x α} is red.
(It can be obtained by turning clockwise from α to β.) Its total length is µl,x(α, β). Note that this
set contains a path between α and β. This path have length at least dL(α, β).

Similarly,
S2 := {(x ∧ y, c) : c ∈ (Ux∧y,x,a, Ux∧y,y,b)} ⊂ S,

and,
S3 := {(z, c) : z ∈Kx ∧ y, yK, c ∈ (0, Uz,y,b)} ⊂ S.

Moreover S1, S2, S3 are disjoint. And writing c for the distance on the torus [0, 1], since for
every z ∈Kx ∧ y, xK, Uz,y,b = 0,

µ(S1) =
θ2

0

2
dT (x∧y, x)+

∑
i:Xi∈Kx∧y,xK

(1−Uz,x,a) ≥
θ2

0

4
dT (x∧y, x)+

∑
i:Xi∈Kx∧y,xK

θic(UXi,x,a, UXi,y,b).

Similarly, µ(S2) ≥ µ{x ∧ y}c(Ux∧y,x,u, Ux∧y,y,b), and

µ(S3) ≥ θ2
0

4
dT (x ∧ y, y) +

∑
i:Xi∈Kx∧y,yK

θic(UXi,x,a, UXi,y,b).

Finally, by sum, and since for every i ∈ N, such that Xi /∈ Jx, yK, UXi,x,a = UXi,y,b,

µ(S) ≥ µ(S1) + µ(S2) + µ(S3) ≥ θ2
0

4
dT (x, y) +

∞∑
i=1

θic(UXi,x,a, UXi,y,b) = dL(α, β).

Lemma 5.10. Almost surely for every α ∈ T × [0, 1], as l→∞, pl,x(α)→ px(α).

Proof. When θ0 = 0 and
∑∞

i=1 θi < ∞, we have µ(R+) < ∞. As a result, µl → µ in total
variation. So pl1x∈[0,1]dx→ p1x∈[0,1]dx in total variation. The desired result follows.

When θ0 6= 0 or
∑∞

i=1 θi = ∞, some extra care is needed since (pl)l∈R+ only converges
weakly. For every (x, a) ∈ T × [0, 1], let S(x, a) := {β ∈ T × [0, 1], β y (x, a)}. Let

S1(x, a) := {z ∈ T \J0, xK, Ux∧z,z < Ux∧z,x,a}.

Note that S1(x, a) is a Borel set in (T , dT ) as an union of connected component (see Appendix C).
Moreover, by definition of y,

S1(x, a)× [0, 1] ⊂ S(x, a) ⊂ (S1(x, a) ∪ J0, xK)× [0, 1].

Hence, for every x, a ∈ T × [0, 1]

pl(S1(x, a)) ≤ pl,x(x) ≤ pl(S1(x, a) ∪ J0, xK), (15)
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and similarly,
p(S1(x, a)) ≤ px(x) ≤ p(S1(x, a) ∪ J0, xK), (16)

Moreover, note that S1(x, a) is an open set of T as a union of open connected components.
Similarly, note that S1(x, a) ∪ J0, xK is a closed set since its complementary is a union of open
connected components. Furthermore, by [10] Theorem 3.1, p(R+) = 0, and p has no atoms, so
p(J0, xK) = 0. As a result, by Portmanteau Theorem,

pl(S1(x, a))→ p(S1(x, a)) and pl(S1(x, a) ∪ J0, xK)→ p(S1(x, a) ∪ J0, xK) = p(S1(x, a)).
(17)

The desired result follows by (15),(16), (17).

We now adapt [10] Lemma 5.1 to estimate precisely the evolution of pl,x.

Lemma 5.11. Let UX := (UX,i)i∈N. Almost surely (µ,Y,UX) satisfies the following property.
For all a large enough, conditionally on Fa := σ(µ,Y, (Zi, UZ,i)i<a,UX), for every α, β ∈ LYa:
If µl,x(α, β) ≥ (log6 Ya)/Ya then with probability at least 1− 1/Y 5

a , for every b ≥ a,(
1− 1

log Ya

)
pYa,x(α, β) ≤ pYb,x(α, β) ≤

(
1 +

1

log Ya

)
pYa,x(α, β).

Remark. With α = (0, 0), for all a ∈ N, since pYa,x(0, 0) = 0, we have pYa,x(α, β) = pYa,x(β).

Proof. First by Lemma 5.3 (b), α ≺ β. So, by Lemma C.1 (a), (b), {γ : γ y α} ⊂ {γ : γ y β}.
Then by construction for every i ∈ N, conditionally on Fi, γi := (Zi, UZ,i) have law pYi × [0, 1].
Moreover, for every i ≥ a, writing Ii :=]Yi, Yi+1]× [0, 1], conditionally on Fi a.s.
• With probability pYi,x(x), γi y α. Then by Lemma C.2, for every δ ∈ Ii, δ y α.
• With probability pYi,O(x), α� γi. Then by Lemma C.1 (d), for every δ ∈ Ii, α� δ.
• With probability pYi,y(x), αy γi. Then by Lemma C.1 (b), for every δ ∈ Ii, αy δ.

And similarly for β.
Therefore, by Lemma 5.3 (a), and {γ : γ y α} ⊂ {γ : γ y β}, for every i ≥ a, a.s.

P
(
µYi+1,x(α, β) = µYi,x(α, β) + µ(Yi, Yi+1]

∣∣Fi) = pYi,x(α, β),

and,
P
(
µYi+1,x(α, β) = µYi,x(α, β)

∣∣Fi) = 1− pYi,x(α, β).

As a result, (pYi,x(α, β),Fi)i≥a is a Pólya urn in the sense of [10] Lemma A.1. And we can
conclude exactly as in the proof of [10] Lemma 5.1.

6 Construction and Hölder continuity of the contour path.

6.1 Construction of the contour path Cl on Ll.

Lemma 6.1. Recall that ∼L denotes the metric equivalence on (L, dL). A.s. for every l > 0 there
exists a µ[0, l]-Lipschitz function Cl : [0, 1] 7→ Ll such that for every α ∈ Ll, Cl(pl,x(α)) ∼L α.

Remark. Since by Lemma 5.3 (e), {px(α), α ∈ Ll} is dense, Cl is unique up to ∼L.

Proof. A.s. for every l > 0 the following holds: Let Sl := {px(α), α ∈ Ll}. For every u ∈ Sl,
we may chose Cl(u) ∈ Ll such that px(Cl(u)) = u. Then by Lemma 5.9, for every α, β ∈ Ll,

dL(α, β) ≤ |µx(α)− µx(β)| = µ[0, l]|px(α)− px(β)|. (18)

Thus for every α ∈ Ll, we have dL(α,Cl(px(α))) = 0. Also, by (18), Cl is µ[0, l]-Lipschitz on Sl.
Furthermore by Lemma 5.3 (e), Sl is dense. Hence, by compactness of (Ll, dL) (see Lemma 4.3),
Cl extends to a µ[0, l]-Lipschitz function on [0, 1].

17



6.2 Construction of the contour path C.

For every f, g : [0, 1] 7→ L, let d∞(f, g) := maxx∈[0,1] dL(f(x), g(x)). In this section we prove:

Proposition 6.2. (CYa)a∈N is almost surely a Cauchy sequence for d∞.

Since L is a.s. compact, this directly implies that (CYa)a∈N converges uniformly, and we define
C as its limit. Our proof is mainly constructive, with several topological arguments along the way.

First, since almost surely as a → ∞, µ[0, Ya]Ya/(log6 Ya) → ∞, a.s. there exists for every
a ∈ N large enough (la, na) ∈ R+ × N such that

1 ≤ Ya

log6 Ya
µ[0, Ya]la ≤ 2 and 2nala = 1. (19)

we take (la, na) such that na is the largest possible.
Then for every a ∈ N, let αa,0 := (0, 0), αa,na = (0, 1) and for every 0 < i < na, let

αa,i ∈ LYa such that
pYa,x(αa,i) ∈ [2ila, (2i+ 1)la]. (20)

αa,i exists by Lemma 5.3 (e), and by Lemma 5.3 (d), we can sample αa,i in a measurable way. Also
note that for every a ∈ N, since (0, 0) is the minimum for ≺ and since (0, 1) is the maximum for ≺,

pYa,x(0, 0) = 0 and pYa,x(0, 1) = 1.

Thus, by Lemma 5.3 (c) and (20), a.s. for every a ∈ N large enough,

(0, 0) = αa,0 ≺ αa,1 · · · ≺ αa,na = (0, 1). (21)

Next, by Lemma 3.1 (a), (b), a.s. as a → ∞, na = O(Y 2
a ). Also by Lemma 3.1 (c), a.s.

i2 = O(Yi), so a.s.
∑∞

a=1 Y
−3
a <∞. Therefore by the Borel–Cantelli Lemma and Lemma 5.11,

for every a ≤ b large enough, and 0 ≤ i < na, by (19), (20),

la/2 ≤ pYb,x(αa,i, αa,i+1) ≤ 4la. (22)

In particular for every a ≤ b large enough, (pYb,x(αa,i))0≤i≤na is strictly increasing. Hence we
may define ψa,b : [0, 1] 7→ [0, 1] such that for every 0 ≤ i ≤ na,

ψa,b(pYa,x(αa,i)) = pYb,x(αa,i),

and such that for every 0 ≤ i < na, ψa,b is linear in [αa,i, αa,i+1]. And by (22), ψa,b is strictly
increasing and continuous.

Lemma 6.3. Almost surely for every a ∈ N large enough, (ψa,b)b≥a converges uniformly toward a
strictly increasing continuous function ψa. And a.s. (ψ−1

a,b)b≥a converges uniformly toward ψ−1
a .

Proof. By Lemma 5.10 a.s. for every a ∈ N large enough, for every 0 ≤ i ≤ na, as b→∞,

pYb,x(αa,i)→ px(αa,i). (23)

So if ψa is the function such that for every 0 ≤ i ≤ na,

ψa,b(pYa,x(αa,i)) = px(αa,i),

and such that for every 0 ≤ i < na, ψa is linear in [αa,i, αa,i+1]. Then almost surely for every
a ∈ N large enough, (ψa,b)b≥a converges uniformly toward ψa.

Moreover, by (22) and (23), a.s. for every a ∈ N large enough, for every 0 ≤ i < na,

la/2 ≤ ψa(pYa,x(αa,i+1))− ψa(pYa,x(αa,i)) ≤ 4la. (24)

Hence, ψa is also a strictly increasing continuous function. Finally by (23), (24), and the linearity,
a.s. for every a ∈ N large enough, (ψ−1

a,b)b≥a converges uniformly toward ψ−1
a .
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Lemma 6.4. Almost surely for every a ≤ b large enough,

d∞(CYa ◦ ψ−1
a,b ,CYb) ≤ dH(LYa ,L) + 6 log6(Ya)/Ya.

Remark. This result does not depends on the choice of (CYa)a∈N, since they are unique up to ∼L.

Before proving Lemma 6.4 let us explain why it implies Proposition 6.2.

Proof of Proposition 6.2. First by Proposition 4.6 a.s. dH(LYa ,L)→ 0. Hence, by Lemma 6.4 a.s.

lim
a→∞

max
b≥a

d∞(CYa ◦ ψ−1
a,b ,CYb) = 0.

Then by the triangular inequality, a.s.

lim
a→∞

lim sup
b,c→∞

d∞(CYc ,CYb) ≤ lim
a→∞

lim sup
b,c→∞

d∞(CYa ◦ ψ−1
a,c , CYa ◦ ψ−1

a,b).

Finally by Lemma 6.3 and continuity of CYa the right hand side above is almost surely null.

Proof of Lemma 6.4. Almost surely for every a ≤ b large enough, β ∈ Lb the following holds:
Since ≺ is an order, by (21) there exists 0 ≤ i < na such that αa,i ≺ β ≺ αa,i+1. Then recall
from Lemma 4.2 that ρ̊Ya(β) denote the projection of β on Lya . Then note that by Lemma 5.2,
αa,i ≺ ρ̊Ya(β) ≺ αa,i+1. Thus, by Lemma 5.3 (c),

pYa,x(αa,i) ≤ pYa,x ◦ ρ̊Ya(β) ≤ pYa,x(αa,i+1). (25)

Also, since αa,i ≺ β ≺ αa,i+1,

pYb,x(αa,i) ≤ pYb,x(β) ≤ pYb,x(αa,i+1).

Then by applying ψ−1
a,b which is strictly increasing we get,

pYa,x(αa,i) ≤ ψ−1
a,b ◦ pYb,x(β) ≤ pYa,x(αa,i+1). (26)

Therefore by (25), (26), (20), and (19),

|ψ−1
a,b ◦ pYb,x(β)− pYa,x ◦ ρ̊Ya(β)| ≤ 3la ≤ 6 log6(Ya)/(Yaµ[0, Ya]).

Then since by Lemma 6.1, CYa is a.s. µ[0, Ya]-Lipschitz,

dL(CYa ◦ ψ−1
a,b ◦ pYb,x(β),CYa ◦ pYa,x ◦ ρ̊Ya(β)) ≤ 6 log6(Ya)/Ya.

Also, by using the definition of Ca, we have, Ca ◦ pYa,x ◦ ρ̊Ya(β) ∼L ρ̊Ya(β). Hence,

dL(CYa ◦ ψ−1
a,b ◦ pYb,x(β), ρ̊Ya(β)) ≤ 6 log6(Ya)/Ya.

Then using dL(ρ̊Ya(β), β) ≤ dH(LYa ,L) (see Lemma 4.2),

dL(CYa ◦ ψ−1
a,b ◦ pYb,x(β), β) ≤ dH(LYa ,L) + 6 log6(Ya)/Ya.

Finally by using the definition of Ca, we have β ∼L CYb ◦ pYb,x(β), so,

dL(CYa ◦ ψ−1
a,b ◦ pYb,x(β),CYb ◦ pYb,x(β)) ≤ dH(LYa ,L) + 6 log6(Ya)/Ya. (27)

To conclude the proof by (27), almost surely for every a ≤ b ∈ N large enough, writing
Sb := {pYb,x(γ), γ ∈ LYb},

max
x∈Sb

dL(CYa ◦ ψ−1
a,b(x),CYb(x)) ≤ dH(LYa ,L) + 6 log6(Ya)/Ya.

The maximum is then extended to [0, 1], by density of Sb (see Lemma 5.3 (d)), since CYa , ψ
−1
a,b ,CYb

are almost surely continuous.
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6.3 Proof of Theorem 2.8

Recall that by Lemmas 5.7, 5.8, px extends to a function continuous at each point ofL\(R+×[0, 1]).
We need to show that almost surely for every α ∈ L, C ◦ px(α) ∼L α. To this end, by continuity of
px and C at L\(R+ × [0, 1]), and by density of R+ × [0, 1] (see Proposition 2.2 (a)), it is enough
to show the desired result on R+ × [0, 1].

Almost surely for every α ∈ R+ × [0, 1] the following holds: First by definition of (Cl)l>0, for
every l large enough, Cl ◦ pl,x(α) ∼L α. Then by Lemma 5.10, a.s. pl,x(α) → px(x). Hence,
since a.s. (Cl)l>0 converges uniformly toward C, as l→∞,

Cl ◦ pl,x(α)→ C ◦ px(α))

Therefore, C ◦ px(α) ∼L α.

6.4 Holder continuity of C: Proof of Theorem 2.10

The next result is more precise than Theorem 2.10, and we will use it in the next section to estimate
the Minkowski lower box dimension of L.

Lemma 6.5. Almost surely, for every n ∈ N large enough, for every s, t ∈ [0, 1],

dL(C(s),C(t)) ≤ 13|s− t|E[µ[0, 2n]] + 13n62−n.

Proof. We keep the notations of Section 6.2. By taking b→∞ in Lemma 6.4, by Lemma 6.3, a.s.
for every a large enough,

d∞(CYa ◦ ψ−1
a ,C) ≤ dH(LYa ,L) + 6 log6(Ya)/Ya.

Hence, by the triangular inequality, a.s. for every a large enough, for every s, t ∈ [0, 1],

dL(C(s),C(t)) ≤ dL(CYa ◦ ψ−1
a (s),CYa ◦ ψ−1

a (t)) + 2dH(LYa ,L) + 12 log6(Ya)/Ya.

Moreover, by Lemma 6.1, CYa is µ[0, Ya]-Lipschitz, and by (20), (24), ψ−1
a is 6-Lipschitz. Thus,

dL(C(s),C(t)) ≤ 6|s− t|µ[0, Ya] + 2dH(LYa ,L) + 12laµ[0, Ya]. (28)

Next, as a corollary of [10] Lemma 4.5, a.s. for every n large enough, there exists a ∈ N, such
that Ya ∈ [2n, 2n+1]. So, a.s. for every n ∈ N large enough, by (28), for every s, t ∈ [0, 1].

dL(C(s),C(t)) ≤ 6|s− t|µ[0, 2n+1] + 2dH(L2n ,L) + 12n62−n.

The desired result follows from Lemma 4.4 (b), and by Lemma 3.1 (a) (b).

Proof of Theorem 2.10. Let δ > d. By (2), E[µ[0, 2n]] = o(2n(β−1)). So, for every n ∈ N large
enough, for every s, t ∈ [0, 1] with 2−nβ ≤ |s− t| ≤ 13n62−nβ ,

dL(C(s),C(t)) ≤ n72−n ≤ − log(|s− t|)8|s− t|1/β.

Since β > d is arbitrary, the desired result follows.
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7 Fractal dimensions of the looptree

7.1 Definitions of the fractal dimensions

In this section X denotes a pseudo-metric space.

Definition. (Minkowski dimensions) For every ε > 0, an ε-set of X is a finite subset S of X
such that dH(S,X) ≤ ε. For every ε > 0 let Nε be the smallest size of a ε-set of X . Define the
Minkowski lower box and upper box dimensions respectively by

dim(X) := lim inf
ε→0

logNε

− log ε
and dim(X) := lim sup

ε→0

logNε

− log ε
.

Definition. (Packing dimension) For every s ≥ 0 and A ⊂ X let

P s0 (A) := lim sup
δ→0

{∑
i∈I

diam(Bi)
s

∣∣∣∣∣ {Bi}i∈I are disjoint balls B(x, r) with x ∈ A and 0 < r ≤ δ

}
.

and

P s(X) := inf

{ ∞∑
i=1

P s0 (Ai)

∣∣∣∣∣X ⊂
∞⋃
i=1

Ai

}
.

Then P s is a decreasing function of s, and we define the packing dimension of X as

dimP (X) := sup{s, P s(X) <∞}.

Definition. (Hausdorff dimension) For every s, r ≥ 0 write

Hs
r (X) := inf

diam(Ai)≤r

{ ∞∑
i=1

diam(Ai)
s

∣∣∣∣∣X ⊆
∞⋃
i=1

Ai

}
.

The Hausdorff dimension of X is defined by

dimH(X) := sup

{
s, sup
r∈R+

Hs
r (X) <∞

}
.

Remark. Although, the above dimensions are usually considered for metric spaces, it is easy to
check that they are exactly the same for a pseudo-metric space and for its quotient. For this reason,
the below results still apply here.

To compute the packing dimension and Hausdorff dimension we will use the following extension
of Theorem 6.9, and Theorem 6.11 from [29]. ([29] deals with subsets of Euclidian space, but the
same arguments hold for every pseudo-metric space.)

Lemma 7.1. Let p be a Borel probability measure on X and s ∈ R+.
a) If p-almost everywhere lim sup(log p(B(x, ε)))/(log ε) ≥ s as ε→ 0, then dimP (X) ≥ s.
b) If p-almost everywhere lim inf(log p(B(x, ε)))/(log ε) ≥ s as ε→ 0, then dimH(X) ≥ s.

We have well-known inequalities (see e.g. Chapter 3 of Falconer [20]):

Lemma 7.2. For every pseudo-metric space X we have

dimH(X) ≤ dim(X) ≤ dim(X) and dimH(X) ≤ dimP (X) ≤ dim(X).

So we only need to upper bound dim(L), dim(L), and to lower bound dimH(L) and dimP (L).
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7.2 Upper bound on the Minkowski dimensions

To upper bound the Minkowski dimensions we use the contour path C. By Theorem 2.8 for every
α ∈ L, C(px(α)) ∼L α. So dH(C([0, 1],L)) = 0. As a result, for every x > 0, {ix, 0 ≤ i ≤ 1/x}
is a εx-set of L, where εx := maxs,t |C(s)−C(t)|. So for every α > 0, if C is α Hölder continuous,

dim(L) ≤ lim sup
x→0

log(1/x+O(1))

− log(εx)
≤ lim sup

x→0

log(1/x+O(1))

(1 + o(1)) log(1/xα)
= 1/α.

Therefore by Theorem 2.10 a.s. dim(L) ≤ d. Also,

Lemma 7.3. Almost surely for every α > 1/dim(L), C is not α Hölder continuous.

We now consider dim(L). By (2), there exists (ni)i∈N such that E[µ[0, 2ni ]] = o(2ni(d−1+o(1))).
So by Lemma 2.10, a.s. for every i large enough, s, t ∈ [0, 1] with |s− t| ≤ 2−ni/E[µ[0, 2ni ]],

dL(C(s),C(t)) ≤ 13|s− t|E[µ[0, 2ni+1]] + 13n6
i 2
−ni ≤ n7

i 2
−ni .

Therefore, using the same ε-sets as before, a.s. as i→∞,

dim(L) ≤ lim inf
i→∞

log(2niE[µ[0, 2ni ]])

− log(n7
i 2
−ni)

≤ ni(1 + d− 1 + o(1))

ni(1 + o(1))
≤ d.

7.3 The rebranching principle.

We want to lower bound the dimensions of L with Lemma 7.1. To this end, we morally needs to
lower bound the distance between two random vertices in L. In this section we show that it morally
suffices to lower bound dL((0, 0), (Y1, 0)). Our starting point is the rebranching principle, which
we use here as follows: Let by convention Y0 = 0.

Proposition 7.4. For every permutation σ of {0} ∪ N, we have the following joint equality in
distribution,

(dT (Yi, Yj))i,j≥0
(d)
=(dT (Yσ(i), Yσ(j)))i,j≥0,(

1Xk∈JYi,YjK

)
i,j≥0,k∈N

(d)
=
(
1Xk∈JYσ(i),Yσ(j)K

)
i,j≥0,k∈N

.

Proof. We briefly recall some discrete notions of [9]. Let (Vi)i∈N be a set of vertices. We say that
D = (d1, . . . , dn) is a (pure) degree sequence if

∑n
i=1 di = 2n− 2 and if d1 ≥ d2 ≥ · · · ≥ dn.

For every degree sequence D = (d1, . . . , dn), we say that a tree T have degree sequence D if
T has vertices (Vi)1≤i≤n and for every 1 ≤ i ≤ n, Vi has degree di. For every degree sequence
D let TD denote a uniform tree with degree sequence D. Also let LD0 , LD1 ,. . . be the leaves of TD.
Those leaves are determinist since they are the vertices of degree 1. We root TD at LD0 .

For every tree T , let dT denote the graph distance in T . Also, for every A,B,C ∈ T , we write
(A, T ) ∈ 〈B,C〉 if A lies in the path between B and C in T . By Proposition 31 (b) in [9] Section
8.2, and by Lemma 26 (e) in [9] Section 8.1, there exists (Dn)n∈N some degree sequences, such
that the number of leaves and vertices of degree at least 2 diverges, and such that for every a, b ∈ N
the following weak convergences hold jointly

(dTDn (LDni , LDnj ))0≤i,j≤a−→(dT (Yi, Yj))0≤i,j≤a, (29)(
1

(Vk,TDn )∈〈LDni ,LDnj 〉

)
0≤i,j≤a, k≤b

−→
(
1Xk∈JYi,YjK

)
0≤i,j≤a, k≤b

. (30)

The main principle behind the rebranching principle is that for every n large enough the laws of
the left hand sides of (29) and (30) are invariant under the permutation of the leaves. So by limit
the right hand sides must also be invariant under those permutations.
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Our goal is now to deduce from Proposition 7.4 an identity for dL. First let us introduce some
topological notions. Recall that a.s. p is a probability Borel measure on T . Let pL := p×1x∈[0,1]dx.
Let BL be the product topology on T × [0, 1]. Let F := σ(X,Y,Z, (UX,i)i∈N, (UZ,i)i∈N). Let BR
be the Borel topology on R. Finally, for every α ∈ T × [0, 1], ε > 0, let B(α, ε) denote the open
ball of center α of radius ε for dL in T × [0, 1].

Keep in mind that we are using two levels of randomness. On the one hand, we work on a
completed probability space (Ω,F ,P). On the other hand, we work at ω ∈ Ω fixed, on the random
probability space (T × [0, 1],BL, pL).

Lemma 7.5. Almost surely the following assertions hold:
(a) The map α, β 7→ dL(α, β) is (BL × BL,BR)-measurable.
(b) For every (x, u) ∈ T × [0, 1], ε > 0, the open ball B((x, u), ε) is BL-measurable.
(c) For every ε > 0, the map α ∈ T × [0, 1] 7→ pL(B(α, ε)) is (BL,BR)-measurable.

Proof. Toward (a), for every i ∈ N, the map y ∈ T 7→ UXi,y is continuous on T \{Xi}, since it
is locally constant. Then v 7→ UXi,Xi,v is continuous. Hence (y, v) ∈ T × [0, 1] 7→ UXi,y,v is
(BL,BR)-measurable. By definition of dL, (a) follows by sum and composition.

Then by (a) the map (x, u), (y, v) 7→ 1dL((x,u),(y,v))≤ε is also (BL × BL,BR)-measurable.
(b),(c) follows by Fubini’s Theorem.

Next letM be the set of probability distribution on R+. We equipM with the weak topology.
Recall that M is a Polish space. Let BM be the Borel topology on M. For every probability
distribution ν on T × [0, 1] BL-measurable we construct dL ? ν ∈M as follows: Let α, β be two
random variables with law ν. By Lemma 7.5 (a), dL(α, β) is a random variable (BL × BL,BR)-
measurable. Let dL ? ν ∈M denote its probability distribution.

Lemma 7.6. Let α be a random variable with law pL. We have:
a) For every i, j ≥ 0, dL((Yi, 0), (Yj , 0)) is a random variable (F ,BR)-measurable.
b) Almost surely,

dL ?

(
1

n

n∑
i=1

δYi,0

)
−→

weakly
dL ? pL.

c) dL ? pL is a random variable (F ,BM)-measurable.

Proof. Toward (a), let i, j ∈ N. Note that dT (Yi, Yj) is (F ,BR) measurable since by Algorithm 1
it is a sum of measurable random variables. Also by Algorithm 1, for every k ∈ N, 1Xk∈J0,YiK is
(F ,BR)-measurable. Then by the construction of the uniform angle function U in Algorithm 3,
either Xj /∈ J0, YiJ so UXk,Yi,0 = 0, or Xj ∈ J0, YiJ and then UXk,Yi,0 = UXk . Hence UXk,Yi,0 is
(F ,BR)-measurable. Similarly, UXk,Yj ,0 is (F ,BR)-measurable. (a) follows by definition of dL.

Toward (b), recall that by [10] Theorem 3.1, a.s. 1
n

∑n
i=1 δYi converges weakly toward p for the

weak topology on T . Thus, a.s. if (Vi)i∈N is a family of independent uniform random variables in
[0, 1], 1

n

∑n
i=1 δYi,Vi converges weakly toward pL. Hence, a.s.

1

n2

n∑
i=1

n∑
i=1

δYi,Vi × δYj ,Vj −→weakly
pL × pL.

It directly follows by Lemma 7.5 that a.s.

dL ?

(
1

n

n∑
i=1

δYi,Vi

)
−→

weakly
dL ? pL. (31)
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Finally note that almost surely {Yi}i∈N ∩ {Xi}i∈N = ∅. So almost surely for every i, j ∈ N,

dL((Yi, 0), (Yj , 0)) = dL((Yi, Vi), (Yj , Vj)).

(b) follows from (31).
Toward (c), by (a) the left hand side of (b) is (F ,BM) measurable. So (c) follows from (b).

Next, for every f : R+ 7→ R bounded continuous and M ∈M let f(M) :=
∫
R+ f(x)dM(x).

Recall that M 7→ f(M) is continuous. So, by Lemma 7.6 (c), f(dL ? pL) is (F,BR) measurable.

Proposition 7.7. For every bounded continuous function f : R+ 7→ R,

E[f(dL ? pL)] = E[f(dL((0, 0), (Y1, 0)))].

Proof. By Lemma 7.6 (b) and by Portmanteau’s Theorem, it suffices to prove that for every
i 6= j, dL((Yi, 0), (Yj , 0)) has the same law as dL((0, 0), (Y1, 0)). Fix i 6= j. Since almost surely
{Yi}i∈N ∩ {Xi}i∈N = ∅, by definition of dL, writing c for the distance on the torus [0, 1],

dL((Yi, 0), (Yj , 0)) = dT (Yi, Yj) +
∑
k∈N

θkc(UXk,Yi , UXk,Yj ). (32)

Then for every k ∈ N with Xk /∈ JYi, YjK, Yi and Yj are connected in T \{Xk} so UXk,Yi =
UXk,Yj . Moreover, by the construction of the uniform angle function U in Algorithm 3, note
that conditionally on (X,Y,Z), (c(UXk,Yi , UXk,Yj ))k:Xk∈JYi,YjK is a family of uniform random
variables in [0, 1/2].

As a result, by (32), conditionally on (X,Y,Z), dL((Yi, 0), (Yj , 0)) − dT (Yi, Yj) is a sum
of uniform random variables in ([0, θk/2])k:Xk∈JYi,YjK. And similarly for dL((0, 0), (Y1, 0)) −
dT (0, Y1). The desired result follows from Proposition 7.4.

7.4 Lower bound on the Hausdorff and Packing dimensions

To simplify the notations, let us write dL(0, Y1) for dL((0, 0), (Y1, 0)). Let

d′ := lim inf
ε→0

logP(dL(0, Y1) < ε)

log ε
; d

′
:= lim sup

ε→0

logP(dL(0, Y1) < ε)

log ε
. (33)

Remark. Keep in mind that many inequalities get reversed since log is negative on (0, 1).

Lemma 7.8. Almost surely dimH(L) ≥ d′ and dimP (L) ≥ d
′.

Proof. First note that T × [0, 1] ⊂ L, so

dimH(T × [0, 1], dL) ≤ dimH(L) and dimP (T × [0, 1], dL) ≤ dimP (L).

Then recall Section 7.3. For every n ∈ N, let fn : x 7→ max(min(1, 2 − 2nx), 0). Let α be a
uniform random variable with law pL. We have by Proposition 7.7, for every n ∈ N,

E[fn(dL ? pL)] = E[f(dL(0, Y1))] ≤ P(dL(0, Y1) < 2−n+1).

Then by the Borel–Cantelli Lemma and Markov’s inequality, a.s. for every n large enough,

fn(dL ? pL) ≤ n2P(dL(0, Y1) < 2−n+1).

Also, note that a.s. if α is a random variable with law pL, so writing EL for the expectation with
respect to pL, EL(B(α, 2−n)) ≤ fn(dL ? pL). Hence, by the Borel–Cantelli Lemma and Markov’s
inequality, a.s. pL a.s. for every n large enough,

B(α, 2−n) ≤ n4P(dL(0, Y1) < 2−n+1).

The desired result follows from Lemma 7.1.
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Lemma 7.9. Recall (2), (33). We have d′ ≥ d and d
′ ≥ d.

Remark. Since a.s. dim(L) ≤ d and dim(L) ≤ d, by Lemmas 7.2, 7.8, we have d′ ≤ d and d
′ ≤ d.

Proof. In order to simplify the main proof, let us first deal with the case θ0 > 0. By Lemma 3.1
(b), E[µ[0, l]] ∼ θ2

0l as l→∞. So d = d = 2. Also, dL(0, Y1) ≥ θ2
0/4Y1 so for every ε > 0,

P(dL(0, Y1) ≤ ε) ≤ P(Y1 ≤ 4ε/θ2
0).

Then, since {Yi}i∈N is a Poisson point process of rate µ[0, x]dx, as ε→ 0, by Lemma 3.1 (a),

P(Y1 ≤ ε) = E[P(Y1 ≤ ε|µ)] ≤ εE[µ[0, ε]] = O(ε2).

As a result, d′ ≥ 2 = d and d
′ ≥ 2 = d. So we may assume henceforth that θ0 = 0.

Next, note that a.s. dL(0, Y1) =
∑

0≤Xi≤Y1 θic(UXi). Thus, writing for every n ∈ N, ∆n :
x 7→

∑
0≤Xi≤Y1 min(θic(UXi), 2

−n), we have dL(0, Y1) ≤ ∆n(Y1). Then writing for every
n ∈ N, εn := 16n2/E[µ[0, 2n]], we have, since x 7→ ∆n(x) is increasing,

P(dL(0, Y1) ≤ 2−n) ≤ P(∆n(εn) ≤ 2−n) + P(Y1 ≤ εn,∆n(Y1) ≤ 2−n). (34)

Our proof consists in estimating both terms of the right hand side above.

Remark. Let us morally explain why we work with ∆n and not dL. We want to estimate, for ε > 0
small, the typical dL-distance between two random vertices ε-dT -close from each other. It appears,
that the few vertices ε-dT -close from the vertices of high degrees X1, X2, . . . , tends to be dL-far
from each other. As a result, the moments of dL(0, Y1)1Y1≤ε are highly biased toward the moments
of the typical dL-distance between two vertices ε-dT -close from X1, X2, . . . . To avoid this bias,
we use (∆n)n∈N to truncate the dL-distance between the vertices dT -close from X1, X2, . . . .

Now, recall that (Xi)i∈N are independent exponential random variables of parameter (θi)i∈N.
We get with elementary computations, for every 0 ≤ x ≤ 1, n ∈ N,

E[∆n(x)] =
∞∑
i=1

P(Xi ≤ x)E[min(θic(UXi), 2
−n)] ≥ 1

8

∞∑
i=1

θixmin(θi, 2
−n). (35)

And, for every n ∈ N,

E[µ[0, 2n]] =
∞∑
i=1

P(Xi ≤ 2n)θi =
∞∑
i=1

(1− e−θi2n)θi ≤
∞∑
i=1

min(1, θi2
n)θi. (36)

Hence, by (35) and (36), for every n ∈ N, 0 ≤ x ≤ 1, E[∆n(x)] ≥ xE[µ[0, 2n]]2−n−3. In
particular, for every n ∈ N such that εn ≤ 1, E[∆n(εn)] ≥ 2n22−n. Also, note that ∆n is a sum of
independent random variables bounded by 2−n. So, by Bernstein’s inequality (see e.g. [11] Section
2.7 (2.10)) for every n ∈ N with εn ≤ 1, P(∆n(εn) ≤ 2−n) ≤ e−n

2/6. Furthermore, by Lemma
3.1 (c), E[µ[0, 2n]] = O(2n). So, as n→∞ with εn ≤ 1,

P(∆n(εn) ≤ 2−n) = O(n22−n/E[µ[0, 2n]). (37)

Toward upper bounding the right most term of (34), let us recall the construction of Aldous,
Camarri, Pitman [5, 13] of the ICRT in the simple case where θ0 = 0. Let ((Ai,j)j≥0)i∈N be
a family of independent Poisson point processes of intensity (θi)i∈N on R+. We proved in [10]
Lemma 2.1 that there exists a coupling such that a.s.

((Xi)i∈N, {Yi, Zi}i∈N) = ((Ai,0)i∈N, {Ai,j , Ai,0}i,j∈N) .
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In particular Y1 ∈ {Ai,1}i∈N So, by an union bound, for every x ≥ 0,

P(Y1 ≤ x,∆n(Y1) ≤ 1/2n) ≤
∑
i∈N

P(Ai,1 ≤ x,∆n(Y1) ≤ 2−n)

≤
∑
i∈N

P(Ai,1 ≤ x, θiUXi ≤ 2−n)

≤
∑
i∈N

x2θ2
i min(1, 2−n/θi).

Also, by directly adapting (36), we get for every n ∈ N, E[µ[0, 2n]] ≥ (1/4)
∑∞

i=1 min(1, θi2
n)θi.

So, for every x ≥ 0,

P(Y1 ≤ x,∆n(Y1) ≤ 1/2n) ≤ 4x2E[µ[0, 2n]]2−n. (38)

In particular, since εn = 16n2/E[µ[0, 2n]],

P(Y1 ≤ εn,∆n(Y1) ≤ 1/2n) ≤ 4ε2
nE[µ[0, 2n]]2−n = O(n42−n/E[µ[0, 2n]]). (39)

To sum up, by (34), (37), (39), we have as n→∞ with εn ≤ 1,

P(dL((0, Y1) ≤ 2−n) = O(n42−n/E[µ[0, 2n]]). (40)

Finally, we have as n→∞ with εn ≥ 1, using, Y1 ≤ A1,1, (38), and εn = 16n2/E[µ[0, 2n]],

P(dL(0, Y1) ≤ 2−n) ≤ P(Y1 > n2) + P(Y1 ≤ n2,∆n(Y1) ≤ 2−n)

≤ P(A1,1 > n2) + P(Y1 ≤ n2,∆n(Y1) ≤ 2−n)

= O(n2e−θ1n
2

+ n4E[µ[0, 2n]]2−n)

= O(n82−n/E[µ[0, 2n]]). (41)

The desired result follows from (40) (41) and the definitions of d, d in (2), and of d′, d′ in (33).

8 Proof of Theorem 2.4

Recall the definition of G from (3). Note that G is continuous on any bounded interval of R+. We
need to prove that it extends to a continuous map on T . To this end, we use the chaining method.
Let F = σ(µ,Y,Z). For all x ∈ T , y ∈ R+, recall that ρ̄y(x) denote the projection of x on [0, y].
Also to simplify the notations, for every x, y ∈ R+ let dG(x, y) := maxz∈Jx,yK |G(x)−G(z)|.
Remark. Although dG is a (pseudo) distance on T , we will not study the topology of (T , dG).

Lemma 8.1. a) For every x, y random variables in R+ F-measurable and t ≥ 0, almost surely

P
(
dG(x, y) > t

√
dT (x, y)

∣∣∣F) ≤ 4e−t
2/2.

b) For every x, y, t ≥ 0,

P
(
dG(ρ̄y(x), x) > t2/

√
µ[0, y]

)
≤ 5e−t

2/4.

Proof. Toward (a). Let γ : [0, dT (x, y)] 7→ Jx, yK be the geodesic from x to y. Note that by
definition of G, conditionally on F , G ◦ γ −G(x) is a brownian motion. So (a) directly follows
from standard results on Brownian motions.

Toward (b), by [10] Lemma 4.7 for every x, y, t ≥ 0,

P
(
dT (ρ̄y(x), x) > t2/µ[0, y]

)
≤ e−t2/4.

The desired result follows using (a) and an union bound.

26



We may assume below that θ0 > 0 or
∑∞

i=1 θi =∞, since otherwise E[µ(R+)] <∞ and the
assumption of Theorem 2.4 is not satisfied. Then by Lemma 3.1 (a), we may define for every n ∈ N,
Xn as the unique real such that E[µ[0,Xn]] = en. The next result is adapted from [10] Lemma 6.2,
which is used to prove the compactness of ICRT and upper bound its fractal dimensions.

Lemma 8.2. Almost surely for every n large enough:

max
x∈[0,Xn]

|G(x)−G(ρ̄Xn−1(x))| ≤ 21 log(Xn)e−(n−1)/2.

Proof. We first adapt the proof of [10] Lemma 6.2, to morally deal with vertices far from {Yi}i∈N.
For every n ∈ N, and x ∈ R+ let En(x) be the event dG(ρ̄Xn−1(x), x) > 20 log(Xn)e−(n−1)/2.
By Fubini’s Theorem, Lemma 8.1 (b) and µ[0,Xn−1] = en−1, we have

E
[∫ Xn

0
1En(x)dx

]
=

∫ Xn
0

P (En(x)) dx ≤ 5Xn exp (−5 logXn) = 5X−4
n .

Furthermore by Lemma 3.1 (b), en = O(Xn) so
∑
X−1
n <∞. Hence by Markov’s inequality and

the Borel–Cantelli Lemma, for every n large enough,∫ Xn
0

1En(x)dx < X−3
n .

Note that it implies that, for every n large enough, for every x ∈ [0,X2n ], y ∈ [0,X2n ], with
x ∈ JpXn−1(y), yK and dT (x, y) ≥ X−3

n ,

|G(x)−G(ρ̄Xn−1(x))| ≤ 20 log(Xn)e−(n−1)/2, (42)

since otherwise for every z ∈ Jx, yK we would have En(z).
Next, let Λn := ({Yi}i∈N ∩ [Xn−1,Xn])∪{Xn}. Note that for every x ∈ [0,Xn], if there exists

y ∈ Λn such that x ∈ Jρ̄Xn−1(y), yK and dT (x, y) > X−3
n , then (42) holds. So, writing for y ∈ Λn,

B(y,X−3
n ) for the closed ball of center y and radius ε, and γn,y := Jρ̄Xn−1(y), yK ∩B(y,X−3

n ), it
remains to estimate G on the set

⋃
y∈Λn

γn,y.
More precisely, by (42), it is enough to show that a.s. for every n large enough and y ∈ Γn,

Mn,y := max
x∈γn,y

|G(x)−G(y)| ≤ log(Xn)e−(n−1)/2. (43)

To this end, note that for every y ∈ Γn, γn,y is a geodesic with extremities F-measurable, and of
length at most X−3

n . Thus, by Lemma 8.1 (a) and an union bound a.s.,

P
(

max
y∈Γn

Mn,y > log(Xn)e−(n−1)/2

∣∣∣∣F) ≤ #Γn4e−X
3
n log(Xn)2e−(n−1)

. (44)

Then by Lemma 3.1 (b), en = O(Xn), and by Lemma 3.1 (c), #Γn = O(X 2
n). Thus a.s. the right

hand side of (44) is summable. Finally (43) follows from the Borel–Cantelli Lemma.

Proof of Theorem 2.4. Beforehand, let us rewrite the assumption. We have,∫ ∞
X1

dl

l
√

E[µ[0, l]]
=
∞∑
n=1

∫ Xn+1

Xn

dl

l
√
E[µ[0, l]]

≥
∞∑
n=1

∫ Xn+1

Xn

dl

le(n+1)/2
≥
∞∑
n=2

logXn
e(n+9)/2

− logX1.

So the assumption implies that
∑

logXne−n/2 <∞. (It is actually equivalent.)
Then for every n ∈ N let Gn : x ∈ T 7→ G(ρ̄Xn−1(x)). Note that for every n ∈ N, since G

is continuous on ([0, 2n], dT ), Gn is continuous. Moreover, by Lemma 8.2, a.s. for every n large
enough ‖Gn − Gn−1‖∞ ≤ 21 logXne−(n−1)/2. Therefore, by the assumption of Theorem 2.4,
{Gn}n∈N is a.s. a Cauchy sequence of continuous function, and so converges uniformly toward a
continuous function G̃ on T . Finally note that G̃ extends G.
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9 Proof and extension of Theorem 2.5

We consider (Di)∈N independent random functions from [0, 1] to R independent with σ(X, µ,Y,Z, U).
We assume that:

Assumption 1. For every i ∈ N, Di(0) = 0 and E[Di(UXi)] = 0.

Assumption 2. There exists κ ≥ 2 such that for every i ∈ N, E [‖Di‖κ∞] ≤ 1, and

E[µ[0, l]] = O(lκ/2−1 log(l)−5κ). (45)

Remarks. The assumptions are not necessary, and our method may be extended to other functions.
However, they naturally appear in the study of field on D-trees: (we will give more details in [8])
• The first assumption is called locally centered. One can always split each Di, into a "constant"
u 7→ 1u6=0ci, and a centered function. However, dealing with constants require different techniques.
• The second assumption is an improvement of the so called 4 + ε moment assumption. Indeed by
Lemma 3.1 (a), E[µ[0, 2n]] = O(2n), so when κ > 4, (45) holds.
• In particular if µ corresponds to the α-stable trees, µ[0, l] ∼ c.lα−1, and we can consider κ > 2α.

Under Assumptions 1, 2, which are satisfied by (Bi)i∈N (up to a constant), we have:

Proposition 9.1. Almost surely
∑∞

i=1

√
θiDi(UXi,α) converges uniformly on L.

For every n,m ∈ N let

Sn,m :=
m∑
i=n

√
θiDi(UXi,α).

To prove the uniform convergence, we need to show that almost surely as N →∞,

∆N := max
α∈L

max
n,m≥N

|Sn,m(α)| → 0.

Note that for every n,m ∈ N, |Sn,m(α)| reach its maximum on
⋃m
i=n{Xi} × [0, 1] ⊂ R+ × [0, 1].

So,
∆N = max

(x,u)∈R+×[0,1]
max
n,m≥N

|Sn,m(x, u)|. (46)

To show that a.s. ∆N → 0 we use the chaining method (see Section 1.3): For every i ∈ N, let

∆N,i := max
Yi<x≤Yi+1,u∈[0,1]

max
n,m≥N

|Sn,m(x, u)−Sn,m(Zi, UZi,Yi+1)|

Then define MN by induction on ([0, Yi])i∈N such that MN (0) = 0, and such that for every
i ≥ 0, x ∈]Yi, Yi+1],

MN (x) := MN (Zi) + ∆N,i. (47)

The triangular inequality implies by induction that for every i ∈ N, for every x ∈ [0, Yi], u ∈ [0, 1],
maxn,m≥N |Sn,m(x, u)| ≤MN (x), so

∆N ≤ max
x∈R+

MN (x). (48)

Our method consists in estimating (∆N,i)N,i∈N, and then deduce from (47) and Lemma 3.2 an
estimate on maxMN .

To simplify the notations we write F := σ(X, µ,Y,Z) and µN :=
∑

i≥N θiδXi .
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Lemma 9.2. There exists Cκ > 0 which depends only on κ such that for every N, i ∈ N, t > 0,

P (∆N,i ≥ t| F) ≤ Cκ
(
µN (Yi, Yi+1]

t2

)κ/2
.

Proof. We work conditionally on F . First for every x ∈ (Yi, Yi+1] and j ∈ N with Xj /∈
{Zi}∪ (Yi, x], Zi and x are connected in T \{Xj} so UXj ,Zi = UXj ,x. Similarly, UZi,x = UZi,Yi+1 .
Also, by definition of U , for every j ∈ N with Xj ∈ (Yi, x), UXj ,x = UXj ,Yi+1 = UXj . Also,
Ux,x,0 = 0. Therefore, for every n,m ∈ N, and x ∈ (Yi, Yi+1],

Sn,m(x, 0)−Sn,m(Zi, UZi,Yi+1) =
∑

j∈N:Yi<Xj<x

√
θjDj(UXj ).

Moreover by definition of D, U and Assumption 1, (Dj(UXj ))j∈N are independent and centered.
Also by Assumption 2, for every j ∈ N, E[‖Dj‖κ∞] ≤ 1. So by Lemma B.1, there exists C > 0,
which depends only on ε, such that for every N ∈ N, and t > 0, a.s.

P
(

max
n,m≥N

max
Yi<x≤Yi+1

∣∣Sn,m(x, 0)−Sn,m(Zi, UZi,Yi+1)
∣∣ ≥ t∣∣∣∣F) ≤ C (µN (Yi, Yi+1]

t2

)κ/2
.

(49)
Furthermore, for every x ∈ (Yi, Yi+1], u ∈ [0, 1], with x /∈ {Xj}j∈N, for every n,m ∈ N,

Sn,m(x, u) = Sn,m(x, 0). And for every j ∈ N,

max
n,m≥N

max
u∈[0,1]

|Sn,m(Xj , u)−Sn,m(Xj , 0)| = 1j≥N
√
θj max

u∈[0,1]
Dj(u).

Then by Assumption 2, and by Markov’s inequality, for every j ∈ N, t > 0,

P
(√

θj max
u∈[0,1]

Dj(u) > t

)
≤ (θj/t

2)κ/2.

Therefore by an union bound, and by convexity of x 7→ xκ/2, for every t > 0,

P
(

max
n,m≥N

max
Yi<x≤Yi+1

max
u∈[0,1]

|Sn,m(x, u)−Sn,m(x, 0)| ≥ t
∣∣∣∣F) ≤∑

j≥N

(
θj
t2

)κ/2
1Yi<Xj≤Yi+1

≤
(
µN (Yi, Yi+1]

t2

)κ/2
. (50)

Finally the desired inequality follows from (49), (50), and an union bound.

Lemma 9.3. A.s. for every n large enough, for every i ∈ N with (Yi, Yi+1] ∩ [2n, 2n+1] 6= ∅,

∆1,i ≤ λn := n2µ[0, 2n]1/κ2n/κ−n/2.

Proof. A.s. for every n large enough and i ∈ N with (Yi, Yi+1] ∩ [2n, 2n+1] 6= ∅, we have by
Lemma 3.1 (d)

µ(Yi, Yi+1] ≤ log(Yi+1)2/Yi+1 ≤ n2/2n.

Then by Lemma 3.1 (c), then (a) and (b), a.s. for every n large enough,

#{i ∈ N, (Yi, Yi+1] ∩ [2n, 2n+1] 6= ∅} ≤ 2µ[0, 2n+1]2n+1 ≤ 9µ[0, 2n]2n.

Therefore, by Lemma 9.2 a.s. for every n large enough, writing En for the event that there
exists i ∈ N such that (Yi, Yi+1] ∩ [2n, 2n+1] 6= ∅, and such that ∆1,i > λn,

P(En|F) ≤ 9Cκµ[0, 2n]2n
(

n2/2n

n4µ[0, 2n]2/κ22n/κ−n

)κ/2
= 9Cκn

−κ.

The desired result follows by the Borel–Cantelli Lemma.
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Proof of Proposition 9.1. Recall that we need to prove that a.s. as N →∞, ‖MN‖∞ → 0. First,
by Lemma 3.2 a.s. for every n ∈ N large enough, every x ∈ [0, 2n+1] is separated from [0, 2n] by
at most 4n branches. So, by Lemma 9.3 a.s. for every n large enough, for every N ∈ N,

max
x≤2n+1

MN (x) ≤ max
x≤2n

MN (x) + 4nλn

Hence, a.s. for every n large enough, for every N ∈ N,

max
x∈R+

MN (x) ≤ max
x≤2n

MN (x) +

∞∑
i=n

4iλi. (51)

Then note that for every i ∈ N, (∆N,i)N∈N is decreasing. So by Lemma 9.2, since µ is a.s.
locally finite, a.s. as N →∞, ∆N,i → 0. Therefore a.s. for every n ∈ N, as N →∞,

max
x≤2n

MN (x) ≤
∑

i:Yi≤2n

∆N,i → 0. (52)

Moreover by Lemma 3.1 (a), and by Assumption 2, a.s. as n→∞,∑
i≥n

4iλi =
∑
i≥n

4i3µ[0, 2i]1/κ2i/κ−i/2 ∼
∑
i≥n

4i3E[µ[0, 2i]]1/κ2i/κ−i/2 → 0. (53)

To conclude the proof, by (51),(52),(53) almost surely as N →∞, ‖MN‖∞ → 0.
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A Holder continuity of a Gaussian free field.

If (X, d) is a metric space, we call a Gaussian free field on X , a random function F : X 7→ R+

such that for every x ∈ X , F(x) is measurable, and such that for every x, y ∈ X , F(x)− F(y) is a
Gaussian random variable with variance d(x, y).

Lemma A.1. Let (X, d) be a metric space. Let F be a Gaussian free field on X . If F is almost
surely continuous and (X, d) have finite upper Minkowski dimension then almost surely F is Hölder
continuous with any exponent smaller than 1/2.

Proof. Since (X, d) have finite upper Minkowksi dimension, there exists k ∈ N such that for every
n ∈ N, there exists an,1, . . . , an,kn ∈ X such that maxx∈X d(x, {an,1, . . . , an,kn}) ≤ 2−n.

For every n ∈ N, let En denote the following event:

En :=
{
∀i ≤ kn,∀j ≤ kn+1, d(an,i, an+1,j) ≤ 29−n ⇒ |F(an,i)− F(an+1,j)| ≤ kn2−n/2

}
.

By an upper bound, and by definition of a Gaussian free field, we have for every n ∈ N,

P(En) ≤ knkn+1e−(8kn2−n/2)2/(2.29−n) = k2n+1e−k
2n2/218 .

Thus, since the right hand side is summable, by the Borel–Cantelli Lemma, almost surely for every
n ∈ N large enough we have En.

The rest of the proof is deterministic. Assume that there exists N ∈ N such that for every
n ≥ N we have EN , and that F is continuous. Let x, y ∈ X such that d(x, y) ≤ 2−N−9. Let
n ∈ N such that 2−n+1 < d(x, y) ≤ 2−n. Since F is continuous we can consider m ∈ N,m > n
such that for every z ∈ X with d(x, z) ≤ 2−m, |F(x) − F(z)| ≤ 2−n/2, and similarly for y. Let
by induction xm+1, xm, xm−1, . . . , xn such that xm+1 = x, and such that for every m ≥ i ≥ n,
xi ∈ {ai,1, . . . , ai,ki}, and d(xi, xi+1) ≤ 2−i. Define similarly ym+1, . . . , yn. We have

d(xn, yn+1) ≤
m∑
i=n

d(xi+1, xi)+d(x, y)+

m∑
i=n+1

d(yi, yi+1) ≤
m∑
i=n

2−i+2−n+

m∑
i=n+1

2−i ≤ 22−n.

So by the triangular inequality, then by definition of m and by En, En+1, . . . , Em,

|F(x)− F(y)| ≤|F(xm+1)− F(xm)|+
m−1∑
i=n

|F(xi+1)− F(xi)|

+ |F(xn)− F(yn+1)|+
m−1∑
i=n+1

|F(yi)− F(yi+1)|+ |F(ym)− F(ym+1)|

≤2−n/2 +

m−1∑
i=n

ki2−i/2 + kn2−n/2 +

m−1∑
i=n+1

ki2−i/2 + 2−n/2

≤77!kn72−n/2

≤99!k
d(x, y)1/2

log(d(x, y))7
,

using d(x, y) ≥ 2−n+1 for the last inequality. Therefore, since (x, y) are arbitrary with d(x, y) ≤
2−N−9, F is almost surely Hölder continuous with any exponent smaller than 1/2.
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B A concentration inequality for supremum of empirical process.

Lemma B.1. Let n ∈ N, κ ≥ 2, (xi)i≤n ∈ Rn. Let (Xi)i≤n be a family of independent centered,
random variables. For every k ≤ n let Sk := x ∈ R 7→

∑
i≤k 1x≤xiXi. Assume that for every

i ≤ n, vi := E[Xκ
i ]2/κ <∞, and let V :=

∑
i≤n vi. Then for every t > 0,

Pn := P
(

sup
i≤n
‖Si‖∞ > t

)
≤ Cκ

(√
V /t

)κ
,

where Cκ is a constant which depends only on κ.

Remark. By taking n→∞, the previous lemma also holds when n =∞.

Proof. Fix κ ≥ 2. We work by induction with trivial initialization n = 0. Fix C ∈ R+, which we
chose later. Assume that Lemma B.1 holds for every m < n with the constant C. Let ε > 0, which
we chose later. Let k ∈ N be the smallest integer such that

∑
i≤k vi ≥

1
2

∑
i≤n vi. Note that,

Pn ≤ P
(

sup
i<k
‖Si‖∞ > t

)
+ P (‖Sk‖∞ > εt) + P

(
sup
k<i≤n

‖Si − Sk‖∞ > (1− ε)t

)
.

Then by induction, and by definition of k,

Pn ≤ C
(√

V/2/t
)κ

+ P (‖Sk‖∞ > εt) + C
(√

V/2/((1− ε)t)
)κ
. (54)

It remains to estimate ‖Sk‖∞. To this end, first note that (|Sk(x)|κ)x∈R is a sub-martingale, so
by Doob’s inequality,

P (‖Sk‖∞ > εt) ≤ max
x∈R

E[|Sk(x)|κ]

(εt)κ
=

E[|
∑k

i=1Xi|κ]

(εt)κ
. (55)

Furthermore by Marcinkiewicz’s inequality (see [11] Section 15.4), writing cκ := 2κ+1 (2κ)κ/2,

E

[∣∣∣∣∣
k∑
i=1

Xi

∣∣∣∣∣
κ]
≤ cκE

( k∑
i=1

X2
i

)κ/2 ,
and by Minkowski’s inequality

E

( k∑
i=1

X2
i

)κ/2 ≤ cκ( k∑
i=1

E
[
(X2

i )κ/2
]2/κ

)κ/2
= cκV

κ/2.

Therefore, by (54) and (55),

Pn ≤
(
C

1 + 1/(1− ε)κ

2κ
+ cκ/ε

κ

)(√
V /t

)κ
.

Finally some quick computations show that there exists C, ε such that (C 1+1/(1−ε)κ
2κ + cκ/ε

κ) ≤ C,
and the desired result follows by induction.

Remark. If κ ≥ 4, one may chose ε = 1/3, Cκ = 2.3κcκ ≤ 4.9κκκ/2.
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C Proof of Lemma 2.7, and measurability for νx, νO and νy
Since the proofs of this section consist in checking some list of cases, we strongly advise the reader
to draw those different cases to make the reading less tedious. Also, we use the symbol ‡ to mean
that we proved that a case is absurd. Recall Sections 2.1, 2.5. Let (T , d, ρ, u) denote a plane R-tree.
Let L := T × [0, 1]. Let ν denote a σ-finite measure on T .

First≺ is reflexive since for every α ∈ T × [0, 1], α�α. Also all elements are comparable: For
every α = (x, a), β = (y, b) ∈ T × [0, 1] such that neither αy β nor αy β, Ux∧y,x,y = Ux∧y,x,y.
So x = x ∧ y or y = x ∧ y, since otherwise x, y would be connected in T \{x ∧ y}. In the first
case α�β. In the second case, β�α.

Proof that ≺ is antisymmetric. Let α = (x, a), β = (y, b) ∈ T × [0, 1]. Assume that α ≺ β and
β ≺ α, let us prove that α = β. We have either:
• αy β, β y α: So ux∧y,x,a < ux∧y,y,b and ux∧y,y,b < ux∧y,x,a. ‡
• αy β, β�α: By βOα, y�x, uy,x,a = b. Then by x ∧ y = y and αy β, uy,x,a < uy,y,b. ‡
• α�β, β y α: This case is similar by symmetry. ‡
• α�β, β�α: x ∈ J0, yK and y ∈ J0, xK so x = y. Moreover, a = ux,y,b = b.

Toward proving that ≺ is transitive, it is enough to show that:

Lemma C.1. For every α = (x, a), β = (y, b), γ = (z, c) ∈ T × [0, 1]:
(a) If αy β, β y γ, then αy γ.
(b) If αy β, β� γ, then αy γ.
(c) If α�β, β y γ, then αy γ or α� γ.
(d) If α�β, β� γ, then α� γ.

Proof. Toward (a) (αy β, β y γ) note that x ∧ y, y ∧ z ∈ J0, yK, so we have either:
• x ∧ y ∈ J0, y ∧ zJ: So x ∧ z = x ∧ y. Also, y and z are connected in T \{x ∧ y}, so ux∧y,y,b =

ux∧y,z,c. Then by αy β, ux∧y,x,a < ux∧y,y,b. So ux∧z,x,a < ux∧z,z,c and xy z.
• y ∧ z ∈ J0, x ∧ yJ: Similarly, x ∧ z = y ∧ z, and uy∧z,x,a = uy∧z,y,b. Then by β y γ, we have

uy∧z,y,b < uy∧z,z,c. So ux∧z,x,a < ux∧z,z,c and xy z.
• x ∧ y = y ∧ z:

• Either x ∧ z = x ∧ y, and then ux∧y,x,a < ux∧y,y,b and uy∧z,y,b < uy∧z,z,c. So ux∧z,x,a <
ux∧z,z,c. Therefore xy z.
• Or x∧z 6= x∧y, so x and z are connected in T \{x∧y}. So ux∧y,x,a = ux∧y,z,c. However,
by αy β, ux∧y,x,a < ux∧y,y,b and by β y γ, uy∧z,y,b < uy∧z,z,c. ‡

Toward (b), (αy β, and β� γ). We have either:
◦ x = y: By αy β, a < b. Also, by β� γ, y ∈ J0, zK, and uy,z,c = b > a. Thus, αy γ.
◦ x 6= y, x ∧ y = y: By α y β, uy,x,a < uy,y,b = b. Also, by β� γ, uy,z,c = b. Thus, x and z

are in different components of T \{y}, so x ∧ z = y. Hence, αy γ.
◦ x 6= y, x ∧ y 6= y: y� γ so y and z are connected in T \{x ∧ y}, thus x ∧ y = x ∧ z and

ux∧y,y,b = ux∧y,z,c. Then by αy β, ux∧y,x,a < ux∧y,y,b. Hence, αy γ.
Toward (c), we have α�β, and β y γ so x, y ∧ z ∈ J0, yK. Then we have either:

• y ∧ z ∈Kx, yK: So y, z are connected in T \{x}. Thus ux,z,c = ux,y,b. Then by α�β, ux,y,b = a.
Hence α� γ.

• y ∧ z = x: x ∧ z = x. By α�β, ux,y,b = a, and by β y γ, ux,y,b < ux,z,c. So αy γ.
• y ∧ z ∈ J0, xJ: Then by x ∈ J0, yK, x ∧ z = y ∧ z, and x and y are connected in T \{y ∧ z}.

Thus uy∧z,x,a = uy∧z,y,b. Then by β y γ, uy∧z,y,b < uy∧z,z,c. Hence, xy z.
Toward (d), (α� y, β� γ), we have either:

◦ x = y: By α�β, b = ux,y,b = a so α = β and α� γ.
◦ x 6= y : By x� y and y� z, y and z are connected in T \{x}. So ux,z,c = ux,y,b = a, α� γ.

34



Also by a simple symmetry argument, (change the angles by u 7→ 1− u) by Lemma C.1 (b),

Lemma C.2. With the same notations, if β� γ, β y α then γ y α.

Lemma C.3. νx, νO, νy are well defined.

Proof. First letM := {x ∈ T , deg(x) > 2} ∪ {ρ}. M is countable since T is separable. Then
for every x ∈ T , and a ∈ [0, 1], let

Cx,a := {y ∈ T \{x}, ux,y = a}.

This set is open so measurable. Also, for every x ∈ T , and a ∈]0, 1[ let Cx,≤a :=
⋃
b≤a,b 6=0 Cx,b.

Define similarly, Cx,<a, Cx,≥a, Cx,>a. Since T is separable all those sets are a countable union of
open set and so are measurable.

Then by simply rewriting the definition of x, for every α = (x, u) ∈ L,

{β ∈ L, β y α} =

 ⋃
z∈M∩J0,xJ

Cz,<uz,x × [0, 1]

 ∪
 ⋃
z∈M∩J0,xK

{z} × [0, uz,x)


∪ ((J0, xJ\M)× [0, 1/2)) ∪ ({x} × [0, u)) ∪ Cx,<u.

So {β ∈ L, β y α} is measurable as a countable union of measurable set. Similarly,

{β ∈ L, αy β} =

 ⋃
z∈M∩J0,xJ

Cz,>uz,x × [0, 1]

 ∪
 ⋃
z∈M∩J0,xK

{z} × (uz,x, 1]


∪ ((J0, xJ\M)× (1/2, 1]) ∪ ({x} × (u, 1]) ∪ Cx,>u,

is also measurable. Finally, {β ∈ L, α�β} = Cx,u ∪ {(x, u)} is measurable.

Also for every α ∈ L,

{γ ∈ L : γ�α} =

 ⋃
z∈M∩J0,xK

{z, uz,x}

 ∪ ((J0, xJ\M)× {1/2})

is measurable.

Lemma C.4. {α, β ∈ L, α�β}, {α, β ∈ L, αy β} are measurable sets for the product topology.

Proof. First note that
⋃
x,y∈T Kx, yJ is dense on T , so sinceM is countable, {x ∈ T , deg(x) = 2}

is dense. Then since T is separable, there is a countable dense setN of T , and we may assume that
N ⊂ {x ∈ T , deg(x) = 2}. Moreover, note that for every x 6= y ∈ T , Kx, yJ∩(M∪N ) 6= ∅.

Then, let for z ∈ T , C ′z,0 := {(x, a) ∈ T × [0, 1] : (x, a)�(z, 0), x 6= z}. The set

{α, β ∈ L, α�β} = {{x, a} × {x, a}, x ∈ T , a ∈ [0, 1[} ∪

( ⋃
z∈M∪N

C ′z,0 × Cz,≤1

)
,

is measurable as a countable union of measurable set.
Also, by considering several cases depending on the position of x ∧ y, we get: (The two last

cases are here to deal with the cases where x ∈ J0, yJ or y ∈ J0, xJ.)

{α, β ∈ L, αy β} = {{x, u} × {x, v}, x ∈ T , u < v} ∪

 ⋃
z∈M,u∈Q

Cz,<u × Cz,>u


∪

(⋃
z∈N
{α, αy (z, 1/2)} × {β, (z, 1/2)�β}

)
∪

(⋃
z∈N
{α, (z, 1/2)�α} × {β, (z, 1/2) y β}

)
.

Thus {α, β ∈ L, αy β} is measurable as a countable union of measurable set.
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