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Virtual Obstacle for a Safe and Comfortable Approach to
Limited Visibility Situations in Urban Autonomous Driving

Sai Krishna Karanam1, Thibaud Duhautbout1,2, Reine Talj1, Véronique Cherfaoui1,
François Aioun2, Franck Guillemard2

Abstract— Path planning algorithms for autonomous vehicles
need to account for safety and comfort, more so, in scenarios
where the possibility of casualties are higher due to increased
traffic frequency and limited visibility. In this paper, we discuss
the idea of a virtual obstacle deployed at occluded scenarios to
avoid a potential collision or severe deceleration of the ego-
vehicle. Urban scenarios like intersections, roundabout and
merging are experimented. Results of simulating the integration
of virtual obstacle with the trajectory planning algorithm, are
analyzed in detail comparing speed and acceleration profiles.

I. INTRODUCTION

The challenge of fully autonomous driving has been ap-
proached by numerous researchers in academia and industry
alike, during the last decades. Although there has been
noteworthy progress during the period, the problem remains
largely unsolved for the edge cases because of factors such
as the unpredictability of traffic, limited sensor range and
interaction with human drivers.

Some of the most complex driving scenarios are the
intersections and roundabouts where the uncertainty factor is
high, especially with the presence of an occlusion blocking
the view of the ego-vehicle (EV). These occlusions are
generally due to infrastructures like buildings or large parked
vehicles, which severely impede visibility. In these situations,
other vehicles may not be perceived by the EV, thus increas-
ing the risk of accidents. In this paper, we propose a solution
to evade the occlusion based uncertainties. Whenever the EV
is approaching a limited visibility situation, it has to adapt to
a suitable speed to be able to react to potentially incoming
vehicles. Our idea is to generate a virtual obstacle at the edge
of visibility to create a constraint for the motion-planning
algorithm of the EV and thus ensure a comfortable and safe
approach.

We discuss in detail our approach towards different sce-
narios in the following sections. After talking through the
related work carried out on the same issue so far in Section II,
we proceed to explain the concept of the virtual obstacle in
Section III. Simulation setup and results are analyzed in
detail in Section IV. After an overview of limitations, we
conclude on the paper in Section V.
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II. RELATED WORKS

A great deal of work has been carried out by researchers
in the past decade towards the improvement of path plan-
ning approaches, more specifically in risk assessment and
addressing uncertainty issues. Katrakazas et al. [1] widely
scrutinize various planning techniques like RRT or A* with
an emphasis on planning with obstacle prediction and de-
cision making. The article briefs on research implementing
techniques such as POMDP (Partially Observable Markov
Decision Process) which transform the state space into belief
space and cost based approaches to choose the trajectory
satisfying the limits of safety and comfort.

Hallerback et al. [2] suggest a simulation based toolchain
for cooperative automated vehicles, where a number of
metrics like TTC (time to collision), TTB (time to brake) and
false positive rate were iterated to identify critical scenarios
in day to day driving, and tested with X-in-loop test benches
to simulate a real world proving ground.

Yu et al. in [3] address the limited sensor range and large
occlusions in urban environments. The authors propose to
predict the risk caused by unobserved regions as opposed to a
baseline method, which only predicts the distribution of risk
caused by unobserved vehicles. Collision rates are reduced
by almost 5 times in comparison to a baseline method, with
augmented driving comfort.

Data driven approaches to solve the occluded intersections
were discussed in [4] by Isele et al. The authors investigated
the idea of training the Deep Q-network (DQN) models
and comparing them with a standard TTC algorithm, and
generated metric scores like collision and success percent-
ages, average time for iteration and braking. While the
results stated that deep learning reinforcement approach was
able to generate exploratory behaviors to fully understand
the scene, therefore overcoming limitations of rule-based
methods, there was still the shortcoming of out of sample
cases, which can only be solved by extensive mining of large
variety of datasets.

More relevant works addressing occlusion issues are [5]
and [6], both employing probabilistic methods of risk assess-
ment. In [5], Lee et al. propose a PCV, Potential Collision
Vehicle, which could be outside the field of view and assess
the collision probability rate as a function of the speed of
the ego-vehicle. In [6], McGill et al. discuss the idea of risk
modelling on the basis of a Bayesian probabilistic model,
more specifically applicable to intersections with an occluded
view. Risk is quantified on the basis of visibility and a nudge



and clear policy is seen, where the ego-vehicle gradually
nudges into the intersection to gain visibility at a lower
speed. When enough visibility is obtained, the EV accelerates
to avoid a potentially incoming vehicle moving at maximum
speed, whose presence is judged by probability as well.

The need for being safe but not overcautious and to
avoid unnecessarily slowing down was studied by Naumann
et al. in [7], where the conflict zones were assessed for
occupancy probability and stronger potential decelerations
were avoided by analysis of reachability and cost based
trajectory calculations.

In [8], Orzechowski et al. propose a similar idea of a
Virtual Obstacle, where any area outside the field of view
is considered ambiguous and is therefore considered as an
occlusion. The implementation is on the basis of the idea
of reachable sets and safe state estimation with comfort and
safety constraints verified through bounding boxes. Although
this can ensure a safe approach, a lot of computational time
and effort could be at stake.

We present in this paper, the concept of a Virtual Obstacle
beyond visibility, only with respect to the identified priority
lanes in some critical urban cases, thus narrowing down the
issue.

III. VIRTUAL OBSTACLE IN LOW-VISIBILITY SITUATIONS

The virtual obstacle principle is designed to be integrated
in the motion planning algorithm proposed by [9]. In the
following sections, relevant details of the planning algorithm
are provided and the virtual obstacle concept is presented.

A. Trajectory planning algorithm

The local motion planning algorithm used in this work
consists of multiple steps presented in Figure 1a. The first
step is to generate multiple geometric paths that the ego-
vehicle could follow, represented in Figure 1b. These paths
are composed of a transition part which brings the ego-
vehicle to a given lateral offset from the center of the lane,
followed by a parallel part which keeps this offset constant.
The geometric paths are then fixed, and a speed profile is
defined on each path with respect to static and dynamic
objects in the environment. The speed profile is initialized
with the maximum legal speed, provided by an upstream
decision module. Then, each position of the path is checked
to ensure that it does not overlap with a static obstacle,
and if so, a stop point is introduced on the path to reduce
the speed and avoid the collision. After this, a time-based
trajectory is generated from the path and the speed profile
on a given time horizon T , and each future position of the
ego-vehicle is compared with the predicted positions of the
other moving obstacles detected in the scene. If an overlap
is detected in the predicted configurations of the vehicles,
the speed profile is also adjusted to make the vehicle stop
before the collision. Finally, the best trajectory is selected
from the set of generated trajectories by computing a cost
function based on comfort and efficiency. This algorithm is
applied in a reactive way, such that this process is repeated
at regular time steps.
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Fig. 1: Illustration of the motion planning organization
and paths shape. a) Local trajectory planning organization,
b) Shape of the generated paths (see [9] for more details)

Fig. 2: Illustration of a potentially critical case: the visibility
of the ego-vehicle (yellow) in the left branch is limited by
the building (red) and can’t see the potential vehicle (blue)
coming from the bottom branch, which has the right of way.

As described here, this algorithm checks only the planned
path of the ego-vehicle with respect to the environment and
the other vehicles which are detected. When dealing with
occlusions, it is then possible to detect that the path will
leave the visibility limits, which can be represented as a
static obstacle. However, it is not possible to account for a
potentially unseen vehicle, which could have priority over the
EV. On European roads, this is the typical case of a crossing
with a building hiding a part of the lane coming from the
right, on which vehicles have the right of way, as illustrated
in Figure 2. To have a safe approach of the crossing, the
ego-vehicle should slow down while getting closer to the
intersection, until it has enough visibility to guarantee that
it can cross the road safely.



Fig. 3: Bird-eye view representation of a situation, with the
visibility boundary (yellow) and the identified priority lane
(dotted magenta).

B. Virtual Obstacle principle

As explained in the previous paragraph, the motion plan-
ning algorithm generates trajectories adapted only to what
was seen in the environment. Hence, we propose to generate
a virtual obstacle which will be added to the list of the
perceived obstacles, such that the ego-vehicle can adapt its
speed when approaching the crossing.

We suppose that the perception systems of the ego-vehicle
are able to determine the visibility boundary projected on
a bird-eye view, as illustrated in Figure 3. This visibility
boundary could be obtained from lidar or radar sensors by
projecting the point clouds on the ground and processing
the result to compute the boundary. We also suppose that a
representation of the local road network is available, and that
the upstream decision module identifies the priority lane to
which the ego-vehicle should potentially give way.

The idea of the virtual obstacle is to constantly suppose
that a hidden vehicle is located just at the edge of the
visibility boundary, and that this vehicle continues on the
road at the maximum speed allowed in the current context.
This represents the first vehicle that could reach the inter-
section and thus cross the path of the ego-vehicle – under
the assumption that this other vehicle respects the maximum
speed limit. Any other vehicle, with an initial position further
away from the intersection, or with a lower speed, will reach
the intersection and cross the ego-vehicle’s path later in time.

Consequently, to safely enter the crossing, the ego-vehicle
must ensure that it can pass before this virtual obstacle.
In this case, it means that even if a vehicle suddenly
appears, the ego-vehicle will have enough time to safely
evade the crossing. If this safety condition is not met, then
the ego-vehicle should plan to stop before the crossing. The
intersection will then be approached with a reduced speed
which guarantees that if a vehicle suddenly appears, the ego-
vehicle will be able to stop and avoid a collision.

Although this constraint may seem conservative, it should
be noted that the planning algorithm is reactive, meaning
that the computed trajectory is updated at regular time steps.
This way, when the ego-vehicle approaches the intersection,
in most cases the visibility will increase until it becomes long
enough to allow the ego-vehicle to cross, as will be shown
in Section IV

C. Virtual Obstacle construction

To integrate this virtual obstacle into the motion planning
algorithm, a predicted trajectory for this obstacle must be
defined over the time horizon T .

First, the initial position XV O of the virtual obstacle
is determined by computing the intersection between the
visibility boundary and the priority lane, both given as a
set of segments. Since the virtual obstacle is supposed to
be completely hidden, the position XV O corresponds to the
front of the vehicle. Therefore, the polygonal representation
of the virtual obstacle computed at position XV O must be
designed accordingly.

Then, the trajectory can be extrapolated by propagating
XV O in the road network at the determined speed vV O.
The distance s crossed by a vehicle in a time t is given
by Equation (1), when assuming a constant speed vV O.

s(t) =

∫ t

0

v(u)du =

∫ t

0

vV Odu = vV O × t (1)

This equation can then be used to compute the position
of the virtual obstacle at each time ti (corresponding to
the discretization of the time horizon T used in the motion
planning algorithm), by computing the point Xi

V O located at
the curvilinear distance s(ti) = vV O × ti from XV O when
following its lane in the road network.

As explained before, the ego-vehicle can only pass before
the virtual obstacle. This constraint is represented by consid-
ering that once the virtual obstacle has reached the position
Xi

V O at time ti, this position remains occupied from ti to
the end of the time horizon T . Since the motion planning
algorithm will check for overlaps between the expected
position of the ego-vehicle and the virtual obstacle at each
time ti, the polygonal representation of the virtual obstacle
at time ti is defined such that it covers all the positions
Xj

V O ∀j ≤ i, j ≥ 0.
This representation of the virtual obstacle is interesting

because, thanks to its geometrical representation, it can be
used in any situation with a limited visibility, independently
of the shape of the intersection or the local maximum speed.
The representation can also be directly processed by the
planning algorithm as an extra obstacle, which is added to the
list of real obstacles, such that all constraints are considered
at the same time. Finally, the required visibility range to be
able to cross the intersection is implicitly determined by the
planning algorithm, which checks if the planned trajectory
can pass before the Virtual Obstacle or not, by taking into
account all the other constraints, such as the initial speed,
limited accelerations and other vehicles.

Compared to [7], our approach implicitly allows the EV
to cross without computing explicit maximum speeds or
distances to the conflict zones. Our polygonal representation
also seems simpler to implement than the one used by [8],
since we can use a simple rectangle to represent the obstacle
at each position Xi

V O.



(a) t = 6.6 s (b) t = 9.2 s (c) t = 11.6 s (d) t = 14.6 s

Fig. 4: Evolution of the visibility and the virtual obstacle (blue vertical rectangle) generated in Scenario 1. The trajectory
planned for the ego-vehicle (red on the left) is represented with a color ramp, where low speeds are represented in blue and
high speeds in red.

IV. SIMULATION RESULTS

Simulations integrating this virtual obstacle concept have
been conducted to show its efficiency in various low-
visibility urban situations. In these situations, the virtual
obstacle is generated and provided to the motion planning
algorithm, which is not specifically adapted for these situa-
tions.

A. Simulation setup

In the proposed simulations, the ego-vehicle has to fol-
low the mission path, represented in green in the different
following illustrations. A 360◦ visibility with a 100m range
is assumed. Occluding obstacles, such as buildings or big
parked vehicles, are represented in the scenarios as red
polygons, such that the visibility boundary around the ego-
vehicle can be computed by raycasting from its position. The
priority lane is manually defined as a predefined set of points
on an existing lane. Automatically inferring the priority rules
at an upcoming intersection should be carried out by the
upstream decision module, which is out of the scope of this
paper and therefore not considered here.

The algorithm is implemented on MATLAB/Simulink. In
these simulations, the ego-vehicle is assumed to perfectly
follow the trajectory provided by the planning algorithm.
No vehicle model or controllers are implemented in order
to study only the results of the planning algorithm. The
time horizon T used in the planning algorithm is 5 s. The
comfort deceleration bound is defined at −2m s−2, and the
maximal bound at −10m s−2. The maximum speed for these
simulations is set to 10m s−1. The shape of the roads is
designed to be similar to real-world situations.

This work does not focus on computation time since the
goal is to increase safety. In the proposed scenarios, only one
virtual obstacle is generated and follows one specific path,
which requires low processing times.

B. Scenario 1: Intersection without a real moving obstacle

In this first scenario, we consider a four-branches intersec-
tion with buildings limiting the view in each corner. The ego-
vehicle is alone in the scenario, without a real obstacle, in
order to assess the impacts of the virtual obstacle generation
on its behavior. The resulting trajectory planned for the
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EV is presented at different times in Figure 4. The EV is
seen to adapt its speed profile smoothly as it approaches
the intersection since it observes the presence of a virtual
obstacle on the priority lane, represented in purple. After the
progressive deceleration, which ensures the safety of the EV
for any unseen vehicles beyond the visibility, the EV starts
gradually accelerating once it gains enough visibility into the
priority lane.

Since the position of the building directly impacts the
visibility, which is a primary factor affecting the speed profile
of the ego-vehicle, multiple simulations are done varying its
position. The building is placed at different distances from
the intersection to illustrate the effects of the visibility on
the ego-vehicle’s behavior. The resulting speed profiles are
shown in Figure 5. It can be observed that, the further away
then building is from the intersection, the lesser time it takes
for the EV to cross the intersection. Since the visibility
into the priority lane improves quickly when the building
is far from the intersection, the EV crosses without being
overcautious.

C. Scenario 2: Intersection with a real moving obstacle

A real moving vehicle is simulated in this scenario cor-
responding to a real life situation, to show the interest of
the virtual obstacle. This vehicle is supposed to travel at
maximum lane speed, and is placed in the priority lane such
that both the EV and the real obstacle reach the intersection
at the same time if they drive at a constant speed. The real
obstacle is hidden by the building and can’t be detected
before a certain time. Therefore, if the EV keeps its initial
speed, it will be already close to the intersection when the
real obstacle is perceived. This should cause a sharp decel-
eration and thus extreme discomfort to avoid the collision,
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Scenario 2

Fig. 7: Virtual Obstacle illustration at a roundabout (Sce-
nario 3)

and even potential safety issues depending on the braking
capabilities. With the integration of the virtual obstacle, the
ego-vehicle should be able to anticipate the presence of a
dynamic obstacle, thus gradually slowing down. Therefore,
when the real obstacle is detected, the speed of the EV is
consistent with a safe and comfortable braking.

The simulation is carried out for this scenario and the
results are seen in Figure 6. As expected, without consid-
ering the virtual obstacle, a late and strong deceleration is
produced. With the consideration of the virtual obstacle,
the ego-vehicle starts decelerating earlier, stays within the
lower limit of comfort deceleration, regaining the maximum
velocity quicker as well.

D. Scenario 3: Roundabout scenario

This scenario examines the behaviour of EV at the round-
about, more commonly seen in European roads. Here, the
visibility of the EV is limited by an obstacle, like a bush, just
before entering into the roundabout, and by another obstacle
close to the priority lane. A real obstacle is also added such
that it will conflict with the ego-vehicle.

As seen in Figure 7, the shape of the virtual obstacle is
designed to have a curvature similar to that of the lane. Its
length is defined to cover all the positions of the obstacle
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Scenario 3

Fig. 9: Virtual Obstacle at a merging situation (Scenario 4)

in the time horizon, with respect to the maximum speed
assumed in the curve given by Equation (2). alat represents
the assumed comfort lateral acceleration, and κ represents
the curvature of the outer ring of the roundabout.

vmax =

√
alat
|κ|

(2)

Therefore, the length of the virtual obstacle is given by
Equation (3).

lV O = T × vmax (3)

If multiple intersection points are detected, the closest one
from the mission path is chosen and the virtual obstacle is
set to begin from this point. The EV can be seen to gradually
advance in its path until it gains better visibility and finally
accelerates again when it gains complete visibility of the lane
and notices that any moving obstacle can be evaded with a
safe distance between them.

Figure 8 presents the resulting speed and acceleration
profiles. As can be seen, when the EV does not consider the
virtual obstacle, it accelerates before entering the roundabout,
and then applies a strong braking when the real obstacle
is detected. As expected, when the virtual obstacle is con-
sidered, the speed is reduced in advance in a comfortable
manner, leading to a safe approach of the intersection.

E. Scenario 4: Merging scenario

In this scenario, the EV is set to merge with limited
visibility, as shown in Figure 9. Here again, a real obstacle
is introduced, and the scenario is simulated with and without
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considering the virtual obstacle. Figure 10 presents the
resulting speed and acceleration profiles.

Without considering the virtual obstacle, the real obstacle
is detected very late, thus the acceleration profile can be
seen to reach deceleration values very close to the maximal
bound. When the virtual obstacle is considered, the comfort
deceleration is steadily maintained until the real obstacles
has passed and enough visibility is obtained.

F. Limitations

Although we have a safe approach with the virtual obstacle
principle successfully addressing multiple urban scenarios
within a given testing framework, this approach has some
limitations.

First, by assuming that the moving obstacle travels in
a given direction at a set maximum speed, any intention
uncertainty has been ignored at the intersection. The unseen
vehicle on the right lane does not necessarily have to travel
straight through the intersection as seen before, it can take
a left or a right turn. Since this is assumed to be a non-
signalized intersection, it does not only increase the collision
probability but also complicates the decision for the EV. The
approach to solving the intentional uncertainty could be by
using methods like Kalman filter derivatives, to gain a more
comprehensive picture at intersections.

For the concept of virtual obstacle to be successfully
implemented, it demands a previous knowledge of the lanes
and thus it could face limits on unknown terrain where
mapping hasn’t been done yet. Another major concern is the
case where the visibility would be severely limited, leading
to a complete stop for the EV. Very large occluding obstacles
and vehicles parked very close to intersections are commonly
seen in dense urban areas, which block the visibility onto the
priority lane and lead to a dead stop for the EV. Since the EV
cannot move any further, it cannot have more visibility on the
priority lane, and consequently will remain blocked at that
position. A similar behavior could be observed with a long
platoon of vehicles passing through the right lane, and the
EV eventually slows down until it comes to a stop, not being
able to gain any more visibility. These dead-end cases could
be approached by probabilistic or data-driven approaches,
or by a hybrid approach which could be activated in these
conflict zones.

A strategy to increase the field of view by safely orienting
the ego-vehicle in a way to maximize visibility was seen
in [10]. Model Predictive Control could be implemented to
recover from a blind spot and a receding horizon. And if
the autonomous vehicle does not have enough information
to take a decision to advance, even after integrating these
alternative approaches, the back-up option could be to return
the control to the human driver.

V. CONCLUSION

In this paper, we presented the idea of a virtual obstacle
to address the limited visibility intersections and similar
scenarios ensuring a safe approach. The consideration of
virtual obstacle clearly improve the ego-vehicle’s reaction to
any unseen incoming obstacles. Test cases where collision
is imminent or an emergency stop is to be employed were
improved when the virtual obstacle was considered, by
decelerating in an anticipated and comfortable fashion. A
smoother velocity profile was seen, thus enhancing comfort
by staying within the recommended limits. The anticipation
of the presence of a real obstacle, and the use of an extended
virtual obstacle in order to account for any initial position
and velocity of a potentially hidden vehicle, result in a safe
and comfortable trajectory at the limited visibility zones.

REFERENCES

[1] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time
motion planning methods for autonomous on-road driving: State-of-
the-art and future research directions,” Transportation Research Part
C: Emerging Technologies, vol. 60, pp. 416–442, 2015.

[2] S. Hallerbach, Y. Xia, U. Eberle, and F. Koester, “Simulation-based
identification of critical scenarios for cooperative and automated
vehicles,” SAE International Journal of Connected and Automated
Vehicles, vol. 1, no. 2018-01-1066, pp. 93–106, 2018.

[3] M.-Y. Yu, R. Vasudevan, and M. Johnson-Roberson, “Occlusion-aware
risk assessment for autonomous driving in urban environments,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 2235–2241, 2019.

[4] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 2034–2039.

[5] M. Lee, K. Jo, and M. Sunwoo, “Collision risk assessment for possible
collision vehicle in occluded area based on precise map,” in 2017 IEEE
20th International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2017, pp. 1–6.

[6] S. G. McGill, G. Rosman, T. Ort, A. Pierson, I. Gilitschenski, B. Araki,
L. Fletcher, S. Karaman, D. Rus, and J. J. Leonard, “Probabilistic
risk metrics for navigating occluded intersections,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 4322–4329, 2019.

[7] M. Naumann, H. Konigshof, M. Lauer, and C. Stiller, “Safe but not
overcautious motion planning under occlusions and limited sensor
range,” in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2019, pp. 140–145.

[8] P. F. Orzechowski, A. Meyer, and M. Lauer, “Tackling occlusions
& limited sensor range with set-based safety verification,” in 2018
21st International Conference on Intelligent Transportation Systems
(ITSC). IEEE, 2018, pp. 1729–1736.

[9] T. Duhautbout, R. Talj, V. Cherfaoui, F. Aioun, and F. Guillemard,
“Generic trajectory planning algorithm for urban autonomous driving,”
in 2021 20th International Conference on Advanced Robotics (ICAR),
2021, pp. 607–612.

[10] H. Andersen, W. Schwarting, F. Naser, Y. H. Eng, M. H. Ang, D. Rus,
and J. Alonso-Mora, “Trajectory optimization for autonomous over-
taking with visibility maximization,” in 2017 IEEE 20th International
Conference on Intelligent Transportation Systems (ITSC). IEEE,
2017, pp. 1–8.


