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Q2Vacuum ultraviolet photochemistry of sulfuric
acid vapor: a combined experimental and
theoretical study†

Cuihong Zhang,‡abc Xiaoxiao Lin, ‡a Xiaofeng Tang, *a Christa Fittschen Q3,c

Sebastian Hartweg,d Gustavo A. Garcia, *d Bo Long, e Weijun Zhanga and
Laurent Nahon d

We present a vacuum ultraviolet (VUV) photoionization study of the gas-phase sulfuric acid (H2SO4)

molecule in the 11–14 eV energy range by using the method of synchrotron radiation-based double imaging

photoelectron photoion coincidence (i2PEPICO) spectroscopy complemented with accurate theoretical

calculations. The slow photoelectron spectrum (SPES) of H2SO4 has been acquired and the three electronic

states of H2SO4
+, X2A, A2A and B2A have been populated and assigned. The adiabatic ionization energy of

the H2SO4 molecule towards the X2A cationic ground state is measured at 11.684 � 0.006 eV, in

accordance with high-level calculated findings. With increasing photon energies, the H2SO4
+ cation

dissociates into HSO3
+ and OH fragments and their adiabatic appearance energy is measured at 13.498 �

0.007 eV. Then, the enthalpies of formation for the species involved in the photoionization and dissociative

photoionization have been determined through a thermochemical cycle.

1. Introduction

Sulfuric acid (H2SO4) as a key precursor plays an essential role
in the formation of new particles, secondary aerosols and
clouds in the earth’s atmosphere, and has received much
attention from both theoretical and experimental groups in
recent years.1–3 In the atmosphere, H2SO4 is mainly formed
from the reaction of water vapor with sulfuric trioxide (SO3),
which is generated from the hydroxyl radical (OH) reaction with
sulfuric dioxide (SO2) emitted, for instance, from fossil fuel and
biomass burning.2,4,5 Due to its extremely low vapor pressure,
the nascent H2SO4 molecule can easily get supersaturated and
then enhance the homogenous nucleation rates of water and
other compounds significantly. Presently, it is well-known that

gas-phase H2SO4 molecules tend to form hydrates at the
beginning of nucleation, that is, to produce small clusters
consisting of a few water molecules associated with one or
several H2SO4 molecules.6–8 Thus, the structure and spectro-
scopy of H2SO4 and the sulfuric acid–water clusters are of
considerable importance for understanding their chemistry in
the atmosphere.

There have been several theoretical studies on H2SO4 and
sulfuric acid–water clusters, in which their optimized struc-
tures and spectra have been calculated using various levels of
theory.9–12 For example, the theoretical results show that H2SO4

has two conformers depending on the relative position of the
two OH groups: the most stable one is the trans form having a
C2 symmetry, while the cis form has a C1 symmetry and an
energy of +4.6 kJ mol�1 with respect to the trans conformer.9

The energy barrier of isomerization was calculated to be 12.6 kJ
mol�1 relative to the trans conformer.9 Theoretical studies on
the uptake of water molecules, leading to the hydration of
H2SO4, have yielded the structure of these complexes, and it has
been predicted that progressive hydration increases the prob-
ability of proton transfer from the acid to water, with the
resulting ion-pair structures corresponding to the global energy
minima.9,11

Experimentally, spectroscopic techniques such as micro-
wave rotational spectroscopy, infrared (IR) spectroscopy and
Raman spectroscopy have been employed to probe H2SO4 and
hydrated complexes.13–17 The structures, vibrational spectra
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and frequencies of H2SO4 and the H2SO4�H2O cluster were
obtained. Mass spectrometry, as a convenient analytical
method, has also been applied in the past. For instance, the
mass spectrum of H2SO4 vapor was acquired by Snow and
Thomas using electron impact ionization mass spectrometry
(EIMS) and its ionization energy was roughly measured at 12.4
eV, together with the appearance energies of its major fragment
ions, H2O+, SO3

+ and HSO3
+.18 The positive and negative ion

distributions of the sulfuric acid–water clusters as well as their
equilibrium constants were measured by Froyd and Lovejoy
using EIMS.19,20 Recently, the formation of mixed sulfuric acid–
water clusters with different concentrations of water and H2SO4

has been investigated by electron attachment and negative ion
mass spectrometry.21 However, the abovementioned mass spec-
trometry methods lack the energy resolution to distinguish
contributions from all possible isomers. Moreover, much of
the thermochemical data of H2SO4 and the sulfuric acid–water
clusters are not precisely known.22

The purpose of this study is to investigate the vacuum
ultraviolet (VUV) photodynamics of H2SO4. Photoionization
and dissociative photoionization of H2SO4 in the energy range
of 11–14 eV are analyzed by using the method of double
imaging photoelectron photoion coincidence (i2PEPICO)
spectroscopy complemented with high-level theoretical calcula-
tions. Three cationic electronic states of H2SO4

+ have been
prepared and assigned in the slow photoelectron spectrum
(SPES). In particular, the adiabatic ionization energies (AIEs)
of the trans and cis conformers of H2SO4, towards the X2A
cationic ground state, have been measured precisely for the
first time, as well as the adiabatic appearance energy (AE0K) of
the HSO3

+ fragment ion from the dissociation of H2SO4
+. The

enthalpies of formation for the species involved in the photo-
ionization and dissociative photoionization are also deter-
mined through a thermochemical cycle.

2. Materials and methods

The experiments were carried out on the beamline DESIRS
equipped with an i2PEPICO spectrometer, DELICIOUS III, at
the French national synchrotron radiation facility SOLEIL. The
detailed configurations of the synchrotron beamline and the
spectrometer23–25 have already been introduced in our previous
publications and only a short description is presented here.
Briefly, photons emitted from a variable polarization undulator
were dispersed by a 6.65 m normal incidence monochromator
equipped with a 200 L mm�1 grating, which was set to provide
an energy resolution of B3 meV. A gas filter located upstream
of the beamline and filled with Ar gas was employed to
suppress high harmonics emitted from the undulator. The
absolute photon energy of the beamline was calibrated online
with a precision of �2.5 meV using the ionization energy
of water.

The i2PEPICO spectrometer is composed of a modified
Wiley–McLaren ion time-of-flight (TOF) 3D-momentum ima-
ging device and an electron velocity map imaging (VMI)

analyzer, equipped with two position-sensitive detectors (PSDs)
for the analysis of ions and electrons, respectively.24 A mixture
of helium carrier gas (1.5 bars), water vapor (from the vaporiza-
tion of liquid water at room temperature) and H2SO4 vapor,
generated from the vaporization of liquid H2SO4 (95% purity) in
an in-vacuum oven heated at 180 1C, was expanded through a
70 mm diameter nozzle to form a continuous molecular beam
which was skimmed twice before reaching the center of the
spectrometer.25,26 The multiplex coincidence scheme between
the ion and electron yields mass-selected photoelectron spectra
(PES) as a function of photon energy, which are then reduced to
SPES, as previously detailed.27,28 Meanwhile, the coincidence
scheme can provide spectral fingerprints to identify and sepa-
rate isomers, and accurately measure thermochemical data
such as fragment appearance energies and bond
energies.29–31

We have performed theoretical calculations to assign the
experimental spectra. The AIE and the vertical ionization
energy (VIE) of the X2A ground electronic state of H2SO4

+ were
calculated at the CCSD(T)-F12A/aug-cc-pVTZ level of theory as
implemented in MOLPRO software.32 The VIEs of the first (A2A)
and the second (B2A) excited electronic states of H2SO4

+ were
computed using time-dependent density functional theory (TD-
DFT), TD-M062X/6-311++G(d,p).33 The Franck–Condon factors
in the photoionization towards the X2A cationic ground state,
as well as for the required geometry optimizations and the
vibrational frequency computations with a harmonic approxi-
mation, were calculated at the M062X/6-311++G(d,p) level of
theory with the Gaussian package using the time-independent
adiabatic Hessian Franck–Condon model.33

3. Results and discussion
3.1 TOF mass spectra

Synchrotron radiation photoionization TOF mass spectra of the
gas mixture have been recorded in the 11–14 eV photon energy
range and are presented as a matrix in Fig. 1, as well as their
integrated mass spectra. Several mass peaks can be observed
and have been assigned within a mass range of m/z = 60–110.
For example, the most intense mass peak at m/z = 98 is assigned
to H2SO4, the m/z = 80 mass peak is assigned to SO3 and the m/z
= 64 peak is attributed to SO2, based on their narrow widths in
the mass spectra.25 Indeed, the width of the TOF peak is
proportional to the square root of the ion translational energy
along the detection axis, so that narrow peaks correspond to
parent ions formed by direct ionization of the neutrals in the
molecular beam, while broad peaks originate from fragment
ions formed by dissociative ionization.25,30 Besides these three
intense mass peaks, their isotopic peaks can be observed in the
mass spectra too, i.e., the 33SO2 isotopic species at m/z = 65,
34SO2 at m/z = 66, 34SO3 at m/z = 82 and H2

34SO4 at m/z = 100
with relative intensities corresponding to their individual nat-
ural abundances, as listed in Table S1 (ESI†).34

SO3 is formed from the equilibrium reaction of H2SO4(g) 2
SO3(g) + H2O(g) inside the oven, and SO2 is produced from the
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reduction reaction of H2SO4 with the metallic parts of the oven.
The appearance energies of SO3 and SO2 can be obtained from
the mass spectra matrix of Fig. 1(a) and both of them agree with
their individual ionization energies,35 confirming their assign-
ments as neutral nascent species formed in the oven. Note that
SO3

+ and SO2
+ were also observed in a previous study based on

EIMS, but both were assigned as fragment ions from the
dissociation of H2SO4

+ by Snow and Thomas.18

Normally, in Fig. 1, the mass peak at m/z = 81 should be
assigned as the 33SO3 isotopic species in the mass spectra. But,
its relative intensity (B28% of 32SO3) measured in the mass
spectrum is much higher than the natural abundance of 33SO3

(B0.91%),34 and its peak width is much wider than that of the
SO3 or H2SO4 mass peak. In addition, as shown in the mass
spectra matrix, the appearance energy of the m/z = 81 species is
not the same as and much higher than that of SO3 (m/z = 80).
Therefore, the m/z = 81 peak in the mass spectra is not
contributed from the isotope 33SO3 and corresponds to the
HSO3

+ fragment ion from the dissociative ionization of H2SO4,
as inferred from its broad shape due to the kinetic energy
release in the fragmentation. Note that the contribution from
the isotope 33SO3 (B0.91%)34 to the m/z = 81 channel is
considered negligible and has not been subtracted here. Simi-
larly, due to its large width, the more intense peak at m/z = 99 is
attributed to the H2SO4H+ fragment ion produced from the
dissociative photoionization of the H2SO4�H2O complexes
formed in the molecular beam, with again a negligible con-
tribution from the H2

33SO4
+ isotopic species. Note that a

complete study of water complexes and clusters of sulfuric acid
will be reported in a forthcoming work.

3.2 Mass-selected slow photoelectron spectra

The mass-selected photoelectron matrices corresponding to the
H2SO4

+ parent ion (m/z = 98) and the HSO3
+ fragment ion (m/z =

81) showing the signal as a function of electron kinetic energy
(Ele KE) and photon energy are depicted in Fig. 2(a and c),
respectively. Here, diagonal lines are the product of energy
conservation and thus correspond to constant cationic states.

1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55

Fig. 1 (a) Synchrotron photoionization mass spectra matrix in the 11–14
eV energy range and (b) their integrated mass spectrum, together with 5
times magnified data in red.

Fig. 2 Mass-selected photoelectron matrices, slow photoelectron spectra (SPES, black solid lines) and photoionization yields (PIYs, blue dotted lines)
corresponding to (a and b) the H2SO4

+ parent ion and (c and d) the HSO3
+ fragment ion. The 10 times magnified SPES in red shows the onset of H2SO4

+.
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The mass-selected SPES corresponding to the H2SO4
+ parent

ion and the HSO3
+ fragment ion are obtained from the photo-

electron matrices and presented in Fig. 2(b and d), respectively,
as well as their photoionization yields (PIYs).27,28 In Fig. 2(b),
the SPES of H2SO4 is rather unstructured although an onset can
be observed at hn = 11.684 � 0.006 eV in the SPES. The
uncertainty of the photon energy calibration, the influence of
the scanning step size (5 meV) and the signal-to-noise ratio of
the SPES have been taken into account and included in the
given error bars.36

As mentioned in the introduction, the gas-phase H2SO4

molecule has two conformers, trans and cis, and their opti-
mized structures as the neutrals as well as their cations in the
X2A cationic ground state have been calculated and are pre-
sented in Fig. 3, agreeing well with previous results.9,37 The
trans conformer has a C2 symmetry structure and is the global
minimum with an energy of B4.6 kJ mol�1 below the cis
conformer with a C1 symmetry.9 The temperature of the mole-
cules in the molecular beam is estimated at 150 K (see Section
3.3 below), which would mean that the trans conformer is
dominant, with only B2% for the cis conformer. However,
the flash cooling in the adiabatic expansion might lead to a
different conformer population than the one expected assum-
ing thermal equilibrium.

Upon photoionization, an electron is removed from the
outer valence orbital of the neutral H2SO4 molecule leading to
the formation of the H2SO4

+ cation. The structure of the trans
conformer relaxes in the cation and its symmetry changes from
C2 to C1 during the photoionization, as shown in Fig. 3, while
the cis conformer geometry undergoes smaller changes. The
AIE of the X2A ground electronic state of the trans-H2SO4

+ has
been calculated at 11.688 eV using the CCSD(T)-F12A/aug-cc-
pVTZ method with zero-point corrections (ZPEs).32 Note that no
scaling factor has been used for the determination of harmonic
frequencies and ZPEs. The calculated values are consistent with
the onset of the experimental curve and their differences are
within 10 meV. Although some structures are seen in the region
where the AIEs are predicted in our experimental spectra, the
unfavorable Franck–Condon factors and consequent lack of

structure do not allow a definite assignment of the experi-
mental AIE. Nevertheless, in view of the good agreement
between the calculated AIE and the feature at 11.684 eV, we
tentatively offer this value as the AIE of the trans conformer.
The very weak features at 11.643 and 11.609 eV (marked with
two asterisks in the 10 times magnified data of Fig. 2b) might
be ascribed to the cis conformer, with the former being
assigned to the AIE of the X2A ground state, for which the
value is calculated at 11.635 eV, and the latter originating from
a hot band in the photoionization, i.e., from the v2 vibrational
mode of the cis conformer whose frequency is calculated at
289.32 cm�1 using the M062X/6-311++G(d,p) method. However,
we note that purely thermal arguments would not allow for the
presence of the cis conformer, nor a hot band, at the presently
estimated temperature of 150 K. In a previous study based on
EIMS, restricted by the electron energy resolution, the ioniza-
tion energy of H2SO4 was measured at 12.4 � 0.05 eV (see
Table 1), which would actually correspond to the VIE measured
in this work.18

The Franck–Condon factors for the photoionization of
H2SO4 towards the cationic X2A ground electron state of
H2SO4

+ have been calculated at the M062X/6-311++G(d,p) level
of theory, using the time-independent adiabatic Hessian
Franck–Condon model.33 Note that the influences of inconse-
quential internal rotations are not included in this model and
thus, the differences of the two conformers are not considered
in the Franck–Condon factors. The simulated PES is subse-
quently generated by convolving the stick spectrum with a
Gaussian function (FWHM = 100 cm�1, full width at half
maximum) and is shown in Fig. S1 (ESI†), with an energy offset
of 50 meV to fit the experimental result. Although the simulated
PES fits the experimental SPES very well at the beginning of the
X2A state, an apparent difference can be observed between
them at the high energy part, indicating that other factors need
to be considered, such as the appearance of cationic excited
electronic states. Indeed, the VIEs of the A2A excited electronic
state and the B2A electronic state of H2SO4

+ have been calcu-
lated at 12.84 and 13.10 eV, respectively, at the TD-M062X/6-
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HSO3, as well as their individual cations, in the ground electronic states.

Table 1 Ionization energies of H2SO4 and the appearance energy of the
HSO3

+ fragment ion (unit: eV).

State IE(H2SO4) AE(HSO3
+) Method Ref.

Expt. 12.4 � 0.05 EIMS 18
13.9 � 0.1 EIMS 18

13.498 � 0.007 SPES e

X2A (trans) 11.684 � 0.006a SPES e

X2A (cis) 11.643 � 0.006a SPES e

X2A 12.53 � 0.05b SPES e

A2A 12.80 � 0.05b SPES e

B2A 13.20 � 0.05b SPES e

Calc. X2A (trans) 11.688a CCSD(T)c e

X2A (cis) 11.635a CCSD(T)c e

X2A 12.54b CCSD(T)c e

A2A 12.84b TD-M062Xd e

B2A 13.10b TD-M062Xd e

a AIE. b VIE. c CCSD(T)-F12A/aug-cc-pVTZ. d TD-M062X/6-311+ +G(d,p).
e This work.
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311++G(d,p) level of theory, and have been assigned in the
experimental SPES too. In the SPES of Fig. 2(b), the VIEs of the
A2A and B2A cationic states are estimated at 12.80 � 0.05 and
13.20 � 0.05 eV, respectively, as listed in Table 1, agreeing well
with the calculated results.

3.3 The thermochemical cycle

The sharp high energy cut-off of the electron signal in the
parent SPES of Fig. 2(b) is due to the dissociative photoioniza-
tion of H2SO4, in accordance with the sharp appearance of the
electron signal in the SPES of the HSO3

+ fragment ion in
Fig. 2(d). The HSO3

+ fragment ion was also observed in the
electron impact ionization mass spectra of Snow and Thomas,
and its appearance energy was measured at 13.9 � 0.1 eV.18

Fig. 4 presents the breakdown diagram of the sulfuric acid
cation, showing the molar fractions of the unimolecular reac-
tion H2SO4

+ - HSO3
+ + OH as a function of the photon energy,

as extracted from the parent and fragment SPES in Fig. 2. The
curves in the breakdown diagram can be modelled assuming
that the initial internal thermal energy stored in the parent
neutral molecule can be directed towards fragmentation.38

Assuming that dissociation is fast within the acceleration time-
scales of the experimental setup (a few microseconds), the only
parameters affecting the model are the temperature and the 0 K
appearance energy of the HSO3

+ fragment. These are optimized
within a least squares fit to the data which yields values of 150
� 20 K for the temperature, and AE0K(HSO3

+) = 13.498 � 0.007
eV, very far from the data reported by Snow and Thomas. Note
that we cannot resolve contributions from cis and trans con-
formers in the breakdown diagram, so that we assume that the
same AE0K applies to both, i.e., that the eventual barriers
towards dissociation are equal.

Based on the AIE of the X2A ground state of H2SO4
+ and the

AE0K of the HSO3
+ fragment ion, the bond energy of H2SO4

+

associated with the HSO3
+ and OH fragments is calculated at

1.814 � 0.008 eV for the trans conformer. Through a thermo-
chemical cycle, as shown in Fig. 5, the enthalpies of formation

for the cations of H2SO4
+ and HSO3

+ are obtained at
DfH0K(H2SO4

+) = 406.2 � 8.5 kJ mol�1 and DfH0K(HSO3
+) = 543.9

� 8.5 kJ mol�1, with the aid of the available thermochemical data
in the literature, i.e., DfH0K(H2SO4) =�721.2 � 8.4 kJ mol�1 39 and
DfH0K(OH) = 37.252 � 0.026 kJ mol�1,40 and assuming barrierless
fragmentations. In addition, the AIE of the HSO3 radical is
calculated at 9.533 eV with the CCSD(T)-F12A/aug-cc-pVTZ high-
level of theory,32 so that we report the enthalpy of formation for
HSO3 at DfH0K(HSO3) = �375.9 � 8.5 kJ mol�1.

4. Conclusions

In summary, VUV photoionization and dissociative photoioni-
zation of H2SO4 in the 11–14 eV energy range have been
investigated by using the i2PEPICO technique complemented
with accurate theoretical calculations on the structures and
ionization energies. The H2SO4 molecule in the oven is seen to
decompose to form SO2 and SO3 and these can be discarded by
the coincidence scheme and are distinguished from the dis-
sociative ionization product, the HSO3

+ fragment ion. The
‘‘pure’’ high-resolution SPES of H2SO4 without contaminations
from other species in the continuous molecular beam has been
acquired for the first time. The three cationic electronic states,
H2SO4

+, X2A, A2A and B2A, are observed and assigned in the
SPES, with the aid of the high-level theoretical calculated
results. The H2SO4 molecule has two conformers, trans and
cis, and their individual AIEs of the X2A cationic ground state
have been tentatively measured at 11.684 � 0.006 and 11.643 �
0.006 eV, respectively. The VIEs of the three electronic states are
also determined. With increasing photon energies, the H2SO4

+

cation dissociates into the HSO3
+ and OH fragments and their

adiabatic appearance energy is measured at 13.498 � 0.007 eV.
Furthermore, the enthalpies of formation for the cations
H2SO4

+ and HSO3
+ are acquired through the thermochemical

cycle in the photoionization and dissociative photoionization.
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