
HAL Id: hal-03872822
https://hal.science/hal-03872822

Submitted on 25 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Speed Planning in the Path-Time Space for
Urban Autonomous Driving

Thibaud Duhautbout, Reine Talj, Véronique Cherfaoui, François Aioun,
Franck Guillemard

To cite this version:
Thibaud Duhautbout, Reine Talj, Véronique Cherfaoui, François Aioun, Franck Guillemard. Efficient
Speed Planning in the Path-Time Space for Urban Autonomous Driving. 25th IEEE International
Conference on Intelligent Transportation Systems (ITSC 2022), Oct 2022, Macau, China. pp.1268-
1274, �10.1109/ITSC55140.2022.9921820�. �hal-03872822�

https://hal.science/hal-03872822
https://hal.archives-ouvertes.fr


Efficient Speed Planning in the Path-Time Space for
Urban Autonomous Driving

Thibaud Duhautbout1,2, Reine Talj1, Véronique Cherfaoui1, François Aioun2, Franck Guillemard2

Abstract— In this article, an algorithmic speed planning
method for an autonomous vehicle dealing with moving ob-
stacles is presented. Using the path-time space to represent
collision zones with other vehicles, algorithms are proposed to
pass before and after, while ensuring the respect of safety dis-
tances. Simulation results are proposed to show the generated
speed profiles in common driving scenarios.

I. INTRODUCTION

Autonomous driving for passenger vehicles is still an
ongoing topic in public and private research today. Advanced
driving assistance systems become more and more available
in the cars, but autonomous functions are rare and usually
limited to a few situations, such as highways or traffic jams.
The urban environment is still a challenge, due to its highly
dynamic nature which requires a constant adaptation to the
evolution of the scene. Defining an appropriate speed profile
is thus an important task to realize to enable self driving on
urban roads. In this article, we present a new algorithmic
speed planning method, used to compute efficient and safe
predictive speed profiles on predefined paths, adjusted to
the other actors that cross the way of the ego-vehicle. This
algorithm relies on the path-time diagram to check and adapt
the candidate trajectories in order to avoid potential collisions
and ensure safety margins.

The remainder of the paper is organized as follows.
Section II reviews some existing works about speed planning.
Section III presents the path-time space and the structure
used by our algorithm to represent the interactions with
the other actors of the scene, and Section IV details the
algorithm used to compute the speed profile. In Section V,
we provide some simulation results to show the advantages
of the proposed method. Finally, Section VI will draw a
conclusion and point out some future works.

II. RELATED WORKS

Many works have addressed the problem of motion plan-
ning in the literature, to compute the right trajectory for
a vehicle or more generally a mobile robot [1]. Trajectory
planning can be done either by combined optimization of
longitudinal and lateral motion, or by separated path and
speed planning. While combined motion planning and path
planning have been widely studied, we find that speed

1Université de technologie de Compiègne, CNRS, Heudiasyc (Heuristics
and Diagnosis of Complex Systems), CS 60 319 - 60 203 Compiègne Cedex
(name.surname@hds.utc.fr)

2Stellantis, Centre Technique de Vélizy, Route de Gisy, 78140 Vélizy-
Villacoublay (name.surname@stellantis.com)

This work was realized under cooperation contract between Stellantis and
Heudiasyc laboratory.

planning alone has received less attention. However, it is im-
portant for an autonomous vehicle to properly adapt its speed
to the situation, more so in a dynamic urban environment.

In [2], a combined optimization approach is used to per-
form trajectory planning in an urban scenario. This method
consists in optimizing an objective cost function under
constraints, such that the resulting trajectory is compati-
ble with the vehicle’s physical constraints, and collisions
are avoided. This requests a heavy optimization framework
which might not be adapted to a high frequency replanning.
Other combined approaches use a graph representation. In
[3], state lattices are used to directly generate a collision-
free trajectory from a spatiotemporal graph. This method
suffers from rigidity due to the fixed discretization of the
lattice. [4] integrate speed and acceleration in the lattice
to provide more alternatives, but the search algorithm is
implemented on GPU to provide acceptable planning times.
To improve flexibility, the authors of [5] use a spatiotemporal
RRT* algorithm to find a coarse valid trajectory, which is
then refined by optimization. However, finding an optimal
trajectory can make it more difficult to integrate behavior-
based rules such as passing before or after an obstacle.

Regarding the path-velocity decomposition approaches,
[6] introduces a hybrid trajectory planner for static environ-
ment, in which the speed is optimized along a previously
generated path to minimize the travel time under physical
and comfort constraints. In [7], a speed smoothing algorithm
is presented to generate a time-optimal speed profile along a
predefined path with position-based speed constraints. Both
of these methods do not consider dynamic obstacles. In
[8], speed planning is realized with a MPC approach, and
dynamic obstacles are considered by a constraint in the
optimization problem. In [9], a motion planning approach
is proposed which handles dynamic obstacles by applying
a different strategy depending on the orientation of the
obstacle. In the case that the obstacle moves perpendicularly
to the ego-vehicle, the maximum speed is iteratively reduced
until a valid trajectory can be found. However, increasing the
acceleration to pass before a vehicle is not presented.

In [10], the coordination space is used to plan speed
profiles for multiple vehicles at an intersection to avoid
collisions. This representation is interesting but its dimension
is linked to the number of considered vehicles, which makes
it quickly complex. In [11], trajectories are represented in a
path-time diagram, on which spatio-temporal constraints for
the vehicles are represented. This representation is interesting
but in this case, it was just used to visually check the safety
of the trajectory. In [12], a safety corridor is defined in



Fig. 1: Illustration of the path of the EV and of two
other vehicles on the left with their predicted positions, and
associated collision zones on the right.

this space so that the trajectory can be optimized inside for
highway driving. In [13], similar constraints are represented
in this space and a spatiotemporal A* planning algorithm is
used to compute trajectories with respect to these constraints.
In the present work, this path-time space is used to represent
constraints linked to other dynamic actors, frequently seen
in urban situations. Our main contribution is to propose a
speed planning algorithm to adjust the speed based on this
representation capable to generate efficient and safe speed
profiles for the ego-vehicle.

III. THE PATH-TIME SPACE
A. Path-Time Representation

The path-time diagram, illustrated in Figure 1, is used to
represent the interactions between the ego-vehicle (EV) and
the other dynamic actors of the scene. The horizontal axis
of this diagram corresponds to the position s of EV along
a previously computed path on which we want to build an
appropriate speed profile. The vertical axis represents the
time in the future. By convention, when running the planning
algorithm, the EV is supposed to be located at (s = 0, t = 0).
We chose to put the position on the horizontal axis so that
the evolution of the EV along the path can be visualized from
left to right. A trajectory for the EV can thus be represented
in this path-time diagram by plotting the t(s) function, which
is the s(t) function mirrored by the s = t line.

In this representation, if we note α(s) the angle of the
tangent at the trajectory with the horizontal axis at position
s, then the speed of the EV is given by v(s) = 1/ tanα(s).
Indeed, because the trajectory is given by t(s), tanα(s) =
dt/ds(s) = 1/v(s), hence the result. A null speed will be
represented by a vertical tangent, and a high speed will be
represented by a tangent close to the horizontal axis.

Let us denote Vk another vehicle or actor of the scene,
for which a motion prediction is available. If the predicted
trajectory for Vk crosses the path of the EV, it is then possible
to deduce a space-time area (the collision zone) that the EV
must not cross to avoid the collision. This area corresponds to
the set CZVk

= {(sCZ , tCZ)} such that if the EV is at the
space-time coordinates (s, t) ∈ CZVk

, then it will collide
with Vk. Figure 1 represents the path of the EV and two
other vehicles, and the associated collision zones. It should

be noted that this set is not necessarily connected and may
be composed of multiple connected subsets, depending on
the paths of the EV and Vk. In this case, all subsets of the
collision zone must be avoided.

B. Collision Matrix Construction

In theory, the collision zones are continuous areas. To inte-
grate the speed planning algorithm with our representations
of the path and predictions for the other vehicles, we use
a discretization of the path-time diagram to represent the
collision zones in what we call the collision matrix.

Let C = {Pi, i ∈ {1, . . . , N}} be a path computed for
the EV, composed of N representative 2D points Pi, and
SC = {si, i ∈ {1, . . . , N}} the curvilinear abscissa asso-
ciated with this path C. Let V be a set of K predictions
PVk

=
{
P ′j , j ∈ {1, . . . ,M}

}
(k ∈ {1, . . . ,K}) for the

dynamic actors of the scenes, and T = {tj , j ∈ {1, . . . ,M}}
the associated time discretization, which is supposed to be
regular with a time step δt. By convention, s1 = 0 in the EV
path and t1 = 0 in the time discretization.

A polygon is associated to each position Pi of the EV
and P ′j of Vk, representing their global shape and oriented
accordingly. An intersection-checking function is used to
determine if these polygons intersect or not. In the following,
when referring to the intersection between points Pi and P ′j ,
we mean the intersection between their associated polygons.

The collision matrix CM is defined by an N ×M matrix
of integers, indexed starting from 1, where{

CM(i, j) = 0 if [si, si+1]× [tj , tj+1] is free
CM(i, j) = Λ if not. (1)

Λ corresponds to a value identifying the connected collision
zone in the collision matrix. [si, si+1]× [tj , tj+1] represents
the interval on the path of the EV between positions si and
si+1 at time between tj and tj+1, and corresponds to a
rectangle in the path-time diagram. This interval is said to
be free if it can be traveled by the EV without colliding
with any other vehicle. Because each value of the collision
matrix corresponds to a rectangle, the collision matrix can
be represented by a grid in the path-time plane, as proposed
by Figure 1.

If an intersection is found between points Pi of the EV
and P ′j for Vk, then this means that the position of the EV
at position si intersects that of Vk at time tj . Due to the
discretization, at the border of the collision zone, there may
be an intersection between Pi and P ′j , but not between Pi−1
and P ′j . In this case, you only can deduce that the collision
occurs between si−1 and si, and lasts between si and si+1.
The same reasoning holds with respect to time: there may
not be a collision between Pi and P ′j−1, and you can only
deduce that the collision occurs between tj−1 and tj and
lasts between tj and tj+1. The representation can naturally
handle letting a safe time at the front of the other vehicles.
Here, if the collision occurs between tj−1 and tj , then given
a safety time tsafe, the EV must avoid the current position
from tj−1− tsafe to tj . To map tj−1− tsafe in the temporal



Algorithm 1: Collision Matrix computation
µ← btsafe/δtc+ 1 ;
for i← 1 to N do

// For each point Pi of the EV path
for k ← 1 to K do

// For each prediction PVk

for j ← 1 to M do
// For each point P ′j of PVk

if Pi intersects P ′j of prediction PVk then
for a ∈ {i− 1, i} do

for b ∈ {j − 1− µ, . . . , j} do
CM(a, b)← −1 ;

discretization, it can be noted that the number of steps µ
required to fully cover the time tsafe is given by :

µ =

⌊
tsafe
δt

⌋
+ 1

Therefore, if a collision is found between Pi and P ′j , the
interval I = [si−1, si+1] × [tj−1−µ, tj+1] must be marked
not free. This corresponds to the values CM(a, b) such that
a ∈ {i− 1, i} and b ∈ {j − 1− µ, . . . , j}.

Algorithm 1 gives a naive approach to compute the
collision matrix. The processing time of building the CM
matrix is bounded by K × N × M polygon intersection
checks at most. This can be accelerated by using geometric
filters or spatial indexing, but for the sake of clarity, these
details are not presented here. Further information on this
topic can be found in [14]. Checks for valid indices values
are not presented either, but a proper implementation should
consider these edge cases.

It can be noted that the algorithm fills the CM matrix with
-1 values when an intersection is found. To deduce the Λ
values presented in Equation 1, a clustering algorithm must
be applied to give a unique value to each connected zone in
the matrix. This can be done for example by defining a value
Λ1 to replace a -1 in a cell, and by recursively propagating
this value to all neighbour cells. Then, a new value Λ2 is
defined and applied to a remaining cell with a -1 value, until
all -1 values have been replaced.

The main advantage of this representation is that, because
it is based on the path, it is indifferent to the executed tra-
jectory. Checking a candidate trajectory can thus be realized
efficiently with the path-time diagram. It should also be noted
that, because a motion prediction for the dynamic actors
is used, their global motion is considered in the collision
matrix. Hence, if the dynamic actors have lateral speed or
a strange behavior, or if they cross the path of the EV in a
non-perpendicular fashion, this will be accounted for in the
collision matrix. The definition of this prediction is out of
the scope of this paper, relevant information can be found
in [15].

IV. SPEED PLANNING ALGORITHM
The aim of the following speed planning algorithm is to

find a valid trajectory, i.e. one which avoids crossing the

collision zones in the collision matrix. The algorithm first
generates a comfortable trajectory without considering the
collision zones, and then checks its validity with respect
to the collision matrix. If the trajectory is not valid, it is
adjusted to avoid the collisions. Two options can be taken to
adjust a trajectory: either pass before or pass after another
dynamic actor. In the path-time space, passing before means
that the curve of the trajectory is below the collision zone,
and passing after means the curve is above the collision
zone. Both options are explored by the algorithm, as will
be described by the following sections.

A. Definitions and notations

The following algorithms will all refer to the path C and its
associated curvilinear abscissa SC as defined in Section III.

A trajectory T is defined as position s, time τ and speed
v values:

T = {Xi = (si, τi, vi) , i ∈ {1, . . . , N}} (2)

where si are the elements of SC , and where the points Xi are
ordered by time, such that τi+1 > τi. It it worth noting that
the trajectory can exceed the time horizon of the prediction
of the moving obstacles, meaning that only the points such
that τi ≤ tM will be considered in the checking algorithm.

For the path C, a set Vmax of N values is provided, which
holds the maximum speed allowed on the corresponding
points of C. Acceleration and deceleration bounds are given
by a comfortable and a maximum value: [acomf , amax] for
the acceleration and [dcomf , dmax] for the deceleration. The
deceleration values are positive but should be interpreted as
reducing the speed.

B. Trajectory checking

The function CheckTrajectory(T , CM ) checks the validity
of T with respect to CM .

In order to ensure the safety time tsafe at the front of the
ego-vehicle, the trajectory of the virtual point located with
the required advance is defined by:

Tav =
{
X̄i = (si + tsafe · vi, τi, vi) , i ∈ {1, . . . , N}

}
(3)

To determine if the trajectory is safe, the algorithm must
check if the space between the two curves of these trajec-
tories overlaps with a collision zone in the collision matrix.
The points are processed in order, such that if a collision
zone is crossed, it is necessarily the first encountered by
the EV. If the proposed trajectory is not valid, the function
returns the Λ value of the first collision zone crossed in
CM . In the other case, the function returns the value -1.
In sections IV-C and IV-D, it is considered that the initial
trajectory T is invalid with respect to the collision zone λ
(directly referred to as λ), and the algorithms used to adjust
the trajectories are presented. It should be noted here that
the algorithms are presented on the whole trajectory with
only one collision zone, but could be applied only on small
portions of the SC axis to be used with multiple collision
zones at different positions on the path.



Algorithm 2: Pass-before λ trajectory computation
// Check for the maximal acceleration
T1← SmoothTrajectory(T , Vmax, amax) ;
if CheckTrajectory(T1, CM ) = λ then

return no solution
// There is a solution, find the minimal

acceleration value
a− ← acomf ; // lower bound
a+ ← amax ; // upper bound
while a+ − a− ≥ εa do

a←
(
a+ + a−

)
/2 ; // middle value

T2← SmoothTrajectory(T , Vmax, a) ;
if CheckTrajectory(T2, CM ) = λ then

a− ← a ; // increase acceleration
else

a+ ← a ; // decrease acceleration
T1← T2 ; // save the valid result

return T1

C. Pass-before trajectory

Algorithm 2 presents the procedure to compute the pass-
before trajectory with respect to λ, with a result illustrated
on Figure 2. It is assumed that the function SmoothTrajec-
tory(T ,Vmax,a) generates a trajectory with a smoothed speed
profile on the same s values as T , below the maximum speed
Vmax and with acceleration a. The deceleration bounds are
fixed so they do not appear in the arguments.

First, the algorithm checks if the maximal acceleration is
enough to pass before λ. If not, this means that it is not
possible to find a solution, thus no trajectory is returned,
and only the pass-after trajectory will be considered. If a
trajectory T1 is found, the acceleration value is then adjusted
by dichotomy in the [acomf , amax] interval to efficiently find
the minimum value giving a valid result. The threshold εa
defines the end of the dichotomy process. In the algorithm,
variable T1 acts as a buffer variable so that when the
dichotomy is finished, the last valid trajectory is directly
available and can be returned without computing it again.

This acceleration adjustment can be useful in situations
in which the EV needs to accelerate to evade a crossing, or
to merge in the traffic when starting from a lower speed.
The maximum speed value is not modified in this algorithm,
so that the legal speed profile is not exceeded. Figure 2
illustrates such a situation, where the EV starts at a low
speed, and an other vehicle is expected to cross its path in
about 4 seconds. As can be seen, the initial trajectory crosses
λ, so the pass-before trajectory increases the acceleration to
avoid it and pass below.

D. Pass-after trajectory

When the EV needs to slow down to pass after another
actor (λ), multiple strategies can be taken. A first way could
be to start slowing down at the last moment to pass after
λ. Another way could be to immediately slow down, until
the re-acceleration trajectory can safely pass after λ. A
last way could be also to immediately slow down but to
a certain point, keep the speed at this lower level and then

Fig. 2: Illustration of the pass-before trajectory computed in
Algorithm 2

Algorithm 3: Pass-after λ trajectory computation
// Compute the immediate braking trajectory

which avoids λ
T1← BrakingTrajectory(T , CM , λ, dcomf , dmax) ;
if CheckTrajectory(T1, CM ) = λ then

// λ cannot be avoided
return T1 ;

for i← 1 to N do
// Reduce the maximum speed from i

Ṽmax ← T1[v] ; // speed values from T1

Ṽmax(i+1:N)←min
(
Ṽmax(i+1:N), Ṽmax(i)

)
// 1

T2← SmoothTrajectory(T1, Ṽmax, acomf ) ;
if CheckTrajectory(T2, CM ) 6= λ then

// T2 is the first valid trajectory
is ← i ;
exit for loop ;

for i← is + 1 to N + 1 do
// Reset the maximum speed from i

Ṽmax ← T2[v] ; // speed values from T2

Ṽmax(i:N)← Vmax(i:N);
T3← SmoothTrajectory(T2, Ṽmax, acomf ) ;
if CheckTrajectory(T3, CM ) 6= λ then

return T3 ;

re-accelerate to reach the reference speed while passing after
λ. The last strategy is the one which has the lowest impact
on longitudinal acceleration. This approach is then used to
define the pass-after function, presented on Algorithm 3 and
illustrated on Figure 3.

First, the algorithm computes the minimum deceleration
value to apply immediately so that the EV is able to stop
before crossing λ. This is done by the function Braking-
Trajectory(T , CM , λ, dcomf , dmax), which uses the same
dichotomy principle as used in Algorithm 2 to generate
the new trajectory T1. If the braking trajectory crosses λ,
the deceleration is increased to brake stronger; if not, the
deceleration is reduced to preserve comfort. The obtained
trajectory must be checked in case it is not possible to avoid
crossing λ, even with the highest braking. In this situation,
given the dichotomy rules, T1 is an emergency braking
trajectory which is returned as a fallback strategy.

Then, the algorithm finds the first point of T1 from which

1Here, a:b = {a, . . . , b} with a and b integers. If a > b, a:b = ∅ and
the associated line in the algorithm does nothing.



Fig. 3: Representation of the different trajectories computed
in Algorithm 3

the speed can be kept constant. At each point i, a new
trajectory T2 is generated by using the SmoothTrajectory
function with the comfortable acceleration. A new maximum
speed vector is computed by copying the braking speed
values of T1 between 1 and i, and using the obtained speed
at i as an upper bound for the values Vmax on the remaining
points. The idea is to progressively increase the braking
duration until the reached speed allows to pass after λ. Such
a solution will be obtained at worst at the last iteration of
the loop, because it will generate the braking trajectory T1
which was checked valid. The first solution found will be
the trajectory which has the shortest braking time, and thus
which limits the most the speed loss.

Finally, the algorithm continues on the points to find the
index from which the initial maximum speed can be reset.
A solution can be found here because the trajectory T2 was
checked valid before, and at the last iteration when i=N+1,
we have T3 = T2, so T3 will be valid.

Figure 3 presents the different trajectories T1, T2 and
T3 computed by the algorithm on a particular case. In the
algorithm, the different loops are presented checking all
the points from the beginning for clarity, but they can be
improved by using a dichotomy over the indices.

It can be noted that this algorithm only considers one
collision zone λ. However, it is possible that when adjusting
the trajectory between the initial position of the vehicle and
λ, a second collision zone γ, located before λ on the SC
axis, gets crossed. Since the new trajectory is slower, this
means that the EV was able to pass before γ with its initial
trajectory. To keep passing before γ, the EV thus has to keep
its initial speed longer before starting to brake. Therefore,
Algorithm 3 can be adjusted to adapt the initial braking point
on the trajectory, until a solution is found to pass after λ
while passing before γ, as illustrated in Figure 4. As can be
seen, the adjusted trajectory follows the initial one for about
one second before starting to slow down, to make sure to
pass before γ. Depending on the distance between λ and γ
and on the braking parameters, it is not always possible to
pass between them. In this case, the algorithm defaults to
passing after γ.

E. Adaptation to multiple obstacles

As explained at the beginning of this section, the presented
algorithms adjust the speed to one particular collision zone,
but they can be applied on reduced parts of the path to

Fig. 4: Trajectory obtained when passing between two col-
lision zones

adapt to multiple collision zones. Indeed, although the pass-
after algorithm can account for another collision zone located
before the first one, it is not possible, for example, to pass
after one obstacle and then adjust the speed to pass before
another one. Let us consider two collision zones λ and γ,
such that λ is located before γ on the SC axis. Consider
also the initial trajectory T of the EV which crosses λ, and
the computed pass-after trajectory T1 which avoids λ but
crosses γ. If the presented algorithms are directly applied to
adjust T to γ from the beginning, the resulting trajectories
might cross λ again.

To make this possible, Algorithms 2 and 3 are used as
elementary functions operating on reduced portions of the
SC axis. In such a situation, the initial trajectory T should
be adjusted to the first collision zone λ. Once the adjusted
trajectory T ′ is computed, it is possible to find the first point
ip at which λ is completely passed, either on the position
or on the time axis. This point is then marked, and only the
remainder of the T ′ trajectory is checked. If another collision
zone γ is found, the trajectory T ′ is adjusted but only starting
from point ip. To account for multiple obstacles, the two
presented algorithms can be included in a recursive function,
and stacks can be used to keep trace of the different starting
points. This way, it is possible to remove the most recent
constraint if an adjustment is impossible to do.

V. SIMULATION RESULTS

In this section, we give some simulation results of the
integration of this speed planning method inside our local
planning method. We also propose a comparison with our
previous speed planning method presented in [16], later
referred as the “stop-point method”. In this method, each
position of the candidate trajectory for the EV is compared
with all predicted positions of the dynamic obstacles at the
same time. If an intersection is found, the previous position
on the EV’s trajectory is marked as a stop point. Then, a new
trajectory is generated and checked again, until the candidate
trajectory avoids all collisions.

We use a reactive planning algorithm, where the local
trajectory is composed of N = 100 points, and is recomputed
every 200 ms. There is no specific path planning here, the
EV follows a predefined path, so that the results focus on
speed planning. Speed and acceleration values used by the
smoothing algorithm are presented in Table I. The other
vehicles drive at the legal speed, and it is supposed that a



TABLE I: Acceleration and speed values used in the pre-
sented results

Comfort Maximum
Acceleration 1m s−2 3m s−2

Deceleration −2m s−2 −10m s−2

Legal speed NA 10m s−1

Fig. 5: Situations for the simulated scenarios

prediction of their motion for the next 5 seconds is available,
with a discretization time step δt = 0.1 s, leading to M = 51
points. The safety time to respect is tsafe = 1 s. The
algorithm is implemented within MATLAB/Simulink, used
in co-simulation with SCANeR Studio, a professional vehicle
simulator. A basic PI controller is used to determine the
accelerator pedal value, in order to track the speed profile de-
fined by the planning algorithm. The control loop is executed
every 40 ms. Figure 5 illustrates the situation considered
for these results, which is a four-branches crossing without
particular regulation, where the EV comes from the left
branch.

A. Scenario 1 : Yield to right

In the first scenario, one vehicle is coming from the bottom
branch. The vehicles are initially placed such that they collide
if the EV does not adapt its speed. Figure 6 presents the
resulting speed profile on this scenario. This shows that with
the proposed method, the EV anticipates more by starting to
slow down earlier, and stabilizes on a constant speed until the
other vehicle has left the path. When the maximum speeds
are reached again, the proposed method has an advance of
about 2.2 m compared to the previous one, so the maneuver
was quicker by 0.22 s. The minimum speed is higher and the
maximum speed is reached sooner, meaning that less braking
and acceleration are required.

B. Scenario 2 : Accelerate to cross before

In the second scenario, the EV is stopped before the
crossing, and one vehicle is coming from the bottom branch,
initially at a distance such that the EV can’t cross with
the comfort acceleration. Figure 7 show the resulting speed
profiles in this situation. This result shows that the proposed
acceleration adaptation makes the EV able to cross between
before the other vehicle, compared to the previous method
where it stops and passes after.

0 5 10 15 20 25 30 35
0

5

10

Time (s)

Sp
ee

d
(m

s−
1
)

Path-Time diagram Stop-Point

Fig. 6: Speed profiles obtained with one moving obstacle in
the first scenario.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

Time (s)

Sp
ee

d
(m

s−
1
)

Path-Time diagram Stop-Point

(a) Speed profiles

(b) Representation of the final trajectories in the path-time space

Fig. 7: Results of the simulation with two moving obstacles
in the second scenario

C. Scenario 3 : Adapt the speed to pass between

The third scenario uses a vehicle coming on the bottom
branch and a pedestrian crossing the right branch after the
crossing. The vehicle in the bottom lane is placed such that
the EV is able to safely pass before when the pedestrian is not
considered. Figure 8 gives the results of the execution of this
scenario. As shown, when using the path-time method, the
EV is able to find a valid trajectory passing before the vehicle
while slowing down to let the pedestrian cross. When using
the previous method, which does not consider this situation,
the EV stops before the crossing to let the vehicle pass.

D. Processing time analysis

Figure 9 presents the distribution of the processing times
for the proposed speed planning method, collected on a
2.70 GHz CPU during the execution of the algorithm. The
measured time encloses all the planning process, namely
path generation as a 5th degree polynomial curve, speed
constraints integration and speed adaptation to the obstacles
for one trajectory. Only the processing times when there
is at least one obstacle present in the collision matrix are
represented in the given distribution. In this implementation,
Algorithm 1 is used as presented in the paper without
particular optimization. The results show that the resulting
processing times are all below 20 ms with a median process-
ing time around 5 ms, which are already compatible with



0 5 10 15 20 25 30 35
0

5

10

Time (s)

Sp
ee

d
(m

s−
1
)

Path-Time diagram Stop-Point

(a) Speed profiles

(b) Representation of the final trajectories in the path-time space

Fig. 8: Results of the simulation in the third scenario

5 10 15

Scenario 3
Scenario 2
Scenario 1

Processing time (ms)

Fig. 9: Processing times distribution for the speed planning
function when at least one obstacle is present in the visibility
range of the vehicle

a real-time usage based on the control loop used in these
simulations. Based on these results, we believe that with
a dedicated implementation and appropriate optimization
for Algorithm 1, faster processing times will be achieved,
enabling the computation of several trajectories in the same
planning step.

VI. CONCLUSIONS AND FUTURE WORKS

This article presents an algorithmic speed planning method
for an autonomous vehicle, designed to handle moving
obstacles. This is done by using the space-time diagram to
represent spatio-temporal constraints on the path of the EV
and to check the validity of candidate trajectories. Algorithms
are proposed to generate trajectories to pass before or after
one or more moving obstacles, and simulation results show
that the obtained speed profiles are more efficient than with
our previous method, and less conservative in constrained
situations. Only interactions with other vehicles were pre-
sented here, but information from the infrastructure can also
be integrated. For example, connected traffic lights could be
represented as obstacles at a given position for a given time.
This way, the speed could also be adjusted to avoid stopping
if a traffic light can be passed by slowing down earlier.

Future works will focus on improving the robustness of
this representation. Indeed, due to the discretization of the
path-time space, the obstacles are over-estimated and can
occupy more or less cells in the collision matrix depending
on their position. This can lead to stability issues in the
consecutively planned trajectories. This method will also be
optimized to further evaluate its efficiency, and integrated in
a realistic driving simulator to evaluate closed-loop results
in an urban environment.

REFERENCES

[1] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time
motion planning methods for autonomous on-road driving: State-of-
the-art and future research directions,” Transportation Research Part
C: Emerging Technologies, vol. 60, pp. 416–442, Nov. 2015.

[2] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning
for Bertha - A local, continuous method,” in 2014 IEEE Intelligent
Vehicles Symposium Proceedings. MI, USA: IEEE, Jun. 2014, pp.
450–457.

[3] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast tra-
jectory planning in dynamic on-road driving scenarios,” in 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2009, pp. 1879–1884.

[4] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion
planning for autonomous driving with a conformal spatiotemporal
lattice,” in 2011 IEEE International Conference on Robotics and
Automation. IEEE, 2011, pp. 4889–4895.

[5] B. Li, Q. Kong, Y. Zhang, Z. Shao, Y. Wang, X. Peng, and D. Yan,
“On-road trajectory planning with spatio-temporal rrt* and always-
feasible quadratic program,” in 2020 IEEE 16th International Con-
ference on Automation Science and Engineering (CASE), 2020, pp.
942–947.

[6] Y. Zhang et al., “Hybrid trajectory planning for autonomous driving
in highly constrained environments,” IEEE Access, vol. 6, pp. 32 800–
32 819, 2018.

[7] A. Artuñedo, J. Villagra, and J. Godoy, “Jerk-limited time-optimal
speed planning for arbitrary paths,” IEEE Transactions on Intelligent
Transportation Systems, pp. 1–15, 2021.

[8] X. Qian, I. Navarro, A. de La Fortelle, and F. Moutarde, “Motion
planning for urban autonomous driving using bézier curves and
mpc,” in 2016 IEEE 19th International Conference on Intelligent
Transportation Systems (ITSC), 2016, pp. 826–833.

[9] A. Artuñedo, J. Villagra, and J. Godoy, “Real-time motion planning
approach for automated driving in urban environments,” IEEE Access,
vol. 7, pp. 180 039–180 053, 2019.

[10] X. Qian, J. Gregoire, F. Moutarde, and A. De La Fortelle, “Priority-
based coordination of autonomous and legacy vehicles at intersection,”
in 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC), 2014, pp. 1166–1171.

[11] Ö. Ş. Taş and C. Stiller, “Limited visibility and uncertainty aware
motion planning for automated driving,” in 2018 IEEE Intelligent
Vehicles Symposium (IV), 2018, pp. 1171–1178.

[12] W. Lim, S. Lee, M. Sunwoo, and K. Jo, “Hybrid trajectory planning for
autonomous driving in on-road dynamic scenarios,” IEEE Transactions
on Intelligent Transportation Systems, pp. 1–15, 2019.

[13] L. Wang, Z. Wu, J. Li, and C. Stiller, “Real-time safe stop trajectory
planning via multidimensional hybrid a*-algorithm,” in 2020 IEEE
23rd International Conference on Intelligent Transportation Systems
(ITSC), 2020, pp. 1–7.

[14] Y. Manolopoulos, Y. Theodoridis, and V. J. Tsotras, “Spatial Indexing
Techniques,” in Encyclopedia of Database Systems, L. Liu and M. T.
Özsu, Eds. New York, NY: Springer New York, 2014, pp. 1–7.

[15] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion pre-
diction and risk assessment for intelligent vehicles,” ROBOMECH
journal, vol. 1, no. 1, pp. 1–14, 2014.

[16] T. Duhautbout, R. Talj, V. Cherfaoui, F. Aioun, and F. Guillemard,
“Generic Trajectory Planning Algorithm for Urban Autonomous Driv-
ing,” in 2021 20th International Conference on Advanced Robotics
(ICAR). Ljubljana, Slovenia: IEEE, Dec. 2021, pp. 607–612.


