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Limit of connected multigraph with fixed degree sequence

Arthur Blanc-Renaudie∗

May 24, 2022

Abstract

Motivated by the scaling limits of the connected components of the configuration model,
we study uniform connected multigraphs with fixed degree sequence D and with surplus k.
We call those random graphs (D, k)-graphs. We prove that, for every k ∈ N, under natu-
ral conditions of convergence of the degree sequence, (D, k)-graphs converge toward either
(P, k)-graphs or (Θ, k)-ICRG (inhomogeneous continuum random graphs). We prove similar
results for (P, k)-graphs and (Θ, k)-ICRG, which have applications to multiplicative graphs.
Our approach relies on two algorithms, the cycle-breaking algorithm, and the stick-breaking
construction ofD-tree that we introduced in a recent paper. From those algorithms we deduce
a biased construction of (D, k)-graph, and we prove our results by studying this bias.

1 Introduction

The present work is a continuation of our previous paper [12], where we introduced a stick-
breaking construction forD-trees (uniform tree with fixed degree sequenceD) to prove that, under
natural conditions, D-trees converge, in a GP and a GHP sens, toward either P-trees or ICRT.
Here, we derive from [12] similar limits for graph versions of those trees, which have applications
to multiplicative graphs and to the configuration model.

1.1 Motivations

Computer scientists have introduced multiplicative graphs [22, 30, 16] and the configuration model
[9, 14] as natural generalizations of the Erdős–Rényi model. They are studied for 2 main reasons:
first many tools introduced for the Erdős–Rényi model can also be used to study those graphs,
then those models seems closer to real life network thanks to the "inhomogeneity in their degree
distribution" (see e.g. Newman [29]). For those reasons, they are currently great models to study
the evolution of random networks.

A natural question for any model of evolution is to study their potential phase transitions. It
appears that those graphs have an intriguing phase transition where a giant component gets born.
We refer the reader to [24] Chapter 1 and references therein for an elaborate discussion of the
nature of this transition, and an overview of the literature it generated.

From the point of view of precise asymptotics, a main goal is to study the geometry of the
connected components of those graphs in the critical regime. To this end, Addario-Berry, Broutin,
and Goldschmidt [2] have developed a general approach in the case of the Erdős–Rényi model.
This approach is divided in two main steps:

(a) First one encodes the random graphs into stochastic processes, and study those processes to
deduce several limits for relevant quantities of the largest connected components such as the
size, surplus, degrees. This has been noticed in the ground-breaking work of Aldous [7].
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(b) Then, one use those convergences to reduce the problem to a study of a single connected
component conditioned on those quantities.

This approach has been further developed for multiplicative graphs and the configuration
model in many different regimes. We refer the reader to [2, 11, 10] for the homogeneous case,
[23, 25, 26] for the power law case, and [18, 19] for a unified approach for multiplicative graphs.
In this paper, we focus on solving (b), under what we believe to be the weakest assumptions. So
we reduce the study of the largest connected components to solving (a), which tends to be simpler.

Moreover, we give a universal point of view on those models which can be summarized into the
three following points: we describe multiplicative graphs as degenerate configuration model, we
extend the unified point of view of Broutin, Duquesne, and Minmin [18, 19] to the configuration
model, and we remove the omnipresent randomness assumption in the degree sequence.

1.2 Overview of the proof

Fix k ∈ N. Fix {Vi}i∈N a set of vertices. We say that a multigraph G have degree sequence
D = (d1, . . . , ds) if G has vertices (V1, . . . , Vs) and for every 1 ≤ i ≤ s, Vi has degree di + 1.
(This shift of +1 will be convenient to simplify many expressions, and to be coherent with [12].)
The surplus of a connected multigraph (V,E) is |E| − |V |+ 1, and is, informally, the number of
edges that one needs to delete to transform a multigraph into a tree. A (D, k)-graph is a uniform
connected multigraph with degree sequence D and surplus k.

Our goal is to study the connected components of the configuration model conditioned on
having degree sequenceD and surplus k, which are close from (D, k)-graphs (see Lemma 8.3). To
this end, we rely on two algorithms: the stick-breaking construction of D-trees of [12], along with
the cycle-breaking algorithm introduced by Addario-Berry, Broutin, Goldschmidt, and Miermont
[3] which we invert to construct (D, k)-graph by adding k edges to a biased D-tree.

We use the cycle breaking algorithm in the following form. Take a connected multigraph with
surplus k, repeat k times: choose an edge uniformly among all the edges that can be removed
without disconnecting the graph, then cut this edge in the middle. By doing so, we add 2k named
leaves (?i)1≤i≤2k, and keep the degrees of (Vi)i∈N. Note that to invert this algorithm we can
intuitively repair the broken edges by gluing the different pairs in (?i)1≤i≤2k. Note that however
this algorithm is not a bijection, since for each multigraph there are many corresponding trees. To
bypass this, we bias each tree by the probability that they were obtained by their corresponding
multigraph. This way, we construct a (D, k)-graph from a biased D-tree with k additional edges.

Thus, to study the geometry of a (D, k)-graph, it is enough to study jointly the geometry of a
D-tree, the positions of (?i)1≤i≤2k, and the previous bias which is a function of (d(?i, ?j))1≤i,j≤2k.
Therefore, it is enough to study precisely the distance matrix between specific vertices of aD-tree.
If the bias was a continuous function of this matrix, then our main results would directly follow
from [12] since the GP convergence of D-trees implies the convergence of this matrix. However,
some extra care is needed since the bias diverges when (?i)1≤i≤2k are close.

Therefore, we need to prove that (?i)1≤i≤2k cannot be too close. More precisely we show,
using the structure of D-trees and of the bias, that it is enough to lower bound (d(?0, ?i))1≤i≤k
where ?0 is a root leaf. We then use our construction of D-trees, also introduced independently by
Addario-Berry, Donderwinkel, Maazoun, and Martin in [4], to lower bound those distances using
the k first repetitions in a random tuple.

Finally, since the bias is a function of the subtree spanned by (?i)1≤i≤2k, it is also a function
of the first branches of the stick-breaking construction. This allows us to consider the limit of the
bias, to directly construct the limits of (D, k)-graphs by biasing the P-trees and ICRT, introduced
by Aldous, Camarri and Pitman [8, 21], and then by gluing the k first pair of leaves.
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Plan of the paper: In Section 2 we introduce the topologies that we are using in this paper. In
Section 3, we construct D-trees, P-trees, and Θ-ICRT. In Section 4, we construct (D, k)-graphs,
(P, k)-graphs, and (Θ, k)-ICRG. We state our main results in Section 5. We study the bias in sec-
tion 6. We deduce our main results in Section 7. Finally we discuss in Section 8 some connections
between (D, k)-graph, (P, k)-graphs, the configuration model and multiplicative graphs.

Notations: Throughout the paper, similar variables for, D-trees, (D, k)-graphs, P-trees, (P, k)-
graphs, Θ-ICRT, (Θ, k)-ICRG share similar notations. To avoid any ambiguity, the models that
we are using and their parameters are indicated by superscripts D, (D, k), P ,(P, k), Θ, (Θ, k).
We often drop those superscripts when the context is clear.

Acknowledgment Thanks are due to Nicolas Broutin for many advices on the configuration
model and on multiplicative graphs.

2 Notions of convergence

2.1 Gromov–Prokhorov (GP) topology

A measured metric space is a triple (X, d, µ) such that (X, d) is a Polish space and µ is a Borel
probability measure on X . Two such spaces (X, d, µ), (X ′, d′, µ′) are called isometry-equivalent
if there exists an isometry f : X → X ′ such that if f?µ is the image of µ by f then f?µ = µ′. Let
KGP be the set of isometry-equivalent classes of measured metric space. Given a measured metric
space (X, d, µ), we write [X, d, µ] for the isometry-equivalence class of (X, d, µ) and frequently
use the notation X for either (X, d, µ) or [X, d, µ].

We now recall the definition of the Prokhorov’s distance. Consider a metric space (X, d). For
every A ⊂ X and ε > 0 let Aε := {x ∈ X, d(x,A) < ε}. Then given two (Borel) probability
measures µ, ν on X , the Prokhorov distance between µ and ν is defined by

dP (µ, ν) := inf{ ε > 0: µ{A} ≤ ν{Aε} and ν{A} ≤ µ{Aε}, for all Borel set A ⊂ X}.

The Gromov–Prokhorov (GP) distance is an extension of the Prokhorov’s distance: For every
(X, d, µ), (X ′, d′, µ′) ∈ KGP the Gromov–Prokhorov distance between X and X ′ is defined by

dGP((X, d, µ), (X ′, d′, µ′)) := inf
S,φ,φ′

dP (φ?µ, φ
′
?µ
′),

where the infimum is taken over all metric spaces S and isometric embeddings φ : X → S,
φ′ : X ′ → S. dGP is indeed a distance on KGP and (KGP, dGP) is a Polish space (see e.g. [1]).

We use another convenient characterization of the GP topology: For every measured metric
space (X, dX , µX) let (xXi )i∈N be a sequence of i.i.d. random variables of common distribution
µX and let MX := (dX(xXi , x

X
j ))(i,j)∈N2 . We prove the following result in [12] (see also [28]),

Lemma 2.1. Let (Xn)n∈N ∈ KN
GP and let X ∈ KGP. Let (yXi )i∈N be a sequence of random

variables on X and let NX := (dX(yXi , y
X
j ))(i,j)∈N2 . If

MXn
(d)−→NX and

1

n

n∑
i=1

δyXi
(d)−→µX ,

then Xn−→GP X .
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2.2 Gromov–Hausdorff (GH) topology

Let KGH be the set of isometry-equivalent classes of compact metric space. For every metric space
(X, d), we write [X, d] for the isometry-equivalent class of (X, d), and frequently use the notation
X for either (X, d) or [X, d].

For every metric space (X, d), the Hausdorff distance between A,B ⊂ X is given by

dH(A,B) := inf{ε > 0, A ⊂ Bε, B ⊂ Aε}.

The Gromov–Hausdorff distance between (X, d),(X ′, d′) ∈ KGH is given by

dGH((X, d), (X ′, d′)) := inf
S,φ,φ′

(
dH(φ(X), φ′(X ′))

)
,

where the infimum is taken over all metric spaces S and isometric embeddings φ : X → S,
φ′ : X ′ → S. dGH is indeed a distance on KGH and (KGH, dGH) is a Polish space (see e.g. [1]).

2.3 Pointed Gromov–Hausdorff (GHn) topology

Let n ∈ N. Let (X, d, (x1, . . . , xn)) and (X ′, d′, (x′1, . . . , x
′
n)) be metric spaces, each equiped

with an ordered sequence of n distinguished points (we call such spaces n-pointed metric spaces).
We say that these two n-pointed metric spaces are isometric if there exists an isometry φ from
(X, d) on (X ′, d′) such that for every 1 ≤ i ≤ n, φ(xi) = x′i.

Let Kn
GH be the set of isometry-equivalent classes of compact metric space. As before, we

write [X, d, (x1, x2, . . . , xn)] for the isometry-equivalent class of (X, d, (x1, . . . , xn)), and denote
either by X when there is little chance of ambiguity.

The n-pointed Gromov–Hausdorff distance between X,X ′ ∈ Kn
GH is given by

dnGH((X, d, (x1, . . . , xn)), (X ′, d′, (x′1, . . . , x
′
n))) := inf

S,φ,φ′

(
dH(φ(X), φ′(X ′))

)
,

where the infimum is taken over all metric spaces S and isometric embeddings φ : X → S,
φ′ : X ′ → S such that for every 1 ≤ i ≤ n, φ(xi) = φ′(x′i). dnGH is indeed a distance on Kn

GH and
(Kn

GH, d
n
GH) is a Polish space (see [3] Section 2.1).

2.4 Extension to pseudo metric spaces

Note that the previous topologies naturally extends to pseudo metric spaces. Indeed, one may say
that a pseudo metric space (X, d) is isometry-equivalent to the metric space given by quotienting
X by the equivalent relation d(a, b) = 0 (see Burago, Burago, Ivanov [20] for details.) It is then
enough to extend the equivalent classes to pseudo metric spaces.

3 Constructions of D-trees, P-trees and Θ-ICRT

3.1 D-trees

Recall that a sequence (d1, . . . , ds) is a degree sequence of a tree if and only if
∑s

i=1 di = s− 2,
and by convention d1 ≥ d2 · · · ≥ ds. Let ΩD be the set of such sequences.

For convenience issue, we want to label our leaves on a set {?i}i∈N disjoint from {Vi}i∈N. So
let us slightly change our definition ofD-trees. Note that a tree with degree sequenceD must have
ND+2 :=

∑s
i=1 1di=0 leaves. We say that a tree T is aD-tree if it is uniform among all tree with

vertices {Vi}i:di>0 ∪ {?i}0≤i≤N+1 and such that for every i with di > 0, deg(Vi) = di + 1.
We now recall the construction of D-trees of [12]. For simplicity, for every graph G = (V,E)

and edge e = {v1, v2}, G ∪ e denotes the graph (V ∪ {v1, v2}, E ∪ {e}).

4



Algorithm 1 (Algorithm 7 from [12]). Stick-breaking construction of a D-tree TD (see Figure 1).
- Let AD = (ADi )1≤i≤s−1 be a uniformD-tuple (tuple such that ∀i ∈ N, Vi appears di times).
- Let TD1 := ({?0, A1}, {{?0, A1}}) then for every 2 ≤ i ≤ s let

TDi :=

{
Ti−1 ∪ {Ai−1, Ai} if Ai /∈ Ti−1.

Ti−1 ∪ {Ai−1, ?inf{k,?k /∈Ti−1}} if Ai ∈ Ti−1 or i = s.

- Let TD = Ts.

V4

V5

V2V3

V1

?1?2

?3

?4?5

?6

?0

Figure 1: Stick breaking construction of a D-tree with D = (1, 2, 1, 3, 3, 0, 0, . . . ) and
(ADi )1≤i≤s−1 = (V4, V5, V2, V5, V3, V4, V5, V4, V1, V2). The exploration starts at ?0 then follows
the white-black arrow toward ?1, then jumps at ?5 to follow the path toward ?2 and so on. . .

3.2 P-trees

Let {V∞,i}i∈N be a set of vertices disjoint with {Vi}i∈N and {?i}i≥0. Let ΩP be the set of sequence
(pi)i∈N∪{∞} in R+ such that

∑∞
i=1 pi + p∞ = 1, p1 > 0 and p1 ≥ p2 ≥ . . . . For every P ∈ ΩP ,

the P-tree is the random tree constructed as follow:

Algorithm 2. Definition of the P-tree for P ∈ ΩP .
- Let (APi )i∈N be a family of i.i.d. random variables such that for all i ∈ N, P(AP1 = Vi) = pi.
- For every i ∈ N, let BPi = Ai if Ai ∈ N, and let BPi = V∞,i otherwise.
- Let TP1 := ({?0, B1}, {{?0, B1}}) then for every i ≥ 2 let

TPi :=

{
Ti−1 ∪ {Bi−1, Bi} if Bi /∈ Ti−1.

Ti−1 ∪ {Bi−1, ?inf{k,?k /∈Ti−1}} if Bi ∈ Ti−1.

- Let TP :=
⋃
n∈N Tn.

Remark. Usually, the leaves {?i}i∈N are omitted in the formal definition of P-trees. We consider
them to clarify the intuition that they are degenerate D-trees with an infinite number of leaves.

3.3 ICRT

First let us introduce a generic stick breaking construction. It takes for input two sequences in R+

called cuts y = (yi)i∈N and glue points z = (zi)i∈N, which satisfy

∀i < j, yi < yj ; yi−→∞ ; ∀i ∈ N, zi ≤ yi, (1)

and creates a R-tree (loopless geodesic metric space) by recursively "gluing" segment (yi, yi+1]
on position zi, or rigorously, by constructing a consistent sequence of distances (dn)n∈N on
([0, yn])n∈N.
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zi
Glue

yi+1

yi

Figure 2: A typical step of the stick-breaking construction: the "gluing" of (yi, yi+1] at zi.

Algorithm 3. Generic stick-breaking construction of R-tree.
– Let d0 be the trivial metric on [0, 0].
– For each i ≥ 0 define the metric di+1 on [0, yi+1] such that for each x ≤ y:

di+1(x, y) :=


di(x, y) if x, y ∈ [0, yi]

di(x, zi) + |y − yi| if x ∈ [0, yi], y ∈ (yi, yi+1]

|x− y| if x, y ∈ (yi, yi+1],

where by convention y0 := 0 and z0 := 0.
– Let d be the unique metric on R+ which agrees with di on [0, yi] for each i ∈ N.
– Let SB(y, z) be the completion of (R+, d).

Now, let ΩΘ be the space of sequences (θi)i∈{0}∪N in R+ such that
∑∞

i=0 θ
2
i = 1 and such that

θ1 ≥ θ2 ≥ . . . . For every Θ ∈ ΩΘ, the Θ-ICRT is the random R-tree constructed as follow:

Algorithm 4. Construction of Θ-ICRT (from [13])
- Let (Xi)i∈N be a family of independent exponential random variables of parameter (θi)i∈N.
- Let µ be the measure on R+ defined by µ = θ2

0dx+
∑∞

i=1 δXiθi.
- Let (Yi, Zi)i∈N be a Poisson point process on {(y, z) ∈ R+2 : y ≥ z} of intensity dy × dµ.
- Let Y := (Yi)i∈N and let Z := (Zi)i∈N. Let (Y0, Z0) := (0, 0).
- The Θ-ICRT is defined as (T, d) = SB(Y,Z). (see Algorithm 3)

4 Constructions of (D, k)-graphs, (P , k)-graphs and (Θ, k)-ICRG

4.1 Generic gluing and cycle-breaking of discrete multigraphs (see Figure 3)

In the entire section, G = (V,E) denotes a multigraph. Let cyc(G) the set of all edges e ∈ E
such that G\{e} := (V,E\{e}) is connected. (For multiples edges the operation \ only remove
one edge at a time.) Let �(G) := # cyc(G).

For every leaves L1 6= L2 ∈ G, we define the operation of gluing L1 and L2 in G as follow:
For every leaf L ∈ G, let the father of L be the only vertex F ∈ G such that (F,L) ∈ G. Let F1,
F2 be the father of L1, L2. The multigraph obtained by gluing L1 and L2 in G is

GL1,L2(G) := (V/{L1, L2}, E\{{F1, L1}, {F2, L2}} ∪ {{F1, F2}}),

and intuitively corresponds to the graph obtained by fusing {F1, L1} and {F2, L2}.
Similarly, for every leaves L1 6= L2 6= . . . , L2k−1 6= L2k, the multigraph obtained by gluing

L1 and L2,. . . , L2k−1 and L2k in G is

G(Li)1≤i≤2k
(G) = G(L1,L2),(L3,L4)...,(L2k−1,L2k)(G) := GL1,L2 ◦ GL3,L4 ◦ · · · ◦ GL2k−1,L2k

(G).

Note that this multigraph does not depend on the order in which we glue the different leaves.
Now recall Section 1.2. Let us give a formal definition of the cycle-breaking algorithm:
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V4

V5

V2

V1

?5 ?6

?0

?1 = ?2

?3 = ?4

V3

Figure 3: Gluing leaves of the tree T from Figure 1 to form a graph G with surplus 2. cyc(G) is
red. �(G) = 5. G = G(?1,?2,?3,?4)(T ). Also, P(CB(G) = T ) = 2!

22�(G\{V4,V5})�(G)
= 2

22∗3∗5 .

Algorithm 5. Cycle-breaking of a multigraph G = (V,E) with V ⊂ (Vi)i∈N and surplus k.
- For 1 ≤ i ≤ k, let ei = (W2i+1,W2i+2) be a uniform oriented edge in cyc(G\{ej}1≤j<i).
- Let CB(G) := (V ∪ {?i}1≤i≤k, (E\{ei}1≤i≤k) ∪ {{Wi, ?2k+1−i}}1≤i≤2k).

To simplify our notations for every multigraph G = (V,E) and v, w ∈ V , we write #v,w(G)
for the number of edges {v, w} in G. Also, let ◦(G) :=

∏
v∈V 2#v,v(G)

∏
v,w∈V #v,w(G)!.

Lemma 4.1. For every connected multigraph G with V ⊂ {Vi}i∈N and surplus k, we have:
(a) CB(G) is almost surely a tree with vertices V ∪ {?i}1≤i≤2k.
(b) For every v ∈ V , degCB(G)(v) = degG(v). For every 1 ≤ i ≤ 2k, ?i is a leaf in CB(G).
(c) Almost surely, G(?1,?2),...,(?2k−1,?2k)(CB(G)) = G.
(d) For every tree T satisfying (a) (b),

P(CB(G) = T ) =
◦(G)

2k
∏k
i=1 �(G\{ej}1≤j<i)

. (2)

Proof. (a) and (b) follows from a quick enumeration. (c) is easy to prove from the definition of G.
(d) follows from an induction. Indeed, the right hand side of (2) is just the product over each steps
of the probability that (W2i+1,W2i+2) satisfies {W2i+1, ?2k−2i}, {W2i+2, ?2k−2i−1} ∈ T .

4.2 (D, k)-graph

Note that (d1, . . . , ds) is a degree sequence of a connected multigraph with surplus k if and only
if
∑s

i=1 di = s+ k − 2, and by convention d1 ≥ d2 · · · ≥ ds. Note that by adding 2k numbers 0,
this holds if and only if (d1, . . . , ds, 0, . . . , 0) ∈ ΩD.

For convenience issue, let us slightly extend our definition of (D, k)-graph. For D ∈ ΩD with
ND ≥ 2k we say that G is a (D, k)-graph if it is uniform among all multigraph with vertices
{Vi}i:di>0 ∪ {?i}i∈{0}∪{2k+1,...,ND+1} and such that for every i with di > 0, deg(Vi) = di + 1.
The following result follows from Lemma 4.1 and constructs a (D, k)-graph from a biasedD-tree.

Lemma 4.2. Let TD,k be a random tree. Assume that for every tree T such that: T have vertices
{Vi}1≤i≤s ∪{?i}1≤i≤2k, for every 1 ≤ i ≤ s degT (Vi) = di + 1, and {?i}1≤i≤2k are leaves of T ,

P(TD,k = T )α
◦(G(?i)1≤i≤2k

(T ))∏k
i=1 �(G(?1,?2),...,(?2i−1,?2i)(T ))

, (3)

where α stands for proportional. Then G(?i)1≤i≤2k
(TD,k) is a (D, k)-graph.

To simplify our notations, we write for every i ∈ N, �i(·) := �(G(?1,?2),...,(?2i−1,?2i)(·)) and
��,k(·) := ◦(G(?i)1≤i≤2k

(T ))/
∏k
i=1 �i(·). So that the right hand side of (3) is ��,k(T ).
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4.3 (P , k)-graph

Since P-trees appear at the limit ofD-trees, it is natural to adapt Lemma 4.2 to construct limits for
(D, k)-graphs from P-trees. Thus we informally define the (P, k)-graph as a P-tree biased by (2)
where we glued {?2i−1, ?2i}1≤i≤k. Below we formally define (P, k)-graph.

Fix P ∈ ΩP . First note that Algorithm 2 can be seen as a function AB (Aldous–Bröder) which
takes a tuple AP in ΩAB := ({Vi}i∈N∪{∞})N and send a tree TP . We equip ΩAB with the weak
topology and let BAB be the Borel algebra of this space. Also, we equip ΩAB with the distribution
PP of (APi )i∈N, and complete the space so that event of measure null for PP are measurable.

Then note that ��,k(AB) is a measurable function from ΩAB to R+ since it is locally constant
on the subspace of tuple that have at least 2k repetitions. Also, note that ��,k(AB) ≤ (k + 1)!2k.
Thus we may define PP,k on (ΩAB,BAB) such that for every Borel space B ∈ BAB,

PP,k(B) = E[1AP∈B��,k(AB(AP))]/E[��,k(AB(AP))].

Now let AP,k be a random variable with distribution PP,k. Then let TP,k := AB(AP,k). The
(P, k)-graph is the random graph GP,k := G(?i)1≤i≤2k

(TD,k)\{?i}i∈N.

4.4 (Θ, k)-ICRG

Since Θ-ICRT appear as the limit of D-trees it is natural to adapt Lemma 4.2 to construct limits
for (D, k)-graphs from Θ-ICRT. Thus we informally define (Θ, k)-ICRG as Θ-ICRT biased by (2)
where we glued {?2i−1, ?2i}1≤i≤k. Below we formally define (Θ, k)-ICRG. We stay rudimentary
and refer to Chapter 3 of [20] or to the R-graph theory of [3] for more details.

First we formally define the gluing of two points: For every pseudo metric space (X, d) and
x1, x2 ∈ X let Gx,y((X, d)) be the pseudo metric space (X, d′) where for every a1, a2 ∈ X ,

d′(a1, a2) := inf{d(a1, a2) ; d(a1, x1) + d(a2, x2) ; d(a1, x2) + d(a2, x1)}.

Also for every k ∈ N and x1, x2, . . . , x2k ∈ X let

G(xi)1≤i≤2k
((X, d)) = G(x1,x2),...,(x2k−1,x2k)((X, d)) := Gx1,x2 ◦Gx3,x4 ◦· · ·◦Gx2k−1,x2k

((X, d)).

One can check that G(xi)1≤i≤2k
((X, d)) does not depends on the order in (x2i−1, x2i)1≤i≤k.

Recall Section 3.3. Let Kyz be the set of couples of sequences y and z satisfying (1). In Section
3.3 we defined the stick breaking construction as a function SB : (y, z) ∈ Kyz → SB(y, z).

For every n ∈ N and (y, z) = ((yi)i∈N, (zi)i∈N) ∈ Kyz let cycn(y, z) be the set of x ∈ R
such that G(yi)1≤i≤2n

(SB(y, z))\{x} is connected. Note that cycn(y, z) is a finite union of interval
so is measurable. Let �n(y, z) be its Lebesgue measure. Note that �n(y, z) only depends on
{yi}1≤i≤n, {zi}1≤i≤n, and is a measurable function of ({yi}1≤i≤n, {zi}1≤i≤n) (see Lemma A.5).
Let ��,k(y, z) := 1/

∏k
n=1 �n(y, z).

Let M be the set of all positive locally finite measure on R+. Let KSB := M×Kyz. We equip
KSB with the weak topology and let BSB be the Borel algebra of this space. Let Θ ∈ ΩΘ. We will
prove in Lemma 6.14 that E[��,k(YΘ,ZΘ)] <∞. Thus we may define PΘ,k on (KSB,BSB) such
that for every Borel space B ∈ BSB,

PΘ,k(B) = E
[
1AP∈B��,k

(
SB
(
YΘ,ZΘ

))]
/E[��,k(YΘ,ZΘ)].

Now let (µΘ,k,YΘ,k,ZΘ,k) be a random variable with distribution PΘ,k. Let YΘ,k = (Y Θ,k
i )i∈N.

Then let (TΘ,k, d̄Θ,k) := SB(YΘ,k,ZΘ,k). The (Θ, k)-ICRG is the random pseudo metric space
(GΘ,k, dΘ,k) := G

(Y Θ,k
i )1≤i≤2k

(TΘ,k, d̄Θ,k).
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5 Main results

In this section (Dn)n∈N, (Pn)n∈N, (Θn)n∈N denote fixed sequences in ΩD, ΩP , ΩΘ respectively.
For every D = (d1, . . . , dsD) ∈ ΩD, let (σD)2 :=

∑s
i=1 di(di − 1) then let λD := σD/sD. Also,

for every P = (pi)i∈N∪{∞} let sP := max{i ∈ N ∪ {∞} : pi > 0} and let (σP)2 =
∑∞

i=1(pi)
2.

We always work under one of the following regimes:

Assumption 1 (Dn ⇒ P). For all i ≥ 1, dDn
i /sDn → pPi and sDn →∞.

Assumption 2 (Dn ⇒ Θ). For all i ≥ 1, dDn
i /σDn → θΘ

i and dDn
1 /sDn → 0.

Assumption 3 (Pn ⇒ Θ). For all i ≥ 1, pPn
i /σPn → θΘ

i and pPn
1 → 0.

Assumption 4 (Θn ⇒ Θ). For all i ≥ 1, θΘn
i → θΘ

i .

A few words on⇒. One can put a topology on Ω := ΩD ∪ ΩP ∪ ΩΘ such that⇒ corresponds
with the notion of convergence on Ω. This has several advantages (see [12] Section 8.1 for details).
First (Ω,⇒) is a Polish space. Moreover, our results can be seen as continuity results for the
function which associate to a set of parameters a metric space. Hence, our results can be used to
study graph with random degree distributions. Furthermore ΩD is dense on Ω. So our results on
(D, k)-graphs imply the others.

5.1 The bias does not diverge

As explained previously in the introduction, our approach relies entirely on the stick breaking
construction of [12] and on the study of the bias corresponding to the cycle-breaking construction.
More precisely given the following result, our main results are applications of [12].

Proposition 5.1. For every x,m ∈ R+ let hm := x1x≥m. We have,

lim
m→∞

max
D∈ΩD:ND≥2k

E
[
hm

(
��,k(T

D)

(λD)k

)]
= 0.

5.2 Gromov–Prokhorov convergence

First let us specify the measures that we consider. Let Ωp the set of measures on {Vi}i≥1∪{?i}i≥0.
We say that a sequence (pn)n∈N ∈ ΩN

p converges toward p ∈ Ωp if maxi∈N |pn(Vi)− p(Vi)| → 0

and maxi∈N |pn(?i)−p(?i)| → 0. In the whole paper, for everyD ∈ ΩD, pD,k denote a probability
measure with support on VD,k := {Vi, i : di ≥ 1} ∪ {?i, i ∈ {0} ∪ {2k + 1, . . . , ND + 1}}.
Similarly, for every P ∈ ΩP , pP denote a probability measure with support on VP := {V Pi }i:pi>0.
Also, we sometimes let 0 denote the null measure.

Then we recall the probability measure on ICRT of [13]. To simplify our expressions, we write
µΘ =∞ when either θΘ

0 > 0 or
∑∞

i=1 θ
Θ
i =∞, (since µΘ =∞ iff a.s. µΘ[0,∞] =∞).

Definition ([13] Proposition 3.2). Let Θ ∈ ΩΘ be such that µΘ =∞. Almost surely, as n→∞,
1
n

∑n
i=1 δY Θ

i
converges weakly toward a probability measure pΘ on T Θ.

Remark. When µΘ <∞, 1
n

∑n
i=1 δY Θ

i
does not converge. For this reason, although we prove the

convergence of the distance matrices, one cannot define a proper measure for the GP convergence.
Then let us define a probability measure on GΘ,k. It directly follows from [13] Proposition

3.2, that a.s.
∑n

i=1 δY Θ,k
i

converges weakly toward a probability measure pΘ,k on TΘ,k. Since

convergence in TΘ,k imply convergence in GΘ,k, it still makes sense to define pΘ,k on GΘ,k.
We now state the main result of this section. In what follows, dD,k is the graph distance on

GD,k and similarly dP,k is the graph distance on GP,k.
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Theorem 5.2. The following convergences hold weakly for the GP topology
(a) If Dn ⇒ P and pDn,k → pP then(

GDn,k, dDn,k, pDn,k
)

WGP−→(GP,k, dP,k, pP).

(b) If Dn ⇒ Θ, pDn,k → 0, and µΘ =∞ then(
GDn,k, λDndDn,k, pDn,k

)
WGP−→(GΘ,k, dΘ,k, pΘ,k).

(c) If Pn ⇒ Θ, pPn → 0, and µΘ =∞ then(
GPn,k, σPndPn,k, pPn

)
WGP−→(GΘ,k, dΘ,k, pΘ,k).

(d) If Θn ⇒ Θ, µΘn =∞ for every n ∈ N, and µΘ =∞ then

(GΘn,k, dΘn,k, pΘn,k)
WGP−→(GΘ,k, dΘ,k, pΘ,k).

5.3 Gromov–Hausdorff convergence

GH convergence requires additional assumptions. In [12] we give quantitative assumptions. Here,
we simply state rudimentary assumptions. We proved in Section 7.3 of [12] that the assumptions
of [12] imply the followings. To simplify the notations, for every tree (and every R-tree) T and
v1, . . . , va ∈ T , we write T ({vi}1≤i≤a) for the subtree spanned by v1, . . . , va.

Assumption 5. For every ε > 0,

lim
a→∞

lim sup
n→+∞

P
(
λDndH

(
TDn({?i}0≤i≤a), TDn

)
> ε
)

= 0,

Assumption 6. For every ε > 0,

lim
a→∞

lim sup
n→+∞

P
(
σPndH

(
TPn({?i}0≤i≤a), TPn

)
> ε
)

= 0,

Assumption 7. For every ε > 0,

lim
a→∞

lim sup
n→+∞

P
(
dH

(
TΘn({Y Θn

i }0≤i≤a), T
Θn

)
> ε
)

= 0.

Theorem 5.3. The following convergences hold weakly for the GH-topology.
(a) If Dn ⇒ Θ, pDn → 0, and Assumption 5 is satisfied then(

GDn,k, λDndDn,k
)

WGH−→(GΘ,k, dΘ,k).

(b) If Pn ⇒ Θ, pPn → 0, and Assumption 6 is satisfied then(
GPn,k, σPndPn,k

)
WGH−→(GΘ,k, dΘ,k).

(c) If Θn ⇒ Θ, and Assumption 7 is satisfied then

(GΘn,k, dΘn,k)
WGH−→(GΘ,k, dΘ,k).

Remark. • Unlike the assumptions of [12], Assumption 5, 6, 7 are sufficient and necessary.
• By [12] Lemma 4, one can deduce the GHP convergence from the GP and GH convergence and
the fact that, since pΘ have a.s. full support on T Θ (see [13]), pΘ,k have a.s. full support on GΘ,k.
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6 Study of the bias

6.1 Proof of Proposition 5.1 in the typical case

Recall that for every x,m ∈ R+, hm = x1x≥m. Recall the definitions of (�i)1≤i≤k and ��,k

from section 4.2. For every D ∈ ΩD with ND ≥ 2k and m ∈ R+ let

fD(m) := E
[
hm

(
��,k(T

D)

(λD)k

)]
.

In this section we estimate fD under the additional assumption 2ND ≥ sD/σD, which is satisfied
when there are not too many vertices with degree 2.

Proposition 6.1. There exists c, C > 0 such that for everyD ∈ ΩD withND ≥ max(2k, sD/(2σD)),
and m > 0, we have fD(m) ≤ Cm−c.

Our proof is organized as follow: We first upper bound ��,k. Then we use Hölder’s inequality
to upper bound fD(ε) with the numbers of leaves in some open balls around ?0. Then we use
Algorithm 1 to upper bound those numbers with (Yi)1≤i≤k. Finally we use the continuum D-tree
construction of [12] to study (Yi)1≤i≤k through random Poisson point process.

Let dD be the graph distance in TD. Let d′D(·, ·) := λDdD(·, ·). We have:

Lemma 6.2. Let C = 22k(k + 1)!. For every ε > 0, for every D ∈ ΩD with ND ≥ 2k,

fD(Cε−k)/(kC) ≤ gD(ε) := E

[
1d′(?1,?2)≤ε∏k

i=1 d
′(?2i−1, ?2i)

]
.

Proof. First by definition of ��,k, ��,k ≤ (k + 1)!2k/
∏k
i=1 �i. Then note for every 1 ≤ i ≤ k

that �i(T
D) ≥ d(?2i−1, ?2i)− 1 ≥ d(?2i−1, ?2i)/2. Indeed, the path between the father of ?2i−1

and the father of ?2i, together with the edge connecting those two fathers, forms a cycle. Thus,

fD(Cε−k)/C ≤ E

[
1∏k

i=1 d
′(?2i−1,?2i)≤εk∏k

i=1 d
′(?2i−1, ?2i)

]
.

The desired result then follows from the symmetry of the leaves (?i)1≤i≤2k. (That is the fact that
permuting the label of the leaves of TD independently of TD does not change the law of TD.)

For the rest of the section ε > 0, and D are fixed. We have to estimate
∏k
i=1 d

′(?2i−1, ?2i).
However, it is hard to estimate since it depends on k separate parts of the tree. For this reason, we
instead upper bound g with the numbers of leaves in some open balls around ?0. For every n ≥ 1,
let Mn be the proportion of leaves L ∈ T\{?0} such that 2−n−1 < d′(?0, L) ≤ 2−n and let M0

be the proportion such that d′(?0, L) > 1/2. Let Kε := inf{n ∈ N, 2−n ≥ ε}. We have:

Lemma 6.3. There exists C > 0 which depends only on k such that,

g(ε) ≤ CE

[ ∞∑
n=Kε

2nkn3kMk
n

]1/k

E

[ ∞∑
n=0

2nkn3kMk
n

](k−1)/k

.

Proof. In this proof C denotes a real depending only on k which may vary from line to line. First,
let (Li)1≤i≤2k be uniform random variables in {?i}0≤i≤N+1. Note that by symmetry of the leaves,

g(ε) = E

[
1d′(L1,L2)≤ε∏k

i=1 d
′(L2i−1, L2i)

∣∣∣∣∣∀i 6= j, Li 6= Lj

]
.
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Then by roughly speaking slightly changing (Li)1≤i≤2k such that some equalities may hold,

g(ε) ≤ CE

[
1d′(L1,L2)≤ε∏k

i=1 d
′(L2i−1, L2i)

∣∣∣∣∣∀1 ≤ i ≤ k, L2i−1 6= L2i

]
.

= CE

[
E
[
1d′(L1,L2)≤ε

d′(L1, L2)

∣∣∣∣L1, L1 6= L2, T

] k∏
i=2

E
[

1

d′(L2i−1, L2i)

∣∣∣∣L2i−1, L2i−1 6= L2i, T

]]
.

Furthermore, by Hölder’s inequality, and by symmetry of the leaves,

g(ε)k ≤ CE

[
E
[
1d′(L1,L2)≤ε

d′(L1, L2)

∣∣∣∣L1, L1 6= L2, T

]k] k∏
i=2

E

[
E
[

1

d′(L2i−1, L2i)

∣∣∣∣L2i−1, L2i−1 6= L2i, T

]k]

= CE

[
E
[
1d′(?0,L2)≤ε

d′(?0, L2)

∣∣∣∣ ?0 6= L2, T

]k]
E

[
E
[

1

d′(?0, L2)

∣∣∣∣ ?0 6= L2, T

]k]k−1

.

Therefore, we have by definition of (Mn)n∈{0}∪N,

gD(ε)k ≤ CE

( ∞∑
i=Kε

2nMn

)kE

( ∞∑
i=0

2nMn

)kk−1

. (4)

If k = 1 the desired results follow from (4). If k ≥ 2 then we have a.s., by Hölder’s inequality,

∞∑
i=Kε

2nMn ≤

( ∞∑
i=Kε

(
2nn3Mn

)k)1/k( ∞∑
i=N

(
1

n3

)k/(k−1)
)(k−1)/k

,

and similarly for
∑∞

i=0 2nMn. And the desired result follows from (4).

Recall Section 3.1. We now upper bound for n ∈ N, E[Mk
n ] using Algorithm 1. Recall the

definition of AD. Let Y1, Y2, . . . be the indexes such that ADi ∈ {AD1 , . . . , ADi−1}.

Lemma 6.4. For every n ∈ N,

E[Mk
n ] ≤ kk

k∑
a=1

1

Nk−aP
(
Ya ≤

a

2n
s

σ

)
.

Proof. First, let (Li)1≤i≤2k be uniform random variables in {?i}1≤i≤N+1. By definition of Mk
n ,

E[Mk
n ] = P

[
1

2n+1
< d′(?0, L1), . . . , d′(?0, Lk) ≤

1

2n

]
.

Then we want distinct leaves to use Algorithm 1. To this end, we develop the right hand side above
by distinguishing the cases of equality. Let P(k) be the set of partition of {1, . . . , k}. For every
I = {I1, . . . , Ia} ∈ P(k), let EI be the event that for every x, y ∈ {1, . . . , k}, Lx = Ly iff they
are in the same Ii. For every I ⊂ {1, . . . , k} let mI := min(I). We have,

E
[
Mk
n

]
=

∑
I={I1,...,Ia}∈P(k)

P
[
EI ,

1

2n+1
< d′(?0, L1), . . . , d′(?0, Lk) ≤

1

2n

]

=
∑

{I1,...,Ia}∈P(k)

1

(N + 1)k−a
P
[
LmI1

6= · · · 6= LmIa
,

1

2n+1
< d′(?0, LmI1

), . . . , d′(?0, LmIa
) ≤ 1

2n

]
.
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Then by symmetry of the leaves,

E
[
Mk
n

]
=

∑
{I1,...,Ia}∈P(k)

1

(N + 1)k−a
P
[

1

2n+1
< d′(?0, ?1), . . . , d′(?0, ?a) ≤

1

2n

]
.

So since there is at most kk partitions of {1, . . . , k},

E
[
Mk
n

]
≤ kk

k∑
a=1

1

Nk−aP
[

1

2n+1
< d′(?0, ?1), . . . , d′(?0, ?a) ≤

1

2n

]
. (5)

Finally we use Algorithm 1. It is direct from the construction that, writing Y0 = 0,

Ya =
a∑
i=1

(Yi − Yi−1) ≤
a∑
i=1

(d(?0, ?i)− 1) ≤ (s/σ)
a∑
i=1

d′(?0, ?i).

So the desired results follows from (5).

We now upper bound Ya using a part of the continuum D-tree construction of [12]:
- Let (Xi)1≤i≤s be a family of independent exponential random variables of parameter (di/σ)1≤i≤s.
- Let µ be the measure on R+ defined by µ =

∑s
i=1 δXi (di − 1) /σ.

- Let (Ŷi)i∈N be a Poisson point process on R+ of rate µ[0, y]dy.
- Let (Ei)1≤i≤s−1 be a family of exponential random variables of mean (σ/(s− i))1≤i≤s−1.

By [12] Lemma 10 there exists a coupling such that Ya is independent of (Ei)1≤i≤s−1 and such
that a.s.

∑Ya
i=1Ei ≤ Ŷa. Moreover, we have:

Lemma 6.5. For every a, n ∈ N with n ≤ s/2,

P (Ya ≤ n) ≤ P(Ŷa ≤ 4nσ/s)/2.

Proof. Fix n ≤ s/2. It is easy to check from basic estimates on the Gamma distribution that,

P

(
n∑
i=1

Ei ≤ 4n(σ/s)

)
≥ 1/2.

So since Ya and (Ei)1≤i≤s−1 are independent,

P
(
Ŷa ≤ 4n

σ

s

)
≥ P

(
Ya∑
i=1

Ei ≤ 4n
σ

s

)
≥ P

(
Ya ≤ n,

n∑
i=1

Ei ≤ 4n
σ

s

)
≥ 1

2
P(Ya ≥ n).

Hence, to upper bound Ya it is enough to upper bound Ŷa. To this end, we first upper bound µ.

Lemma 6.6. For every a ∈ N,
(a) For every x, t > 0, P(µ[0, x] > t) ≤ x/t.
(b) For every 0 ≤ x ≤ 1 ≤ t, P(µ[0, x] > t) ≤ e−t/4.

Proof. Note that by definition of µ, (Xi)1≤i≤s and σ,

E[µ[0, x]] =

σ∑
i=1

di − 1

σ
P(Xi > x) ≤

σ∑
i=1

di − 1

σ

xdi
σ
≤ x.

So (a) follows from Markov’s inequality. Also µ[0, x] is a sum of independent random variables
bounded by 1 so (b) follows from Bernstein’s inequality (see [15] Section 2.8).
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Lemma 6.7. For every a ∈ N and 0 ≤ x ≤ e−9, P(Ŷa ≤ x) ≤ 3xa+1(−4a log x)a.

Proof. By definition of (Ŷi)i∈N, conditionally on µ, max{i ∈ N, Yi ≤ x} is a Poisson random
variable of mean

∫ x
0 µ[0, t]dt ≤ xµ[0, x]. So, by basic inequalities on the Poisson distributions,

P(Ŷa ≤ x) = E[P(Ŷa ≤ x|µ)] ≤ E[(xµ[0, x])a]. (6)

Then we have by integration by part and Lemma 6.6,

E[µ[0, x]a] =

∫ ∞
0

P(µ[0, x] ≥ t)(ata−1dt)

≤
∫ x

0
ata−1dt+

∫ −4 log x

x
(x/t)(ata−1dt) +

∫ ∞
−4 log x

e−t/4(ata−1dt)

≤ 3x(−4a log x)a,

using basic calculus for the last inequality. This concludes the proof.

Proof of Proposition 6.1. We now complete our upper bound for f(D). In this proof, c, C denote
reals which depend only on k and which may vary from line to line. First by Lemmas 6.7 and 6.5
we have for every 1 ≤ a ≤ k and 0 ≤ x < 1/16,

P (Ya ≤ xs/σ) ≤ Cxa+1(− log(x))c.

Then by Lemma 6.4, and 2N ≥ s/σ, for every n ∈ N with (s/σ)/2n ≥ 1,

E[Mk
n ] ≤ kk

k∑
a=1

1

Nk−aP
(
Ya ≤

a

2n
s

σ

)
≤ kk

k∑
a=1

(
2σ

s

)k−a
C
( a

2n

)a+1
nc

≤ Cnc

2(k+1)n
. (7)

Note that (7) naturally extends to the n ∈ N with (s/σ)/2n < 1 since for those n almost surely
for 1 ≤ a ≤ k, we have Ya ≥ a > a

2n
s
σ .

Next, since Kε = inf{n ∈ N, 2−n ≥ ε},

E

[ ∞∑
i=Kε

2nkn3kMk
n

]
≤ C2−Kεc ≤ C(2ε)c,

and

E

[ ∞∑
i=0

2nkn3kMk
n

]
≤ C.

Thus by Lemma 6.3,

gD(ε) ≤ CE

[ ∞∑
i=0

2nkn3kMk
n

]1/k

E

[ ∞∑
i=Kε

2nkn3kMk
n

](k−1)/k

≤ C(2ε)c. (8)

Finally, Proposition 6.1 follows from Lemma 6.2.

Along the way by (8) we have the following result, which we extend in the next section.

Lemma 6.8. There exists c, C > 0 which depends only on k such that for every ε > 0, D ∈ ΩD
with ND ≥ max(2k, sD/(2σD)), gD(ε) ≤ Cεc.
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6.2 Proof of Proposition 5.1 when there are many vertices of degree 2

This section is organized as follow. We first detail how to remove or add vertices of degree 2. We
then prove from those constructions a connection between the D-trees that do not have any vertice
of degree 2 and the others. Finally we use this connection to prove Proposition 5.1.

First for every graph G and x ∈ G, we call x an edgepoint if x have degree 2. A simple way to
remove the edgepoints is to shortcut them: Formally if T = (V,E) is a tree, then ∇T be the tree
(V ′, E′) such that V ′ = {v ∈ V,degT (v) 6= 2} and for every v, w ∈ V ′, {v, w} ∈ E′ iff there
exists a path between v and w that only pass by v, w and vertices of degree 2. Note that ∇ keep
the degrees: for every v ∈ T with degv(T ) 6= 2, we have v ∈ ∇T and degT (v) = deg∇T (v).

Remark. One may extends∇ to general graph. However, the natural way to preserves the degrees
is to work with multigraph. We avoid this issue by working with trees.

Reciprocally one may construct any tree by adding some edgepoints along the oriented edges
of a tree without edgepoint: For every T = (V,E) let (~ei(T ))1≤i≤#E be some fixed oriented edges
of T such that each edge of E appears in one and only one direction. Let ((Wi,j)1≤i≤ri)1≤i≤#E

be some vertices that are not in V . For every 1 ≤ i ≤ #E let (Wi,0,Wi,ri+1) := ~ei(G). Let

∆(T, ((Wi,j)1≤i≤ri)1≤i≤#E := (V ∪ {Wi,j}1≤i≤#E,1≤j≤ri , {{Wi,j ,Wi,j+1}}1≤i≤#E,0≤j≤ri) .

We now use ∆,∇ to study D-trees. Beforehand, let us introduce some notations. For every
D = (d1, . . . , ds) ∈ ΩD, let sD≥2 := #{a ∈ N, da ≥ 2}, let sD≥1 = #{a ∈ N, da ≥ 1}, and let
sD1 := #{a ∈ N, da = 1}. Also let∇D be the sequence (d1, d2, . . . , ds≥2

, ds≥1+1, . . . , ds).
Also we say that ((Wi,j)1≤j≤ri)1≤i≤n is an ordered partition of size n ∈ N of a finite set E iff

for 1 ≤ i ≤ n, ri ∈ {0} ∪ N, and (i, j) 7→Wi,j is a bijection from {1 ≤ i ≤ n, 1 ≤ j ≤ ri} to E.
We have the following connections between D-trees and∇D-trees:

Lemma 6.9. Let D ∈ ΩD. Let W be a uniform ordered partition of size s∇D − 1 of {Vi}i:dDi =1.
Then, a)∇(TD) is a∇D-tree, and b) ∆(T∇D,W ) is a D-tree

Proof. First note that ∇(∆(T∇D,W )) = T∇D, since this tree is obtained by adding some edge-
point on T∇D, which do not have edgepoint, then by removing all edgepoint. So b) imply a).

Toward b), simply note that ∆ may be seen as a bijection from trees with degree sequence∇D
and ordered partition of size s∇D−1 of {V Di }di=1 toward trees with degree sequenceD. (Indeed,
one may recover the initial tree by applying ∆ and then read the ordered partition by, roughly
speaking, following each oriented edges of the initial tree on the image tree.)

We now prove Proposition 5.1. To this end, it is enough to remove the assumption 2ND ≥
sD/σD of Proposition 6.1. Note that it is satisfied when sD1 = 0 since in this case, σD ≥ 1 and
sD = ND + sD≥2 ≤ 2ND. For this reason, our goal for the rest of the section will be to prove the
following result, which together with Lemmas 6.8 and 6.2 yields Proposition 5.1.

Proposition 6.10. Recall the definition of g from Lemma 6.2. There exists C > 0, which depends
only on k, such that for every D ∈ ΩD with ND ≥ 2k and ε > 0,

gD(ε) ≤ Cε
(∫ 1

ε
g∇D(δ)/δ2dδ + kg∇D(1) + 1

)
.

To this end, it is enough to lower bound (dD(?2i−1, ?2i))1≤i≤k using (d∇D(?2i−1, ?2i))1≤i≤k.
To do so, by Lemma 6.9 (b), it suffices to study uniform ordered partitions. More precisely, we
have to lower bound the cardinal of the sets of those partitions, which corresponds to the numbers
of edgepoint added on each edge. This is done in the following lemma.
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Lemma 6.11. Let ((Wi,j)1≤j≤Ri)1≤i≤n be a uniform ordered partition of size n of a finite set E.
(a) (Ri)1≤i≤n is uniform among all set of integers such that

∑n
i=1Ri = #E.

(b) Let (Si)1≤i≤n be independent geometric random variables of mean #E/n conditioned on∑n
i=1 Si ≤ #E. Then there exists a coupling between (Ri)1≤i≤n and (Si)1≤i≤n such that

almost surely for every 1 ≤ i ≤ n, Ri ≥ Si .

Proof. Toward (a), simply note that given (Ri)1≤i≤n, there are exactly #E! possible ways to label
((Wi,j)1≤j≤Ri)1≤i≤n to form an ordered partition of size n ofE. Then (b) is an easy exercise.

Next, in order to use the independency of Lemma 6.11 (b), we will use the following lemma:

Lemma 6.12. Let T be a tree. Assume that (?i)1≤i≤2k are leaves of T . For every 1 ≤ i ≤ k let Ei
be the set of edges that are on the minimal path between ?2i−1 and ?2i. Then there exists (E ′i)1≤i≤k
disjoint subsets of (Ei)1≤i≤k such that for every 1 ≤ i ≤ k, #E ′i ≥ max(#Ei/k, 2).

Proof. Consider the following informal construction of (E ′i)1≤i≤k:
- First let for 1 ≤ i ≤ k, E ′i := {{?2i−1, F2i−1}, {?2i, F2i}}, where for 1 ≤ i ≤ 2k, Fi is the

father of ?i in T .
- Then while

⋃k
i=1 E ′i 6=

⋃k
i=1 Ei:

- For 1 ≤ i ≤ k: If possible add to E ′i an arbitrary edge in Ei that is not yet in
⋃k
j=1 E ′i .

It is easy to check that (E ′i)1≤i≤k are disjoint subsets of (Ei)1≤i≤k. Also for 1 ≤ i ≤ k, #E ′i ≥ 2.
Finally a quick enumeration gives that at the end of the algorithm #E ′i ≥ #Ei/k.

Proof of Proposition 6.10. Let ε > 0. Let D ∈ ΩD. Let W be a uniform ordered partition of size
sD≥2 of {V Di }i:di=1 and independent of T∇D. Let d∇D,W be the graph distance on ∆(T∇D,W ).
Then by Lemma 6.9 (b), ∆(T∇D,W ) is a D-tree. So, by definition of g, it is enough upper bound

GD(ε, T∇D) := E

[
1λDd∇D,W (?1,?2)≤ε∏k

i=1 (λDd∇D,W (?2i−1, ?2i))

∣∣∣∣∣T∇D
]
. (9)

To this end, let us use Lemmas 6.11 and 6.12. Let E be the set of edges of T∇D. Let (Se)e∈E
be independent geometric random variables of mean sD1 /#E conditioned on

∑
e∈E Si ≤ sD1 . For

1 ≤ i ≤ k let Ei be the set of edges that are on the minimal path between ?2i−1 and ?2i in T∇D.
By definition of ∆, and by Lemma 6.11, note that, there exists a coupling between W and (Se)e∈E
such that a.s. for 1 ≤ i ≤ 2k,

d∇D,W (?2i−1, ?2i) ≥
∑
e∈Ei

(1 + Se). (10)

Then, by Lemma 6.12, let (E ′i)1≤i≤k be disjoint subsets of (Ei)1≤i≤k such that for every 1 ≤
i ≤ k, #E ′i ≥ max(#Ei/k, 2). It directly follows from (10) that a.s. for 1 ≤ i ≤ 2k,

d∇D,W (?2i−1, ?2i) ≥
∑
e∈E ′i

(1 + Se).

Therefore,

GD(ε, T∇D) ≤ E

 1λD
∑

e∈E′1
(1+Se)≤ε∏k

i=1

(
λD
∑

e∈E ′i
(1 + Se)

)
∣∣∣∣∣∣T∇D

 .
Hence, if (S′e)e∈E are independent geometric random variables of mean sD1 /#E ,

GD(ε, T∇D) ≤ 1

P
(∑

e∈E S
′
e ≤ sD1

∣∣T∆D
)E
 1λD

∑
e∈E′1

(1+S′e)≤ε∏k
i=1

(
λD
∑

e∈E ′i
(1 + S′e)

)
∣∣∣∣∣∣T∇D

 .
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Then note that there exists a constant C < ∞ that does not depends on k,D such that a.s.
P
(∑

e∈E S
′
e ≤ sD1

∣∣T∆D) ≤ 1/C. So, since (E ′i)1≤i≤k are disjoint and (S′e)e∈E are independent,

GD(ε, T∇D) ≤ C
(
λD
)−k E[ 1∑e∈E′1

(1+S′e)≤ε/λD∑
e∈E ′1

(1 + S′e)

∣∣∣∣∣T∇D
]

k∏
i=2

E

[
1∑

e∈E ′i
(1 + S′e)

∣∣∣∣∣T∇D
]
.

Therefore we have using Lemma 6.13 below, and the fact that for every 1 ≤ i ≤ k, #E ′i ≥ 2,

GD(ε, T∇D) ≤ C(2e)−k
(
λD
)−k

min

(
1,

eε/λD

#E ′1(1 + sD1 /#E)

) k∏
i=1

1

#E ′i(1 + sD1 /#E)
. (11)

Next, let us rewrite (11). First, note that for every 1 ≤ i ≤ k,

#E ′i ≥ #Ei/k = d∇D(?2i−1, ?2i)/k.

Also,

1 +
sD1
#E

= 1 +
sD1

s∇D − 1
=
s∇D + sD1 − 1

s∇D − 1
=

sD − 1

s∇D − 1
≥ sD

s∇D
=

λD

λ∇D
,

noting for the last equality that σD = σ∇D. Then by elementary calculus it is easy to prove that,

min

(
1,

eε/λD

#E ′1(1 + sD1 /#E)

)
≤ kemin

(
1,

ε

λ∇Dd∇D(?1, ?2)

)
= keε

∫ ∞
ε

1λ∇Dd∇D(?1,?2))≤δ
dδ

δ2
.

Therefore by (11),

GD(ε, T∇D) ≤ C(2ek)k+1
(
λ∇D

)−k
ε

∫ ∞
ε

1λ∇Dd∇D(?1,?2)≤δ
dδ

δ2

k∏
i=1

1

d∇D(?2i−1, ?2i)
.

Finally by taking the expectation and by Fubini’s theorem, we have,

E[GD(ε, T∇D)] ≤ C(2ek)k+1
(
λ∇D

)−k
ε

∫ ∞
ε

E

[
1λ∇Dd∇D(?1,?2)≤δ

k∏
i=1

1

d∇D(?2i−1, ?2i)

]
dδ

δ2
,

which yields by definition of G and g,

gD(ε) ≤ C(2ek)k+1ε

∫ ∞
ε

g∇D(δ)
dδ

δ2
. (12)

To conclude the proof, note that for δ ≥ 1,

g∇D(δ) ≤ E

[
k∏
i=1

1

λ∇Dd∇D(?2i−1, ?2i)

]

≤ E

1 +
k∑
j=1

1λ∇Dd∇D(?2j−1,?2j)≤1

k∏
i=1

1

λDd∇D(?2i−1, ?2i)

 = 1 + kg∇D(1).

So the desired result follows from (12).
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Lemma 6.13. Let n ≥ 2, m ≥ 0. Let (Si)1≤i≤n be independent geometric random variables of
mean m. Then,

E
[

1∑n
i=1(1 + Si)

]
≤ 2e

n(1 +m)
.

Also, for every ε > 0,

E
[
1∑n

i=1(1+Si)≤ε∑n
i=1(1 + Si)

]
≤ 2e

n(1 +m)
min

(
1,

eε

(1 +m)n

)
.

Proof. Note that
∑n

i=1(1 + Si) is the time needed to get n success for Bernoulli trials that hold
with probability 1/(1 +m). Thus for every x > 0,

P

(
n∑
i=1

(1 + Si) ≤ x

)
≤
(
bxc
n

)
1

(1 +m)n
≤
(

x

1 +m

)n
/n! ≤

(
ex

(1 +m)n

)n
.

It directly follows by integration by part that,

E
[

1∑n
i=1(1 + Si)

]
=

∫ ∞
0

P

(
n∑
i=1

(1 + Si) ≤ x

)
x−2dx

≤
∫ (1+m)n/e

0

(
ex

(1 +m)n

)n
x−2dx+

∫ ∞
(1+m)n/e

x−2dx

=
e

(1 +m)n(n− 1)
+

e

(1 +m)n

≤ 2e

(1 +m)n
.

The second inequality is proved in a similar way.

6.3 Bias of P-trees and ICRT

Recall the definitions of section 4.2 and 4.4 of (�i)1≤i≤k and ��,k. Recall that for every x,m ∈
R+, hm : x 7→ 1x≥mx.

Lemma 6.14. We have the following assertions:
(a)

lim
m→∞

max
P∈ΩP

E
[
hm

(
��,k(T

P)/(σP)k
)]

= 0.

b)
lim
m→∞

max
Θ∈ΩΘ

E
[
hm
(
��,k(YΘ,ZΘ)

)]
= 0.

Proof. We focus only on (a) as (b) can be proved in the exact same way. Fix P ∈ ΩP . Let
(Dn)n∈N ∈ ΩN

D such that Dn ⇒ P (see the start of Section 5 or [12] Section 8.1 for existence).
By [12] Theorem 5, we have the following weak convergence,

(dDn(?i, ?j))1≤i,j≤2k
(d)−→(dP(?i, ?j))1≤i,j≤2k.

Then by Lemma A.5 (see also [3] Corollary 6.6), ��k
(TDn) converges weakly toward ��k

(TP)
as n→∞. Furthermore, by Fubini’s Theorem,

(λDn)2 = (σDn/sDn)2 =
∞∑
i=1

(dDn
i )(dDn

i − 1)

(sDn)2
−→

∞∑
i=1

p2
i = (σP)2.

Therefore, for every m ≥ 0,

lim supE[hm(��,k(T
Dn)/(λDn)k)] ≥ E[hm+1(��,k(T

P)/(σP)k)]. (13)

Finally, Proposition 5.1 concludes the proof.
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7 Proof of the main theorems

Theorems 5.2 and 5.3 directly follows from three thing: the trees converges, the operation of gluing
leaves is a continuous application, and the bias converge. In this section, we precise the proofs.

7.1 Proof of Theorem 5.2

Proof of Theorem 5.2 (a). Let (Dn)n∈N ∈ ΩN
D and P = (pi)i∈N∪{∞} ∈ ΩP such that Dn ⇒ P .

Let a ∈ N such that pa > 0. For all 1 ≤ i ≤ a let Wi = Vi. For all 1 ≤ i ≤ 2k, let Wa+i := ?i.
By [12] Theorem 5, it is easy to check that we have the following joint convergence,

(dDn(Wi,Wj))1≤i,j≤a+2k
(d)−→(dP(Wi,Wj))1≤i,j≤a+2k, (14)

writing dDn for the graph distance on TDn , and dP for the graph distance on TP .
Then by Kolmogorov representation theorem, we may assume that (14) holds a.s. Furthermore,

since we work with discrete trees, note that a.s. for every n large enough equality holds in (14).
Hence, by Lemma A.5 a.s. for every n large enough ��,k(T

D) = ��,k(T
P). Thus, by dominated

convergence, for any continuous bounded function f : R(a+2k)2 → R+,

E[f(dDn(Wi,Wj))1≤i,j≤a+2k)��,k(T
Dn)]

E[��,k(TDn)]
−→

E[f(dP(Wi,Wj))1≤i,j≤a+2k)��,k(T
P)]

E[��,k(TP)]
.

Therefore, writing d̄Dn,k for the graph distance on TDn,k and d̄P,k for the graph distance on TP,k,

(d̄Dn,k(Wi,Wj))1≤i,j≤a+2k
(d)−→(d̄P,k(Wi,Wj))1≤i,j≤a+2k. (15)

Finally by gluing (?1, ?2), . . . , (?2k−1, ?2k), which is a continuous map for the matrix distance,

(dDn,k(Vi, Vj))1≤i,j≤a
(d)−→(dP,k(Vi, Vj))1≤i,j≤a.

And Theorem 5.2 (a) follows from Lemma 2.1.

Proof of Theorem 5.2 (b). Let (Dn)n∈N ∈ ΩN
D such that Dn ⇒ Θ ∈ ΩΘ. For every n ∈ N let

pDn,k be a probability measure on VDn,k such that pDn,k → 0. For every n ∈ N and 1 ≤ i ≤ 2k,
let WDn

i := ?i. Also, let (WDn
i )i>2k be a family of independent random variables with law pDn,k.

Fix a > 2k. By [12] Theorem 6 (b) and Lemma 14, we have(
λDndDn(WDn

i ,WDn
j )

)
1≤i,j≤a

(d)−→(dΘ(Y Θ
i , Y

Θ
j ))1≤i,j≤a. (16)

Then by Kolmogorov representation theorem we may assume that (16) holds almost surely.
Hence, by Lemma A.5 a.s. ��,k(T

Dn)/(λDn)k → ��,k(Y
Θ, ZΘ) as n→∞. Thus, by Proposi-

tion 5.1 and dominated convergence, we have for all continuous bounded function f : Ra2 → R,

E[f((λDndDn(WDn
i ,WDn

j ))1≤i,j≤a)��,k(T
Dn)]

E[��,k(TDn)]
−→

E[f((dΘ(Y Θ
i , Y

Θ
j ))1≤i,j≤a)��,k(Y

Θ, ZΘ)]

E[��,k(Y Θ, ZΘ)]
.

Therefore,

(λDn d̄Dn,k(WDn
i ,WDn

j ))1≤i,j≤a
(d)−→(d̄Θ,k(Y Θ

i , Y
Θ
j ))1≤i,j≤a.

Finally by gluing the k first pair of vertices, which is a continuous map for the matrix distance,

(λDndDn,k(WDn
i ,WDn

j ))2k+1≤i,j≤a
(d)−→(dΘ,k(Y Θ

i , Y
Θ
j ))2k+1≤i,j≤a.

And Theorem 5.2 (a) follows from Lemma 2.1.

Proof of Theorem 5.2 (c,d). Since KGP is a Polish space, and ΩD is dense on (Ω,⇒), the results
directly follows from Theorem 5.2 (a,b) (see [12] Section 8.1 for details). Also, they can be proved
similarly.
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7.2 Proof of Theorem 5.3

Proof of Theorem 5.3 (a). Let (Dn)n∈N ∈ ΩN
D such that Dn ⇒ Θ ∈ ΩΘ. By [12] Theorem 6 (b),

(λDndDn(?i, ?j))i,j∈N
(d)−→(dΘ(Y Θ

i , Y
Θ
j ))1≤i,j∈N.

Thus, by Lemma A.3 for every a ∈ N, we have for the a-pointed GH topology (see Section 2.3),

(TDn({?i}1≤i≤a), λDndDn , {?i}1≤i≤a)
WGHa

−→ (TΘ({Y Θ
i }1≤i≤a), dΘ, {Y Θ

i }1≤i≤a).

Therefore, by Assumption 5, we have for the 2k-pointed GH topology,

(TDn , λDndDn , {?i}1≤i≤2k)
WGH2k

−→ (TΘ, dΘ, {Y Θ
i }1≤i≤2k). (17)

Then, by Skorohod representation theorem we may assume that the above convergence holds
almost surely. Thus by Lemma A.5 a.s. ��,k(T

Dn)→ ��,k(YΘ,ZΘ). Then for every continuous
bounded function f on K2k

GH we have by Proposition 5.1 and dominated convergence,

E[f(TDn , λDndDn , {?i}1≤i≤2k)��,k(T
Dn)]

E[��,k(TDn)]
−→

E[f(TΘ, dΘ, {Y Θ
i }1≤i≤2k)��,k(YΘ,ZΘ)]

E[��,k(YΘ,ZΘ)]
.

Therefore,

(TDn,k, λDn d̄Dn,k, {?i}1≤i≤2k)
WGH2k

−→ (TΘ,k, d̄Θ,k, {Y Θ,k
i }1≤i≤2k).

Finally since the gluing of k pair of point is a continuous operation for the 2k-pointed GH
topology the desired result follows.

Proof of Theorem 5.3 (b,c). The results can be proved in the exact same way.

8 Configuration model and multiplicative graphs

The main objective of this section is to explain the connections between the configuration model
and multiplicative graphs, and between those models and (D, k)-graphs and (P, k)-graphs.

8.1 Definitions

For every multigraph G on {Vi}i∈N and i, j ∈ N let #i,j(G) be the number of edges {Vi, Vj} in
G. So that a multigraph on {Vi}i∈N may be seen as a matrix.

We call a function f : I 7→ I a matching if f ◦ f = Id and for every x ∈ I , f(x) 6= x. Let
ΩCM be the set of decreasing sequence (d1, . . . ds) in {0} ∪ N such that

∑s
i=1 di is even.

Algorithm 6. Construction of the configuration model from D = (d1, . . . , ds) ∈ ΩCM:
- Let f = (f1, f2) be a uniform matching of {(i, j)}1≤i≤s,1≤j≤di .
- The configuration model is the random multigraph CMD with vertices (Vi)1≤i≤s and such

that for every 1 ≤ i ≤ s, #i,i(CMD) := 1
2

∑di
a=1 1f1(i,a)=i and for 1 ≤ i 6= j ≤ s,

#i,j(CMD) :=

di∑
a=1

1f1(i,a)=j =

dj∑
a=1

1f1(j,a)=i.

Let ΩMG be the set of sequence (λ, p1, . . . , ps) in R+∗ with p1 ≥ · · · ≥ ps.
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Algorithm 7. Construction of the multiplicative graph from P = (λ, p1, . . . , ps) ∈ ΩMG:
- Let (XPi,j)1≤i 6=j≤s be independent Bernoulli random variables with mean 1− e−λpipj .
- The multiplicative graph is the random graph MGP with vertices (V1, . . . , Vs) and with

edges {1 ≤ i, j ≤ s : Xi,j = 1}.

Next, we introduce multiplicative multigraphs, which are augmented multiplicative graphs.

Algorithm 8. Construction of the multiplicative multigraph from P = (λ, p1, . . . , ps) ∈ ΩMG:
- Let (NPi,j)1≤i,j≤s be independent Poisson random variables, such that for every 1 ≤ i ≤ s,
NPi,i have mean λp2

i /2 and for every 1 ≤ i 6= j ≤ s, NPi,j have mean λpipj .
- The multiplicative multigraph is the random multigraph MGP+ with vertices (Vi)1≤i≤s and

such that for every 1 ≤ i, j ≤ s, #i,j(MGP+) := NPi,j .

Lemma 8.1. There exists a coupling such that MGP is the graph obtained from MGP+ by remov-
ing all its multi-edge. That is, for every i 6= j, {i, j} is an edge of MGP iff #i,j(MGP+) ≥ 1.

Proof. It is easy to check that there exists a coupling such that a.s. for every 1 ≤ i 6= j ≤ s
XPi,j = 0 iff NPi,j = 0. The result follows.

8.2 Multiplicative multigraphs as local limit of the configuration model

Lemma 8.2. Let P = (λ, p1, . . . , ps) ∈ ΩMG. For n ∈ N, let Dn = (dni )1≤i≤sn ∈ ΩCM. If
sDn →∞, and for every 1 ≤ i ≤ s, dni ∼

√
snλpi, and for every n ∈ N, i > s, dni = 1. Then,

(
#i,j(CMDn)

)
1≤i,j≤s

(d)−→
(
#i,j(MGP+)

)
1≤i,j≤s .

Remark. From this result, one may see the LIFO-queue algorithm of Broutin, Duquesne, Wang
[19, 18] as a limit of a recursive construction, based on a DFS exploration, of a uniform matching.

Proof. Let (Dn)n∈N and P be as in the statement. For n ∈ N, let fn = (fn1 , f
n
2 ) a uniform match-

ing of {(i, j)}1≤i≤sn,1≤j≤dni . We may assume that CMDn is constructed from fn by Algorithm 6.
The main idea is that for n large enough {f1(i, j)}1≤i≤sn,1≤j≤dni are mostly independent. Since
Poisson random variables appears as the limits of Bernoulli trials this explain the convergence.
From there, there are many standard ways to justify the convergence.

Below we briefly present a method based on random point process. We let the reader refer to
Kallenberg [27] Section 4 for more details on convergence of point process. Let νn be the random
measure on K := {(i, j)}1≤i≤j≤s × R2 defined by

νn :=
∑

1≤i<j≤s

∑
1≤a≤di
1≤b≤dj

1f(i,a)=(j,b)δ(i,j,a/
√
sn,b/

√
sn)+

∑
1≤i≤n

∑
1≤a<b≤di

1f(i,a)=(i,b)δ(i,i,a/
√
sn,b/

√
sn).

It is enough to prove that {νn}n∈N converges vaguely toward a Poisson point process of rate

dν :=
∑

1≤i≤j≤s
10≤x≤λpi10≤y≤λpjδi,jdxdy +

∑
1≤i≤n

10≤x≤y≤λpiδi,idxdy. (18)

Indeed, provided this convergence, the desired result directly follows by integration over dxdy.
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To this end, first note that for every n ∈ N, writing mn :=
∑sn

i=1 d
n
i ,

E[νn(K)] =
∑

1≤i<j≤s

∑
1≤a≤di
1≤b≤dj

P(f(i, a) = (j, b)) +
∑

1≤i≤n

∑
1≤a<b≤di

P(f(i, a) = (i, b)).

=
∑

1≤i<j≤s

didj
mn

+
∑

1≤i≤n

∑
1≤a<b≤di

d2
i /2

mn

→
∑

1≤i<j≤s
λpipj +

∑
1≤i≤n

∑
1≤a<b≤di

λp2
i /2

where the last inequality comes from the assumptions of the lemma on (Dn)n∈N. Thus, {νn}n∈N
is tight for the vague topology. Let ν be a sub-sequential limit of {νn}n∈N.

By a similar computation, for every 1 ≤ i < j ≤ s, and 0 ≤ a ≤ a′ ≤ λpi, 0 ≤ b ≤ b′ ≤ λpj ,

E[ν({i, j} × [a, a′]× [b, b′])] = lim
n→∞

E[νn({i, j} × [a, a′]× [b, b′])] = λ(a′ − a)(b′ − b).

And for every 1 ≤ i ≤ s, 0 ≤ a ≤ a′ ≤ b ≤ b′ ≤ pi.

E[ν({i, i} × [a, a′]× [b, b′])] = lim
n→∞

E[νn({i, i} × [a, a′]× [b, b′])] = λ(a′ − a)(b′ − b).

Next, we prove that ν satisfies the independency criterium. Beforehand let us introduce some
notations. Let cov(·, ·) be the covariance of two random variables. Let

S :=
{

(i, j, a, b) ∈ N4 : 1 ≤ i < j ≤ s, 1≤a≤di
1≤b≤dj

}
∪ {(i, i, a, b) ∈ N4 : 1 ≤ i ≤ s, 1 ≤ a < b ≤ di}.

For every K1,K2 ⊂ K disjoint compact set, for every n ∈ N, cov(νn(K1), νn(K2)) equal∑
(i,j,a,b)∈S

(i′,j′,a′,b′)∈S

1(
i,j, a√

sn
, b√

sn

)
∈K1

1(
i′,j′, a′√

sn
, b′√

sn

)
∈K2

cov(1f(i,a)=(j,b),1f(i′,a′)=(j′,b′)).

Then, by distinguishing whether it is possible to have both f(i, a) = (j, b) and f(i′, a′) = (j′, b′),
note that in the last sum there areO(#S) terms that are equal to 0−1/(mn)2,O((#S)2) terms that
are equal to 1/(mn)(mn − 2)− (1/mn)2 = O(1/(mn)3), and the others that are null. Therefore,

| cov(νn(K1), νn(K2))| = O(#S)O(1/(mn)2) +O((#S)2)O(1/(mn)3) = O(1/mn)→ 0.

Since the last convergence hold for every disjoint compact K1,K2 ⊂ K, we have that for every
disjoint compact K ′1,K

′
2 ⊂ K, cov(ν(K ′1), ν(K ′2)) = 0.

Finally, to prove that ν is a Poisson point process of rate (18) it is enough to check that a.s. for
every x ∈ K, ν(x) ∈ {0, 1}. To this end, one may adapt the previous argument to show that there
exists C > 0, such that for every x ∈ K, ε > 0, writing B(x, ε) for the closed ball centered at x
of radius ε for ‖‖∞, if B(x, ε) does not intersect {(i, i, 1/2, 1/2)}1≤i≤s then

E[ν(B(x, ε))(ν(B(x, ε))− 1)] ≤ Cε2.

This implies the desired property, and so concludes the proof.
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8.3 Connections with (D, k)-graphs and (P , k)-graphs

Recall that for every multigraph G on {Vi}i∈N, ◦(G) :=
∏
i∈N 2#i,i(G)

∏
i,j∈N #i,j(G)!.

Lemma 8.3. Let k ∈ N we have the following assertions:
(a) Let D = (d1, . . . , ds) ∈ ΩCM such that

∑s
i=1 di = 2s + k − 2. Then CMD biased by

◦(CMD) and conditioned at being connected is a ((d1 − 1, . . . , ds − 1), k)-graph.
(b) Let W = (λ,w1, . . . , ws) ∈ ΩMG. For every 1 ≤ i ≤ s, let pi := wi/

∑s
j=1wj . Let

P = (p1, . . . , ps, 0, 0, . . . ). Then MGW+ biased by ◦(MGW+) and conditioned at being
connected and having surplus k is a (P, k)-graph.

Remark. The bias is not really important as typically those graphs are studied in a regime where
with high probability the multigraph is a graph. Also removing this bias only remove the term
◦(G(?i)1≤i≤2k

(T )) in Section 4.2 which does not change our proofs.

Proof. (a) is a classic and is easy to obtain from a quick enumeration. So we focus on (b). The
main idea is that, on the one hand multiplicative multigraph are limits of the configuration model,
and on the other hand (P, k)-graph are limits of (D, k)-graph. Thus by identification, (b) follows.
Let us detail:

Fix k,W,P ∈ ΩMG as in (b). Let (Dn)n∈N be a sequence of ΩCM as in Lemma 8.2. Then
write CMW,k for the random multigraph MGW+ biased by ◦(MGW) and conditioned at being
connected and having surplus k. Also, write for n ∈ N, CMD

n,k for the random multigraph
CMD

n
biased by ◦(CMD

n
) conditioned on the fact that the subgraph of CMD

n
on (Vi)1≤i≤s is

connected and have surplus k. By Lemma 8.2, we have,

(#i,j(CMD
n,k))1≤i,j≤s

(d)−→(#i,j(MGW,k))1≤i,j≤s. (19)

Then, for every n ∈ N let Sn + 2s be the number of vertices that are in the connected compo-
nent of (Vi)1≤i≤s in CMD

n
. Then letDn− := (dn1 , . . . , d

n
s , 1, . . . , 1) with Sn number 1 at the end.

It is well known that for every n ∈ N, conditioned on Sn, CMD
n,k have the same law as CMD

n−

(where the vertices outside (Vi)1≤i≤s in CMD
n

have been relabeled). More precisely,

(#i,j(CMD
n,k))1≤i,j≤s

(d)
=(#i,j(CMD

n−
))1≤i,j≤s.

Therefore, it directly follows from (19), that if for n ∈ N, CMD
n−,k be the random multigraph

CMD
n−

biased by ◦(CMD
n−

) and conditioned at being connected, then

(#i,j(CMD
n−,k

))1≤i,j≤s
(d)−→(#i,j(MGW,k))1≤i,j≤s. (20)

Next let for n ∈ N, Dn ∈ ΩD be the sequence (dn1 − 1, . . . , dns − 1, 0, . . . , 0, 0, . . . , 0) where
we added Sn + 2k numbers 0 at the end. We have by (a) for every n ∈ N,

(#i,j(G
Dn,k))1≤i,j≤s

(d)
=(#i,j(CMD

n−,k))1≤i,j≤s

Therefore by (20),

(#i,j(G
Dn,k))1≤i,j≤s

(d)−→(#i,j(MGW,k))1≤i,j≤s. (21)

Finally note that Dn ⇒ P . So, by (15) and Lemma A.3, as n → ∞ the subtree of TDn,k

spanned by {Vi}1≤i≤s∪{?i}1≤i≤2k converges weakly toward the subtree of TPn,k spanned by the
same vertices. Therefore, we have by gluing (?1, ?2), . . . , (?2k−1, ?2k), then counting the edges,

(#i,j(G
Dn,k))1≤i,j≤s

(d)−→(#i,j(G
P,k))1≤i,j≤s.

And (21) concludes the proof.
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To conclude the section let us compute the law of (P, k)-graph.

Lemma 8.4. Let k ∈ N. Let (p1, . . . , ps, 0, 0 . . . ) ∈ ΩP . We have for every connected multigraph
G on {Vi}1≤i≤s with surplus k, writing α for proportional,

P(GP,k = G)α
∏

1≤i,j≤s
(pipj)

#i,j(G).

Proof. Keep the notations of Lemma 8.3 (b). By definition of ΩW+
MG , we have

P(ΩW+
MG = G) =

∏
1≤i<j≤s

(λpipj)
#i,j(G)e−λpipj

#i,j(G)!

∏
1≤i≤s

(λp2
i /2)#i,i(G)e−λp

2
i /2

#i,i(G)!
.

So the result follows from Lemma 8.3 (b).

Remark. •When k = 0 the result is well known and is a classical definition for P-trees.
• When the weight of the edges is not multiplicative, one can still construct similar multigraphs.
Moreover, Lemma 8.4 is still true in this case. For k = 0, this relates those models with the general
spanning trees constructed by Aldous–Bröder algorithm [5, 17].
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A Appendix

A.1 R-tree reconstruction problem

Recall that a R-tree is a loopless geodesic metric space. If T is a R-tree, we say that x ∈ T is a
leaf of T if T \{x} is connected. Let (T , d) be a R-tree with leaves {?i}1≤i≤N . In this section we
reconstruct a R-tree isometric to T from (di,j)1≤i,j≤N := (d(?i, ?j))1≤i,j≤N .

For every a, b ∈ T let Ja, bK be the geodesic path between a and b. Since T is a R-tree note
that for every 1 ≤ a 6= b 6= c ≤ N there exists a unique vertex ?a,b,c in J?a, ?bK∩J?a, ?cK∩J?b, ?cK.

Lemma A.1. For every 1 ≤ a 6= b 6= c ≤ N , 2d(?a, ?a,b,c) = da,b + da,c − db,c.

Proof. Note that da,b = d(?a, ?a,b,c)+d(?a,b,c, ?b), and similarly db,c = d(?b, ?a,b,c)+d(?a,b,c, ?c)
and da,c = d(?a, ?a,b,c) + d(?a,b,c, ?c). The desired equality follows by sum.

To reconstruct T we reconstruct recursively for 1 ≤ n ≤ N the subtree spanned by {?i}1≤i≤n,
which is Tn :=

⋃
1≤i,j≤nJ?i, ?jK. It is easy to check that for 1 ≤ n ≤ N , (Tn, d) is a R-tree.

Moreover, note that Tn+1 = Tn ∪ JWn, ?n+1K, where Wn is the closest point from ?n+1 on Tn.
Therefore, it is enough to reconstruct (Wi)1≤i<N and (d(Wn, ?n+1))1≤n<N . This suggest the
following construction. Below, (βi)i∈N is the canonical base of R+N.

Algorithm 9. Reconstruction of a R-tree on (R+N, ‖‖∞) from M = (di,j)1≤i,j≤N .
- Let ?M1 := 0. Let T M1 = ({?M1 }, ∅).
- Let ?M2 := (0, d(?M1 , ?M2 )) Let T M2 := {xβ1, 0 ≤ x ≤ d(?M1 , ?M2 )}.
- For every 2 ≤ n < N :

- Let 1 ≤ bMn 6= cMn ≤ n be the smallest integers (for some predetermined order) that
minimize dn+1,bMn

+ dn+1,cMn
− dbMn ,cMn

.
- Let WM

n be the vertex of T Mn at distance dbMn ,n+1 + dbMn ,cMn
− dn+1,cMn

of ?Mbn and at
distance dcMn ,n+1 + dcMn ,bMn

− dn+1,bMn
of ?M

cMn
. (See below for existence and unicity.)

- Let T Mn+1 := T Mn ∪ {WM
n + xβn, 0 ≤ x ≤ dn+1,bMn

+ dn+1,cMn
− dbMn ,cMn

}.
- Let T M := T MN .

Remark. The idea of constructing subtrees on (R+N, d∞) comes from Aldous [6].

Lemma A.2. Let (T , d) be a R-tree with leaves {?i}1≤i≤N . Let M = (d(?i, ?j))1≤i,j≤N . Then:
a) For every 1 ≤ n ≤ N , T Mn is well defined.
b) (T , d, ?1, . . . , ?N ) and (T M , d∞, ?M1 , . . . , ?MN ) are isometric (see Section 2.3).

Proof. We prove by induction that for 1 ≤ n ≤ N , T Mn is well defined and that (Tn, d, ?1, . . . , ?n)
and (T Mn , d∞, ?

M
1 , . . . , ?Mn ) are isometric. First if n = 1 or n = 2 then the result is obvious. Then

let 2 ≤ n < N such that T Mn is well defined and such that there exists an isometry φn from
(Tn, d, ?1, . . . , ?n) to (T Mn , d∞, ?

M
1 , . . . , ?Mn ).

Recall that Tn =
⋃

1≤i,j≤nJ?i, ?jK, and that Wn is the closest point from ?n+1 on Tn. So there
exist 1 ≤ bn 6= cn ≤ n such that Wn ∈ J?bn , ?cnK. Hence Wn = ?n+1,bn,cn . Then by Lemma A.1,

d(?n+1,Wn) = d(?n+1, ?n+1,bn,cn) = dn+1,bn + dn+1,cn − dbn,cn . (22)

Also, by Lemma A.1, since Wn is the closest point from ?n+1 on Tn,

d(?n+1,Wn) ≤ min
1≤b≤c≤n

d(?n+1, ?n+1,b,c) = min
1≤b≤c≤n

dn+1,b + dn+1,c − db,c.

Therefore, we may assume that bn = bMn and that cn = cMn .
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Furthermore, since Wn = ?n+1,bn,cn ,

d(Wn, ?bn) = dbn,n+1 + dbn,cn − dn+1,cn ; d(Wn, ?cn) = dcn,n+1 + dcn,bn − dn+1,bn . (23)

Wn is the only vertex of Tn satisfying (23). Indeed, any vertex V satisfying (23) must also satisfy

d(V, ?bn) + d(V, ?cn) = d(?bn , ?cn),

and so must be Wn, the only vertex of J?bn , ?cnK at distance dbn,n+1 + dbn,cn − dn+1,cn of ?bn .
Then, by definition of φn and (23), φn(Wn) is the only vertex of Tmn satisfying

d∞(φn(Wn), ?Mbn) = dbn,n+1+dbn,cn−dn+1,cn ; d∞(φn(Wn), ?Mbn) = dcn,n+1+dcn,bn−dn+1,bn .

Therefore, WM
n and thus T M+1

n are well defined.
Finally recall that Tn+1 = Tn ∪ JWn, ?n+1K. Then by definition of T Mn+1, (22) and φn(Wn) =

WM
n , we have T Mn+1 = T Mn ∪ {φn(Wn) + xβn, 0 ≤ x ≤ d(Wn, ?n+1)}. Also both union

are disjoint, so one can extend φn to an isometry φn+1 from Tn+1 to T Mn+1 such that for every
x ∈ JWn, ?n+1K, φn+1(x) := φn(Wn) + d(Wn, x)βn. This concludes the proof.

We now prove a corollary, which we use to prove Theorem 5.3.

Lemma A.3. Let ((Tn, dn))n∈N be a sequence of R-trees with leaves {?ni }1≤i≤N . Assume that

∀1 ≤ i 6= j ≤ n, dn(?ni , ?
n
j )−→ di,j ∈ R+∗.

Then there exist a uniqueN -pointed R-tree (T , d, (?1, . . . , ?N )) up to isometry such that for every
1 ≤ i, j ≤ N , d(?i, ?j) = di,j . Moreover, ((Tn, dn, (?ni )1≤i≤N ))n∈N converges for the N -pointed
Gromov–Hausdorff topology (see Section 2.3) toward (T , d, (?i)1≤i≤N ).

Proof. First uniqueness follows from Lemma A.2. Let us prove existence. For every n ∈ N let
Mn := (dn(?ni , ?

n
j ))1≤i,j≤N . Similarly let M = (di,j)1≤i,j≤N . Note that for every n ∈ N,

T Mn ⊂
{
x ∈ R+N × {0}N, d∞(0, x) ≤ max

1≤j≤N
dn(?n1 , ?

n
i )

}
. (24)

Thus for every 1 ≤ m < N , {WMn
m }n∈N is tight.

Let (ni)i∈N be an increasing sequence of integer such that for every 1 ≤ m < N , (W
Mni
m )i∈N

converges toward W∞m . Then, intuitively, the whole Algorithm 9 converges. More precisely,
T Mni converges for the Hausdorff distance toward a R-tree T that is constructed from Algorithm
9 with entry M and where for 1 ≤ m < N , WM

m , is replaced by W∞m . Furthermore, for every
1 ≤ m ≤ N , (?

Mni
m )i∈N converges toward ?∞n which is also obtained from the same algorithm.

Then it is easy to check that the leaves of T are (?∞m )1≤m≤N , and that for every 1 ≤ i, j ≤ N ,

d(?∞i , ?
∞
j ) = lim

m→∞
d(?nm

i , ?nm
j ) = lim

m→∞
dnm(?ni , ?

n
j ) = di,j .

Therefore (T , d) satisfies the properties described in the lemma.
Finally, let us prove the convergence. First, the right-hand side of (24) is compact so (T Mn)n∈N

is a tight sequence for the Hausdorff topology. Then from any converging subsequence of (T Mn)n∈N

we may further extract such that (W
Mni
m )i∈N converges. It then follows from the first part of the

proof that (TMn)n∈N converges for the Hausdorff distance toward T . Finally by Lemma A.2
for every n ∈ N, (T Mn , d∞, (?

M
i )1≤i≤N ) and (Tn, dn, (?ni )1≤i≤N ) are isometric. The desired

convergence follows.
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A.2 �c is a continuous function of the matrix distance

Recall Section 4.4. Let us extend �i to general R-trees. Note that for every R-tree (T , d), one
may define a Borel measure λ on T such that for every a, b ∈ T , λJa, bK = d(a, b). By analogy
with R we call λ the Lebesgue measure. For c ∈ N, if {?i}1≤i≤2c are leaves of T , we let cycc(T )
be the set of all x ∈ R such that G(?i)1≤i≤2c

(T )\{x} is connected. By Lemma A.4 below cycc(T )
is measurable. Let �c(T ) be its Lebesgue measure.

It is easy to check that this definition of �c extends the definition of �c described in Section
4.4 and informally equals �c + c where �c is defined in the discrete setting in Section 4.2. The
goal of this section is to prove a continuity result for �c.

Lemma A.4. For every c ∈ N, for every R-tree (T , d), if {?i}1≤i≤2c are leaves of T then

cycc(T ) =
⋃

1≤b≤c
J?2b−1, ?2bK.

Proof. On the one hand, for every b ≤ c, J?2b−1, ?2bK ⊂ cyc(G(?i)1≤i≤2c
(T )) since J?2b−1, ?2bK is

a cycle in G(yi)1≤i≤2c
(T ) (a geodesic path that have the same starting and ending point).

On the other hand, let x ∈ T \
⋃

1≤b≤cJ?2b−1, ?2bK. If T \{x} is connected then x /∈ cycc(T )
since G(yi)1≤i≤2c

(T )\{x} is also connected. Otherwise T \{x} is disconnected. Let T1, T2 be the
two connected components of T \{x}. For every 1 ≤ b ≤ 2c note that since x /∈ J?2b−1, ?2bK,
either ?2b−1, ?2b ∈ T1 or ?2b−1, ?2b ∈ T2. Therefore, by induction, for every 1 ≤ b ≤ c,
G(yi)1≤i≤2b

(T )\{x} is still disconnected. In other words, x /∈ cycc(T ).

Lemma A.5. Let c ∈ N. There exists a continuous function fc : R2c×2c, such that for every R-tree
(T , d) such that {?i}1≤i≤2c are leaves of T ,

�c((T , d)) = fc((d(?i, ?j))1≤i,j≤2c).

Furthermore for every λ ∈ R+, �c((T , λd)) = λ�c((T , d)).

Proof. Fix c ∈ N. note that �c is invariant under isometry so Lemma A.2 imply that fc exists.
Also, the scaling property is straightforward from the initial definition since rescaling d rescale the
Lebesgue measure. Thus, it remains to prove the continuity property.

To this end, we prove an explicit formula for �c((T , d)) − �c−1((T , d)) using Lemma A.4.
Let M := (di,j)1≤i,j≤2c := (d(?i, ?j))1≤i,j≤2c. Since (T , d) is a R-tree we may define ϕc as the
unique isometry from [0, d2i−1,2i] to J?2i−1, ?2iK such that ϕc(0) = ?2i−1 and ϕc(d2i−1,2i) = ?2i.
We have by the transport formula,

�c((T , d))−�c−1((T , d)) = λ

(
J?2i−1, ?2iK\

⋃
1≤b<c

EJ?2b−1,?2bK

)

=

∫ d2i−1,2i

0

c−1∏
b=1

1ϕc(x)/∈J?2b−1,?2bKdx. (25)

Then, since T is a R-tree, for every 1 ≤ b < c, J?2b−1, ?2bK ∩ J?2c−1, ?2cK is a segment. For
every 1 ≤ b < c, let Ib be the real interval such that x ∈ Ib iff ϕc(x) ∈ J?2b−1, ?2bK. Intuitively,
by (25) it is enough to show that for 1 ≤ b < c, Ib may be seen as a continuous function of M .
Indeed, this would directly imply that fc(M) − fc−1((di,j)1≤i,j≤2c−2) is continuous. And the
desired result would then follow by induction.

Thus let us fix 1 ≤ b < c, and let us compute Ib. For every a, b, c ∈ T , ?a,b,c let be the unique
vertex in J?a, ?bK ∩ J?a, ?cK ∩ J?b, ?cK. Since T is a R-tree, note that

d(?2c−1, ?2c−1,2c,2b−1) 6= d(?2c−1, ?2c−1,2c,2b) =⇒ Ib = [d(?2c−1, ?2c−1,2c,2b−1), d(?2c−1, ?2c−1,2c,2b)]
+,
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where for x, y ∈ R, [x, y]+ := [min(x, y),max(x, y)]. Also note that

d(?2c−1, ?2c−1,2c,2b−1) = d(?2c−1, ?2c−1,2c,2b) =⇒ Ib ∈ {∅, {d(?2c−1, ?2c−1,2c,2b)}}.

Moreover, by Lemma A.1,

d(?2c−1, ?2c−1,2c,2b−1) = d2c−1,2c + d2c−1,2b−1 − d2c,2b−1,

and
d(?2c−1, ?2c−1,2c,2b) = d2c−1,2c + d2c−1,2b − d2c,2b.

Therefore Ib may be seen as a continuous function of M . Finally (25) concludes the proof.
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