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Introduction 1.2 Theory of plane R-tree: an overview

A discrete plane tree is a rooted tree with an ordering of the children of each vertex. Aldous [START_REF] Aldous | The continuum random tree III[END_REF] extended this notion to binary continuum trees, by using signs -/+, to construct the height process. The height process is then constructed by Duquesne [START_REF] Duquesne | The coding of compact real trees by real valued functions[END_REF] for general order.

However an order is not enough to construct several objects, and notably the Lukasiewicz walk. This walk was essential in the work of Le Gall, Le Jan [START_REF] Gall | Branching processes in levy processes: The exploration process[END_REF][START_REF] Gall | Branching processes in levy processes: Laplace functionals of snakes and superprocesses[END_REF], and Le Gall, Duquesne [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF][START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] to study Lévy trees. For P-trees and ICRT, Aldous, Miermont, Pitman [START_REF] Aldous | The exploration process of inhomogeneous continuum random trees, and an extension of Jeulin's local time identity[END_REF][START_REF] Aldous | Weak convergence of random p-mappings and the exploration process of inhomogeneous continuum random trees[END_REF], developed a similar theory based on processes with exchangeable increments, but those processes are far less understood.

Still their construction of the depth first walk of P-trees led us to two intuitions: First, P-trees are infinite. This is confirmed in [START_REF] Blanc-Renaudie | Limit of trees with fixed degree sequence[END_REF] since P-trees are the limits of D-trees in the "condensation case" (when the largest degrees have the same order as the total degree, see [START_REF] Blanc-Renaudie | Limit of trees with fixed degree sequence[END_REF] Theorem 5 (a), 6 (a)). Then, this process can be seen as a Lukasiewicz walk. This interpretation of this "half-discrete-half continuum" tree led us to the theory of plane R-tree below:

First we define a notion of angle, which can be seen as numbering the children of each vertex. With those angles, we can rewrite the discrete definitions of the looptree and fennec for the ICRT. Then, we define a notion of left and right, which we use to define a contour path in the looptree: morally start at the root, then turn around each cycle clockwise, and stop after a complete circuit. Finally we construct many processes, by composing this path with some functions on the looptree.

Stick breaking and the chaining method

Our approach is based on the stick-breaking construction of the ICRT from [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF], which is adapted from Aldous, Camarri, Pitman [START_REF] Aldous | Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent[END_REF][START_REF] Camarri | Limit distributions and random trees derived from the birthday problem with unequal probabilities[END_REF]. Stick-breaking constructions, first introduced by Aldous [START_REF] Aldous | The continuum random tree I[END_REF], generate a R-tree and are separated in two steps:

• the line R + is first cut into the segments ("sticks" or "branches") [0, Y 1 ], (Y 1 , Y 2 ], (Y 2 , Y 3 ] . . .

• then for every i ∈ N the segment (Y i , Y i+1 ] is glued at position Z i ≤ Y i . In [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] we study the compactness and fractal dimensions of ICRT. We now use similar methods, which can be split into simple topological/logical arguments, and many uses of the chaining method.

This method has found many applications in concentration theory (see e.g. Talagrand [START_REF] Talagrand | The generic chaining[END_REF], or [START_REF] Boucheron | Concentration Inequalities. A Nonasymptotic Theory of Independence[END_REF] Chapter 13), and to study random metric spaces, and notably stick-breaking constructions (see e.g. Aldous [START_REF] Aldous | The continuum random tree I[END_REF] ; Amini, Devroye, Griffiths, Olver [START_REF] Amini | Explosion and linear transit times in infinite trees[END_REF] ; Curien, Haas [START_REF] Curien | Random trees constructed by aggregation[END_REF] ; Sénizergues [START_REF] Sénizergues | Random gluing of metric spaces[END_REF]).

Let us explain its main principle: The goal is to estimate the max of a function f on a space S. To this end, consider a sequence of increasing subspaces1 (S i ) i∈N of S "approximating" S, and for every i ∈ N, a projection p i : S i+1 → S i . The main idea is that if (S i ) i∈N are properly chosen:

max x∈S f (x) ≤ i∈N max x∈S i+1 (f (x) -f (p i (x))).
As a result, one can decompose a complex estimate into many simpler ones. Moreover, when (S i ) i∈N are well chosen, it tends to give optimal bounds 2 .

In most of our proofs S is the looptree, and (S i ) i∈N are the sub-looptrees obtained after gluing a certain number of branches. Then f can be the distance between a vertex and a fixed set to prove compactness, or compute fractal dimensions. f can also be some partial sums to prove uniform convergence, or continuity. In [START_REF] Blanc-Renaudie | Limit of trees with fixed degree sequence[END_REF], it was also used to prove the tightness of D-trees.

In this paper we often re-decompose for every i ∈ N, the estimate of max x∈S i+1 f (x)-f (p i (x)): On the one hand, we estimate the maximum number of branches separating x ∈ S i+1 from S i . On the other hand, we estimate how f vary on each branches. Finally we multiply the worst cases.

Plan of the paper: In Section 2, we define our objects and state our main results. We also deduce the Hölder continuity of the fennec and snake from our other results. In Section 3, we recall several technical results from [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF]. In Section 4, we prove the compactness of the looptree. In Section 5, we study the notions of left and right. In Section 6, we construct the contour path and prove its Hölder continuity. In Section 7, we compute the fractal dimensions of the looptree. In Section 8, we study the Gaussian free field on the ICRT. In Section 9, we prove that the fennec is well defined, and extend its definition to other fields. Both Sections 8, 9 can be read right after Section 3.

Acknowledgment I am grateful to Cyril Marzouk for the interesting discussions we got at CIRM.

2 Model and main results.

2.1 Basic notions on R-trees and plane R-trees.

A Polish space is a separable, complete, metric space. A R-tree is a geodesic, loopless, Polish space (see Le Gall [START_REF] Gall | Random trees and applications[END_REF]). A rooted R-tree is a R-tree with a distinguished vertex.

For every R-tree T , and x, y ∈ T , let x, y denote the geodesic path between x and y. The closest common ancestor of x, y ∈ T is the vertex x ∧ y ∈ ρ, x ∩ ρ, y which maximizes d(ρ, z). For every x ∈ T , the degree deg(x) of x in T is the number of connected components of T \{x}.

An angle function on a rooted R-tree (T , d, ρ) is a function u : T 2 → [0, 1] such that:

• For all x ∈ T , u x,ρ = u x,x = 0.

• For all x ∈ T , y, z ∈ T \{x}, u x,y = u x,z iff y and z are connected in T \{x}. A plane R-tree is a rooted R-tree equipped with an angle function.

To avoid measurability issues, we further assume in the definition that a plane R-tree is balanced: for every x, y ∈ T if deg(x) = 2 then u x,y ∈ {0, 1/2}.

ICRT, and plane ICRT

We first introduce a generic stick breaking construction. It takes for input two sequences in R + called cuts y = (y i ) i∈N and glue points z = (z i ) i∈N , which satisfy ∀i < j, y i < y j ; y i -→ ∞ ; ∀i ∈ N, z i ≤ y i , and creates an R-tree by recursively "gluing" segment (y i , y i+1 ] on position z i , or rigorously, by constructing a consistent sequence of distances (d n ) n∈N on ([0, y n ]) n∈N .

Algorithm 1. Generic stick-breaking construction of R-tree.

-Let d 0 be the trivial metric on [0, 0].

-For each i ≥ 0 define the metric d i+1 on [0, y i+1 ] such that for each x ≤ y:

d i+1 (x, y) :=      d i (x, y) if x, y ∈ [0, y i ] d i (x, z i ) + |y -y i | if x ∈ [0, y i ], y ∈ (y i , y i+1 ] |x -y| if x, y ∈ (y i , y i+1 ]
where by convention y 0 := 0 and z 0 := 0. -Let d be the unique metric on R + which agrees with d i on [0, y i ] for each i ∈ N.

-Let SB(y, z) be the completion of (R + , d).

Let Ω be the space of sequences {θ i } i∈N in R + with ∞ i=0 θ 2 i = 1 and θ 1 ≥ θ 2 ≥ . . . The ICRT of parameter Θ ∈ Ω is the random R-tree constructed via the following algorithm.

Algorithm 2. Construction of Θ-ICRT (from [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF])

-Let X = (X i ) i∈N a family of independent exponential random variables of parameter (θ i ) i∈N .

-Let µ be the measure on R + defined by µ = θ 2 0 dx + ∞ i=1 δ X i θ i . -For each l ∈ R + let µ l be the restriction of µ to [0, l], and let

p l := µ l /µ[0, l]. -Let Y = (Y i ) i∈N be a Poisson point process on R + of rate µ[0, l]dl. -Let Z = (Z i ) i∈N be a family of independent random variables with laws (p Y i ) i∈N . -The Θ-ICRT is defined as (T , d T ) = SB(Y, Z) (see Algorithm 1).
Remarks. • When θ 0 = 1, the ICRT is the Brownian CRT.

• When θ 0 = 0 and ∞ i=1 θ i < ∞, T "is" a P-tree with a modified distance (see [START_REF] Blanc-Renaudie | Limit of trees with fixed degree sequence[END_REF] Section 5.2). • When Θ is random and corresponds to the jumps and brownian part of a Lévy bridge, the ICRT "is" a Lévy tree. (Equal in GP distribution, by unicity of the limit of D-trees, see [START_REF] Blanc-Renaudie | Limit of trees with fixed degree sequence[END_REF] Section 8.1.) • Morally, (X i ) i∈N and (θ i ) i∈N corresponds to the vertices of highest degrees with their degrees. On the other hand, θ 0 corresponds to vertices with small degrees.

We root ICRT at 0. Recall that to define a plane R-tree, we need an angle function U . This is equivalent to define for each x ∈ T , and for each connected component C of T \{x} with 0 / ∈ C, the value of U x,y ∈ [0, 1] for a unique y ∈ C. So, the following algorithm a.s. does well define an angle function on the ICRT. Also, the last line below insure that a.s. (T , d T , 0, U ) is balanced.

Algorithm 3. Construction of the uniform angle function U on the ICRT.

-Let (U X,i ) i∈N , (U Z,i ) i∈N be independent uniform random variables in [0, 1].

-Let U be the unique angle function on T such that:

-

For every i ∈ N, U (X i , Y inf{a∈N:Ya>X i } ) = U X,i -For every i ∈ N, U (Z i , Y i+1 ) = U Z,i . -For every x ∈ R + \ i∈N {X i , Y i }, we have U (x, Y inf{a∈N:Ya>x} ) = 1/2.

The ICRT looptree

To extend the discrete setting, we want to replace each vertex by a loop. So we define L as T × [0, 1] with a proper pseudo-distance d L corresponding to the cycles.

To define d L we need the sizes of the cycles, which in the discrete correspond to the degrees. For ICRT, although the degrees are infinite, the only vertices with high degrees are (X i ) i∈N and their degrees are morally proportional to (θ i ) i∈N .

Thus we may define L by concatenating some cycles of perimeter (θ i ) i∈N . Actually, this is not enough, since we forget the vertices of small degrees. Morally their degrees corresponds to θ 0 dl. Then by concatenating the corresponding cycles we get segments of length θ 2 0 /4dl. (The factor 1/4 is the mean distance between two points in a cycle of perimeter 1.) So, we formally define the ICRT looptree as follows: Let c be the distance in the torus [0, 1]. Then for every x, y ∈ T , u ∈ [0, 1], let U x,y,u = U x,y if x = y and let U x,y,u = u otherwise. We define a pseudo-distance d L on T × [0, 1] such that for all (x, u), (y, v) ∈ T × [0, 1] (see Figure 1),

d L ((x, u), (y, v)) := θ 2 0 4 d T (x, y) + i∈N θ i c(U X i ,x,u , U X i ,y,v ). (1) 
Finally let (L, d L ) be the completion of the pseudo-metric space

(T × [0, 1], d L ). Theorem 2.1. Almost surely d L is finite on T × [0, 1], and (L, d L ) is compact. Remark. When θ 1 = 1, L is a cycle of size 1. When θ 0 = 1, L is the Brownian CRT.
Sadly, several of our notions are initially defined in R + × [0, 1] or in T × [0, 1], but not in L. So, to avoid any issues, we extend the above notions to L:

(x; u) (y; v)
Figure 1: A continuum looptree L. The geodesic between (x, u), (y, v) ∈ L is red. The distance between (x, u) and (y, v) is the sum of the length of all potential cords that lies in this geodesic. This is a simplified picture, since L usually has infinitely many cycles which can have size null. Proposition 2.2. Almost surely the following assertions hold:

(a) L is the completion of (R

+ × [0, 1], d L ). (b) If T is compact, then L = T × [0, 1], and p T ,L : (x, u) ∈ L → x ∈ T is continuous. (c) For every i ∈ N with θ i > 0, α ∈ T × [0, 1] → U X i ,α extends to a continuous function from (L, d L ) to ([0, 1], c). (d) For every α, β ∈ L, writing when θ 0 > 0 d T : (x, u), (y, v) ∈ L → d T (x, y), d L (α, β) = θ 2 0 4 d T (α, β) + i∈N θ i c(U X i ,α , U X i ,β ).
Remark. If T is not compact, then L morally contains the "ends of the infinite branches" of T (see Section 5.4). Those points are dense in L (cf [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Lemma 6.6), so p T ,L is nowhere continuous.

We now give the fractal dimensions of L, whose definitions are recalled in Section 7.1. Let,

d := 1 + lim inf l→∞ log E[µ[0, l]] log l ; d := 1 + lim sup l→∞ log E[µ[0, l]] log l . (2) 
Remark. l → lE[µ[0, l] is an analog of the Laplace exponent ψ for Lévy processes (see [START_REF] Aldous | Weak convergence of random p-mappings and the exploration process of inhomogeneous continuum random trees[END_REF][START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF]). Also, by Lemma 3. 

1 (b), 1 ≤ d ≤ d ≤ 2.

The ICRT fennec

To mimic the discrete setting, we want to define the ICRT fennec F as a Gaussian free field (a random function) on L. We construct it explicitly by mimicking our construction of the looptree. First, to deal with vertices of small degree we construct a Gaussian free field on T . To this end, we adapt Algorithm 1: Let B : R + → R be a Brownian motion. Then define inductively G on R + such that for every i ∈ N and

Y i < x ≤ Y i+1 , G(x) := G(Z i ) + B(x) -B(Y i ). (3) 
To construct the fennec F, we need to show that G extends to a continuous function on T if θ 0 > 0.

We actually prove the much stronger result:

Theorem 2.4. Almost surely G extends to a continuous function on T if ∞ dl l E[µ[0, l]] < ∞. (4) 
Remark. By [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF], T is almost surely compact iff ∞ dl/(lE[µ[0, l]]) < ∞, so G is well defined on most compact ICRT. Also, we believe one can adapt [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Section 6.3 to show that (4) is necessary. Moreover, in [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF] Chapter 4.5, Duquesne and Le Gall prove the equivalence for Lévy trees. We now adapt [START_REF] Aldous | The continuum random tree I[END_REF]. Beforehand, recall that if θ 0 > 0, by Proposition 2.2 (b), that L = T × [0, 1] and that p L,T : (x, u) ∈ L → x is continuous. Then the fennec is

F : α ∈ L → θ 0 √ 6 G • p L,T (α) + ∞ i=1 θ i B i (U X i ,α ). (5) 
Theorem 2.5. Almost surely the sum in (5) converges uniformly on L, so F is continuous.

We will actually prove a stronger statement where the functions (B i ) i∈N are replaced by more general random functions under a moment condition for their maximums (see Section 9 for details). We believe that this extension may have applications to study more complex fields on D-trees.

A direct corollary of Theorem 2.5 is that F is indeed a Gaussian free field on L:

Proposition 2.6. Almost surely, conditionally on X, Y, Z, U , for every α, β ∈ L, F(α) -F(β) is Gaussian with variance

d L (α, β) := θ 2 0 6 d T (α, β) + i∈N θ i |U X i ,α -U X i ,β |(1 -|U X i ,α -U X i ,β |). Remark. 1 2 d L ≤ d L ≤ d L so d L is equivalent to d L .
2.5 Left, Front, Right (see Figure 2)

In this section (T , d, ρ, u) denote an arbitrary plane R-tree. For every x ∈ T , (y, w) ∈ T × [0, 1] let u x,y,w := u x,y if x = y and let u x,y,w := w otherwise. For all α = (x, v), β = (y, w) ∈ T × [0, 1], we say that α is at the left of β (or β is at the right of α) and write α β if u x∧y,x,v < u x∧y,y,w . We say that β is in front of α and write α ¡ β if x ∈ 0, y and u x,y,w = v. Lemma 2.7. Let ≺ be the binary relation defined on T × [0, 1] such that for every α, β ∈ T × [0, 1]:

α ≺ β ⇐⇒ (α β) or (α ¡ β).
Then ≺ is a total order relation on T × [0, 1] and is called the contour order.

Proof. See Appendix C. 

The contour path, and the ICRT snake

Recall that for every l ∈ R + , µ l is the restriction of µ to [0, l], and that p l = µ l /µ[0, l]. Also by [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] a.s. (p l ) l∈R + converges weakly toward a probability measure p. We prove that a.s. p extends to a function continuous at L\(R + × [0, 1]) (see Section 5.3), and that p has an "inverse": Below ∼ L denote the equivalent relation on L such that for every α, β ∈ L, α ∼ L β iff d L (α, β) = 0.

Theorem 2.8. Almost surely there exists a continuous function C : [0, 1] → L such that for every α ∈ L, C(p (α)) ∼ L α. We call C the contour path on L (see Figure 6). The path start at the root (0, 0) then "turn around" each cycle clockwise. It is continuous, "surjective", not "injective".

The density of {p (α), α ∈ L} (see Lemma 5.3) implies that C is unique up to ∼ L . Moreover it also implies with the existence of C that: Proposition 2.9. Almost surely for every continuous function F : L → R, F • C is the unique continuous function f such that for every α ∈ L, f (p (α)) = F (α).

In particular, we define the ICRT snake as Z := F • C. Remark. Similarly, if T is a.s. compact, we can define the height process of the ICRT as follows. First by Proposition 2.2 (b), L = T × [0, 1], and p T ,L : (x, u) ∈ L → x is continuous. Then we define the contour path on T as C T := p T ,L • C. This path is a.s. continuous by continuity of C. Finally, the height process is

H : x ∈ [0, 1] → d T (0, C T (x)).
Also by first defining

L : (x, u) ∈ L → θ 2 0 2 d T (0, x) + i∈N:X i ∈ 0,x θ i (1 -U X i ,x,u ),
we may define the Lukasiewicz walk as X := L • C. We will study H and X in [START_REF] Blanc-Renaudie | A few notes on ICRT excursion[END_REF]. We now consider the Hölder continuity. Our first point is that for any continuous function F , the Hölder continuity of F • C can be deduced from the Hölder continuity of F and C. Moreover: 

Recalls from [10] Section 4

We prove the following results in [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Section 4: (Actually in [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] we focus on the case where θ 0 > 0 or ∞ i=1 θ i = ∞, but the proof is exactly the same in the complementary case. Also (d) is slightly modified from Lemma 4.6 using Lemma 4.5.) Lemma 3.1. The following assertions hold a.s.:

a

) The map l → E[µ[0, l]] is concave. b) As l → ∞, µ[0, l] ∼ E[µ[0, l]] = θ 2 0 l + o(l). c) For every l large enough, #([0, l] ∩ {Y i } i∈N ) ≤ 2µ[0, l]l ≤ 2l 2 . d) For every i large enough, µ[Y i-1 , Y i ] ≤ log(Y i ) 2 /Y i .
We now adapt [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Lemma 4.7. First let us define a metric, which morally counts the number of branches between two points. To do so, we adapt Algorithm 1: First let d N,0 be the trivial metric on [0, 0]. Then for every i ≥ 0, define d N,i+1 as the metric on [0, Y i+1 ] such that for every x < y,

d N,i+1 (x, y) :=      d N,i (x, y) if x, y ∈ [0, Y i ] d N,i (x, Z i ) + 1 if x ∈ [0, y i ], y ∈ (Y i , Y i+1 ] 1 if x, y ∈ (Y i , Y i+1 ]
Finally let d N be the unique metric on R + which agrees with d N,i on [0, Y i ] for every i ∈ N.

Lemma 3.2. Almost surely, for every n large enough, for every

x ≤ 2 n+1 , d N (x, [0, 2 n ]) ≤ 4n.
Proof. We adapt the proof of [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Lemma 4.7. Let F := σ(µ, {Y i } i∈N ). Let z be a random variable F-measurable in [0, 2 n+1 ]. Let us follow the geodesic path between z and [0, 2 n ] (see Figure 4): Let z 0 := z, then for every i ≥ 0, let k i := max{k ∈ N : Y k < z i } and let y i := Y k i , and let Then for every i ≥ 0 let F i := σ(F, z 0 , . . . , z i ). Recall that conditionally on F, (Z i ) i∈N are independent so ((y i , z i ), F i ) i≥0 is a Markov chain. Also T is a stopping time for this Markov chain. Moreover by definition of

z i+1 := Z k i . Finally note that d N (x, [0, 2 n ]) = T := inf{t ∈ N, z t ≤ 2 n }. z T Glue [0; 2 n ] y 0 y 1 y 2 y 3 z 1 z 2 z 3 z 0 := z
(Z i ) i∈N , if z i ≥ 2 n , P(z i+1 ≤ 2 n |F i ) = µ[0, 2 n ] µ[0, y i ] ≥ µ[0, 2 n ] µ[0, z] ≥ µ[0, 2 n ] µ[0, 2 n+1 ] ≥ 1/3,
where the last inequality holds a.s. for every n large enough by Lemma 3.1 (a) (b). Thus,

P(T ≥ 4n) = P(z 4n-1 > 2 n ) ≤ (2/3) 4n-1 .
Therefore by an union bound,

P ∃1 ≤ i ≤ 2 2n+3 : Y i ≤ 2 n , d N (Y i , [0, 2 n+1 ]) ≥ 4n F = O(1/n 2 ).
Hence, by the Borel-Cantelli Lemma, and by Lemma 3.1 (c), a.s. for every n large enough,

max{d N (Y i , [0, 2 n ]) : i ∈ N, Y i ≤ 2 n+1 } ≤ 4n -1.
Finally simply note that d N (•, [0, 2 n ]) is constant among branches.

4 Basic properties on L.

Proof of the compactness of L.

We first show an upper bound on d L . Then we introduce the projections on

L l := [0, l] × [0, 1].
Then we show that for every l ∈ R + , (L l , d L ) is a.s. compact. Then we upper bound for n ∈ N,

d H (L 2 n , L 2 n+1
). Finally, we show that L is a.s. compact with the chaining method.

Lemma 4.1. Almost surely for all (x, u),

(y, v) ∈ T × [0, 1], we have d L ((x, u), (y, v)) ≤ µ x, y . Also for every x ∈ T , (y, v) ∈ T × [0, 1], we have d L ((x, U x,y,v ), (y, v)) ≤ µ x, y .
Proof. We focus on the second assertion as the first can be proved similarly. Let u = U x,y,v . Recall that by definition, writing c for the distance on the torus [0, 1],

d L ((x, u), (y, v)) = θ 2 0 4 d T (x, y) + i∈N θ i c(U X i ,x,u , U X i ,y,v ).
Then note that for every i ∈ N such that

X i / ∈ x, y , x, y are connected in T \{X i }, hence U X i ,x,u = U X i ,x = U X i ,y = U X i ,y,v . Also U x,x,u = u = U x,y,v . Therefore, d L ((x, u), (y, v)) ≤ θ 2 0 d T (x, y) + i∈N:X i ∈ x,y θ i = µ x, y . Remark. Note that Lemma 3.1 (c) (d) implies µ[Y i , Y i+1 ] = O(i -1/2+o(1)
). Also by Lemma 4.1 the diameter of the branches of the looptree is bounded by

(µ[Y i , Y i+1 ]) i∈N .
Thus we are close from the compact setting of Curien and Haas [START_REF] Curien | Random trees constructed by aggregation[END_REF] and of Sénizergues [START_REF] Sénizergues | Random gluing of metric spaces[END_REF].

We now introduce the projections on T and on L (see Figure 5). For every x ∈ T , and l ∈ R + , let ρl be the projection of x on T l := [0, l], that is the unique z ∈ T l which minimizes d T (x, z). 

(x; u) ρl (x; u) x ρl (x) U ρl (x);x u 0 (0; 0)
U ρl (x),x,u = U ρl (x),x since ρl (x) = x. Lemma 4.2. For every (x, u) ∈ T ×[0, 1] and l ∈ R + , β ∈ L l → d L ((x, u), β) reach its minimum at ρl (x, u) := (ρ l (x), U ρl (x),x,u
). We call ρl (x, u) the projection of x on L l .

Proof. Note that, since T is a R-tree, for every y ∈ [0, l], for every z ∈ ρl (x), x , U z,y = 0. Thus, for every

(y, u) ∈ L l , since d T (x, y) ≥ d T (x, ρl (x)), d L ((x, u), (y, v)) ≥ θ 2 0 4 d T (x, ρl (x)) + i:X i ∈ ρl (x),x θ i c(U X i ,x,u ) = d L (x, ρl (x)), (6) 
where the last inequality is obtained by a small modification of the proof of Lemma 4.1.

Lemma 4.3. Fix l > 0. Almost surely, d L is finite on L l = [0, l] × [0, 1], and (L l , d l ) is compact.
Proof. The finiteness of d L directly follows from Lemma 4.1 since for every (x, u), (y, v) ∈ L l , x, y ⊂ [0, l], and since almost surely µ is locally finite. So let us focus on the compactness.

Let ((x n , u n )) n∈N ∈ (L l , d L ) N .
Up to extraction, we may assume that (x n ) n∈N converges for d T toward x ∈ [0, l]. Then note that, for every X = x and for every n large enough, x n and x are connected in T \{X}, so U X,x,u = U X,xn,v . Furthermore, up to extraction, we may also assume that U x,xn,un → u ∈ [0, 1] as n → ∞. Therefore, by dominated convergence, a.s.

d L ((x n , u n ), (x, u)) = θ 2 0 4 d T (x n , x) + i∈N:X i ≤l θ i c(U X i ,x,u , U X i ,y,v ) → 0.
We now show that (L 2 n ) n∈N is a Cauchy sequence for d H .

Lemma 4.4. The following assertions hold a.s. for every n large enough:

a) max x∈[0,2 n+1 ] min y∈[0,2 n ] µ y, x ≤ 4n 3 /2 n . b) d H (L 2 n , L 2 n+1 ) ≤ 4n 3 /2 n . Proof. Let (x, u) ∈ L 2 n+1 . By lemma 4.1, d L ((x, u), ρ2 n (x, u)) ≤ µ ρ2 n (x), x .
Also, a.s. for every n large enough, by Lemma 3.2 ρ2 n (x), x morally consists in the union of a part of at most 4n branches of the form ]Y i , Y i+1 ], which have by Lemma 3.1 mass at most n 2 /2 n . Hence µ ρ2 n (x), x ≤ 4n 3 /2 n . Since (x, u) ∈ L 2 n+1 is arbitrary, this concludes the proof.

We will reuse the following intermediate result in [START_REF] Blanc-Renaudie | A few notes on ICRT excursion[END_REF]:

Lemma 4.5. Almost surely x → µ 0, x is bounded on T .

Proof. First by Lemma 4.4 (a) almost surely, for every n large enough,

max x∈[0,2 n+1 ] µ 0, x ≤ max x∈[0,2 n ] µ 0, x + 4n 3 /2 n .
Thus since 4n 3 /2 n < ∞, x → µ 0, x is bounded on R + . Moreover for every x ∈ T \R + , by monotone convergence, and since µ(T \R + ) = 0, as y → x, y ∈ 0, x ,

µ 0, y -→ µ 0, x = µ 0, x . (7) 
Proof of Theorem 2.1. By Lemma 4.5 and ( 7), for every x ∈ T , min y∈R + µ y, x = 0. Hence, by Lemma

4.1, d H (T × [0, 1], R + × [0, 1]) = 0. So, since L is the completion of (T × [0, 1], d L ), we have d H (L, R + × [0, 1]) = 0.
Then by Lemma 4.4, (L 2 n ) n∈N is a Cauchy sequence for the Hausdorff pseudo-distance. Also, by Lemma 4.3, for every n ∈ N,

L 2 n is compact. Hence, since L is complete, (L 2 n ) n∈N converges toward a compact subset of L. This subset contains R + × [0, 1]. And since d H (L, R + × [0, 1]) = 0, it is at distance 0 of L. Therefore, L is compact.
In passing note that we also prove the following result, which we will reuse in [START_REF] Blanc-Renaudie | Limit of looptree, fennec, and snake of trees with fixed degree sequence[END_REF].

Proposition 4.6. Almost surely as l → ∞, d H (L l , L) → 0. 4.2 Proof of Proposition 2.2 Toward (a), simply recall that d H (L, R + × [0, 1]) = 0. Toward (b), to show that T × [0, 1] = L it is enough to prove that (T × [0, 1], d L ) is compact. Let ((x n , u n )) n∈N be a sequence in T × [0, 1]. Since T is compact, we may assume up to extraction that x n → x ∈ T , and U x,xn,un → u ∈ [0, 1]. Let us prove (x n , u n ) → (x, u).
There is two cases: Either x / ∈ R + . In this case, for every l ∈ R + , for every n large enough, x and x n are connected in T \[0, l]. And it follows, by Lemma 4.2, that for every n large enough,

d L ((x n , u n ), (x, u)) ≤ 2d H ([0, l] × [0, 1], L),
which converges a.s. to 0 as l → ∞, by Proposition 4.6.

Or x ∈ R + . In this case, for every l ≥ x, as n → ∞, by Lemma 4.2, ρl (x n , u n ) → (x, u). Thus a.s. lim sup

n→∞ d L ((x n , u n ), (x, u)) ≤ d H (L l , L) -→ l→∞ 0.
Then we show that p T ,L :

(x, u) ∈ T × [0, 1] → x is continuous on T × [0, 1]
. We argue by contradiction. Assume that there exists

(x n , u n ) ∈ L N such that as n → ∞, (x n , u n ) → (x, u) ∈ L but x n
x. Since T is compact we may assume up to extraction that x n → y ∈ T . Since x = y, there exists a < b ∈ R + \{x, y} such that [a, b] ⊂ x, y . Then by density of µ on R + (see proof of Theorem 3.1 [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF]), either θ 0 > 0, so

lim inf n∈N d L ((x n , u n ), (x, u)) ≥ θ 2 0 4 d T (y, x) > 0,
or there exists i ∈ N with θ i > 0 and X i ∈ [a, b]\{x ∧ y}, so for every n ∈ N large enough,

d L ((x n , u n ), (x, u)) ≥ θ i U X i > 0,
where the last inequality holds almost surely. Both cases contradict d L ((x n , u n ), (x, u)) → 0. Toward (c), note that by definition of d L , for every i ∈ N with

θ i > 0, α → U X i ,α is 1/θ i Lipschitz from T × [0, 1] to ([0, 1], c
), and so extends by continuity on L.

Toward (d), by (c) and definition of

d L on T × [0, 1], it is enough to show that as n → ∞, α, β ∈ L 2 → n i=1 θ i c(U X i ,α , U X i ,β
) converges uniformly as n → ∞. To this end, first note that by dominated convergence, for every l ∈ R + , as n, m → ∞, a.s. (see proof of Lemma 4.1)

∆ n,m,l := max α,β∈L l m i=n θ i c(U X i ,α , U X i ,β ) ≤ ∞ i=n θ i 1 X i ∈[0,l] → 0.
Then, by definition of d L , and the triangular inequality, for every l ∈ R + , as n, m → ∞, a.s.

∆ n,m := max α,β∈T ×[0,1] m i=n θ i c(U X i ,α , U X i ,β ) ≤ 2d H (L l , L) + max α,β∈T ×[0,1] m i=n θ i c(U X i ,ρ l (α) , U X i ,ρ l (β) ) ≤ 2d H (L l , L) + ∆ n,m,l → 2d H (L l , L). (8) 
By Proposition 4.6 a.s. d H (L l , L) → 0. Thus by [START_REF] Blanc-Renaudie | Limit of looptree, fennec, and snake of trees with fixed degree sequence[END_REF] as n, m → ∞ a.s. ∆ n,m → 0. The maximum in ( 8) is then directly extended to L by (c). This yields the desired uniform convergence.

Preliminary results on left, front, right

In this section is we prove the technical results necessary to construct and study C in Section 6. In Section 5.1, 5.2 we prove generic results on , ¡, and on p , p , p . In Section 5.3, 5.4 we extend respectively (ρ l ) l>0 and p to L. In Section 5.5 we estimate p l, .

5.1 Properties of , ¡.

Recall Section 2.5. The following lemma is proved in Appendix C:

Lemma 5.1. ¡ is a partial order. is a strict partial order. ¡ raises ≺ (see Figure 6): for every Proof. First by definition of ρ, ρl (α) = (ρ l (x), U ρl (x),α ) ¡ α and similarly ρl (β) ¡ β. (a) follows since ¡ raises . Toward (b), ρl (α) ¡ α, and ρl (α) ¡ ρl (β), so either:

β γ ∈ T × [0, 1], for every α ∈ T × [0, 1], γ ¡ α ⇒ β α and β ¡ α ⇒ α γ. β γ α β γ α β y γ α y γ β y α γ C α β C α β y γ
• x = ρl (x).

• ρl (y) = ρl (x) and then by ρl (α) ¡ ρl (β), we have ρl (α) = ρl (β).

• x, ρl (y) are connected in T \{ρ l (x)} which is absurd by definition of ρ. Hence, x = ρl (x). So since ρl (α) ¡ α, by definition of ¡, α = ρl (α). Finally α ¡ ρl (β) ¡ β.

Generic properties on p , p , p

In this section (T , d, ρ, u) denotes a plane R-tree, and p denotes a probability Borel measure on T .

Lemma 5.3. The following assertions hold:

(a) For every

α ∈ T × [0, 1], p (α) + p (α) + p (α) = 1. (b) p is increasing for ≺. (c) If A is a random variable with law p × 1 l∈[0,1] dl, then almost surely p (A) = 0. (d) With the same notations, p (A) is uniform in [0, 1]. (e) {p (α)} α∈T ×[0,1] is dense in [0, 1].
Proof. Toward (a), note that for every α ∈ T × [0, 1], we have the following partition,

T × [0, 1] = {β : β = α, β ¡ α} ∪ {β : α β} ∪ {β : α ¡ β} ∪ {β : β α}. (9) 
Then by Fubini's theorem since for every y ∈ T , #{v ∈ [0, 1], (y, v) ¡ α} ≤ 1, we have µ L {β : β ¡ α} = 0. (a) follows from [START_REF] Blanc-Renaudie | Limit of trees with fixed degree sequence[END_REF]. Toward (b), by Lemma 5.1, for every α ≺ β ∈ L, {γ : γ α} ⊂ {γ : γ β}.

Toward (c), let A, A be independent random variables with law µ L . Since T is separable, and balanced, the events A A , A ¡ A are measurable (see Lemma C.4). The measurability of the other random variables in the proof is then due to Fubini's Theorem.

Then note that a.s.

p (A) = P[A ¡ A |A],
and by (a) a.s. p{α : α ¡ A } = P[A ¡ A |A ] = 0. Hence, by Fubini's theorem, a.s. p (A) = 0.

Toward (d), let (A i ) i∈N be a family of independent random variables with law p × 1 l∈[0,1] dl. By the weak law of large number a.s.

1 n n i=1 P(A i A 1 |A 1 ) -→ n→∞ p (A 1 ). (10) 
Furthermore, by (b) for every i = j ∈ N,

P(A i ¡ A j ) = E[P(A i ¡ A j |A i )] = E[p (A i )] = 0.
Hence, since ≺ is a total order, a.s. for every i, j ∈ N either A i A j or A j A i . Moreover, the law of (A i ) i∈N is invariant by permutations. Hence for every n ∈ N, #{i ≤ n : [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF]. (e) directly follows from (d).

A i A 1 } is uniform in {0, 1, 2, . . . , n -1}. Finally (d) follows from

Extension of ρl to L

Recall notations ρ, ρ from section 4.1. Although for all l > 0, ρl is continuous on T × [0, 1], we do not want to extend it by continuity. Indeed, a continuous extension is only defined up to ∼ L , while , ¡ are not. So we prove instead that ρl is locally constant around each vertex of L\(T × [0, 1]), and extend it naturally. First, we prove that ρ is piecewise constant:

Lemma 5.4. For every l > 0, for every C connected component of T \[0, l], ρ is constant on C, and ρ is constant on C × [0, 1].
Proof. The first assertion is classic, so we leave it to the reader as an exercise. Let x, y ∈ C and let a, b ∈ [0, 1]. ρ(x) = ρ(y). Since x, y = ρ(x), U ρl (x),x,a = U ρl (x),x and U ρl (x),y,b = U ρl (x),y . Also since x, y are connected in T \{ρ(x)}, we have U ρl (x),x = U ρl (x),y . So U ρl (x),x,a = U ρl (y),y,b . Therefore, ρ(x, a) = ρ(y, b).

For every α ∈ L, and ε > 0 let B(α, ε) denote the open ball for d L of center α and radius ε. Lemma 5.5. For every l > 0, for every α ∈ L, ρl is constant on

(T ×[0, 1])∩B(α, d L (α, [0, l])/2). Proof. We argue by contradiction. Let l > 0, α ∈ L, β = (y, b), γ = (z, c) ∈ T × [0, 1]. Assume that ρl (β) = ρl (γ), and d L (β, α) < d L (α, [0, l])/2, and d L (γ, α) < d L (α, [0, l])/2. Let D = d L (α, [0, l]). By the triangular inequality, d(β, [0, l]) > D/2 ; d(γ, [0, l]) > D/2 ; d L (β, γ) < D. (11) 
Moreover, since ρl (β) = ρl (γ), by Lemma 5.4, y, z are disconnected in T \[0, l]. Hence, y, ρl (y) ∩ ρl (z), z = ∅. As a result, writing

S β := θ 2 0 4 d(y, ρl (y)) + i:X i ∈ y,ρ l (y) θ i c(U X i ,β , U X i ,γ ), (12) 
and similarly for S γ , we have d L (β, γ) ≥ S β + S γ . Also, for every X i ∈ y, ρl (y) , ρl (y) and z are connected in T \{X i } so U X i ,γ = U X i ,ρ l (β) . Hence, by ( 12), ( 6), S β = d L (β, ρl (β)). and similarly for S γ . Therefore, since

d L (β, γ) ≥ S β +S γ , d L (β, γ) ≥ d L (β, ρl (β)) + d L (γ, ρl (γ)).
This contradicts [START_REF] Boucheron | Concentration Inequalities. A Nonasymptotic Theory of Independence[END_REF]. 

α ∈ L → p L l>0 {β ∈ T × [0, 1], ρl (β) ρl (α)} (13) 
is well defined and coincide with p on T × [0, 1].

Remark. One may see each α ∈ L\(T × [0, 1]) as the "end" of the infinite branch (see Figure 7) {p T ,L • ρl (α), l ∈ R + }, and the relations of T × [0, 1] may be extended to those missing points.

α ρl (α) 

As a result, for every (x, a) ∈ T × [0, 1],

{β, β (x, a)} ⊂ l>0 {β, ρl (β) ρl (x, a)} ⊂ {β, β (x, a)} ∪ {x} × [0, 1],
and the first inclusion is an equality when x ∈ R + . Finally for every x ∈ T \R + , p(x) = 0. (Indeed, when θ 0 = 0, θ i < ∞, p have support {X i } i∈N ⊂ R + . In the other case see [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Theorem 3.1.) So p coincide with (13).

Lemma 5.8. Let p denote [START_REF] Camarri | Limit distributions and random trees derived from the birthday problem with unequal probabilities[END_REF]. p is continuous around each vertex of L\{R + × [0, 1]}.

Proof. Fix α ∈ L\{R + × [0, 1]}. First, recall that the sets of ( 13) are increasing so, as l → ∞,

p L ({β ∈ T × [0, 1], ρl (β) ρl (α)}) → p (α).
Furthermore, recall that by Lemma 5.5 ρl is locally constant, hence for every l > 0,

lim inf β→α p (β) ≥ p L ({β ∈ T × [0, 1], ρl (β) ρl (α)}) → l→∞ p (α).
Let us show the other inequality. For every β ∈ L let Let I l denote the right most set above. By Lemma 5.5, to show that lim sup β→α p (β) ≤ p (α), it suffices to show that as l → ∞, p L (I l ) → 0. First since ¡ is an order, and since for every l ≤ l , ρl (α) ¡ ρl (α), (I l ) l>0 is decreasing. Then for every z ∈ T , ρl → z as l → ∞. So for every (y, b) = (z, c) ∈ T × [0, 1] such that y = z or z ∈ R + , for every l large enough ρl (y, b) = ρl (z, c). Thus, ∩ l>0 I l is included in a set of the form {z} × [0, 1] with z ∈ T \R + , or of the form {(z, c)}. Finally recall that for every z ∈ T \R + , p(z) = 0. Hence, p L ( l>0 I l ) = 0. This shows the other desired inequality and thus concludes the proof.

S β := l>0 {γ ∈ T × [0, 1], ρl (γ) ρl (β)}. Let l > 0. Let β ∈ L such that ρl (β) = ρl (α). Let (z, c) ∈ S β .

Some preliminary results on p l,

For every ν, σ-finite Borel measure on T and α, β 

∈ T ×[0, 1], let ν (α, β) denote ν (β)-ν (α).
z ∈ x ∧ y, x , U z,y,b = 0, µ(S 1 ) = θ 2 0 2 d T (x∧y, x)+ i:X i ∈ x∧y,x (1-U z,x,a ) ≥ θ 2 0 4 d T (x∧y, x)+ i:X i ∈ x∧y,x θ i c(U X i ,x,a , U X i ,y,b ).
Similarly, µ(S 2 ) ≥ µ{x ∧ y}c(U x∧y,x,u , U x∧y,y,b ), and

µ(S 3 ) ≥ θ 2 0 4 d T (x ∧ y, y) + i:X i ∈ x∧y,y θ i c(U X i ,x,a , U X i ,y,b ).
Finally, by sum, and since for every i ∈ N, such that

X i / ∈ x, y , U X i ,x,a = U X i ,y,b , µ(S) ≥ µ(S 1 ) + µ(S 2 ) + µ(S 3 ) ≥ θ 2 0 4 d T (x, y) + ∞ i=1 θ i c(U X i ,x,a , U X i ,y,b ) = d L (α, β).
Lemma 5.10. Almost surely for every α ∈ T × [0, 1], as l → ∞, p l, (α) → p (α).

Proof. [START_REF] Aldous | The continuum random tree I[END_REF] dx in total variation. The desired result follows.

When θ 0 = 0 and ∞ i=1 θ i < ∞, we have µ(R + ) < ∞. As a result, µ l → µ in total variation. So p l 1 x∈[0,1] dx → p1 x∈[0,
When Hence, for every x, a ∈ T × [0, 1]

θ 0 = 0 or ∞ i=1 θ i = ∞,
p l (S 1 (x, a)) ≤ p l, (x) ≤ p l (S 1 (x, a) ∪ 0, x ), (15) 
and similarly,

p(S 1 (x, a)) ≤ p (x) ≤ p(S 1 (x, a) ∪ 0, x ), (16) 
Moreover, note that S 1 (x, a) is an open set of T as a union of open connected components. Similarly, note that S 1 (x, a) ∪ 0, x is a closed set since its complementary is a union of open connected components. Furthermore, by [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Theorem 3.1, p(R + ) = 0, and p has no atoms, so p( 0, x ) = 0. As a result, by Portmanteau Theorem, p l (S 1 (x, a)) → p(S 1 (x, a)) and p l (S 1 (x, a) ∪ 0, x ) → p(S 1 (x, a) ∪ 0, x ) = p(S 1 (x, a)).

(17) The desired result follows by ( 15),( 16), [START_REF] Duquesne | The coding of compact real trees by real valued functions[END_REF].

We now adapt [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Lemma 5.1 to estimate precisely the evolution of p l, .

Lemma 5.11. Let U X := (U X,i ) i∈N . Almost surely (µ, Y, U X ) satisfies the following property. For all a large enough, conditionally on F a := σ(µ, Y, (Z i , U Z,i ) i<a , U X ), for every α, β ∈ L Ya : If µ l, (α, β) ≥ (log 6 Y a )/Y a then with probability at least 1 -1/Y 5 a , for every b ≥ a,

1 - 1 log Y a p Ya, (α, β) ≤ p Y b , (α, β) ≤ 1 + 1 log Y a p Ya, (α, β).
Remark. With α = (0, 0), for all a ∈ N, since p Ya, (0, 0) = 0, we have p Ya, (α, β) = p Ya, (β).

Proof. First by Lemma 5. 

F i , γ i := (Z i , U Z,i ) have law p Y i × [0, 1].
Moreover, for every i ≥ a, writing Therefore, by Lemma 5.3 (a), and {γ : γ α} ⊂ {γ : γ β}, for every i ≥ a, a.s.

I i :=]Y i , Y i+1 ] × [0, 1], conditionally on F i a.s. • With probability p Y i , (x) 
P µ Y i+1 , (α, β) = µ Y i , (α, β) + µ(Y i , Y i+1 ] F i = p Y i , (α, β),
and,

P µ Y i+1 , (α, β) = µ Y i , (α, β) F i = 1 -p Y i , (α, β
). As a result, (p Y i , (α, β), F i ) i≥a is a Pólya urn in the sense of [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Lemma A.1. And we can conclude exactly as in the proof of [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Lemma 5.1.

6 Construction and Hölder continuity of the contour path.

6.1 Construction of the contour path C l on L l . Lemma 6.1. Recall that ∼ L denotes the metric equivalence on (L, d L ). A.s. for every l > 0 there exists a µ[0, l]-Lipschitz function C l : [0, 1] → L l such that for every α ∈ L l , C l (p l, (α)) ∼ L α.

Remark. Since by Lemma 5.3 (e), {p (α), α ∈ L l } is dense, C l is unique up to ∼ L .

Proof. A.s. for every l > 0 the following holds: Let S l := {p (α), α ∈ L l }. For every u ∈ S l , we may chose C l (u) ∈ L l such that p (C l (u)) = u. Then by Lemma 5.9, for every α, β ∈ L l ,

d L (α, β) ≤ |µ (α) -µ (β)| = µ[0, l]|p (α) -p (β)|. (18) 
Thus for every α ∈ L l , we have d L (α, C l (p (α))) = 0. Also, by [START_REF] Duquesne | Random trees, Lévy processes and spatial branching processes[END_REF], C l is µ[0, l]-Lipschitz on S l . Furthermore by Lemma 5.3 (e), S l is dense. Hence, by compactness of (L l , d L ) (see Lemma 4.3), C l extends to a µ[0, l]-Lipschitz function on [0, 1].

Construction of the contour path C.

For every f, g :

[0, 1] → L, let d ∞ (f, g) := max x∈[0,1] d L (f (x), g(x)
). In this section we prove: Proposition 6.2. (C Ya ) a∈N is almost surely a Cauchy sequence for d ∞ .

Since L is a.s. compact, this directly implies that (C Ya ) a∈N converges uniformly, and we define C as its limit. Our proof is mainly constructive, with several topological arguments along the way.

First, since almost surely as a → ∞, µ[0, Y a ]Y a /(log 6 Y a ) → ∞, a.s. there exists for every a ∈ N large enough (l a , n a ) ∈ R + × N such that

1 ≤ Y a log 6 Y a µ[0, Y a ]l a ≤ 2 and 2n a l a = 1. (19) 
we take (l a , n a ) such that n a is the largest possible.

Then for every a ∈ N, let α a,0 := (0, 0), α a,na = (0, 1) and for every 0

< i < n a , let α a,i ∈ L Ya such that p Ya, (α a,i ) ∈ [2il a , (2i + 1)l a ]. (20) 
α a,i exists by Lemma 5.3 (e), and by Lemma 5.3 (d), we can sample α a,i in a measurable way. Also note that for every a ∈ N, since (0, 0) is the minimum for ≺ and since (0, 1) is the maximum for ≺, p Ya, (0, 0) = 0 and p Ya, (0, 1) = 1.

Thus, by Lemma 5.3 (c) and ( 20), a.s. for every a ∈ N large enough,

(0, 0) = α a,0 ≺ α a,1 • • • ≺ α a,na = (0, 1). (21) 
Next, by Lemma 3.1 (a), (b), a.s. as a → ∞, n a = O(Y 2 a ). Also by Lemma 3.1 (c), a.s.

i 2 = O(Y i ), so a.s. ∞ a=1 Y -3 a < ∞.
Therefore by the Borel-Cantelli Lemma and Lemma 5.11, for every a ≤ b large enough, and 0 ≤ i < n a , by [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF], [START_REF] Falconer | Fractal Geometry. Mathematical Foundations and Applications[END_REF],

l a /2 ≤ p Y b , (α a,i , α a,i+1 ) ≤ 4l a . (22) 
In particular for every a ≤ b large enough, (p Y b , (α a,i )) 0≤i≤na is strictly increasing. Hence we may define ψ a,b : [0, 1] → [0, 1] such that for every

0 ≤ i ≤ n a , ψ a,b (p Ya, (α a,i )) = p Y b , (α a,i ),
and such that for every 0 ≤ i < n a , ψ a,b is linear in [α a,i , α a,i+1 ]. And by [START_REF] Gall | Random trees and applications[END_REF], ψ a,b is strictly increasing and continuous.

Lemma 6.3. Almost surely for every a ∈ N large enough, (ψ a,b ) b≥a converges uniformly toward a strictly increasing continuous function ψ a . And a.s. (ψ -1 a,b ) b≥a converges uniformly toward ψ -1 a . Proof. By Lemma 5.10 a.s. for every a ∈ N large enough, for every

0 ≤ i ≤ n a , as b → ∞, p Y b , (α a,i ) → p (α a,i ). ( 23 
)
So if ψ a is the function such that for every

0 ≤ i ≤ n a , ψ a,b (p Ya, (α a,i )) = p (α a,i ),
and such that for every 0 ≤ i < n a , ψ a is linear in [α a,i , α a,i+1 ]. Then almost surely for every a ∈ N large enough, (ψ a,b ) b≥a converges uniformly toward ψ a . Moreover, by ( 22) and ( 23), a.s. for every a ∈ N large enough, for every 0 ≤ i < n a ,

l a /2 ≤ ψ a (p Ya, (α a,i+1 )) -ψ a (p Ya, (α a,i )) ≤ 4l a . (24) 
Hence, ψ a is also a strictly increasing continuous function. Finally by ( 23), [START_REF] Gall | Branching processes in levy processes: Laplace functionals of snakes and superprocesses[END_REF], and the linearity, a.s. for every a ∈ N large enough, (ψ -1 a,b ) b≥a converges uniformly toward ψ -1 a .

Lemma 6.4. Almost surely for every a ≤ b large enough,

d ∞ (C Ya • ψ -1 a,b , C Y b ) ≤ d H (L Ya , L) + 6 log 6 (Y a )/Y a .
Remark. This result does not depends on the choice of (C Ya ) a∈N , since they are unique up to ∼ L . Before proving Lemma 6.4 let us explain why it implies Proposition 6.2.

Proof of Proposition 6.2. First by Proposition 4.6 a.s. d H (L Ya , L) → 0. Hence, by Lemma 6.4 a.s.

lim a→∞ max b≥a d ∞ (C Ya • ψ -1 a,b , C Y b ) = 0.
Then by the triangular inequality, a.s.

lim a→∞ lim sup b,c→∞ d ∞ (C Yc , C Y b ) ≤ lim a→∞ lim sup b,c→∞ d ∞ (C Ya • ψ -1 a,c , C Ya • ψ -1 a,b ).
Finally by Lemma 6.3 and continuity of C Ya the right hand side above is almost surely null.

Proof of Lemma 6.4. Almost surely for every a ≤ b large enough, β ∈ L b the following holds: Since ≺ is an order, by [START_REF] Janson | Scaling limits of random planar maps with a unique large face[END_REF] there exists 0 ≤ i < n a such that α a,i ≺ β ≺ α a,i+1 . Then recall from Lemma 4.2 that ρYa (β) denote the projection of β on L ya . Then note that by Lemma 5.2, α a,i ≺ ρYa(β) ≺ α a,i+1 . Thus, by Lemma 5.3 (c),

p Ya, (α a,i ) ≤ p Ya, • ρYa (β) ≤ p Ya, (α a,i+1 ). (25) 
Also, since

α a,i ≺ β ≺ α a,i+1 , p Y b , (α a,i ) ≤ p Y b , (β) ≤ p Y b , (α a,i+1 ).
Then by applying ψ -1 a,b which is strictly increasing we get,

p Ya, (α a,i ) ≤ ψ -1 a,b • p Y b , (β) ≤ p Ya, (α a,i+1 ). ( 26 
)
Therefore by ( 25), ( 26), [START_REF] Falconer | Fractal Geometry. Mathematical Foundations and Applications[END_REF], and [START_REF] Duquesne | Probabilistic and fractal aspects of Lévy trees[END_REF],

|ψ -1 a,b • p Y b , (β) -p Ya, • ρYa (β)| ≤ 3l a ≤ 6 log 6 (Y a )/(Y a µ[0, Y a ]). Then since by Lemma 6.1, C Ya is a.s. µ[0, Y a ]-Lipschitz, d L (C Ya • ψ -1 a,b • p Y b , (β), C Ya • p Ya, • ρYa (β)) ≤ 6 log 6 (Y a )/Y a . Also, by using the definition of C a , we have, C a • p Ya, • ρYa (β) ∼ L ρYa (β). Hence, d L (C Ya • ψ -1 a,b • p Y b , (β), ρYa (β)) ≤ 6 log 6 (Y a )/Y a . Then using d L (ρ Ya (β), β) ≤ d H (L Ya , L) (see Lemma 4.2), d L (C Ya • ψ -1 a,b • p Y b , (β), β) ≤ d H (L Ya , L) + 6 log 6 (Y a )/Y a . Finally by using the definition of C a , we have β ∼ L C Y b • p Y b , (β), so, d L (C Ya • ψ -1 a,b • p Y b , (β), C Y b • p Y b , (β)) ≤ d H (L Ya , L) + 6 log 6 (Y a )/Y a . ( 27 
)
To conclude the proof by [START_REF] Marzouk | Scaling limits of random bipartite planar maps with a prescribed degree sequence[END_REF], almost surely for every a ≤ b ∈ N large enough, writing

S b := {p Y b , (γ), γ ∈ L Y b }, max x∈S b d L (C Ya • ψ -1 a,b (x), C Y b (x)) ≤ d H (L Ya , L) + 6 log 6 (Y a )/Y a .
The maximum is then extended to [0, 1], by density of S b (see Lemma 5.3 (d)), since C Ya , ψ -1 a,b , C Y b are almost surely continuous.

Proof of Theorem 2.8

Recall that by Lemmas 5.7, 5.8, p extends to a function continuous at each point of L\(R + ×[0, 1]). We need to show that almost surely for every α ∈ L, C • p (α) ∼ L α. To this end, by continuity of p and C at L\(R + × [0, 1]), and by density of R + × [0, 1] (see Proposition 2.2 (a)), it is enough to show the desired result on R + × [0, 1].

Almost surely for every α ∈ R + × [0, 1] the following holds: First by definition of (C l ) l>0 , for every l large enough, C l • p l, (α) ∼ L α. Then by Lemma 5.10, a.s. p l, (α) → p (x). Hence, since a.s. (C l ) l>0 converges uniformly toward C, as l → ∞,

C l • p l, (α) → C • p (α)) Therefore, C • p (α) ∼ L α.

Holder continuity of C: Proof of Theorem 2.10

The next result is more precise than Theorem 2.10, and we will use it in the next section to estimate the Minkowski lower box dimension of L. Lemma 6.5. Almost surely, for every n ∈ N large enough, for every s, t ∈ [0, 1],

d L (C(s), C(t)) ≤ 13|s -t|E[µ[0, 2 n ]] + 13n 6 2 -n .
Proof. We keep the notations of Section 6.2. By taking b → ∞ in Lemma 6.4, by Lemma 6.3, a.s. for every a large enough,

d ∞ (C Ya • ψ -1 a , C) ≤ d H (L Ya , L) + 6 log 6 (Y a )/Y a .
Hence, by the triangular inequality, a.s. for every a large enough, for every s, t ∈ [0, 1],

d L (C(s), C(t)) ≤ d L (C Ya • ψ -1 a (s), C Ya • ψ -1 a (t)) + 2d H (L Ya , L) + 12 log 6 (Y a )/Y a .
Moreover, by Lemma 6.1, C Ya is µ[0, Y a ]-Lipschitz, and by ( 20), [START_REF] Gall | Branching processes in levy processes: Laplace functionals of snakes and superprocesses[END_REF], ψ -1 a is 6-Lipschitz. Thus,

d L (C(s), C(t)) ≤ 6|s -t|µ[0, Y a ] + 2d H (L Ya , L) + 12l a µ[0, Y a ]. (28) 
Next, as a corollary of [10] Lemma 4.5, a.s. for every n large enough, there exists a ∈ N, such that Y a ∈ [2 n , 2 n+1 ]. So, a.s. for every n ∈ N large enough, by ( 28), for every s, t ∈ [0, 1].

d L (C(s), C(t)) ≤ 6|s -t|µ[0, 2 n+1 ] + 2d H (L 2 n , L) + 12n 6 2 -n .
The desired result follows from Lemma 4.4 (b), and by Lemma 3.1 (a) (b).

Proof of Theorem 2.10. Let δ > d. By (2), E[µ[0, 2 n ]] = o(2 n(β-1) ). So, for every n ∈ N large enough, for every s, t ∈ [0, 1] with 2 -nβ ≤ |s -t| ≤ 13n 6 2 -nβ , d L (C(s), C(t)) ≤ n 7 2 -n ≤ -log(|s -t|) 8 |s -t| 1/β .
Since β > d is arbitrary, the desired result follows.

7 Fractal dimensions of the looptree

Definitions of the fractal dimensions

In this section X denotes a pseudo-metric space.

Definition. (Minkowski dimensions) For every ε > 0, an ε-set of X is a finite subset S of X such that d H (S, X) ≤ ε. For every ε > 0 let N ε be the smallest size of a ε-set of X. and

P s (X) := inf ∞ i=1 P s 0 (A i ) X ⊂ ∞ i=1 A i .
Then P s is a decreasing function of s, and we define the packing dimension of X as dim P (X) := sup{s, P s (X) < ∞}.

Definition. (Hausdorff dimension) For every s, r ≥ 0 write

H s r (X) := inf diam(A i )≤r ∞ i=1 diam(A i ) s X ⊆ ∞ i=1 A i .
The Hausdorff dimension of X is defined by

dim H (X) := sup s, sup r∈R + H s r (X) < ∞ .
Remark. Although, the above dimensions are usually considered for metric spaces, it is easy to check that they are exactly the same for a pseudo-metric space and for its quotient. For this reason, the below results still apply here.

To compute the packing dimension and Hausdorff dimension we will use the following extension of Theorem 6.9, and Theorem 6.11 from [START_REF] Mattila | Geometry of Sets and Measures in Euclidian Spaces[END_REF]. ( [START_REF] Mattila | Geometry of Sets and Measures in Euclidian Spaces[END_REF] deals with subsets of Euclidian space, but the same arguments hold for every pseudo-metric space.) Lemma 7.1. Let p be a Borel probability measure on X and s ∈ R + . a) If p-almost everywhere lim sup(log p(B(x, ε)))/(log ε) ≥ s as ε → 0, then dim P (X) ≥ s. b) If p-almost everywhere lim inf(log p(B(x, ε)))/(log ε) ≥ s as ε → 0, then dim H (X) ≥ s.

We have well-known inequalities (see e.g. Chapter 3 of Falconer [START_REF] Falconer | Fractal Geometry. Mathematical Foundations and Applications[END_REF]):

Lemma 7.2. For every pseudo-metric space X we have

dim H (X) ≤ dim(X) ≤ dim(X) and dim H (X) ≤ dim P (X) ≤ dim(X).
So we only need to upper bound dim(L), dim(L), and to lower bound dim H (L) and dim P (L).

Upper bound on the Minkowski dimensions

To upper bound the Minkowski dimensions we use the contour path C. By Theorem 2.8 for every

α ∈ L, C(p (α)) ∼ L α. So d H (C([0, 1], L)) = 0. As a result, for every x > 0, {ix, 0 ≤ i ≤ 1/x} is a ε x -set of L, where ε x := max s,t |C(s) -C(t)|. So for every α > 0, if C is α Hölder continuous, dim(L) ≤ lim sup x→0 log(1/x + O(1)) -log(ε x ) ≤ lim sup x→0 log(1/x + O(1)) (1 + o(1)) log(1/x α ) = 1/α.
Therefore by Theorem 2.10 a.s. dim(L) ≤ d. Also, Lemma 7.3. Almost surely for every α > 1/dim(L), C is not α Hölder continuous.

We now consider dim(L). By (2), there exists

(n i ) i∈N such that E[µ[0, 2 n i ]] = o(2 n i (d-1+o(1))
). So by Lemma 2.10, a.s. for every i large enough, s, t

∈ [0, 1] with |s -t| ≤ 2 -n i /E[µ[0, 2 n i ]], d L (C(s), C(t)) ≤ 13|s -t|E[µ[0, 2 n i +1 ]] + 13n 6 i 2 -n i ≤ n 7 i 2 -n i .
Therefore, using the same ε-sets as before, a.s. as i → ∞,

dim(L) ≤ lim inf i→∞ log(2 n i E[µ[0, 2 n i ]]) -log(n 7 i 2 -n i ) ≤ n i (1 + d -1 + o(1)) n i (1 + o(1)) ≤ d.

The rebranching principle.

We want to lower bound the dimensions of L with Lemma 7.1. To this end, we morally needs to lower bound the distance between two random vertices in L. In this section we show that it morally suffices to lower bound d L ((0, 0), (Y 1 , 0)). Our starting point is the rebranching principle, which we use here as follows: Let by convention Y 0 = 0.

Proposition 7.4. For every permutation σ of {0} ∪ N, we have the following joint equality in distribution,

(d T (Y i , Y j )) i,j≥0 (d) 
= (d T (Y σ(i) , Y σ(j) )) i,j≥0 , 
1 X k ∈ Y i ,Y j i,j≥0,k∈N (d) = 1 X k ∈ Y σ(i) ,Y σ(j) i,j≥0,k∈N . 
Proof. We briefly recall some discrete notions of [START_REF] Blanc-Renaudie | Limit of trees with fixed degree sequence[END_REF]. Let (V i ) i∈N be a set of vertices. We say that

D = (d 1 , . . . , d n ) is a (pure) degree sequence if n i=1 d i = 2n -2 and if d 1 ≥ d 2 ≥ • • • ≥ d n .
For every degree sequence D = (d 1 , . . . , d n ), we say that a tree T have degree sequence D if T has vertices (V i ) 1≤i≤n and for every 1 ≤ i ≤ n, V i has degree d i . For every degree sequence D let T D denote a uniform tree with degree sequence D. Also let L D 0 , L D 1 ,. . . be the leaves of T D . Those leaves are determinist since they are the vertices of degree 1. We root T D at L D 0 . For every tree T , let d T denote the graph distance in T . Also, for every A, B, C ∈ T , we write (A, T ) ∈ B, C if A lies in the path between B and C in T . By Proposition 31 (b) in [START_REF] Blanc-Renaudie | Limit of trees with fixed degree sequence[END_REF] Section 8.2, and by Lemma 26 (e) in [START_REF] Blanc-Renaudie | Limit of trees with fixed degree sequence[END_REF] Section 8.1, there exists (D n ) n∈N some degree sequences, such that the number of leaves and vertices of degree at least 2 diverges, and such that for every a, b ∈ N the following weak convergences hold jointly

(d T Dn (L Dn i , L Dn j )) 0≤i,j≤a -→(d T (Y i , Y j )) 0≤i,j≤a , (29) 
1 (V k ,T Dn )∈ L Dn i ,L Dn j 0≤i,j≤a, k≤b -→ 1 X k ∈ Y i ,Y j 0≤i,j≤a, k≤b . (30) 
The main principle behind the rebranching principle is that for every n large enough the laws of the left hand sides of ( 29) and ( 30) are invariant under the permutation of the leaves. So by limit the right hand sides must also be invariant under those permutations.

Our goal is now to deduce from Proposition 7.4 an identity for d L . First let us introduce some topological notions. Recall that a.s. p is a probability Borel measure on T . Let p

L := p×1 x∈[0,1] dx. Let B L be the product topology on T × [0, 1]. Let F := σ(X, Y, Z, (U X,i ) i∈N , (U Z,i ) i∈N ). Let B R be the Borel topology on R. Finally, for every α ∈ T × [0, 1], ε > 0, let B(α, ε) denote the open ball of center α of radius ε for d L in T × [0, 1].
Keep in mind that we are using two levels of randomness. On the one hand, we work on a completed probability space (Ω, F, P). On the other hand, we work at ω ∈ Ω fixed, on the random probability space (T × [0, 1], B L , p L ). Lemma 7.5. Almost surely the following assertions hold:

(a) The map α, β

→ d L (α, β) is (B L × B L , B R )-measurable. (b) For every (x, u) ∈ T × [0, 1], ε > 0, the open ball B((x, u), ε) is B L -measurable. (c) For every ε > 0, the map α ∈ T × [0, 1] → p L (B(α, ε)) is (B L , B R )-measurable.
Proof. Toward (a), for every i ∈ N, the map y ∈ T → U X i ,y is continuous on Next let M be the set of probability distribution on R + . We equip M with the weak topology. Recall that M is a Polish space. Let B M be the Borel topology on M. For every probability distribution ν on T × [0, 1] B L -measurable we construct d L ν ∈ M as follows: Let α, β be two random variables with law ν. By Lemma 7.5 (a),

T \{X i }, since it is locally constant. Then v → U X i ,X i ,v is continuous. Hence (y, v) ∈ T × [0, 1] → U X i ,y,v is (B L , B R )-measurable
d L (α, β) is a random variable (B L × B L , B R )- measurable. Let d L ν ∈ M denote its probability distribution.
Lemma 7.6. Let α be a random variable with law p L . We have: a) For every i, j ≥ 0,

d L ((Y i , 0), (Y j , 0)) is a random variable (F, B R )-measurable. b) Almost surely, d L 1 n n i=1 δ Y i ,0 -→ weakly d L p L . c) d L p L is a random variable (F, B M )-measurable.
Proof. Toward (a), let i, j ∈ N. Note that d T (Y i , Y j ) is (F, B R ) measurable since by Algorithm 1 it is a sum of measurable random variables. Also by Algorithm 1, for every k ∈ N,

1 X k ∈ 0,Y i is (F, B R )-measurable.
Then by the construction of the uniform angle function U in Algorithm 3, either δ Y i converges weakly toward p for the weak topology on T . Thus, a.s. if (V i ) i∈N is a family of independent uniform random variables in [0, 1], 1 n n i=1 δ Y i ,V i converges weakly toward p L . Hence, a.s.

X j / ∈ 0, Y i so U X k ,Y i ,0 = 0, or X j ∈ 0, Y i and then U X k ,Y i ,0 = U X k . Hence U X k ,Y i ,0 is (F, B R )-measurable. Similarly, U X k ,Y j ,0 is (F, B R )-measurable.
1 n 2 n i=1 n i=1 δ Y i ,V i × δ Y j ,V j -→ weakly p L × p L .
It directly follows by Lemma 7.5 that a.s.

d L 1 n n i=1 δ Y i ,V i -→ weakly d L p L . (31) 
Finally note that almost surely {Y i } i∈N ∩ {X i } i∈N = ∅. So almost surely for every i, j ∈ N,

d L ((Y i , 0), (Y j , 0)) = d L ((Y i , V i ), (Y j , V j )).
(b) follows from [START_REF] Talagrand | The generic chaining[END_REF]. Toward (c), by (a) the left hand side of (b) is (F, B M ) measurable. So (c) follows from (b).

Next, for every f : R + → R bounded continuous and

M ∈ M let f (M ) := R + f (x)dM (x). Recall that M → f (M ) is continuous. So, by Lemma 7.6 (c), f (d L p L ) is (F, B R ) measurable.
Proposition 7.7. For every bounded continuous function f :

R + → R, E[f (d L p L )] = E[f (d L ((0, 0), (Y 1 , 0)))].
Proof. By Lemma 7.6 (b) and by Portmanteau's Theorem, it suffices to prove that for every i = j, d L ((Y i , 0), (Y j , 0)) has the same law as d L ((0, 0), (Y 1 , 0)). Fix i = j. Since almost surely {Y i } i∈N ∩ {X i } i∈N = ∅, by definition of d L , writing c for the distance on the torus [0, 1],

d L ((Y i , 0), (Y j , 0)) = d T (Y i , Y j ) + k∈N θ k c(U X k ,Y i , U X k ,Y j ). (32) 
Then for every k ∈ N with

X k / ∈ Y i , Y j , Y i and Y j are connected in T \{X k } so U X k ,Y i = U X k ,Y j . Moreover, by the construction of the uniform angle function U in Algorithm 3, note that conditionally on (X, Y, Z), (c(U X k ,Y i , U X k ,Y j )) k:X k ∈ Y i ,Y j is a family of uniform random variables in [0, 1/2].
As a result, by (32), conditionally on (X, Y, Z), 

d L ((Y i , 0), (Y j , 0)) -d T (Y i , Y j ) is a sum of uniform random variables in ([0, θ k /2]) k:X k ∈ Y i ,Y j .
Remark. Keep in mind that many inequalities get reversed since log is negative on (0, 1).

Lemma 7.8. Almost surely dim H (L) ≥ d and dim P (L) ≥ d .

Proof. First note that T × [0, 1] ⊂ L, so

dim H (T × [0, 1], d L ) ≤ dim H (L) and dim P (T × [0, 1], d L ) ≤ dim P (L).
Then recall Section 7.3. For every n ∈ N, let f n : x → max(min(1, 2 -2 n x), 0). Let α be a uniform random variable with law p L . We have by Proposition 7.7, for every n ∈ N,

E[f n (d L p L )] = E[f (d L (0, Y 1 ))] ≤ P(d L (0, Y 1 ) < 2 -n+1 ).
Then by the Borel-Cantelli Lemma and Markov's inequality, a.s. for every n large enough,

f n (d L p L ) ≤ n 2 P(d L (0, Y 1 ) < 2 -n+1 ).
Also, note that a.s. if α is a random variable with law p L , so writing E L for the expectation with respect to p L , E L (B(α, 2 -n )) ≤ f n (d L p L ). Hence, by the Borel-Cantelli Lemma and Markov's inequality, a.s. p L a.s. for every n large enough,

B(α, 2 -n ) ≤ n 4 P(d L (0, Y 1 ) < 2 -n+1 ).
The desired result follows from Lemma 7.1. Proof. In order to simplify the main proof, let us first deal with the case θ 0 > 0. By Lemma 3.1

(b), E[µ[0, l]] ∼ θ 2 0 l as l → ∞. So d = d = 2
. Also, d L (0, Y 1 ) ≥ θ 2 0 /4Y 1 so for every ε > 0,

P(d L (0, Y 1 ) ≤ ε) ≤ P(Y 1 ≤ 4ε/θ 2 0 ).
Then, since {Y i } i∈N is a Poisson point process of rate µ[0, x]dx, as ε → 0, by Lemma 3.1 (a),

P(Y 1 ≤ ε) = E[P(Y 1 ≤ ε|µ)] ≤ εE[µ[0, ε]] = O(ε 2 ).
As a result, d ≥ 2 = d and d ≥ 2 = d. So we may assume henceforth that θ 0 = 0.

Next, note that a.s.

d L (0, Y 1 ) = 0≤X i ≤Y 1 θ i c(U X i ).
Thus, writing for every n ∈ N, ∆ n :

x → 0≤X i ≤Y 1 min(θ i c(U X i ), 2 -n ), we have d L (0, Y 1 ) ≤ ∆ n (Y 1 )
. Then writing for every n ∈ N, ε n := 16n 2 /E[µ[0, 2 n ]], we have, since x → ∆ n (x) is increasing,

P(d L (0, Y 1 ) ≤ 2 -n ) ≤ P(∆ n (ε n ) ≤ 2 -n ) + P(Y 1 ≤ ε n , ∆ n (Y 1 ) ≤ 2 -n ). (34) 
Our proof consists in estimating both terms of the right hand side above.

Remark. Let us morally explain why we work with ∆ n and not d L . We want to estimate, for ε > 0 small, the typical d L -distance between two random vertices ε-d T -close from each other. It appears, that the few vertices ε-d T -close from the vertices of high degrees X 1 , X 2 , . . . , tends to be d L -far from each other. As a result, the moments of d L (0, Y 1 )1 Y 1 ≤ε are highly biased toward the moments of the typical d L -distance between two vertices ε-d T -close from X 1 , X 2 , . . . . To avoid this bias, we use (∆ n ) n∈N to truncate the d L -distance between the vertices d T -close from X 1 , X 2 , . . . . Now, recall that (X i ) i∈N are independent exponential random variables of parameter (θ i ) i∈N . We get with elementary computations, for every 0

≤ x ≤ 1, n ∈ N, E[∆ n (x)] = ∞ i=1 P(X i ≤ x)E[min(θ i c(U X i ), 2 -n )] ≥ 1 8 ∞ i=1 θ i x min(θ i , 2 -n ). (35) 
And, for every n ∈ N,

E[µ[0, 2 n ]] = ∞ i=1 P(X i ≤ 2 n )θ i = ∞ i=1 (1 -e -θ i 2 n )θ i ≤ ∞ i=1 min(1, θ i 2 n )θ i . (36) 
Hence, by ( 35) and (36), for every n ∈ N, 0 

≤ x ≤ 1, E[∆ n (x)] ≥ xE[µ[0, 2 n ]]2 -n-3 . In particular, for every n ∈ N such that ε n ≤ 1, E[∆ n (ε n )] ≥ 2n 2 2 -n . Also,
(ε n ) ≤ 2 -n ) ≤ e -n 2 /6 . Furthermore, by Lemma 3.1 (c), E[µ[0, 2 n ]] = O(2 n ). So, as n → ∞ with ε n ≤ 1, P(∆ n (ε n ) ≤ 2 -n ) = O(n 2 2 -n /E[µ[0, 2 n ]). (37) 
Toward upper bounding the right most term of (34), let us recall the construction of Aldous, Camarri, Pitman [START_REF] Aldous | Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent[END_REF][START_REF] Camarri | Limit distributions and random trees derived from the birthday problem with unequal probabilities[END_REF] of the ICRT in the simple case where θ 0 = 0. Let ((A i,j ) j≥0 ) i∈N be a family of independent Poisson point processes of intensity (θ i ) i∈N on R + . We proved in [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Lemma 2.1 that there exists a coupling such that a.s.

((X i ) i∈N , {Y i , Z i } i∈N ) = ((A i,0 ) i∈N , {A i,j , A i,0 } i,j∈N ) .
In particular Y 1 ∈ {A i,1 } i∈N So, by an union bound, for every x ≥ 0,

P(Y 1 ≤ x, ∆ n (Y 1 ) ≤ 1/2 n ) ≤ i∈N P(A i,1 ≤ x, ∆ n (Y 1 ) ≤ 2 -n ) ≤ i∈N P(A i,1 ≤ x, θ i U X i ≤ 2 -n ) ≤ i∈N x 2 θ 2 i min(1, 2 -n /θ i ).
Also, by directly adapting (36), we get for every n

∈ N, E[µ[0, 2 n ]] ≥ (1/4) ∞ i=1 min(1, θ i 2 n )θ i . So, for every x ≥ 0, P(Y 1 ≤ x, ∆ n (Y 1 ) ≤ 1/2 n ) ≤ 4x 2 E[µ[0, 2 n ]]2 -n . (38) 
In particular, since

ε n = 16n 2 /E[µ[0, 2 n ]], P(Y 1 ≤ ε n , ∆ n (Y 1 ) ≤ 1/2 n ) ≤ 4ε 2 n E[µ[0, 2 n ]]2 -n = O(n 4 2 -n /E[µ[0, 2 n ]]). (39) 
To sum up, by (34), (37), (39), we have as n → ∞ with ε n ≤ 1,

P(d L ((0, Y 1 ) ≤ 2 -n ) = O(n 4 2 -n /E[µ[0, 2 n ]]). (40) 
Finally, we have as n → ∞ with ε n ≥ 1, using, Y 1 ≤ A 1,1 , (38), and

ε n = 16n 2 /E[µ[0, 2 n ]], P(d L (0, Y 1 ) ≤ 2 -n ) ≤ P(Y 1 > n 2 ) + P(Y 1 ≤ n 2 , ∆ n (Y 1 ) ≤ 2 -n ) ≤ P(A 1,1 > n 2 ) + P(Y 1 ≤ n 2 , ∆ n (Y 1 ) ≤ 2 -n ) = O(n 2 e -θ 1 n 2 + n 4 E[µ[0, 2 n ]]2 -n ) = O(n 8 2 -n /E[µ[0, 2 n ]]). (41) 
The desired result follows from (40) (41) and the definitions of d, d in (2), and of d , d in (33).

8 Proof of Theorem 2.4

Recall the definition of G from (3). Note that G is continuous on any bounded interval of R + . We need to prove that it extends to a continuous map on T . To this end, we use the chaining method. Let F = σ(µ, Y, Z). For all x ∈ T , y ∈ R + , recall that ρy (x) denote the projection of x on [0, y]. Also to simplify the notations, for every x, y ∈ R + let d G (x, y) := max z∈ x,y |G(x) -G(z)|.

Remark. Although d G is a (pseudo) distance on T , we will not study the topology of (T , d G ).

Lemma 8.1. a) For every x, y random variables in R + F-measurable and t ≥ 0, almost surely

P d G (x, y) > t d T (x, y) F ≤ 4e -t 2 /2 .
b) For every x, y, t ≥ 0,

P d G (ρ y (x), x) > t 2 / µ[0, y] ≤ 5e -t 2 /4 .
Proof. Toward (a). Let γ : [0, d T (x, y)] → x, y be the geodesic from x to y. Note that by definition of G, conditionally on F, G • γ -G(x) is a brownian motion. So (a) directly follows from standard results on Brownian motions. Toward (b), by [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Lemma 4.7 for every x, y, t ≥ 0,

P d T (ρ y (x), x) > t 2 /µ[0, y] ≤ e -t 2 /4 .
The desired result follows using (a) and an union bound.

9 Proof and extension of Theorem 2.5

We consider (D i ) ∈N independent random functions from [0, 1] to R independent with σ(X, µ, Y, Z, U ). We assume that:

Assumption 1. For every i ∈ N, D i (0) = 0 and E[D i (U X i )] = 0.
Assumption 2. There exists κ ≥ 2 such that for every

i ∈ N, E [ D i κ ∞ ] ≤ 1, and 
E[µ[0, l]] = O(l κ/2-1 log(l) -5κ ). (45) 
Remarks. The assumptions are not necessary, and our method may be extended to other functions. However, they naturally appear in the study of field on D-trees: (we will give more details in [START_REF] Blanc-Renaudie | Limit of looptree, fennec, and snake of trees with fixed degree sequence[END_REF])

• The first assumption is called locally centered. One can always split each D i , into a "constant" u → 1 u =0 c i , and a centered function. However, dealing with constants require different techniques.

• The second assumption is an improvement of the so called 4 + ε moment assumption. Indeed by Lemma 3.1 (a), E[µ[0, 2 n ]] = O(2 n ), so when κ > 4, (45) holds.

• In particular if µ corresponds to the α-stable trees, µ[0, l] ∼ c.l α-1 , and we can consider κ > 2α.

Under Assumptions 1, 2, which are satisfied by (B i ) i∈N (up to a constant), we have:

Proposition 9.1. Almost surely ∞ i=1 √ θ i D i (U X i ,α ) converges uniformly on L. For every n, m ∈ N let S n,m := m i=n θ i D i (U X i ,α ).
To prove the uniform convergence, we need to show that almost surely as N → ∞,

∆ N := max α∈L max n,m≥N |S n,m (α)| → 0. Note that for every n, m ∈ N, |S n,m (α)| reach its maximum on m i=n {X i } × [0, 1] ⊂ R + × [0, 1]. So, ∆ N = max (x,u)∈R + ×[0,1] max n,m≥N |S n,m (x, u)|. (46) 
To show that a.s. ∆ N → 0 we use the chaining method (see Section 1.3): For every i ∈ N, let

∆ N,i := max Y i <x≤Y i+1 ,u∈[0,1] max n,m≥N |S n,m (x, u) -S n,m (Z i , U Z i ,Y i+1 )|
Then define M N by induction on ([0, Y i ]) i∈N such that M N (0) = 0, and such that for every

i ≥ 0, x ∈]Y i , Y i+1 ], M N (x) := M N (Z i ) + ∆ N,i . (47) 
The triangular inequality implies by induction that for every i ∈ N, for every

x ∈ [0, Y i ], u ∈ [0, 1], max n,m≥N |S n,m (x, u)| ≤ M N (x), so ∆ N ≤ max x∈R + M N (x). (48) 
Our method consists in estimating (∆ N,i ) N,i∈N , and then deduce from (47) and Lemma 3.2 an estimate on max M N .

To simplify the notations we write F := σ(X, µ, Y, Z) and µ N := i≥N θ i δ X i .

Proof of Proposition 9.1. Recall that we need to prove that a.s. as N → ∞, M N ∞ → 0. First, by Lemma 3.2 a.s. for every n ∈ N large enough, every x ∈ [0, 2 n+1 ] is separated from [0, 2 n ] by at most 4n branches. So, by Lemma 9.3 a.s. for every n large enough, for every N ∈ N,

max x≤2 n+1 M N (x) ≤ max x≤2 n M N (x) + 4nλ n
Hence, a.s. for every n large enough, for every N ∈ N,

max x∈R + M N (x) ≤ max x≤2 n M N (x) + ∞ i=n 4iλ i . (51) 
Then note that for every i ∈ N, (∆ N,i ) N ∈N is decreasing. So by Lemma 9.2, since µ is a.s. locally finite, a.s. as N → ∞, ∆ N,i → 0. Therefore a.s. for every n ∈ N, as N → ∞,

max x≤2 n M N (x) ≤ i:Y i ≤2 n ∆ N,i → 0. (52) 
Moreover by Lemma 3.1 (a), and by Assumption 2, a.s. as n → ∞,

i≥n 4iλ i = i≥n 4i 3 µ[0, 2 i ] 1/κ 2 i/κ-i/2 ∼ i≥n 4i 3 E[µ[0, 2 i ]] 1/κ 2 i/κ-i/2 → 0. (53) 
To conclude the proof, by (51),( 52),(53) almost surely as N → ∞, M N ∞ → 0.

A Holder continuity of a Gaussian free field.

If (X, d) is a metric space, we call a Gaussian free field on X, a random function F : X → R + such that for every x ∈ X, F(x) is measurable, and such that for every x, y ∈ X, F(x) -F(y) is a Gaussian random variable with variance d(x, y).

Lemma A.1. Let (X, d) be a metric space. Let F be a Gaussian free field on X. If F is almost surely continuous and (X, d) have finite upper Minkowski dimension then almost surely F is Hölder continuous with any exponent smaller than 1/2.

Proof. Since (X, d) have finite upper Minkowksi dimension, there exists k ∈ N such that for every n ∈ N, there exists a n,1 , . . . , a n,k n ∈ X such that max x∈X d(x, {a n,1 , . . . , a n,k n }) ≤ 2 -n . For every n ∈ N, let E n denote the following event:

E n := ∀i ≤ k n , ∀j ≤ k n+1 , d(a n,i , a n+1,j ) ≤ 2 9-n ⇒ |F(a n,i ) -F(a n+1,j )| ≤ kn2 -n/2 .

By an upper bound, and by definition of a Gaussian free field, we have for every n ∈ N, P(E n ) ≤ k n k n+1 e -(8kn2 -n/2 ) 2 /(2.2 9-n ) = k 2n+1 e -k 2 n 2 /2 18 .

Thus, since the right hand side is summable, by the Borel-Cantelli Lemma, almost surely for every n ∈ N large enough we have E n . The rest of the proof is deterministic. Assume that there exists N ∈ N such that for every n ≥ N we have E N , and that F is continuous. Let x, y ∈ X such that d(x, y) ≤ 2 -N -9 . Let n ∈ N such that 2 -n+1 < d(x, y) ≤ 2 -n . Since F is continuous we can consider m ∈ N, m > n such that for every z ∈ X with d(x, z) ≤ 2 -m , |F(x) -F(z)| ≤ 2 -n/2 , and similarly for y. Let by induction x m+1 , x m , x m-1 , . . . , x n such that x m+1 = x, and such that for every m ≥ i ≥ n, x i ∈ {a i,1 , . . . , a i,k i }, and d(x i , x i+1 ) ≤ 2 -i . Define similarly y m+1 , . . . , y n . We have B A concentration inequality for supremum of empirical process. Lemma B.1. Let n ∈ N, κ ≥ 2, (x i ) i≤n ∈ R n . Let (X i ) i≤n be a family of independent centered, random variables. For every k ≤ n let S k := x ∈ R → i≤k 1 x≤x i X i . Assume that for every i ≤ n, v i := E[X κ i ] 2/κ < ∞, and let V := i≤n v i . Then for every t > 0,

P n := P sup i≤n S i ∞ > t ≤ C κ √ V /t κ ,
where C κ is a constant which depends only on κ.

Remark. By taking n → ∞, the previous lemma also holds when n = ∞.

Proof. Fix κ ≥ 2. We work by induction with trivial initialization n = 0. Fix C ∈ R + , which we chose later. Assume that Lemma B.1 holds for every m < n with the constant C. Let ε > 0, which we chose later. Let k ∈ N be the smallest integer such that i≤k v i ≥ 1 2 i≤n v i . Note that,

P n ≤ P sup i<k S i ∞ > t + P ( S k ∞ > εt) + P sup k<i≤n S i -S k ∞ > (1 -ε)t .
Then by induction, and by definition of k,

P n ≤ C V /2/t κ + P ( S k ∞ > εt) + C V /2/((1 -ε)t) κ . (54) 
It remains to estimate S k ∞ . To this end, first note that (|S k (x)| κ ) x∈R is a sub-martingale, so by Doob's inequality,

P ( S k ∞ > εt) ≤ max x∈R E[|S k (x)| κ ] (εt) κ = E[| k i=1 X i | κ ] (εt) κ . ( 55 
)
Furthermore by Marcinkiewicz's inequality (see [START_REF] Boucheron | Concentration Inequalities. A Nonasymptotic Theory of Independence[END_REF] Section 15.4), writing c κ := 2 κ+1 (2κ

) κ/2 , E k i=1 X i κ ≤ c κ E   k i=1 X 2 i κ/2   ,
and by Minkowski's inequality

E   k i=1 X 2 i κ/2   ≤ c κ k i=1 E (X 2 i ) κ/2 2/κ κ/2 = c κ V κ/2 .
Therefore, by (54) and (55),

P n ≤ C 1 + 1/(1 -ε) κ 2 κ + c κ /ε κ √ V /t κ .
Finally some quick computations show that there exists C, ε such that (C 1+1/(1-ε) Thus {α, β ∈ L, α β} is measurable as a countable union of measurable set.
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 23 Almost surely the upper Minkowski dimension, and Packing dimension of L are d. Almost surely the lower Minkowski dimension, and Hausdorff dimension of L are d

Figure 2 :

 2 Figure 2: A vertex (x, v) ∈ T × [0, 1] with its left (red), front (purple), right (blue) are represented.

Finally let ν

  be a σ-finite borel measure on T . Let ν L := µ × 1 l∈[0,1] dl. The mass on the left, front, right of α ∈ T × [0, 1] are denoted by, (see Appendix C for definiteness) ν (α) := ν L {β : β α} ; ν (α) := ν L {β : α ¡ β} ; ν (α) := ν L {β : α β}.

Figure 3 :

 3 Figure3: A continuum looptree L, with its contour path C : [0, 1] → L in red. The path start at the root (0, 0) then "turn around" each cycle clockwise. It is continuous, "surjective", not "injective".

Figure 4 :

 4 Figure 4: A typical construction of (z i , y i ) i∈N . Each segment represents a branch.

Figure 5 :

 5 Figure 5: Two representations of ρl , from the tree on the left, and from the looptree on the right. T l and L l are in blue. T \T l and L\L l are in black dashed. Here U ρl (x),x,u = U ρl (x),x since ρl (x) = x.

Figure 6 :

 6 Figure 6: The cases of Lemma 5.1. The assumptions are blue. The conclusions are red.

Lemma 5 . 6 .

 56 For every 0 < r ≤ s, ρr • ρs = ρs • ρr = ρr . Proof. First since ρr have value in L r ⊂ L s and ρs is the identity on L s , we have ρs • ρr = ρr . Then, since ρr , and ρs are locally constant around each vertex of L\T × [0, 1], and since T × [0, 1] is dense, it is enough to show that ρr • ρs = ρr on T × [0, 1]. Let (x, a) ∈ T × [0, 1]. By definition of ρ, ρr • ρs (x) is the vertex z in 0, ρs ∩ [0, r] which maximizes d T (0, z). Moreover, since T is a R-tree, ρs , x ⊂ T \[0, s]. Hence, since r ≤ s, ρr • ρs (x) is the vertex z in 0, x ∩ [0, r] which maximizes d T (0, z), which is ρr (x). Finally by definition of ρ, we have ρr • ρs (x, a) ¡ ρs (x, a) ¡(x, a). So, ρr • ρs (x, a) = (ρ r (x), U ρr(x),x,a ) = ρr (x, a).5.4 Continuous extension of p to L Lemma 5.7. Recall the notation p L := p × 1 x∈µ[0,1] dx. The map

Figure 7 :

 7 Figure 7: A simplified non compact ICRT, with a spinal representation of α ∈ L\(T × [0, 1]). The infinite branch {p T ,L • ρl (α), l ∈ R + } is in red. (13) estimates p of the blue part, on the left.

  By Lemma 5.2 there exists r > l such that ρr (z, c) ρr (β). Let (y, b) = ρr (β). By Lemma 5.6, ρl (y, b) = ρl (β) = ρl (α). If y ∧ z > ρl (y), then y and z are connected in T \{ρ l (y)}. So ρl (y) ∈ 0, z and U ρl (y),y,b = U ρl (y),z,c . Also, ρl (y, b) = (ρ l (y), U ρl ,y,b ). Hence, ρl (α) = ρl (y, b) ¡(z, c). If y ∧ z ≤ ρl (y), then by Lemma 5.6, ρy∧z (y, b) = ρy∧z • ρl (y, b) = ρy∧z • ρl (α) = ρy∧z (α). Moreover, we have ρr (z, c) (y, b) so by Lemma 5.3 (z, c) (y, b). Then by (14), we have ρy∧z (z, c) ρy∧z (y, b). Hence, ρy∧z (z, c) ρy∧z (α). And (z, c) ∈ S α . To sum up, for all l > 0, and β ∈ L such that ρl (β) = ρl (α), S β ⊂ S α ∪ {(z, c) ∈ T × [0, 1], ρl (α) ¡(z, c)}.
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 59 Almost surely for every l > 0, α, β ∈ L l = [0, l] × [0, 1], |µ l, (α, β)| ≥ d L (α, β). (See Figure 8.) Proof. Let α = (x, a), β = (y, b) ∈ [0, l] × [0, 1]. By symmetry we may assume (x, a) ≺ (y, b). By Lemma C.1 (a), (b), {γ ∈ L l , γ α} ⊂ {γ ∈ L l , γ β}. Then writing S := {γ ∈ L l , γ β}\{γ ∈ L l , γ α}, we have µ l, (α, β) = µ(S). For every z ∈ x ∧ y, x , c ∈ (U z,x,a , 1), we have x ∧ z = z, and U z,x,a < c = U z,z,c . So (x, a) (z, c). Also, z and x are connected in T \{x ∧ y} so z ∧ y = x ∧ y, and U z∧y,x,a = U x∧y,x,a < U x∧y,y,b . Hence, (z, c) (y, b). Therefore, S 1 := {(z, c) : z ∈ x ∧ y, x , c ∈ (U z,x,a , 1)} ⊂ S.

Figure 8 :

 8 Figure 8: An informal proof of Lemma 5.9: α ≺ β. The set S = {γ, γ β}\{γ, γ α} is red. (It can be obtained by turning clockwise from α to β.) Its total length is µ l, (α, β). Note that this set contains a path between α and β. This path have length at least d L (α, β).

  some extra care is needed since (p l ) l∈R + only converges weakly. For every (x, a)∈ T × [0, 1], let S(x, a) := {β ∈ T × [0, 1], β (x, a)}. Let S 1 (x, a) := {z ∈ T \ 0, x , U x∧z,z < U x∧z,x,a }.Note that S 1 (x, a) is a Borel set in (T , d T ) as an union of connected component (see Appendix C). Moreover, by definition of , S 1 (x, a) × [0, 1] ⊂ S(x, a) ⊂ (S 1 (x, a) ∪ 0, x ) × [0, 1].

  3 (b), α ≺ β. So, by Lemma C.1 (a), (b), {γ : γ α} ⊂ {γ : γ β}. Then by construction for every i ∈ N, conditionally on

  , γ i α. Then by Lemma C.2, for every δ ∈ I i , δ α. • With probability p Y i , (x), α ¡ γ i . Then by Lemma C.1 (d), for every δ ∈ I i , α ¡ δ. • With probability p Y i , (x), α γ i . Then by Lemma C.1 (b), for every δ ∈ I i , α δ. And similarly for β.

  Define the Minkowski lower box and upper box dimensions respectively by dim(X) := lim inf ε→0 log N ε -log ε and dim(X) := lim sup ε→0 log N ε -log ε . Definition. (Packing dimension) For every s ≥ 0 and A ⊂ X let P s 0 (A) := lim sup δ→0 i∈I diam(B i ) s {B i } i∈I are disjoint balls B(x, r) with x ∈ A and 0 < r ≤ δ .

.

  By definition of d L , (a) follows by sum and composition. Then by (a) the map (x, u), (y, v) → 1 d L ((x,u),(y,v))≤ε is also (B L × B L , B R )-measurable. (b),(c) follows by Fubini's Theorem.

  (a) follows by definition of d L . Toward (b), recall that by [10] Theorem 3.1, a.s.

  And similarly for d L ((0, 0), (Y 1 , 0))d T (0, Y 1 ). The desired result follows from Proposition 7.4.

7. 4

 4 Lower bound on the Hausdorff and Packing dimensions To simplify the notations, let us write d L (0, Y 1 ) for d L ((0, 0), (Y 1 , 0)). Let d := lim inf ε→0 log P(d L (0, Y 1 ) < ε) log ε ; d := lim sup ε→0 log P(d L (0, Y 1 ) < ε) log ε .

Lemma 7 . 9 .

 79 Recall (2), (33). We have d ≥ d and d ≥ d. Remark. Since a.s. dim(L) ≤ d and dim(L) ≤ d, by Lemmas 7.2, 7.8, we have d ≤ d and d ≤ d.

2 ≤7 7 !

 27 d(x n , y n+1 ) ≤ m i=n d(x i+1 , x i )+d(x, y)+ m i=n+1 d(y i , y i+1 ) ≤ m i=n 2 -i +2 -n + m i=n+1 2 -i ≤ 2 2-n .So by the triangular inequality, then by definition of m and byE n , E n+1 , . . . , E m , |F(x) -F(y)| ≤|F(x m+1 ) -F(x m )| + m-1 i=n |F(x i+1 ) -F(x i )| + |F(x n ) -F(y n+1 )| + m-1 i=n+1 |F(y i ) -F(y i+1 )| + |F(y m ) -F(y m+1 )| ≤2 -n/2 + m-1 i=n ki2 -i/2 + kn2 -n/2 + m-1 i=n+1 ki2 -i/2 + 2 -n/kn 7 2 -n/2 ≤9 9! k d(x, y) 1/2 log(d(x, y)) 7 ,using d(x, y) ≥ 2 -n+1 for the last inequality. Therefore, since (x, y) are arbitrary with d(x, y) ≤ 2 -N -9 , F is almost surely Hölder continuous with any exponent smaller than 1/2.

  κ 

2 κ+

 2 c κ /ε κ ) ≤ C, and the desired result follows by induction. Remark. If κ ≥ 4, one may chose ε = 1/3, C κ = 2.3 κ c κ ≤ 4.9 κ κ κ/2 . Also by a simple symmetry argument, (change the angles by u → 1 -u) by Lemma C.1 (b), Lemma C.2. With the same notations, if β ¡ γ, β α then γ α. Lemma C.3. ν , ν , ν are well defined. Proof. First let M := {x ∈ T , deg(x) > 2} ∪ {ρ}. M is countable since T is separable. Then for every x ∈ T , and a ∈ [0, 1], let C x,a := {y ∈ T \{x}, u x,y = a}.This set is open so measurable. Also, for every x ∈ T , anda ∈]0, 1[ let C x,≤a := b≤a,b =0 C x,b . Define similarly, C x,<a , C x,≥a , C x,>a .Since T is separable all those sets are a countable union of open set and so are measurable.Then by simply rewriting the definition of , for every α = (x, u){z} × [0, u z,x )   ∪ (( 0, x \M) × [0, 1/2)) ∪ ({x} × [0, u)) ∪ C x,<u . So {β ∈ L, β α} is measurable as a countable union of measurable set. Similarly, x \M) × (1/2, 1]) ∪ ({x} × (u, 1]) ∪ C x,>u , is also measurable. Finally, {β ∈ L, α ¡ β} = C x,u ∪ {(x, u)} is measurable. Also for every α ∈ L, {γ ∈ L : γ ¡ α} =   z∈M∩ 0,x {z, u z,x }   ∪ (( 0, x \M) × {1/2}) is measurable.Lemma C.4. {α, β ∈ L, α ¡ β}, {α, β ∈ L, α β} are measurable sets for the product topology.Proof. First note that x,y∈T x, y is dense on T , so since M is countable, {x ∈ T , deg(x) = 2} is dense. Then since T is separable, there is a countable dense set N of T , and we may assume that N ⊂ {x ∈ T , deg(x) = 2}. Moreover, note that for everyx = y ∈ T , x, y ∩(M ∪ N ) = ∅. Then, let for z ∈ T , C z,0 := {(x, a) ∈ T × [0, 1] : (x, a) ¡(z, 0), x = z}. The set {α, β ∈ L, α ¡ β} = {{x, a} × {x, a}, x ∈ T , a ∈ [0, 1[} ∪ z∈M∪N C z,0 × C z,≤1 ,is measurable as a countable union of measurable set. Also, by considering several cases depending on the position of x ∧ y, we get: (The two last cases are here to deal with the cases where x ∈ 0, y or y ∈ 0, x .) {α, β ∈ L, α β} = {{x, u} × {x, v}, x ∈ T , u < v} ∪   z∈M,u∈Q C z,<u × C z,>u   ∪ z∈N {α, α (z, 1/2)} × {β, (z, 1/2) ¡ β} ∪ z∈N {α, (z, 1/2) ¡ α} × {β, (z, 1/2) β} .

  Theorem 2.11. Almost surely F is Hölder continuous with any exponent smaller than 1/2, and Z is Hölder continuous with any exponent smaller than 1/2d.

	Theorem 2.10. Recall (2). A.s. C is Hölder continuous with any exponent smaller than 1/d.
	Remark. The bound is optimal. Indeed, if C is α-Hölder continuous then L have Minkowski upper
	dimension at most 1/α (see Lemma 7.3).
	Thus, since by Proposition 2.6, a.s. F is a Gaussian free field on (L, d L ), which have by
	Theorem 2.3 finite upper Minkowski dimension, we deduce (see Lemma A.1):

  note that ∆ n is a sum of independent random variables bounded by 2 -n . So, by Bernstein's inequality (see e.g.[START_REF] Boucheron | Concentration Inequalities. A Nonasymptotic Theory of Independence[END_REF] Section 2.7 (2.10)) for every n ∈ N with ε n ≤ 1, P(∆ n

For more complex algorithms one may want to consider general (Xi) i∈N and a family of functions fi on Xi.

Reverse bounds tends to be much harder to prove. See e.g.[START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] for ICRT in the non compact case.

We may assume below that θ 0 > 0 or ∞ i=1 θ i = ∞, since otherwise E[µ(R + )] < ∞ and the assumption of Theorem 2.4 is not satisfied. Then by Lemma 3.1 (a), we may define for every n ∈ N, X n as the unique real such that E[µ[0, X n ]] = e n . The next result is adapted from [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Lemma 6.2, which is used to prove the compactness of ICRT and upper bound its fractal dimensions. Lemma 8.2. Almost surely for every n large enough:

Proof. We first adapt the proof of [START_REF] Blanc-Renaudie | Compactness and fractal dimension of inhomogeneous continuum random trees[END_REF] Lemma 6.2, to morally deal with vertices far from {Y i } i∈N . For every n ∈ N, and x ∈ R + let E n (x) be the event d G (ρ X n-1 (x), x) > 20 log(X n )e -(n-1)/2 . By Fubini's Theorem, Lemma 8.1 (b) and µ[0, X n-1 ] = e n-1 , we have

n .

Furthermore by Lemma 3.

Hence by Markov's inequality and the Borel-Cantelli Lemma, for every n large enough,

Note that it implies that, for every n large enough, for every

since otherwise for every z ∈ x, y we would have

Note that for every x ∈ [0, X n ], if there exists y ∈ Λ n such that x ∈ ρX n-1 (y), y and d T (x, y) > X -3 n , then (42) holds. So, writing for y ∈ Λ n , B(y, X -3 n ) for the closed ball of center y and radius ε, and γ n,y := ρX n-1 (y), y ∩ B(y, X -3 n ), it remains to estimate G on the set y∈Λn γ n,y .

More precisely, by (42), it is enough to show that a.s. for every n large enough and y ∈ Γ n ,

To this end, note that for every y ∈ Γ n , γ n,y is a geodesic with extremities F-measurable, and of length at most X -3 n . Thus, by Lemma 8.1 (a) and an union bound a.s.,

Then by Lemma 3.1 (b), e n = O(X n ), and by Lemma 3.1 (c), #Γ n = O(X 2 n ). Thus a.s. the right hand side of (44) is summable. Finally (43) follows from the Borel-Cantelli Lemma.

Proof of Theorem 2.4. Beforehand, let us rewrite the assumption. We have,

So the assumption implies that log X n e -n/2 < ∞. (It is actually equivalent.)

Then for every

. Therefore, by the assumption of Theorem 2.4, {G n } n∈N is a.s. a Cauchy sequence of continuous function, and so converges uniformly toward a continuous function G on T . Finally note that G extends G. Lemma 9.2. There exists C κ > 0 which depends only on κ such that for every N, i ∈ N, t > 0,

Proof. We work conditionally on F. First for every x ∈ (Y i , Y i+1 ] and j ∈ N with

Moreover by definition of D, U and Assumption 1, (D j (U X j )) j∈N are independent and centered. Also by Assumption 2, for every j ∈ N, E[ D j κ ∞ ] ≤ 1. So by Lemma B.1, there exists C > 0, which depends only on ε, such that for every N ∈ N, and t > 0, a.s.

Then by Assumption 2, and by Markov's inequality, for every j ∈ N, t > 0,

Therefore by an union bound, and by convexity of x → x κ/2 , for every t > 0,

Finally the desired inequality follows from (49), (50), and an union bound.

Lemma 9.3. A.s. for every n large enough, for every i ∈ N with

Proof. A.s. for every n large enough and i ∈ N with

Then by Lemma 3.1 (c), then (a) and (b), a.s. for every n large enough,

Therefore, by Lemma 9.2 a.s. for every n large enough, writing E n for the event that there

The desired result follows by the Borel-Cantelli Lemma.

C Proof of Lemma 2.7, and measurability for ν , ν and ν Since the proofs of this section consist in checking some list of cases, we strongly advise the reader to draw those different cases to make the reading less tedious. Also, we use the symbol ‡ to mean that we proved that a case is absurd. Recall Sections 2.1, 2.5. Let (T , d, ρ, u) denote a plane R-tree.

First ≺ is reflexive since for every α ∈ T × [0, 1], α ¡ α. Also all elements are comparable: For every α = (x, a), β = (y, b) ∈ T ×[0, 1] such that neither α β nor α β, U x∧y,x,y = U x∧y,x,y . So x = x ∧ y or y = x ∧ y, since otherwise x, y would be connected in T \{x ∧ y}. In the first case α ¡ β. In the second case, β ¡ α. Toward proving that ≺ is transitive, it is enough to show that:

Proof. Toward (a) (α β, β γ) note that x ∧ y, y ∧ z ∈ 0, y , so we have either: