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Novel hybrid numerical simulation of the wave equation1

by combining physical and numerical representation2

theorems and a review of hybrid methodologies3

Chao Lyu1,2,3, Liang Zhao1, Yann Capdeville2
4
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of Sciences, 100029 Beijing, China6

2Laboratoire de Planétologie et Géodynamique de Nantes, CNRS, Université de Nantes7
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Key Points:9

• Hybrid wave numerical simulation methods of circumventing the heavy compu-10

tational cost in the global waveform tomography are reviewed.11

• The proposed hybrid method has the flexible local meshing and is highly accu-12

rate and memory efficient.13

• Only three physical quantities located exactly on the hybrid interface are required14

to construct the hybrid inputs.15
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Abstract16

We present a novel hybrid method to simulate wave propagation through remote regional17

models. By reviewing and refining the two main existing hybrid categories, the multi-18

ple point sources method and direct discrete differentiation method, containing five dis-19

tinct subcategories, the proposed hybrid method has the following three advantages. (i)20

The meshing of the local target model is completely independent of that of the global21

reference model. (ii) Only three physical quantities, i.e., the gradient ∇q, potential q,22

and second temporal derivative of the potential ∂ttq for the acoustic wave equation (trac-23

tion, displacement, and acceleration for the elastic scenario) are required to construct24

the hybrid inputs during the first global simulation. They are located exactly on the two-25

dimensional (2D) hybrid interface, which is highly accurate and memory efficient for three-26

dimensional (3D) hybrid numerical simulations. The required memory of hybrid inputs27

can be reduced fourfold if the very high polynomial degree spectral element method (SEM)28

is used for the 3D local hybrid simulation. (iii) An efficient artificial perfectly matched29

layer (PML) can be adopted naturally without any elements overlapping between the30

local and PML domains in the second hybrid simulation. We build on theoretical anal-31

ysis and 2D/3D numerical forward simulations based on the SEM to illustrate this new32

hybrid method and demonstrate its validity. The proposed hybrid method is promising33

for efficiently probing key 3D structures anywhere within the Earth using the so-called34

“box tomography.”35

1 Plain Language Summary36

The seismic structure of the Earth is multi-scale, yet capturing such a broad range37

of complex heterogeneities using the available global waveform tomography is still com-38

putationally prohibitive. It is important to lighten this computational burden by invert-39

ing only a small region, namely, the so-called box tomography. As the forward part of40

box tomography, an efficient implementation of a hybrid numerical simulation is crucial.41

After reviewing and analyzing the two main existing hybrid methods, including five dif-42

ferent subcategories, we propose a new hybrid method, which is highly accurate, mem-43

ory efficient, and promising for wide use in probing the key 3D structures anywhere within44

the Earth using the so-called “box tomography.45

2 Introduction46

Over the past three decades, with the development of effective computer clusters,47

efficient numerical methods, such as the finite difference method (FDM) and spectral el-48

ement method (SEM), improved full waveform inversion (FWI) techniques, and exten-49

–2–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Solid Earth

sive global deployment of stations, the imaging of Earth has achieved unprecedented ac-50

curacy (French & Romanowicz, 2015; Bozdag et al., 2016; Fichtner et al., 2018; Lei et51

al., 2020). Faster and more accurate calculations of the elastic wavefield within hetero-52

geneous media are key to developing and improving accurate imaging techniques rely-53

ing on full-waveform analysis (Tarantola, 1984; Pratt et al., 1998; Virieux & Operto, 2009;54

Capdeville & Mtivier, 2018; Tromp, 2019; Lyu, Capdeville, Al-Attar, & Zhao, 2021). Earths55

structure is multi-scale, yet capturing such a broad range of complex heterogeneities with56

seismic wave propagation across the observable frequency band (e.g., ≥ 1 s) requires thou-57

sands of global numerical simulations of seismic/acoustic wave equations, which are still58

computationally prohibitive. Therefore, it is important to lighten this computational bur-59

den to further increase the resolution and accuracy of imaging. Many research efforts60

have been devoted to speed up global wave simulations. For example, the real coupling61

“CSEM” method couples the SEM simulation with normal mode calculations (Capdeville62

et al., 2003). Another two-step approach is based on the physical domain decomposition,63

where wave propagation is first performed in the global reference model and the hybrid64

inputs are calculated and saved only once. Subsequently, they are imposed into the lo-65

cal target model as the equivalent virtual sources to perform the hybrid simulation (Wen66

& Helmberger, 1998; Bielak et al., 2003; Chevrot et al., 2004; Chen et al., 2005; L. Zhao67

et al., 2008; Monteiller et al., 2013; Masson et al., 2014; Tong, Chen, et al., 2014; M. Zhao68

et al., 2016; Lin et al., 2019; Leng et al., 2020; Pienkowska et al., 2021). Hereafter, we69

focus on such a two-step approach and refer to it as the “hybrid method” (the hybrid70

simulation between the global reference and local target models). It can be applied for71

imaging localized multi-scale heterogeneities in the shallow and deep Earth (Monteiller72

et al., 2015; Y. Wang et al., 2016; Masson & Romanowicz, 2017a, 2017b; Zhang et al.,73

2018; Beller et al., 2018; Clouzet et al., 2018; K. Wang, Yang, et al., 2021; K. Wang, Wang,74

et al., 2021), and it is referred to as the “box tomography” (Masson & Romanowicz, 2017a).75

Because almost all the forward and backward numerical simulations of wave propaga-76

tion are confined to the smallest computational volume, local high-frequency numerical77

simulations can be implemented without difficulty. Moreover, the specially selected spa-78

tial illumination from remote seismic events and/or stations facilitates higher-resolution79

imaging. Its principal difficulty results from unknown mediums in the external domain80

that mask the target structure. Masson and Romanowicz (2017b) demonstrated that an81

unbiased image can be inverted using box tomography if the initial background model82

is a homogenized true model (Capdeville et al., 2010) in a two-dimensional (2D) global83

acoustic model framework. These studies provided an important theoretical foundation84

for the practical applications of box tomography, initially demonstrating its promising85
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application prospects for probing key three-dimensional (3D) structures anywhere within86

the Earth.87

As the forward part of box tomography, an efficient implementation of hybrid nu-88

merical simulation is crucial. The first step of the global wave simulation in the hybrid89

wave simulation framework has gradually evolved from the approximated generalized ray90

theory (GRT) calculations (Wen & Helmberger, 1998; Chen et al., 2005; L. Zhao et al.,91

2008, 2014, 2015) to the direct solution method (DSM) (Kawai et al., 2006; Monteiller92

et al., 2013; Y. Wang et al., 2016), planar wave approximation frequencywavenumber (FK)93

(Zhu & Rivera, 2002; Tong, Chen, et al., 2014; Tong, Komatitsch, et al., 2014; Monteiller94

et al., 2020), AXISEM (Nissen-Meyer et al., 2014; Beller et al., 2018; Pienkowska et al.,95

2021; Monteiller et al., 2020), SPECFEM3D globe (Komatitsch et al., 2002; Clouzet et96

al., 2018), and AXISEM3D (Leng et al., 2019, 2020), owing to the large computation re-97

sources required for 3D high-frequency wave numerical simulations at the global scale.98

For the second step of the hybrid wave numerical simulation, a unifying theory was in-99

troduced in Masson et al. (2014), the representation theorem being their theoretical ba-100

sis (Wen & Helmberger, 1998; Masson et al., 2014; Lin et al., 2019). Existing hybrid-wave101

numerical simulation methods consist of two main categories. The first one explicitly ap-102

proximates the surface integral(s) in the physical representation theorem to build the103

physical hybrid inputs and is referred to as the “multiple point sources method” (Chevrot104

et al., 2004; Monteiller et al., 2013; Tong, Chen, et al., 2014; Tong, Komatitsch, et al.,105

2014; M. Zhao et al., 2016; Y. Wang et al., 2016; Lin et al., 2019). The second category106

constructs the numerical hybrid inputs using a spatial window function and the discrete107

wave equation based on the numerical representation theorem and is referred to as the108

“direct discrete differentiation method” (Bielak et al., 2003; Yoshimura et al., 2003; Mas-109

son et al., 2014; Masson & Romanowicz, 2017b, 2017a; Clouzet et al., 2018).110

In the research on hybrid wave numerical simulation methods, the following oper-111

ations are vital: in the first step, reducing the memory requirements of the hybrid in-112

puts in the global simulation; in the second step, accurately performing the hybrid nu-113

merical simulations completely independent of the first global simulation (e.g., the ir-114

relevant selections of spatial meshing and temporal steps) and increasing the computa-115

tion speed of the local hybrid numerical simulations. To the best of our knowledge, no116

previous hybrid method has combined the two main categories of hybrid simulation. The117

proposed “new” hybrid method inherits the advantages of both main hybrid methods118

and simultaneously eliminates their disadvantages. To save hybrid inputs, the memory119

requirements of the proposed hybrid method and memory-saving multiple point sources120

method are the same. To use the proposed method in the acoustic scenario, we must know121
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three incident physical quantities: the gradient, potential, and acceleration. Note that122

the acceleration term can be calculated using the stored potential term during the hy-123

brid simulation; therefore, it does not require storing. It has the advantage of being nat-124

urally combined with a perfectly matched layer (PML) for very heterogeneous media with-125

out a significant artificial error. The storage ratio between the new hybrid method and126

the direct discrete differentiation methods based on the numerical representation the-127

orem is approximately 2
N+1 (N : the polynomial degree in the SEM). Therefore, it is more128

suitable for the hybrid numerical simulations of wave propagation, particularly for an129

efficient very high polynomial degree SEM (Lyu et al., 2020).130

The remainder of this article is organized as follows. First, we illustrate the detailed131

expression of the fundamental representation theorem. Subsequently, two main categories132

of the hybrid simulation, including five different subcategories (Bielak et al., 2003; Mon-133

teiller et al., 2013; Masson et al., 2014; M. Zhao et al., 2016; Lin et al., 2019) are ana-134

lyzed, and the new hybrid method is proposed based on their combination. Thereafter,135

a series of 2D and 3D hybrid acoustic wave numerical simulations using SEM in homo-136

geneous and heterogeneous models demonstrate its validity. Finally, the discussion and137

conclusions are presented.138

3 Methodology139

In this section, we begin with the elastic and acoustic wave equations, and we briefly140

introduce the principles of the spectral element method and the associated representa-141

tion theorems. Subsequently, some nomenclature and the overall workflow of the hybrid142

simulation are introduced. Thereafter, we briefly analyze the widely used hybrid meth-143

ods, including two main categories and five subcategories, and summarize their respec-144

tive merits and limitations. Finally, the new hybrid method is proposed based on their145

combination.146

3.1 Elastic and Acoustic Wave Equation147

The propagation of seismic waves is governed by the equations of motion:148

ρü = ∇ · σ + f

σ = C : ε

ε =
1

2
[∇u + (∇u)T ], (1)

where u(x, t) is the displacement field vector, ρ(x) is the density, σ(x) is the stress ten-149

sor, ε(x) is the strain tensor, and f(x, t) are the body forces in the elastic domain Ω; u150

is subject to boundary conditions on ∂Ω (i.e., traction vanishes at the Earth’s surface).151

–5–
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In the acoustic scenario, considering an acoustic domain Ω, the velocity potential152

q is the solution of153

1

κ
q̈ = ∇ · u̇ + f

u̇ =
1

ρ
∇q, (2)

where κ(x) is the acoustic bulk modulus, ρ(x) is the (mass) density, u(x, t) is the dis-154

placement vector, and f(x, t) is a scalar source term. Generally, the acoustic medium155

is fully described using only two parameters: the density ρ(x) and the speed of sound156

V (x) such that κ(x) = ρ(x)V 2(x). Note that we only tested our proposed hybrid method157

in the acoustic scenario in the following numerical experiments.158

3.2 Principle of the Spectral Element Method159

The SEM is a finite-element type method. Rather than directly using the bound-160

ary conditions and equations of motion, it is based on an associated weak form by dot-161

ting the wave equation with an arbitrary test function w(x), integrating by parts over162

the model domain Ω, and imposing the associated boundary conditions. To numerically163

solve the weak form of the equation, we require a discrete approximation of the contin-164

uous problem. For the spatial discretization of the SEM, the 3D model domain Ω is spa-165

tially split into Ne non-overlapping spectral elements. For the acoustic wave equation,166

qe(x) =
∑
i,j,k=0,N+1Q

e
ijkw

e
ijk(x) (e = 1, · · · , Ne), weijk(x) is the i + j × (N + 1) +167

k×(N+1)2th test function in the eth spectral element, qe(x) is q(x) restricted to the168

eth element, the subscript N represents the polynomial degree of spectral element, and169

Qeijk is q(xeijk) where xeijk is the coordinate of the i+j×(N+1)+k×(N+1)2th Gauss–170

Lobatto–Legendre (GLL) point in the eth element. After the numerical integration based171

on the GLL points is applied to the weak form of the above acoustic wave equation (2),172

the following ordinary differential equation (ODE) is obtained:173

MQ̈ + KQ = F, (3)

where Q is the discrete potential vector, M is the global diagonal mass matrix, K is the174

global stiffness matrix, and F is the discrete source vector (Komatitsch & Tromp, 1999).175

Note that KQ is calculated using the tensor product.176

3.3 Theoretical Basis of Hybrid Simulation: Representation Theorem177

Hybrid methods are often based on the representation theorem (Aki & Richards,178

2002; Masson et al., 2014; M. Zhao et al., 2016; Lin et al., 2019). It quantitatively states179

a manner in which displacement u at a certain point x consists of three contributions180

because of the force f(x, t) throughout the closed V , as well as contributions owing to181

–6–
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the traction T(u,n) and the displacement u itself on the surface S = ∂V .182

un(x, t) =

∫ ∞
−∞

dτ

∫
V

fi(x
′, τ)Gni(x, t− τ ; x′, 0)dV (x′)

+

∫ ∞
−∞

dτ

∮
S

Ti(u(x′, τ),n)Gni(x, t− τ ; x′, 0)dS(x′)

−
∫ ∞
−∞

dτ

∮
S

ui(x
′, τ)CijklnjGnk,l(x, t− τ ; x′, 0)dS(x′), (4)

where Green’s tensor Gni(x, t; x
′, τ) denotes the nth direction component of the displace-183

ment at (x, t) owing to a unit point force at (x′, τ) in the ith direction, Ti = σijnj =184

Cijkluk,lnj is the ith component of the traction on S, nj is the jth component of the nor-185

mal vector n on S, Cijkl is the fourth-order elasticity tensor, and the notation Gnk,l rep-186

resents ∂Gnk
∂x′
l

. The third integral in Equation (4) indicates the displacement contribu-187

tion owing to the moment density tensor mkl = uinjCijkl. Note that the Einstein sum-188

mation convention is used. Equation (4) indicates that if the exciting force fi(x, t) is known189

throughout the volume V , the traction Ti(x,n, t) and the wavefield ui(x, t) are known190

on the surface S, then the displacement un(x, t) within the volume V can be regener-191

ated, which is the theoretical foundation of the hybrid simulation of the elastic wave equa-192

tion.193

Similar to the elastic scenario, the acoustic pressure can be expressed formally in194

the temporal domain using the Helmoltz–Kirchhoff representation theorem:195

q(x, t) =

∫ ∞
−∞

dτ

∫
V

f (x′, τ)G (x, t− τ ; x′, 0) dV (x′)

+

∫ ∞
−∞

dτ

∮
S

1

ρ
∇′q (x′, τ)G (x, t− τ ; x′, 0) · ndS(x′)

−
∫ ∞
−∞

dτ

∮
S

1

ρ
q (x′, τ)∇′G (x, t− τ ; x′, 0) · ndS(x′). (5)

Equation (5) can be transferred into the frequency domain as follows (the frequency de-196

pendence of functions is omitted hereafter to avoid complexity for equations):197

q(x) =

∫
V

f(x′)G(x; x′)dV (x′)

+

∮
S

1

ρ
∇′q(x′)G(x; x′) · ndS(x′)

−
∮
S

1

ρ
q(x′)∇′G(x; x′) · ndS(x′). (6)

Note that the same notation is used for quantities in the time and frequency domains.198

By replacing the surface sources with equivalent body sources (Aki & Richards, 2002),199

Equation (6) can be rewritten as200

q(x) =

∫
V

[
f(x′) + fT (x′) + fq(x′)

]
G(x; x′)dV (x′), (7)

–7–
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where the two equivalent body forces associated with the gradient ∇q(x, t) and the po-201

tential q(x, t) are given by202

fT (x′) =

∫
S

1

ρ
ni
∂q

∂ηi
δ(x′ − η)dS(η)

fq(x′) =

∫
S

1

ρ
∂ηi [niq(η)δ(x′ − η)]dS(η), (8)

where the terms T = 1
ρni

∂q
∂xi

and mi = niq are similar to the traction and moment203

density tensor terms in the representation theorem for elastic waves. Equation (5) in-204

dicates that if the exciting force f(x, t) is known throughout the volume V , the gradi-205

ent ∇q(x, t) and the potential q(x, t) are known on the surface S, then the pressure q(x, t)206

within the volume V can be regenerated. Similar to the elastic scenario, it is also the207

theoretical foundation of the hybrid simulation of the acoustic wave equation.208

3.4 Nomenclature and Workflow of Hybrid Simulations209

For a clearer statement, some nomenclature often used in the hybrid simulations210

are listed below and depicted in Figure 1.211

• Global domain Ωg: the entire physical global domain containing the local do-212

main Ωl and external domain Ωe.213

• Local domain Ωl: the local closed box surrounded by the hybrid interface S and214

located inside the global domain Ωg.215

• External domain Ωe: the external part of the global domain Ωg outside the lo-216

cal domain Ωl.217

• Global reference model Mg0: the known 1D model (e.g., 1D AK135 (Kennett218

et al., 1995)) or 3D long-period velocity model (e.g., SEMUCB-WM1 in French219

and Romanowicz (2014)) from previous studies assigned to the global domain Ωg,220

which includes the known external model Me0 and local reference model Ml0.221

• Global target model Mg1: the global model also assigned to the global domain222

Ωg, which includes the assumed known external model Me0 and the unknown lo-223

cal target model Ml1.224

• Local reference model Ml0: the known model assigned to the local domain Ωl,225

which is always the starting model for box tomography.226

• Local target model Ml1: the unknown model to be inverted for and also assigned227

to the local domain Ωl.228

• External model Me0: the known external model of the global reference or tar-229

get model assigned to the external domain Ωe.230

• Hybrid interface S: the interface separating the external domain Ωe and local231

domain Ωl.232
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Note that Ωe + Ωl = Ωg for the domains, and Me0 + Ml0 = Mg0 and Me0 + Ml1 = Mg1233

for the models. As the foundation of box tomography, the forward and backward numer-234

ical simulations must be exclusively re-performed in the unknown local target models235

Ml1 because the external model Me is assumed to be unperturbed in the framework of236

the iterative box tomography.237

The key workflow of the hybrid simulation for forward solving the wave equation238

in box tomography consists of the following three main steps:239

• (i) Calculate and record the associated hybrid inputs using global solvers: GRT,240

FK, DSM, or AxiSEM for the 1D global reference model Mg0 (e.g., AK135), and241

SPECFEM3D globe or AxiSEM3D for the 3D global reference model Mg0 (e.g.,242

SEMUCB-WM1).243

• (ii) Impose the hybrid inputs recorded in the first step into the local target model244

Ml1 and perform the local hybrid numerical simulation using a local solver, such245

as the program RegSEM (Cupillard et al., 2012).246

• (iii) Record the residual wavefields on the hybrid interface S and use a wavefield247

extrapolation method (Robertsson & Chapman, 2000) to obtain the seismic re-248

sponse for the receivers outside the local domain Ωl (Masson & Romanowicz, 2017a,249

2017b).250

3.5 Multiple Point Sources Method251

The first major category, the multiple point sources method, primarily consists of252

the “VM” (abbreviation obtained from Monteiller et al. (2013)) and “RP” (abbrevia-253

tion for the representation theorem) hybrid methods.254

3.5.1 VM Hybrid Method255

The first popular type of the multiple point sources method is the VM hybrid method256

(Chevrot et al., 2004; Godinho et al., 2009; Monteiller et al., 2013; Tong, Chen, et al.,257

2014; Tong, Komatitsch, et al., 2014; Monteiller et al., 2015; Lin et al., 2019). The con-258

cept of the local target model Ml1 associated with the VM method is shown in Figure 1c.259

The hybrid interface S cannot be selected at will, but it should be the same as the bound-260

ary of the local domain ∂Ωl indicted by the closed dashed cyan line. The VM hybrid method261

is only based on a special representation theorem with the traction-free boundary con-262

dition, which will cause the second displacement surface integral term equal to be zero,263

as discussed on page 29 of the 2nd edition of Aki and Richards (2002) and Equation (12)264
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in Lin et al. (2019):265

q(x, t) =

∫ ∞
−∞

dτ

∮
S

1

ρ
∇′q (x′, τ)G (x, t− τ ; x′, 0) · ndS(x′). (9)

The physical hybrid input is the traction ∇q (gradient) recorded in the global reference266

model Mg0. Based on the numerical integration of Equation (9) as implemented in Equa-267

tion (A3), the physical hybrid input ∇q can be imposed on the boundary ∂Ωl of the lo-268

cal target model Ml1 to implement the hybrid numerical simulation (refer to Appendix269

A for details).270

The VM hybrid method physically operates owing to the effect of the doubling am-271

plitude of the free reflection from the hybrid interface. Note that here, only the first gra-272

dient surface integral in Equation (6) is imposed on the hybrid interface S, and the sec-273

ond potential integral term is equal to zero. We can consider that a force source is im-274

posed at a point within the local domain, which is infinitely close to the hybrid inter-275

face. According to the source mechanism of the point source, the amplitudes of the two276

wavefronts propagating in opposite directions are the same. One wave (with the half-277

amplitude of the hybrid waveform) propagating towards the hybrid interface will have278

an equivalent free reflection after encountering the interface; it then superimposes the279

other wave (with the other half-amplitude of the hybrid waveform) propagating away280

from the hybrid interface S and into the local domain. Thus, the free reflection from the281

hybrid interface has the effect of doubling the amplitude, with full recovery inside the282

local domain Ωl. This hybrid method does not have an external region and loses the abil-283

ity to use the PML.284

For the hybrid simulation using the VM method, when the local target model Ml1285

is selected to be same as the local reference model Ml0, the hybrid wavefield (the wave-286

field of the hybrid numerical simulation in the local domain Ωl) can be recovered by im-287

posing the physical hybrid inputs, for example, by using the SEM as illustrated in Equa-288

tion (3):289

M0Q̈0 + K0Q0 = FT0 , (10)

where Q0 is the reference discrete potential vector, M0 is the global mass matrix, and290

K0 is the global stiffness matrix assigned to the local reference model Ml0. FT0 is the im-291

posed hybrid source term, which is constructed using Equation (A3) only with the gra-292

dient ∇q0 of some integration points (e.g., GLL points used in this study) exactly on the293

hybrid interface S. Please note that this is only applicable to the local reference model.294

If some perturbations are present in the local domain, then q and ∇q are not actually295

known on the hybrid interface S because they are different from the global simulation.296

Appendix B discusses the related hybrid simulation with a limited absorbing boundary297

–10–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Solid Earth

condition when the selected local target model Ml1 is different from the local reference298

model Ml0.299

Figure 2 shows the 2D wavefield in a global reference model Mg0; note that the snap-300

shots at five different time steps are superposed to simplify the diagram. Figures 4b1 and301

4b2 depict the hybrid wavefield and waveforms calculated using the VM hybrid method302

in the local reference model Ml0. We observe that the VM hybrid method is sufficiently303

accurate. The related error was ≈ 0.01% under the spatial meshing setting when the304

local reference model Ml0 was adopted (Section 4.1.1). Note that Figure 4 does not use305

any absorbing boundary condition outside the hybrid interface.306

3.5.2 RP Hybrid Method307

The second type of the multiple point sources hybrid method is the RP hybrid method,308

which is based on the normal representation theorem (Masson et al., 2014; M. Zhao et309

al., 2016; Lin et al., 2019) with two nonzero surface integrals. The associated concept310

of the local target model Ml1 is depicted in Figure 1d. The hybrid interface S can be311

freely selected, and the green part corresponds to the PML boundary domain for the lo-312

cal simulation. The required physical hybrid inputs include the gradient ∇q and poten-313

tial q exactly on the hybrid interface for the acoustic scenarios, as shown in Equation314

(5). The implementation is similar to the VM method but with the full imposing of two315

surface integrals in Equation (6). In the local target model Ml1, the hybrid wavefield can316

be calculated using the hybrid numerical simulation:317

M1Q̈1 + K1Q1 = FT0 + Fq0, (11)

where Q1 is the discrete potential vector, M1 is the global mass matrix, and K1 is the318

global stiffness matrix assigned to the local target model M1. FT0 and Fq0 are the impos-319

ing hybrid source terms, which can be constructed using Equations (A2), (A3), and (A4)320

with the gradient ∇q and potential q of integration points on a closed arbitrary hybrid321

interface S, as plotted in the dashed cyan line or red dashed circle in Figure 1d, simi-322

lar to the red dashed circle in Figure 1a–b. In this study, we selected the GLL points ex-323

actly on a rectangular hybrid interface S (the cyan dashed line surrounding the white324

box depicted in Figure 1d) as the numerical integration points, whose coordinates were325

determined using only the meshing of the local reference model Ml0.326

Through the theoretical proof, for a given closed local domain Ωl, the derivation327

of Equation (20) in Masson et al. (2014) indicates that the two surface integrals on the328

hybrid interface S in the RP hybrid method will have zero contribution (exact cancel-329

lation) outside of the local target domain, because uMi in Equation (20) is defined in the330
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entire global domain Ω and not the local domain Ωl. Physically, imposing a traction bound-331

ary condition such as Equation (A3) is equivalent to applying forces on the hybrid in-332

terface, whereas imposing a displacement boundary condition such as Equation (A4) is333

equivalent to applying moment displacement tensor sources along the hybrid interface334

(Lin et al., 2019).335

The superimposed contribution of these two surface integrals with the ± symbols336

is +100% inside (full recovery) and zero outside (exact cancellation). Masson et al. (2014)337

numerically proved it using the FDM in a local reference model Ml0 with the spherical338

shaped hybrid interface, and they indicated that the contributions of the traction and339

displacement surface integrals are +50% and -50% outside the local domain Ωl and +50%340

and +50% inside the local domain Ωl, respectively. Slightly different from their conclu-341

sion, in Figure 3, we numerically prove this using the SEM in a local reference model Ml0342

but with a rectangular shaped hybrid interface. In the global domain, we observe that343

the two waves in Figures 3a and 3b outside the local domain individually generated us-344

ing the two surface integrals have opposite polarities but the same absolute amplitudes;345

thus, they can cancel each other outside the local domain (Figures 3c and 3d1). How-346

ever, the two waves in Figures 3a and 3b inside the local domain generated using the two347

surface integrals are complicated. Only the phases that are the same as the original P348

wave in Figures 3a and 3b have the same polarities and absolute amplitudes (both +50%349

contribution of the original P wave), but the other phases have opposite polarities and350

the same absolute amplitudes (Figures 3c and 3d2). The sum of the two wavefields in351

Figure 3a–b can recover the hybrid wavefield, as shown in Figure 3c. Therefore, the RP352

hybrid method can obtain the full recovery inside the local domain and with a possible353

external domain, has a natural ability to combine the PML.354

Figures 4a1 and 4a2 depict the hybrid wavefield and waveforms calculated using355

the RP method also in the local reference model Ml0. We can observe that the errors356

of the wavefield and waveforms in the elements are almost the same as those in the VM357

hybrid method except for the hybrid interface elements (red elements in Figure 4a1) for358

the same local reference model Ml0. To fairly compare the simulated accuracy of the dif-359

ferent hybrid methods as shown in Figure 4, we do not add any absorbing boundary con-360

dition outside the local hybrid domain Ωl because hybrid simulations in a local reference361

domain can theoretically recover the hybrid wavefield the same as the global wavefield.362

If the PML boundary condition is used, the hybrid interface can coincide with one side363

of the PML boundary domain, as indicated by the cyan dashed line for the RP hybrid364

method in Figure 1d.365
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3.5.3 Merits and Limitations366

From the above analysis, multiple point sources methods such as the VM and RP367

methods only require the respective physical hybrid inputs of some integral points (e.g.,368

GLL points around the local mesh) exactly on the hybrid interface S, which is memory-369

saving and suitable for the practical 3D hybrid simulations. The meshing of the local370

target model Ml1 is completely independent of the meshing of the global reference model371

Mg0. The associated local hybrid simulation is flexible, resulting in the possibility of us-372

ing a more efficient SEM with very high polynomial degrees (e.g., degrees 12 to 24) (Lyu373

et al., 2020) to reduce memory requirements, speed up the forward simulation, and use374

the upscale non-periodic homogenization (Capdeville & Mtivier, 2018; Lyu, Capdeville,375

Al-Attar, & Zhao, 2021) to improve the ability of FWI. Although classic SEM applica-376

tions mostly rely on degrees 4–8 in each direction, higher degrees are often not adopted,377

primarily owing to the explicit meshing of mechanical discontinuities and exceedingly378

small available time steps. Note that in the recent homogenization method in seismol-379

ogy to smoothen the internal mechanical discontinuity (Capdeville et al., 2010), the smooth380

models used in forward/backward simulations using FWI (Lyu, Capdeville, Al-Attar, &381

Zhao, 2021), the computational complexity analysis of code-independent features for SEM,382

and the actual computation time benchmarks all make very high polynomial degrees SEM383

attractive and competitive (Lyu et al., 2020).384

For the VM hybrid method, the adopted absorbing boundary condition (ABC) is385

effective in the local target model Ml1 with small structural perturbations (Monteiller386

et al., 2013; Tong, Chen, et al., 2014), but it is not sufficiently accurate for the scattered387

tangential incidence waves in complicated local target models in the hybrid calculation388

(Clayton & Engquist, 1977; Xie et al., 2014). It cannot adopt the PML absorption be-389

cause FT0l can only be imposed on the boundary of the local domain ∂Ω but not freely390

inside the local target model Ml1 in Equation (11) owing to the required doubling am-391

plitude of the free reflection from the hybrid interface.392

Although the RP method can be naturally combined with the PML absorbing con-393

dition owing to the full consideration of the representation theorem, the resultant hy-394

brid wavefield is intrinsically inaccurate in the hybrid interface elements (red elements395

in Figure 4a1) in which the hybrid inputs are imposed. This is because the wavefields396

in the elements containing the sources are not accurate for SEM (Nissen-Meyer et al.,397

2007). In the framework of normal numerical simulations using SEM, recent effective sources398

can be used to address this problem (Capdeville, 2021). In the hybrid simulation frame-399

work, an additional layer of elements can be used to bypass its influence (Lin et al., 2019).400
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3.6 Direct Discrete Differentiation Method401

The second major category, namely, the direct discrete differentiation method, is402

based on the numerical representation theorem and focuses on the discrete wave equa-403

tion, primarily consisting the “BY” (abbreviation expression from Bielak et al. (2003)),404

“YM” (abbreviation expression from Masson et al. (2014)), and “MYM” (the modified405

YM) hybrid methods.406

3.6.1 BY Hybrid Method407

Unlike the multiple point sources method, which is explicitly based on the repre-408

sentation theorem, Bielak et al. (2003) and Yoshimura et al. (2003) directly operated on409

the discrete wave equation to obtain the numerical hybrid inputs using the FEM in the410

global reference model Mg0. Hereafter, we call it the BY hybrid method, and the asso-411

ciated concept of the local target model Ml1 is depicted in Figure 1e. The detailed for-412

mulae of the equivalent seismic forces (similar to the numerical hybrid inputs) in the SEM413

framework are as follows (refer to Bielak et al. (2003) and Yoshimura et al. (2003) for414

more details):415

Feff
0 = −Kse

0 Qe
0 + Kes

0 Qs
0, (12)

where K is the stiffness matrix, the subscript 0 means that the relevant calculations are416

performed in the global reference model Mg0, and the superscripts e and s represent GLL417

points located inside the external domain Ωe and on the hybrid interface S, respectively.418

The key property of this numerical hybrid inputs Feff
0 involve only the submatrices Kse

0419

and Kes
0 , which vanish everywhere except in a single layer (the blue part in Figure 1e420

and the blue elements in Figure 2) in the external domain Ωe adjacent to the hybrid in-421

terface S. Thus, the wavefield required to calculate Feff
0 is associated with all the GLL422

points in the single-layer elements (referred to as the “hybrid elements”), but not only423

on the hybrid interface S.424

The BY hybrid method is an innovative and attractive method in that a teleseis-425

mic event can be replaced equivalently by forces loaded on all the GLL points in the hy-426

brid elements in which the numerical hybrid inputs are imposed. Note that in the BY427

hybrid simulation, after imposing the numerical hybrid inputs Feff
0 , the remaining wave-428

fields going outside owing to the existence of unknown heterogeneities in the local tar-429

get model Ml1 can be naturally eliminated using a suitable absorbing boundary condi-430

tion (e.g., the PML boundary domain corresponding to green elements in Figure 1e). This431

numerical expression can obtain numerical hybrid inputs from a 3D background model432

for 3D local imaging with a higher resolution, namely, box tomography. However, the433

expression of the hybrid inputs in Equation (12) implies storing the global potentials of434
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all the GLL points in the single layer elements, and this requires an excessive disk us-435

age, particularly for 3D numerical simulations (Yoshimura et al., 2003), and it might be436

even worse if people use the very high polynomial degrees SEM, as in Lyu et al. (2020).437

Note that physical quantities such as the potential/displacement of the GLL points in438

the hybrid elements can be interpolated from the global mesh to the local mesh, but Feff
0439

cannot be precomputed in the global simulation and interpolated into a mesh different440

from the global mesh, because the internal force term KQ is discontinuous (not smooth)441

between connected elements and along the hybrid interface.442

3.6.2 YM Hybrid Method443

Masson et al. (2014) further developed the BY method and proposed a more com-444

pact numerical hybrid method, which can accurately perform the hybrid simulation in445

the local target model with arbitrary shapes. Hereafter, we call it the YM method, and446

the associated concept of local target model Ml1 is depicted in Figure 1e. Note that only447

the best scenario (the same meshing used in local and global domain, described in Sec-448

tion Appendix C) is plotted here to illustrate the arbitrary hybrid interface; please re-449

fer to Masson et al. (2014) for more details. The YM method can construct the mirror450

excitation FM
0 (the same as the numerical hybrid inputs) with two different schemes, which451

relies on the spatial window function and discrete wave equation. For a local target model452

Ml1 with arbitrary shapes, in the global elements crossed by the hybrid interface S, in453

which most GLL nodes belong to the closed local target domain Ωl, the inner scheme,454

with fewer storage capacity of numerical hybrid inputs than the outer scheme, can be455

used to construct the numerical hybrid inputs using456

FM
0 =

∑
e

(
We · fe −We · (Ke

0 ·Qe
0) + Ke

0 · (We ·Qe
0)

)
= W · f −W · (K0 ·Q0) + K0 · (W ·Q0). (13)

In contrast, in the global elements crossed by hybrid interface S, in which most GLL nodes457

belong to the external domain Ωe, the outer scheme can be used to construct the numer-458

ical hybrid inputs using459

FM
0 =

∑
e

(
We · fe + (I−We) · (Ke

0 ·Qe
0)−Ke

0 · [(I−We) ·Qe
0]

)
= W · f + (I−W) · (K0 ·Q0)−K0 · [(I−W) ·Q0]. (14)

Where
∑
e

denotes the assembly of all element hybrid inputs. Qe
0, Ke

0 and Q0, K0 are460

the element and assembled potential vectors and stiffness matrices, respectively, assigned461

to the global model Mg0 associated with the global domain Ωg. The element and assem-462

bled diagonal matrices We and W are discrete window functions used to fetch the lo-463

cal wavefield in the local domain from the global wavefield. For example, We·Qe
0 and464
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W·Q0 are related to the element and assembled potential vectors, respectively, in the465

local domain Ωl. The diagonal entries of We 6= 0 represent the GLL points in the global466

elements crossed by the hybrid interface S, and they simultaneously belong to the lo-467

cal target domain Ωl. The diagonal entries of We = 0 represent all the other GLL points.468

Both the inner and outer schemes must record the local internal force We · (Ke
0 ·Qe

0)469

or the complement (I−We) · (Ke
0 ·Qe

0) and the potential We ·Qe
0 or the complement470

(I−We)·Qe
0 in the same hybrid elements crossed by the hybrid interface S during the471

first global simulation. The only elements that contribute to the numerical hybrid in-472

puts FM
0 are the hybrid elements, for which the value of the window function We eval-473

uated at the GLL nodes is not constant. When the hybrid inputs are imposed into the474

blue part (the hybrid elements in SEM) shown in Figure 1e, the inner scheme adds the475

saved displacement first before calculating the internal force, and then subtracts the saved476

internal force, while the imposition of the outer scheme subtracts the displacement first477

and then adds the internal force (refer to Masson et al. (2014) for the detailed deriva-478

tion).479

For the YM method, on the outside of the hybrid interface S, an additional layer480

of elements is always required to impose the hybrid inputs (e.g., Figure 12b in Masson481

et al. (2014) and Figure 5 in Clouzet et al. (2018)). The full wavefield in the local do-482

main Ωl, including the hybrid interface S, can be recovered after imposing the hybrid483

inputs, but only the remaining scattered waves are simulated in the hybrid elements. Note484

that in the best scenario, as discussed in Section Appendix C, the numerical hybrid in-485

puts of YM method are the same as those of the BY method, but their proposed meth-486

ods of imposing the hybrid inputs are different. Less memory is required for the YM method487

because it is only related to the internal force We(Ke
0·Qe

0) and potential WeQe
0 of the488

GLL points exactly on the green line in Figure 2; not the Qe
0 of all the GLL points in489

all the hybrid elements must be stored as suggested for the BY method. However, when490

the local meshing differs from the corresponding global meshing, spatial interpolation491

is used to obtain all the displacements of the GLL points required in the hybrid elements492

during the first global simulation.493

3.6.3 MYM Hybrid Method494

However, we observe that in the YM method, the additional layer of elements sur-495

rounding the local target model (the blue region in Figure 1e and blue elements in Fig-496

ure 2) is not necessary. Analogously, a new Heaviside window function can be adopted497

such that the diagonal values We = 1 are only in the local domain Ωl, but We = 0498

are both on the hybrid interface S and in the external domain Ωe. Hereafter, we call it499
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the MYM hybrid method, and the concept of local target model Ml1 associated with the500

MYM method is depicted in Figure 1f. Note that the hybrid elements of the MYM method501

are located inside the local domain, but the hybrid elements of the YM method are out-502

side the local domain selected using different window functions, as indicated by the red503

and blue elements, respectively, in Figure 2. We can utilize the internal forces (I−We)·504

(Ke
0·Qe

0) and (I−We
0)·Qe

0 at the GLL points exactly on the hybrid interface S in the505

hybrid elements to implement the hybrid simulation, according to the outer scheme of506

the YM method with a new Heaviside window function, depending on the equation (14).507

It is not an inner scheme compared to the YM method even the hybrid elements are in-508

side the local domain, but more like an outer scheme of the YM method with a new Heav-509

iside window function. Fewer elements can be used to perform hybrid numerical simu-510

lations without overlapping the scattered and full wavefields. Note that the red part in511

Figure 1f and red elements in Figure 4c1 are the hybrid elements that are selected us-512

ing the new window function We to locate inside the local target domain, and the green513

part corresponds to the PML domain. In the best scenario, the associated numerical hy-514

brid inputs are only imposed on the GLL points exactly on the cyan dashed line in Fig-515

ure 1f and on the green line in Figure 4c1 between the PML and hybrid elements.516

Figures 4c1 and 4c2 depict the hybrid wavefield and waveforms of the MYM method.517

The resultant hybrid waveforms are perfectly accurate even when enlarged by the fac-518

tor of 1040 when the local meshing is the same as the global meshing surrounded by the519

green line as shown in Figure 2. The reason for the preciseness is that the MYM hybrid520

method depends on the numerical hybrid inputs to implement the local hybrid simula-521

tion. In the local simulation using the MYM method, all the potentials of the GLL points522

required by the equation (14) are calculated and saved during the global simulation, then523

a new local equation fully equivalent to the global equation inside the local reference model524

is compactly reconstructed. A similar numerical approach operating on the matrices of525

the solvers is shown in Bielak et al. (2003). We fetch the required local part of the global526

matrix solver; thus, they should be exactly the same. However, when the local meshing527

is different from the corresponding global meshing, as in the YM method, we must also528

use the spatial interpolation to obtain all the potentials of GLL points in the hybrid el-529

ements during the first global simulation. The related spatial-interpolation error will af-530

fect the results of the hybrid simulations to an extent.531

3.6.4 Merits and Limitations532

From the above analysis, the BY, YM, and MYM methods have certain advantages:533

(i) In the best scenario, only the numerical hybrid inputs of GLL points exactly on the534
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hybrid interface S are required, which is also memory-saving and very suitable for 3D535

hybrid simulation and is the same as the multiple point sources method. (ii) The PML536

can be applied naturally to the remaining scattered wave going outside, which results537

in an accurate hybrid simulation. The MYM method does not require an additional layer538

of elements outside the local target domain Ωl. However, they are requried by the BY539

and YM methods to impose the hybrid inputs and with only the scattered waves inside.540

Therefore, for the MYM method, the scattered and full wavefield do not co-exist.541

However, the direct discrete differentiation method has a disadvantage. 1D global542

solvers such as the DSM tending to offer physical hybrid inputs without spatial inter-543

polation errors are relatively difficult to apply with the BY, YM, and MYM methods be-544

cause all the displacement at the GLL nodes in the hybrid elements are required to cal-545

culate the internal force term. For 3D global solvers such as SPECFEM3D globe that546

can offer numerical hybrid inputs, for an accurate implementation of numerical hybrid547

inputs, the meshing of the local target model Ml1 connected with the hybrid interface548

should be exactly the same as the meshing of the global reference model Mg1. However,549

when the local meshing is different from the global meshing, we must calculate all the550

corresponding displacements of all GLL points in the hybrid elements of the local mesh-551

ing using spatial interpolation and then obtain part of the hybrid inputs by calculating552

the tensor product KQ inside the hybrid elements. These hybrid methods are all based553

on the numerical representation theorem; they require a large amount of storage, and554

they are not suitable for the efficient very high polynomial degree spectral element method.555

Because numerous GLL points of the hybrid elements are required to construct the nu-556

merical hybrid inputs (approximately N+1
2 times memory as the multiple sources method,557

N is the polynomial order of the adopted SEM; refer to the discussion section for de-558

tailed derivation), and the spatial interpolation introduces some errors, limiting its use559

to an extent.560

3.7 New Hybrid Method561

As the above analysis shows, the RP method can naturally adopt the PML, and562

their meshing connected with the hybrid interface of the local and reference model can563

differ from the global meshing, resulting in the possibility of adopting the more efficient564

SEM with very high polynomial degrees, but with the intrinsic inaccuracy in the elements565

where the hybrid inputs are imposed. The MYM method is capable of natural PML ab-566

sorption, but the memory requirement is significantly larger than the multiple point sources567

method particularly for the very high polynomial degrees SEM. For the VM method, the568

local meshing is independent of the global meshing, but it cannot adopt efficient PML569
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absorption. To obtain the essence of fewer memory requirements, flexible meshing, and570

natural PML absorption, and discard the dregs, such as only absorption with ABC or571

inaccurate simulation of the elements with sources, we develop a new hybrid method by572

combining the multiple point sources and direct discrete differentiation methods.573

First, we combine the VM method in Equation (10) and MYM method in Equa-574

tion (14).575

FT0 = M0Q̈0 + K0 ·Q0

FM0 = Wf − (I−W) · (K0 ·Q0)−K0 · [(I−W) ·Q0]. (15)

After replacing the internal force term K0·Q0 in the second equation with the first equa-576

tion, we can obtain a new formula for the numerical hybrid inputs:577

FM0 = Wf − (I−W) · (FT0 −M0Q̈0)−K0 · [(I−W) ·Q0]. (16)

We circumvent the requirement for q at all GLL points in the hybrid elements to cal-578

culate the internal force term and instead use the difference between the external force579

term (traction term FT0 ) and the inertial force term (acceleration term M0Q̈0). There-580

fore, we can utilize only three physical terms on the hybrid interface to obtain hybrid581

inputs. Using Equation (16), to obtain the new combined hybrid inputs FM0 , we first re-582

quire the gradient ∇q to construct the traction vector FT0 , as mentioned in Section 3.5.1.583

In addition, we require the potential q and the second temporal derivative of the poten-584

tial ∂ttq to build the numerical hybrid inputs during the first global simulation in the585

reference model Mg0. Note that in practice, we can compute q̈ directly from the saved586

q field instead of saving them during the global simulation. These three physical quan-587

tities are located at the integration points (e.g., GLL) exactly on the hybrid interface588

S. To implement the new hybrid simulation, we can directly impose the hybrid inputs589

into the integration points on the hybrid interface regardless of whether the internal struc-590

ture is changed. We can conclude that the proposed hybrid method has the following591

advantages:592

• The three physical quantities used to construct the hybrid inputs can be obtained593

flexibly using the global solver (e.g., DSM, SPECFEM3D globe, or AxiSEM3D),594

and the meshing of the local target model is completely independent of the mesh-595

ing of the global reference model.596

• Only the associated three physical quantities of the points exactly located on the597

2D hybrid interface are required, which is highly accurate and memory efficient598
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for the 3D hybrid numerical simulation and can increase the computational effi-599

ciency of the box tomography.600

• The efficient PML can be adopted naturally without any elements overlapping be-601

tween the local and PML domains, which can further increase the imaging accu-602

racy of the box tomography.603

The concept of the local target model Ml1 associated with the new hybrid method is de-604

picted in Figure 1f. Figures 4d1 and 4d2 show the hybrid wavefield and waveforms of605

the new hybrid method, and we can observe that the error of the new method is almost606

the same as the VM method in Figure 4b2 for the same local reference model Mg0. How-607

ever, as discussed in Section 3.5.1 and the numerical simulations benchmark in Section 4.1.3,608

if the local target model is strongly heterogeneous, the VM method is not effective be-609

cause it cannot be combined with the PML absorbing condition. The RP hybrid method610

would be a better alternative compared with the proposed method when the traditional611

SEM with NGLL = 5 is used for the box setting with the source outside and receiver612

inside (SORI). However, if the very high polynomial degree SEM is used in the hybrid613

simulation, and the acceleration q̈ is calculated using the stored potential q during the614

hybrid simulation, the new method will have a more efficient computation cost of the615

local simulation and fewer memory requirements of the hybrid inputs. Note that com-616

bining the new and RP hybrid methods is very useful for the hybrid simulations in the617

box settings with the source inside and receiver outside (SIRO) and the source outside618

and receiver outside (SORO). Note that a special hybrid method for separately solving619

the PML domain and full wavefield domain was implemented in Xie et al. (2014). Their620

key concept of their hybrid method was to separate the entire domain into the diffracted621

waveform domain and full waveform domain, and to solve them separately in two dif-622

ferent ordinary differential equations, while our proposed method solved them in one or-623

dinary differential equation same as the traditional solver using the spectral element method.624

Note that the RP hybrid method theoretically results in zero contributions on the hy-625

brid interface S when the hybrid simulation is performed in the local reference model626

Ml0. We must consider the known saved potentials and the scattered potentials obtained627

by the hybrid simulation on the hybrid interface when calculating the hybrid waveforms628

of the stations located within the elements containing the hybrid interface. It is the same629

for the MYM and “new” hybrid methods, but it is not required for the VM, BY, and630

YM hybrid methods.631

In summary, in this section, we analyze in detail the two main hybrid categories632

and five subcategories (RP, VM, BY, YM, and MYM) of hybrid methods, and we pro-633

pose a new hybrid method. The new hybrid method inherits the advantages of the VM634
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and MYM methods and eliminates their disadvantages. In Table 1, we compare these635

six hybrid methods in four criteria under 3D hybrid simulations as in Sections 4.3 and 4.4:636

i) physical or numerical representation theorems; ii) stored quantities in the best scenario637

or when the local and global meshings are different; iii) the required storage size in a 3D638

hybrid simulation in the best scenario or when the local and global meshings are differ-639

ent; iv) whether the absorbing boundary condition can be used. In the next section, we640

discuss a series of numerical experiments to benchmark and verify these hybrid meth-641

ods.642

4 Numerical Experiments643

To numerically validate the proposed hybrid method and benchmark its numer-644

ical accuracy with other existing hybrid methods, we set up a series of 2D and 3D nu-645

merical experiments in homogeneous and heterogeneous acoustic models. For the homo-646

geneous models, we utilized VP0 = 3750 m/s for the P-wave velocity and ρ0 = 2000 kg/m3
647

for the density. For the heterogeneous scenario, we kept the density constant, and κ(x)648

was in the form of a Gaussian or monochromatic oscillatory function. The detailed def-649

inition of heterogeneity was defined by a spatial function f(x) as follows:650

κ(x) = κ0f(x), (17)

where κ0 = ρ0V
2
P0.651

For the descriptions of the model size and the time duration in the acoustic sce-652

nario, the maximum frequency and P-wave velocity defined the minimum wavelength of653

the propagation wavefield as654

λmin =
VP
fmax

. (18)

Subsequently, we measured the spatial scale as a function of λmin and the temporal scale655

as a function of656

tmin =
1

fmax
. (19)

The source was a point force located in the middle of the free surface, and its time wavelet657

was a Ricker function (the second derivative of a Gaussian) with a central frequency of658

f0 = 2 Hz for 2D scenarios and f0 = 0.4 Hz for 3D scenarios. Thus, λmin was approx-659

imately 625 and 3125 m in 2D and 3D scenarios, respectively. Thirteen receivers were660

evenly located in the local models, as shown in Figures 2 and 10a for the 2D and 3D sce-661

narios, respectively. In the global numerical simulations, the boundary conditions were662

free normal stress conditions all around the domains to fully exclude imperfect absorp-663

tion, and the selected domains were sufficiently wide to ensure that no reflected waves664
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Representation

theorem

Stored quantities

same/different meshing

Required storage size

same/different meshing

Absorbing

condition

VM physical
traction+velocity

same

2×3V1 × nt

2×3V1 × nt
ABC type

RP physical
traction+potential

same

2×3V4 × nt

2×3V4 × nt
any

BY numerical
potential

same

3V3 × nt

3V3 × nt
any

YM numerical
internal force+potential

only potential

2×3V1 × nt

3V3 × nt
any

MYM numerical
internal force+potential

only potential

2×3V1 × nt

3V2 × nt
any

NEW combination
traction+potential (acceleration)

same

2×3V1 × nt

2×3V1 × nt
any

Table 1. Benchmarks of the VM, RP, BY, YM, MYM, and new hybrid methods. For a

given 3D local target model buried in the deep earth with nex, ney, and nez elements with

NGLL points in each direction, nax0 = (nex − 2) × N − 1, nay0 = (ney − 2) × N − 1,

naz0 = (nez − 2) × N − 1; nax1 = nex × N + 1, nay1 = ney × N + 1, naz1 = nez × N + 1;

nax2 = nex × N − 1, nay2 = ney × N − 1, naz2 = nez × N − 1; nax3 = (nex + 2) × N + 1,

nay3 = (ney+2)×N+1, naz3 = (nez+2)×N+1; nax4 = (nex+2)×N−1, nay4 = (ney+2)×N−1,

naz4 = (nez + 2) × N − 1. Where N = NGLL − 1. The number of GLL points in a closed 2D

hybrid interface is V1 = (nax1 × nay1 × naz1 − nax2 × nay2 × naz2). When the local and

global meshings are different, the number of GLL points used to construct the numerical hy-

brid inputs using the MYM method is V2 = (nax1 × nay1 × naz1 − nax0 × nay0 × naz0); the

number of NGLL points used to construct the numerical hybrid inputs using the YM method is

V3 = (nax3×nay3×naz3−nax2×nay2×naz2), and the number of GLL points used to construct

the physical hybrid inputs using the RP method is V4 = (nax3×nay3×naz3−nax4×nay4×naz4),

because one layer of elements inside the hybrid interface are needed to ensure simulated accuracy.

nt is the number of time steps in the simulation without temporal interpolation. For example,

the storage size of the VM is 2 × 3V1 × nt, where 2 represents the items including traction and

velocity, and 3 indicates three directions in 3D. For the absorbing condition, ABC is a type of

absorbing boundary-type condition, e.g., Clayton and Engquist (1977). Note that for the new

method, q̈ is calculated directly from the saved q field to decrease the amount of storage.
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from boundaries affected the results. The simulated duration and temporal step ∆t were665

90 tmin (15 s), 0.002 s for 2D scenarios, and 24 tmin (20 s), 0.01 s for 3D scenarios.666

One of the key parameters when using the SEM is G (the number of grid points667

per minimum wavelength). Classic SEM applications mostly rely on degrees 4–8 spec-668

tral elements in each tensorial direction, and the G for a high degree 20 is approximately669

half of that necessary for a degree 4 (Lyu et al., 2020). The commonly admitted G to670

obtain sufficient accuracy in a constant-velocity medium is approximately G ≈ 5 for one671

element with degree 8 (NGLL = 9, number of GLL points per element per direction) (Basabe672

& Sen, 2007; Seriani & Oliveira, 2008; Lyu et al., 2020). A low G can be important in673

the FWI context owing to the extensive operations on forward and adjoint wavefields674

(Komatitsch et al., 2016; Lyu, Capdeville, Al-Attar, & Zhao, 2021). In our study, the675

meshing based on NGLL = 8 was adopted for the first global simulations in the global676

reference model Mg0. A different meshing with NGLL = 20 was used for the VM, RP,677

and new hybrid simulations in the local reference models Ml0 and target models Ml1 on678

account of the efficiency of very high polynomial degree SEM (Lyu et al., 2020).679

4.1 2D Homogeneous Global Reference Model680

For 2D homogeneous scenarios, the size of the global reference model Mg0 was 160681

× 80 λ2
min, which was assigned to a rectangular global domain Ωg. The domain Ωg and682

wavefields overlapping at five time steps associated with the 160 × 80 structural spec-683

tral elements with NGLL = 8 (G = 8) are plotted in Figure 2.684

4.1.1 Hybrid Simulation for a Local Reference Homogeneous Model685

The size of the adopted local reference model Ml0 was 80 × 40 λ2
min, which was as-686

signed to the rectangular local domain Ωl surrounded by the closed green line in Fig-687

ure 2 (hybrid interface S), and it was located at the center of the global reference model.688

The related wavefield snapshots at the same time steps as the global simulation asso-689

ciated with 20 × 10 elements with NGLL = 20 (G = 5) are shown in Figures 4a1, b1,690

and d1, which correspond to the RP, VM, and new hybrid methods, respectively. They691

all had the characteristics of flexible meshing, namely, the number of elements or/and692

the internal degree of the local meshing for the hybrid simulation differed from the re-693

lated global meshing of the local domain Ωl. In comparison, the MYM method adopted694

local meshing with 80 × 40 elements with NGLL = 8 (G = 8), which was identical to695

the global meshing (Figure 4c1). A comparison of wavefields and waveforms indicated696

that the MYM method had no error relative to the global simulation shown in Figures 4c1697

and 4c2. The relative error of the RP method in the elements in which hybrid inputs were698
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imposed was very large (≈ 10%) owing to the intrinsic inaccuracy of the source elements699

in the SEM (Figures 4a1 and 4a2). The relative errors of the VM and new methods were700

almost the same (≈ 0.01%) (Figures 4b1, 4b2, 4d1, and 4d2), which originated from the701

boundary reflection of the spatial-dispersion error difference of the global and local mesh-702

ing. Through the hybrid numerical simulations using the RP, VM, MYM, and new meth-703

ods in the same 2D global and local homogeneous reference model, we initially demon-704

strated that the accuracy of the new method is the same as that of the VM method, but705

as discussed in Section 3.5.1, if the local target model is strongly heterogeneous, the VM706

method is not effective because it cannot be combined with the PML boundary condi-707

tion. Here, the MYM method is more accurate.708

4.1.2 Hybrid Simulation for a Local Weak Gaussian Heterogeneous Model709

To validate the applicability of the new hybrid method in the 2D weak heteroge-710

neous model, the combined hybrid inputs obtained in the 2D homogeneous reference model711

were imposed into the local target model Ml1 with a Gaussian heterogeneity inside. The712

adopted 2D Gaussian spatial function f(x) was713

f(x) = 1 + ae−
x2

2σ2 , (20)

where a is the amplitude value that controls the range of κ(x), and σ is the spatial scale714

parameter. Here, we used a = -0.2 and σ = 2 λmin to construct a global Gaussian model,715

and the Gaussian heterogeneity existed only in the local domain Ωl. The external model716

Me was the same as the homogeneous reference model Mg0 (Figure 5a).717

Figure 5b shows the hybrid wavefield by imposing the hybrid inputs calculated in718

the 2D homogeneous reference model into the global Gaussian (target) model Mg1. The719

hybrid inputs can be considered new equivalent sources to replace the remote source to720

obtain the same wavefield in the local domain. Note that the meshing used in Figure 5b721

was constructed using 64 × 32 elements with NGLL = 20 (G = 5), different from the722

global meshing (160 × 80 elements with NGLL = 8 (G = 8)), which was used for cal-723

culating the global waveforms in the Figure 5d. In this scenario, the remaining scattered724

waves going outside were observed owing to the presence of the local Gaussian hetero-725

geneous anomaly. Because these waves were not part of the original reference wavefield,726

they were not cancelled out when they crossed the hybrid interface S, and some resid-727

ual wavefield leaked out of the local target model Ml1 (Figure 5b). We could shrink our728

model and utilize the PML to absorb the scattered waves (Figure 5c). In the hybrid sim-729

ulations shown in Figures 5b and 5c, after the wavefront across the Gaussian heterogene-730

ity with lower velocity than the reference, it propagated more slowly than the reference731

wavefront in the 2D homogeneous model. Additionally, it could be observed from the732
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waveforms of the three center receivers (Figure 5d). Note that the global waveforms in733

Figure 5d were calculated using the 160 × 80 elements meshed with NGLL = 8 (G =734

8). Figure 5d shows that the global waveforms calculated in the model of Figure 5a and735

the first hybrid waveforms obtained in Figure 5b without PML absorbing condition were736

almost equal. The relative error was ≈ 0.01%, the same level as the homogeneous sce-737

nario. The consistency of waveforms between the first hybrid simulation (dashed red)738

in Figure 5b and the second hybrid simulation (solid blue) with PML absorption in Fig-739

ure 5c indicated that the new hybrid method can be combined with the PML absorb-740

ing condition naturally to absorb the remaining scattered waves going outside with a lo-741

cal meshing different from the global one. Please note that the structure of the PML el-742

ements should be selected to be the same as the one around the local reference domain743

in the global reference model Mg0, and it could not be changed during the box tomog-744

raphy.745

4.1.3 Hybrid Simulation for a Local Strong Gaussian Heterogeneous Model746

To validate the applicability of the new hybrid method in the 2D strongly hetero-747

geneous model, the hybrid inputs that were obtained in the 2D homogeneous reference748

model were imposed into the local target model Ml1 with a strong Gaussian heterogene-749

ity inside. Here, we used a = -0.8 and σ = 2 λmin to construct a global Gaussian model.750

The parameters of the meshing were the same as those in the weak scenario. Figure 6a751

shows the hybrid wavefield using the VM hybrid method. The hybrid inputs were cal-752

culated in the 2D homogeneous reference model. It was clear that the wavefront was severely753

deformed after passing through the low velocity. The relative waveform error of using754

the VM method was approximately 7.5% (Figure 6b), and the relative waveform error755

of using the new method was approximately 0.89% (Figure 6c) but with more calcula-756

tion time owing to the use of the PML absorbing condition.757

To further verify the applied scope of the proposed hybrid method, we further tested758

it in 2D heterogeneous, 3D homogeneous, and heterogeneous reference models Mg0.759

4.2 2D Global Heterogeneous Reference Model760

For the 2D heterogeneous scenario, the size of the 2D global heterogeneous refer-761

ence model Mg0 was the same as that of the 2D homogeneous scenario. The adopted 2D762

cosine spatial function f(x) was defined as follows:763

f(x) = 1 + a
(
cos(

2π

λh
ka · x) + cos(

2π

λh
kb · x)

)
ka =

(
cos(t1), sin(t1)

)
–25–
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kb =
(
cos(t2), sin(t2)

)
(21)

where a is the amplitude value, and t1, t2 are the included angles between the two het-764

erogeneities and the x-axis. In this scenario, we used a = 1
20 and t1 = π

4 , t2 = 3π
4765

(in radians) related to two orthogonal directions (Figure 7a); λh = λmin corresponds766

to a typical geological model (Capdeville et al., 2010).767

Figure 7b shows the global domain Ωg and the wavefield snapshot at 67.2 tmin as-768

sociated with 240 × 120 elements meshed with NGLL = 8 (G = 12, 1.5 times as the ho-769

mogeneous scenario based on the empirical value in Lyu et al. (2020). The local domain770

Ωl and wavefield snapshot at the same time step associated with 30 × 15 elements mesh-771

ing with NGLL = 20 (G = 7.5), for the scenario λh = λmin, are depicted in Figure 7c.772

The agreement between the hybrid and reference waveforms from the 13 receivers is shown773

in Figure 7d, demonstrating the effectiveness of the new hybrid method in the 2D het-774

erogeneous global reference model Mg0.775

We know that in actual hybrid applications, there are three types of source and re-776

ceiver settings: the first one is the box with the SORI, the second one is the reverse with777

the SIRO, and the third is a box with the SORO. All the above-mentioned 2D hybrid778

simulations corresponded to the first SORI setting. In the following, we discuss how to779

perform the other two types of hybrid simulations by adopting the suitable hybrid method(s).780

4.2.1 Hybrid Simulation with a Source Inside and a Receiver Outside781

For a local hybrid simulation in the SIRO setting, the workflow has three steps: i)782

perform a local numerical simulation by loading the internal source in the local target783

model, and record the physical quantities gradient and potential terms (physical quan-784

tities needed by the representation theorem) of the GLL points on the hybrid interface;785

ii) perform a global numerical simulation using a single force at the location of the re-786

ceiver, and record the Green’s function and its gradient of the GLL points on the hy-787

brid interface; iii) apply a quadrature rule to discretize the two surface integrals in the788

representation theorem (Equation 5), perform the convolution at each integral point (e.g.,789

GLL points), and sum the contributions from all the integral points as follows.790

q(x, t) =

∫ ∞
−∞

dτ(

∮
Sf

−
∮
S

)
1

ρ
∇′q (x′, τ)G (x, t− τ ; x′, 0) · ndS(x′)

−
∫ ∞
−∞

dτ(

∮
Sf

−
∮
S

)
1

ρ
q (x′, τ)∇′G (x, t− τ ; x′, 0) · ndS(x′)

= 0−∆t
∑
e

Ns∑
p=1

αe,p

(
conv(

1

ρp
nj∂jq(xp, t), G(xp, t))− conv(

1

ρp
q(xp, t), nj∂jG(xp, t))

)
.

(22)
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Where the first 0 means the zero contribution from the free surface Sf (∇′q and ∇′G791

are equal to zero), the first summation is assembled over all the surface elements e of the792

hybrid interface S, and the second one is over all the quadrature points xep (p = 1, · · · , Ns),793

Ns is the total number of quadrature points on one surface element with the related quadra-794

ture weight αp, and conv(f(t), g(t)) is the convolution between two time series f(t) and795

g(t).796

The ordering of steps i) and ii) can be changed. It is worth noting that, in this SIRO797

setting, the stations are always located far from the hybrid interface, and we can explic-798

itly adopt the representation theorem by using the traction and potential terms obtained799

from the local simulation from the source side and using the Green’s function and its gra-800

dient obtained from the global simulation from the receiver side. We propose not to adopt801

the new hybrid method in this SIRO setting.802

Figure 8a shows an example of the 2D hybrid wavefield related to the calculation803

of Green’s function at time step 72 tmin from the receiver side, corresponding to step ii).804

Note that there are some stripes in Figures 8a and 9a (setting SORO); these are because805

the adopted spatial meshing could not accurately simulate the wavefield with the delta806

source time function for the calculation of the Green’s function. Please note that high807

frequency stripes abovementioned can be implicitly filtered out by the convolution be-808

tween the Green’s function with unlimited frequency band and the forward field with809

limited frequency band obtained from the banded source. In Figure 8b, the waveform810

benchmarks are listed. The waveform was explicitly calculated using the convolution of811

the representation theorem, and it had a very good consistency with the waveform cal-812

culated in the global reference model.813

4.2.2 Hybrid Simulation with a Source Outside and a Receiver Outside814

For a remote local target domain in the SORO setting, the workflow has the fol-815

lowing four steps: i) perform a numerical simulation in the global reference model from816

the remote source side, as in the first step in the SORI setting, and record the traction,817

potential, and acceleration terms of the GLL points on the hybrid interface required by818

the new hybrid method; ii) perform a numerical simulation in the global reference model819

from the remote receiver side using a single force, and record the Green’s function and820

its gradient of the GLL points on the hybrid interface; iii) perform a hybrid numerical821

simulation using the new hybrid method in the local target model by imposing the hy-822

brid inputs recorded in step i), and record the residual traction and residual potential823

of the GLL points on the hybrid interface; iv) apply a quadrature rule to discretize the824

two surface integrals in the representation theorem (Equation 5), perform the convolu-825
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tion at each integral point (GLL points), and sum the contributions from all the inte-826

gral points. Note that the convolutions are explicitly calculated between the residual trac-827

tion and potential from step iii) and Green’s function and its gradient from step (ii). We828

propose adopting the new hybrid method and representation theorem together in the SORO829

setting.830

Figure 9a shows the 2D hybrid wavefield related to the calculation of Green’s func-831

tion in step ii) at time step 72 tmin for the SORO setting. Because the distance between832

source and receiver was larger, the duration was 17 s (102 tmin) in this scenario. In Fig-833

ure 9b, the waveforms benchmark are listed. The black line is the waveform difference834

between the global waveforms respectively calculated in the global weak Gaussian model835

in Figure 5 and the reference model in Figure 2, and it had a very good consistency with836

convoluted waveform. Note that the residual traction and potential were nonzero ow-837

ing to the local Gaussian heterogeneity. It is also worth noting that in the SORO set-838

ting when the local model contained the nonzero local perturbation, the combined con-839

tribution of the two surface integrals to the waveform of the remote receiver were nonzero,840

and it is only the scattered waveform; and when the local target model was the same as841

the local reference model Ml0 without any local perturbation, the combined contribu-842

tion of the two surface integrals to the waveform of the remote receiver were zero, not843

the full waveform.844

4.3 3D Global Homogeneous Reference Model845

For the 3D homogeneous scenario, the size of the 3D global homogeneous reference846

model Mg0 was 32 × 32 × 16 λ3
min. Figure 10a shows the global domain Ωg and the wave-847

field snapshot at time step 15.6 tmin associated with 32 × 32 × 16 elements meshed with848

NGLL = 8 (G = 8). The local domain Ωl for the hybrid simulation was also a parallel-849

ogram located at the center of the global reference domain with a half-size of 16 × 16850

× 8 λ3
min. The hybrid wavefields at the same time step associated with 4 × 4 × 2 ele-851

ments with NGLL = 20 (G = 5) are depicted in Figure 10b. The agreement between the852

hybrid and reference waveforms from the 13 receivers is depicted in Figure 10c, initially853

presenting the effectiveness of the new hybrid method in the 3D global homogeneous ref-854

erence model Mg0.855

4.4 3D Global Heterogeneous Reference Model856

Finally, we performed a hybrid numerical simulation using the 3D cosine hetero-857

geneous model shown in Figure 11a. The size of the global heterogeneous model Mg0 was858

the same as in the 3D homogeneous scenario. The 3D cosine spatial function f(x) was859
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adopted as follows:860

f(x) = 1 + a
(
cos(

2π

λh
ka · x) + cos(

2π

λh
kb · x) + cos(

2π

λh
kc · x)

)
ka =

(
cos(t11)cos(t12), cos(t11)sin(t12), sin(t11)

)
kb =

(
cos(t21)cos(t22), cos(t21)sin(t22), sin(t21)

)
kc =

(
cos(t31)cos(t32), cos(t31)sin(t32), sin(t31)

)
, (23)

where a is the amplitude value, and (t11, t12), (t21, t22), (t31, t32) are the included an-861

gles between the three heterogeneities along the x- and y-axes, respectively. Here, we used862

a = 1
30 and (t11 = 0, t12 = 0), (t21 = 0, t22 = π

2 ), (t31 = π
2 , t32 = π

2 ) corresponding863

to three orthogonal directions shown in Figure 11a, and λh = λmin was adopted, cor-864

responding to a typical geological model (Capdeville et al., 2010). The global domain865

Ωg and the wavefield snapshot at time 15.6 tmin associated with 48 × 48 × 24 elements866

meshed with NGLL = 8 (G = 12, 1.5 times of the 3D homogeneous scenario based on867

the empirical value in Lyu et al. (2020)) are depicted in Figure 11b. The local reference868

model Ml0 was located at the center of the global domain Ωg with a half-size of 16 ×869

16 × 8 λ3
min. The hybrid wavefield at the same time step and the local domain Ωl as-870

sociated with 6 × 6 × 3 elements with NGLL = 20 (G = 7.5, 1.5 times the 3D homo-871

geneous scenario) are depicted in Figure 11c. The agreement between the hybrid and ref-872

erence waveforms shown in Figure 11d demonstrated the effectiveness of the new hybrid873

method in the 3D global heterogeneous reference model, indicating a significant appli-874

cation prospect in probing the key 3D structures in the deep earth using box tomogra-875

phy.876

5 Discussion877

5.1 Spatial and Temporal Interpolations878

In the 3D numerical simulations of wave propagation, dividing the minimum sam-879

pling points per minimum wavelength G by 2 implies a storage requirement of the hy-880

brid inputs divided by 4 because of the 2D planar distribution, which is significant for881

decreasing the memory requirements. For example, for the spatial interpolation in our882

3D homogenous scenario, G = 8 in the local simulation resulted in the storage of the hy-883

brid inputs being 1.62 times that of G = 5 in the local simulation (the 3D homogeneous884

scenario). Moreover, the computation time with degrees 12-24 can be up to twice as fast885

as the classic degree 4 (Lyu et al., 2020). Considering a 3D hybrid local simulation, the886

corresponding hybrid inputs are a 2D planar distribution; thus, the storage demand of887

the hybrid inputs of degree 20 (G = 2.5) is a quarter of that of degree 4 (G = 5).888
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A low G can also be very important in the FWI context because of the kernel op-889

eration on the partial, compressed, or full storage of the forward and adjoint wavefields890

(Komatitsch et al., 2016; Boehm et al., 2016; Fichtner et al., 2009; Lyu, Capdeville, Al-891

Attar, & Zhao, 2021). For the proposed hybrid method, during the first global simula-892

tion, the physical quantities ∇q, q, and ∂ttq are calculated and recorded to construct the893

combined hybrid inputs for the hybrid simulation. The flexible meshing in the local tar-894

get model can differ from the meshing of the global model, resulting in the possibility895

of using a low G of the hybrid inputs and the associated hybrid simulation with a very896

high polynomial degree SEM. When the local and global meshings are different, spatial897

Lagrange interpolation can be adopted to obtain the physical quantities of GLL points898

exactly on the hybrid interface during the first global simulation. If the global or local899

meshing is not sufficiently accurate, different spatial dispersion errors will be introduced900

into the local simulation, resulting in inaccurate waveforms. Note that physical quan-901

tities such as the potential/displacement of the GLL points for constructing the hybrid902

inputs can be interpolated from the global to the local mesh. However, the internal force903

term KQ cannot be pre-computed in the global simulation and interpolated on a dif-904

ferent mesh from the global mesh, because the internal force term is discontinuous be-905

tween hybrid elements. Note that Monteiller et al. (2020) also describes that the spa-906

tial and temporal interpolation schemes are key to increasing the efficiency of the algo-907

rithms in the global hybrid simulation.908

In addition to the spatial interpolation using different local meshing with a low G,909

we can further adopt different temporal interpolations. The hybrid inputs of the pro-910

posed hybrid method are entirely based on the physical quantities ∇q, q, and ∂ttq of the911

integration points (for example, here we used GLL points), which are localized exactly912

on the hybrid interface S of the local target model Mg1. During the first global simu-913

lation, we should be able to record them at the Nyquist sampling time steps, and then914

the physical quantities can be recovered (interpolated) according to the time step dy-915

namically determined using the local structures after imposing the recorded physical quan-916

tities and before starting the hybrid simulation. Thus, combining the spatial and tem-917

poral interpolations should significantly reduce the memory required for hybrid numer-918

ical simulations by several tens of orders of magnitude. If different global and local time919

steps are adopted, different temporal dispersion errors will be introduced into the local920

simulation, resulting in inaccurate waveforms to an extent. Note that the spatial and tem-921

poral dispersion errors have been proven to be irrelevant (Koene et al., 2018; Lyu, Capdev-922

ille, Lu, & Zhao, 2021), which provides a theoretical basis for eliminating the temporal923

dispersion errors in the global and hybrid simulations.924
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5.2 Numerical cost925

To use the proposed method, we must know three incident fields (the gradient, po-926

tential, and acceleration), with the advantage of being able to use the PML in the sce-927

nario of very heterogeneous media without much artificial error owing to incomplete ab-928

sorption. From the benchmark of different hybrid methods in Table 1, the storage be-929

tween the new hybrid method and VM or RP hybrid methods is the same whether the930

local and global meshings are the same, because the q̈ can be obtained from the stored931

q field. Generally, the local and global meshings are always different because the local932

and global solvers are different, and the corresponding storage ratio between the new hy-933

brid method and BY or YM hybrid methods is expressed as follows:934

2× 3V1

3V3
=

2× V1

V3
≈< 2

N + 1
, (24)

because V3 ≈> (N+1)×V1. The ratio between the new hybrid way and MYM hybrid935

methods is expressed as follows:936

2× 3V1

3V2
=

2× V1

V2
≈> 2

N + 1
, (25)

because V2 ≈< (N+1)×V1. Thus, for the very high polynomial degrees SEM such as937

N = 20 in the 3D scenarios, the proposed hybrid method requires significantly fewer938

memory requirements than the BY, YM, and MYM hybrid methods.939

To build a clear work flow, we always must i) determine the coordinates of the hy-940

brid GLL points in the local domain required using different hybrid methods; ii) calcu-941

late and record the physical quantities of the recorded hybrid GLL points during the first942

global forward simulation, such as the potential/displacement for YM method; iii) im-943

pose the hybrid inputs into the local model to perform the local hybrid simulation at each944

time step. According to the expressions of different hybrid inputs of the six listed hy-945

brid methods (Table 1), the methods of imposing the hybrid inputs are different. At each946

time step, the VM method explicitly implements the traction surface integral with the947

integrated GLL points on the hybrid interface based on Equation (A3). The RP method948

requires an additional term by further explicitly implementing the second potential/displacement949

surface integral based on Equation (A4). The new method first implements the traction950

surface integral as the VM method, then directly add the potential/displacement before951

calculating the internal force terms, and finally directly subtracts the recorded reference952

acceleration from the acceleration in the target local model based on Equation (16). The953

BY, YM, and MYM hybrid methods are performed almost the same. The MYM hybrid954

first directly adds the potential/displacement to the hybrid GLL points on the hybrid955

interface before calculating the internal force, then calculates the internal force using the956

elemental stiffness matrix and the potential/displacement of all the GLL points in the957
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hybrid elements, and finally subtracts the calculated internal force from the internal force958

in the target model based on Equation (14). The YM and BY methods use opposite steps959

based on Equation (13). The different hybrid methods were designed to perform the hy-960

brid simulation; however, the numerical complexity of the SEM solvers is primarily dom-961

inated by the calculation of the internal forces (the product between the elemental stiff-962

ness matrix and displacement vector) (Deville et al., 2002), and the imposing of hybrid963

inputs using different hybrid methods into the local SEM solver does not change the main964

computation part, because the number of hybrid elements is significantly lower than the965

total number of elements in the local domain.966

5.3 Hybrid Inputs Obtained from Programs SPECFEM3D globe and967

AxiSEM3D for Box Tomography968

Box tomography has been used to image the upper-mantle shear velocity structure969

beneath the North American continent down to a 40 s period (Clouzet et al., 2018). Their970

hybrid inputs are calculated by the program SPECFEM3D globe (Komatitsch et al., 2002)971

for the seismic events outside the box based on the YM hybrid method. There is noth-972

ing that prevents one from using the new hybrid method to obtain the hybrid inputs in973

the framework of SPECFEM3D globe. Alternatively, with two to three orders of mag-974

nitude faster, the program AxiSEM3D (Leng et al., 2019) is an excellent and efficient975

candidate solver for calculating the hybrid inputs in an existing 3D global reference model.976

Subsequently, hybrid simulations can be implemented with a local solver (e.g., RegSEM977

(Cupillard et al., 2012)). It is also worth emphasizing that the global solver, which is used978

to provide the hybrid inputs, only requires to calculate the physical quantities displace-979

ment, acceleration, and strain (for the elastic scenario) of the integration (e.g., GLL) points980

located exactly on the hybrid interface. The local solvers used for the hybrid numeri-981

cal simulations only require to read in these physical hybrid inputs as equivalent virtual982

sources. There are no other connections between these two programs; therefore, the pro-983

posed hybrid method is highly accurate and memory efficient for implementing hybrid984

simulations in actual applications. Note that the proposed hybrid method, similar to Monteiller985

et al. (2013) and Masson et al. (2014), cannot recover second- or higher-order scattered986

waves, but first-order scattered waves are always stronger and more important for imag-987

ing.988

6 Conclusion989

By analyzing and combining the respective advantages of the existing two main cat-990

egories and five subcategories of hybrid methods, a new hybrid method is proposed. Only991
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three physical quantities, including ∇q, q, and ∂ttq, must be obtained during the first992

global simulation to construct the hybrid inputs, and the meshing of the local target model993

is not limited by global meshing. Furthermore, only the associated physical quantities994

of the integration points that are located exactly on the hybrid interface are required,995

which is highly accurate and memory efficient for the 3D local hybrid simulation. The996

required memories of hybrid inputs can be further reduced fourfold if the very high poly-997

nomial degree spectral element method is used for the local hybrid simulation. Finally,998

the more efficient absorbing boundary condition PML can be adopted naturally with-999

out any elements overlapping between the local and PML domains. All these characters1000

can increase the imaging resolution and accuracy of box tomography. After theoretical1001

analysis and numerical experiments, the consistencies of the wavefield and waveform be-1002

tween the global and hybrid numerical simulations in 2D/3D homogeneous and hetero-1003

geneous models validate our proposed hybrid method, indicating a significant applica-1004

tion prospect in probing the key 3D structures in the deep Earth using box tomography.1005

It should also be noted that this study focused only on the acoustic scenario by SEM.1006

However, the proposed concept is general and can be adopted by other numerical meth-1007

ods such as FDM or FEM, and it can be directly applied to studying the hybrid numer-1008

ical simulation of both the elastic wave equation and solid–fluid coupling, or Maxwell’s1009

equations.1010
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Appendix A Discretization and Interpolation of Traction and Moment-1027

Density Tensor Sources in SEM in the Acoustic Model1028

Let us assume a quadrature rule applied to discretize the surface integral for a func-1029

tion g(x):1030 ∫
S

g(x)dS ≈
∑
e

Ns∑
p=1

αpg(xep), (A1)

where the first summation is assembled over all the surface elements e of the hybrid in-1031

terface S, and the second one is over all the quadrature points xep (p = 1, · · · , Ns), Ns1032

is the total number of quadrature points on one surface element with the related quadra-1033

ture weight αp. Subsequently, after introducing the discretization of Equation (A1) into1034

the two surface integrals in Equation (8), the equivalent body force expression of equa-1035

tion (7) can be discretized as1036

q(x) =
∑
e

Ns∑
p=1

αp

∫
V

{T (xep)δ(x
′ − xep) + ∂i[mi(x

e
p)δ(x

′ − xep)]}G(x; x′)dV (x′). (A2)

In weak-form methods (such as the finite element method (FEM) or SEM), the traction1037

source term in the weak form becomes1038 ∫
V

w(x)T (xep)δ(x− xep)dV (x) = w(xep)T (xep), (A3)

where w(x) is the abovementioned test function introduced in the second hybrid sim-1039

ulation. The moment–density tensor source term becomes1040 ∫
V

w(x)∂i[mi(x
e
p)δ(x− xep)]dV (x) = −∂iw(xep)mi(x

e
p), (A4)

which is similar to the moment tensor implementation in Komatitsch and Tromp (1999).1041

Appendix B Absorbing Boundary Condition implementation of the1042

VM hybrid method1043

When the hybrid inputs are imposed on the local target model Ml1, the resultant1044

potential q1 on the hybrid interface S is1045

q1 = q0 + qscatter, (B1)

where qscatter is the scattered potential owing to the existence of heterogeneity in the lo-1046

cal target model Ml1. The ABC (Clayton & Engquist, 1977) can be used to absorb the1047

scattered potential ∇qscatter on the hybrid interface S as follows:1048

n · ∇qscatter = −
√
ρ

κ
∂tqscatter, (B2)
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where n is the unit outward normal of the boundary ∂Ω. With the hybrid inputs ∇q01049

and ∂tq0, the second-order explicit Newmark time-marching scheme (Newmark, 1959)1050

can be used to perform the hybrid simulation in the local target model Ml1 in the frame-1051

work of SEM:1052

M1Q̈1 + C1(Q̇1 − Q̇0) + K1Q1 = FT0 , (B3)

where the C1 vector is obtained from the ABC, and Q̇1 and Q̇0 are the temporal deriva-1053

tives of the potential vector calculated in the local target and reference models. M1 is1054

the global mass matrix, and K1 is the global stiffness matrix assigned to the local tar-1055

get model Ml1. Note that Equation (B2) is used to absorb only the scattered waves and1056

not the total wavefield. This boundary treatment naturally combines the forward wave-1057

field with DSM or FK solutions and is the key part of the VM hybrid implementation.1058

Appendix C Best Scenario for the YM Method1059

In the best scenario, when the hybrid interface S completely follows the boundary1060

of elements, namely, a Heaviside window function is adopted such that the diagonal value1061

W of all the points in the local domain Ωl and on the hybrid interface S (e.g., the closed1062

green line in Figure 2) is nonzero. The conceptual illustration of local target model Ml11063

associated with the YM method in this best scenario is depicted in Figure 1e, the blue1064

part is where the hybrid input is imposed and the green part corresponds to the PML1065

domain. Note that the blue part in Figure 1e for imposing the numerical hybrid inputs1066

is outside the local target model Ml1. Masson et al. (2014) suggests that only part of1067

values of the internal forces We(Ke
0·Qe

0) and WeQe
0 at the GLL nodes exactly on the1068

hybrid interface S must be recorded according to the inner scheme in Equation (13) cor-1069

responding to the closed green line in the blue elements (hybrid elements in the BY hy-1070

brid method) in Figure 2. Because only the hybrid elements contribute to the numer-1071

ical hybrid inputs, We(Ke
0·Qe

0) and WeQe
0 are related to only the GLL points on the1072

hybrid interfaces under the selection of the element window function matrix We. Note1073

that in the best scenario, as in Figure 1e, although the blue domain is outside the hy-1074

brid interface S, it is an inner scheme as defined in Masson et al. (2014).1075
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VM RP BY or YM MYM or NEW

(a)
Mg0

Me0

Ml0

Ωg

Ωe

Ωl

(b)
Mg1

Me0

Ml1

(c) (d) (e) (f)

Figure 1. Nomenclatures of the hybrid simulation. (a) The global reference model Mg0 con-

tains the gray external model Me and the white local reference model Ml0, which are assigned to

the global domain Ωg, external domain Ωe, and local domain Ωl, respectively. The red and cyan

dashed lines represent hybrid interfaces S. (b) The global target model Mg1 contains the gray

external model Me and the white local target model Ml1, which are also assigned to Ωg, Ωe, and

Ωl. The gray cartesian circle represents local target heterogeneity. (c) Local target model Ml1

and its hybrid interface S (cyan dashed line) of the VM hybrid method. (d) Local target model

Ml1 and its hybrid interfaces S (red and cyan dashed lines) of the RP hybrid method, and the

green part represents the PML domain. (e, f) The local target model Ml1 of the BY, YM, MYM,

and new hybrid methods with the green PML part the hybrid elements in SEM (blue part for

BY and YM methods, red part for MYM and new methods), and their hybrid interfaces S (cyan

dashed lines).
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Figure 2. 2D global homogeneous domain Ωg and wavefields of the potential in the unit of

Pascal (pa). The source and 13 receivers are plotted as black star and inverse triangles, respec-

tively. The 160 × 80 element meshing associated with NGLL = 8 are depicted. The wavefields

at 13.2 tmin, 31.2 tmin, 49.2 tmin, 67.2 tmin, and 84 tmin are superposed. The green line is the

hybrid interface ∂S, the blue elements are the elements used to implement the hybrid injection in

Masson et al. (2014), and the red elements are the hybrid elements used in this study.
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Figure 3. Different contributions of the two surface integrals using the physical representation

theorem to perform the hybrid simulation (RP hybrid method). (a) Potential wavefield at 60 tmin

generated by imposing only the traction surface integral onto the hybrid interface S (green line).

(b) Potential wavefield at 60 tmin generated by imposing only the moment surface integral onto

the hybrid interface. (c) Sum of the wavefields in (a) and (b). (d) Benchmark of waveforms of

stations A (d1) and B (d2) as marked in (c). The black, blue, and dashed red waveforms are

calculated using the global simulation, hybrid numerical simulation only with the traction surface

integral, and hybrid numerical simulation only with the moment surface integral, respectively.

The green waveform in (d1) is the enlarged sum of the blue and red dashed waveforms, and the

green waveform in (d2) is the enlarged difference between the black waveform and the sum of the

blue and red dashed waveforms.
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(a1) (RP)

(a2)

(b1) (VM)

(b2)

(c1) (MYM)

(c2)

(d1) (NEW)

(d2)

Figure 4. 2D local homogeneous domain Ωl, hybrid local wavefields (same colorbar as in Fig-

ure 2) and waveforms calculated using the four methods. (a1, b1, c1, d1): Superposed wavefields

at the same time steps as in Figure 2. The green line is the hybrid interface S, and the red ele-

ments are the elements used to implement the associated hybrid method. (a2, b2, c2, d2): Global

( solid black lines), hybrid (dotted red lines), and enlarged residual (solid green lines) waveforms.

(a1, a2) is from the RP method. (b1, b2) is from the VM method. (c1, c2) is obtained from the

MYM method. (d1, d2) is from the new method.
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(a)

(b)

(c)

42 t
min

47 t
min
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(d)

Figure 5. Hybrid simulation in the 2D Gaussian heterogeneous global model using the pro-

posed method. (a) 2D global Gaussian model and hybrid interface S (green line). (b) and (c):

Two different hybrid simulations and the associated superposed wavefields (same colorbar as in

Figure 2) at the same time steps as in Figure 2, respectively, in the global domain Ωg and in the

local target domain Ωl with PML absorbing condition. (d) Comparison of different waveforms.

The solid black lines represent the global waveforms calculated in the global target model (a).

The dotted red lines are the first hybrid waveforms obtained in the global target model, but by

imposing the hybrid inputs as shown in (b). The enlarged residuals between the global and first

hybrid waveforms are depicted by the solid green lines. The second hybrid waveforms obtained

in the local target model (c) with PML in the shrunk domain are depicted as solid blue lines,

and the waveforms computed in the 2D homogeneous model are plotted as dotted black lines.

Zoomed-in waveforms of the middle station are placed in the upper-right corner of (d).
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(a)
(VM)

(b)

(c)

Figure 6. Hybrid simulation in a strong 2D Gaussian heterogeneous model using the VM and

new hybrid methods. (a) 2D hybrid wavefield at time step 54 tmin by the VM hybrid method.

(b, c) Waveform benchmark of VM and new hybrid methods. The solid black lines are the global

waveforms calculated in the strong global target model, the dotted red lines are the hybrid

waveforms using the VM and new hybrid method, and the dashed green lines are their enlarged

residuals; the magnification is 10 for the VM hybrid and 100 for the new hybrid method.
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(a)

(b)

(c)

(d)

Figure 7. Hybrid simulation in the 2D cosine heterogeneous reference model using the pro-

posed method. (a) 2D cosine heterogeneous model. (b) Global wavefield at 67.2 tmin and the

240 × 120 element meshing associated with NGLL = 8 are depicted. (c) Local wavefield at the

same time step and the 30 × 15 element meshing associated with NGLL = 20 are depicted. (d)

Comparison of the reference waveforms in the solid black lines, hybrid waveforms in the dotted

red lines, and enlarged residuals in the solid green lines.
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Figure 8. Hybrid simulation in a local reference model using the representation theorem

with the source inside and receiver outside. (a) 2D hybrid wavefield related to the calculation of

Green’s function at time step 72 tmin. The reverse black triangle is the receiver located outside

the box surrounded by the green line, and the black star is the source inside the box. (b) Wave-

form benchmark. The solid black line is the waveform calculated in the global reference model in

Figure 2, the dotted red line is the waveform obtained by the convolution based on the explicit

representation theorem, and the dashed green line is the enlarged residual.
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Figure 9. Hybrid simulation in a weak 2D Gaussian heterogeneous model using the new

method with the source and the receiver both outside the box. (a) 2D hybrid wavefield at the

time step 72 tmin. (b) Waveform benchmark. The solid black line is the waveform difference be-

tween the global waveforms calculated in the global weak Gaussian model in Figure 5 and the

global reference model in Figure 2, the dotted red line is the hybrid waveform calculated using

the convolution based on the explicit representation theorem, and the dashed green line is the

enlarged residual.
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Figure 10. Hybrid simulation in the 3D homogeneous reference model using the proposed

method. (a) 3D potential wavefield of global simulation at time step 15.6 tmin in the global refer-

ence model. (b) Hybrid numerical simulation in the local model. (c) Comparison of the reference

waveforms in the solid black lines, hybrid waveforms in the dotted red lines, and enlarged residu-

als in the solid green lines.
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Figure 11. Hybrid simulation in the 3D cosine heterogeneous reference model using the pro-

posed method. (a) 3D cosine heterogeneous model. (b) Potential wavefield of global simulation

at time step 15.6 tmin in the global model (with the same colorbar as in Figure 10a). (c) Hybrid

simulation in the local model at the same time step. (d) Comparison of the reference waveforms

in the solid black lines, hybrid waveforms in the dotted red lines, and enlarged residuals in the

solid green lines.

–53–

View publication stats

https://www.researchgate.net/publication/360412542

