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Source identification of propagating waves
inside a network
F. Plouraboué, P. Uszes & R. Guibert

Abstract—The localization of short events arising within a network subsequently leading to wave propagation into it, is of interest in
many applications. This work extend [1] which demonstrated the identifiability of a source from two detectors in a N nodes graph. We
show that, rather than a source, a boundary condition identification is also possible and demonstrate a generalyzed unicity result.
Furthermore, we extend the identification algorithm proposed in [1] to an arbitrary number of sensors, and estimate its complexity
which depends on sensors number Ns and time dicretisation Nt. Increasing detectors number increases source identification
robustness to noise up to a cut-off number being a small fraction of N . This cutt-off detector density for efficiency in noise reduction is
of practical significance. We also analyze and discuss the method sensitivity to total recording time Te, sampling frequency, and signal
to noise ratio. Finally we propose a pre-sectorisation to improve the systematic exploration algorithm proposed in [1] and we show a
O(N) drop in complexity leading to a O(N3) cost for the source identification. Several tests of the method on model and real graphs
confirm and support the presented results.

F

1 INTRODUCTION

1.1 General context and motivations
In various contexts like water-hammer waves within pipes
networks, river tidal waves in river basin, explosives acous-
tic waves in gas pipes tubing, electrical waves in power-
distribution networks, it is interesting to locate the origin
of waves propagating inside networks [1], [1], [2], [3], [4],
[5], [6], [7]. The simplest exemple of spatio-temporal source
identification is the localization of a sudden breakage or
leakage event within a single pipe [8]. In this case, the
origin of wave event propagating at velocity c, in both ±x
directions, is searched from two distinct sensors recording
the signal at some location along the pipe axis x. Standard
signal processing methods can then be applied [8], looking
for the highest correlation between temporally translated
signals at each sensor location within the two-dimensional
half-space x − t. Nevertheless, even in the most simple
networks, wave rebounds, or multiple path-waves produce
as many temporal patterns for the signal recorded at the
sensor location as possible wave-paths from event to sensor
preventing simple signal processing methods to provide an
answer to locate sources. Networks are hereby defined by
their non-oriented graph G(V,E), vertex (node) set V , and
edge set E, having a symmetric adjacency matrix. The wave
propagation along each edge is supposed to arise at constant
(possibly non-homogeneous) speed. The wave spreading
into the network, i.e its bouncing and propagation at each
node are determined by the graph Laplacian matrix ∆G

which sets the network’s harmonic coupling between vi-
brating modes [2], [3]. For general networks four important
questions are interesting to address :
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(i) For a (non dissipative) wave equation is there a way
to find the –possibly unambiguous– source location
in time and space from recording the induced signal
at some sensor location ?

(ii) How is the identification method threatened by
noise and possibly improved by increasing the num-
ber of sensors ?

(iii) Is there some possibly optimal way of distributing
the sensors inside the networks so as to improve
both identification and its reliability ?

(iv) Finally, is it possible to improve the computational
efficiency of source identification ?

Here we consider ’single event’ localization only as in [1],
[9], [10], [11]. Question (i) has been addressed in [1] for
wave-source identification in the case of two sensors. We
provide an extended description of their approach in §2.1.
Furthermore, in the context of diffusive processes [9] found
an identifiability condition associated with the need for sig-
nal not having the same time to reach any detector from two
distinct sources. More general source location algorithms
for heterogeneous propagation models have been proposed
[10], [11].

Issue (ii) has been partly addressed in [1] in the case
of two sensors for intern-type event identifications. Also
in [9] the influence of random time-delay has been inves-
tigated for some discrete value of noise. Question (iii) has
been qualitatively addressed in some contributions, using
networks concepts such as node’s centrality [12], [13], [14].
Concerning (iv), in the context of diffusive processes over
graphs source identification complexity has received ded-
icated attention in the literature [9], [15], [16], [17]. In the
case of breadth-first tree structure of first arrival, [17] have
provided a O(N3) cost method for source identification.
Furthermore, in the case of diffusion propagation within a
network [9] have proposed a O(N2 ln(N)) method using a
time-reversal backward spreading algorithm.
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(a) Graph G (b) Graph G3

Fig. 1: Illustration of graphs resulting from intern type
or boundary condition type sources. (a) Non-oriented un-
changed graph G with inner source node #3 (red) as in
[1]. (b) Oriented graph resulting from a boundary condition
source (BC-event) node #3 (red). Notation G3 is introduced
to describe this locally oriented graph at node #3 distinct
from graph G.

In some applications, the ’event’ can be described by
the presence of an external source term appearing at given
nodes of the network (subsequently called an intern-type
event), as in the case examined in [1]. Nevertheless, in
other applications, the event results in a structural change
of the network itself for which a given node becomes
exclusively triggered by an external source impinging its
interactions with neighbor nodes of the network. This is
found in network pipe disruption, for which the external
pressure is suddenly applied at one node, whatever the
pressure nearby. Those boundary-condition driven events
(subsequently called BC-events) produce a subtle change in
the graph topology illustrated in Figure 1a-b. They suddenly
locally shift the graph topology from locally un-directed (Cf
Figure 1a) to locally directed (Cf Figure 1b). This subtle
change has a mostly unfortunate consequence : the graph
mathematical structure is changed by BC-events, and the
results provided in [1] no more apply in this case. Hence,
the aim of this contribution is to

– Extend the identification algorithm proposed in [1]
to BC-events identification with an arbitrary num-
ber of sensors.

– Analyze and discuss the method sensitivity to sen-
sor’s recording frequency, total recording time Te
and signal to noise ratio.

– Propose a pre-sectorisation method reducing the
numerical cost of source identification.

Section 1.2 provides some useful definitions. Section 2 pro-
vides the mathematical analysis of two distinct extensions
of [1], the details of which is first presented in §2.1. Then,
the source identification proof for an arbitrary number of
sensors is detailed in §2.2. Lately, §2.3.1 provides the theory
for BC-events identification. Section §3 describes the algo-
rithms for both intern type or BC-type source identification.
In §4 practical improvements are discussed, among which
a pre-sectorisation method to improve the algorithmic cost
is presented in 4.3. §5 provides numerical tests and illustra-
tions of source identification in various real-world graphs.
A nomenclature is provided in Appendix A.

1.2 Some concepts and definitions
Definition 1 (Source). A source is the location s ∈ V , within

the vertex set of the graph, of a time-varying perturba-
tion, an event, arising at a single node. The event can

either be of intern type or of Boundary-Condition type
(i.e BC-type). The type of the event also define the type
of the source, i.e intern source or BC-source.

Definition 2 (Event). An event is defined by the couple
(λ(t),S), where λ(t) is an applied, compact support,
temporal perturbation λ(t) ∈ L2 and S a source vector,
with S ∈ {0, 1}N , S = ŝ, i.e, having components
Sk = δsk. The event can either be of intern type or of
Boundary-Condition type (i.e BC-type).

Definition 3 (Intern event). An event is said of intern type
if its contribution is only added from the contribution of
neighbors of this node.

Definition 4 (Boundary condition event). An event is said
of Boundary Condition type, i.e BC-type, if the imposed
value at the node cancels the contributions of neighbors.
A BC-event at vertex v leads to a locally v-oriented graph
Gv .

Definition 5 (v-oriented graph Gv). A BC-event at vertex
v locally imposes a graph orientation of every edges
pointing at v, outward from v.

Definition 6 (Strategic set). . Given vn the nth eigenvector
of the graph G Laplacian, a set K ⊂ V is defined as
strategic if ∀n ∈ V = [1, N ],∃k ∈ K / vnk 6= 0.

The origin for the need for strategic set is illustrated in figure
2. For the same graph as in figure 1a, figure 2 showcases

(a) (b) (c)

Fig. 2: Illustration of non-detectability of some sources re-
sulting from the graph symmetries. (a) For sensor in node
#3 (in black), a source in node #2 (b) or #4 (c) (in red)
produce the same signal. Hence node #3 only does not
provide a strategic set, i.e ξ = {3} is not strategic.

internal symmetries. From figure 2, it is then easy to find
that some sources are not possible to distinguish with lim-
ited detector set. The fact that node #3 of figure 2 does
not permit to built a strategic set can also be found from
computing the eigenvector set of the graph Laplacian given
in (1), where we showcase the third line (associated with
node #3 highlighted in red) which violates Definition 6 for
strategic set.

V =


0.4472 −0.6533 0.5 −0.2706 −0.2236
0.4472 −0.2706 −0.5 0.6533 −0.2236
0.4472 0 0 0 0.8944
0.4472 0.2706 −0.5 −0.6533 −0.2236
0.4472 0.6533 0.5 0.2706 −0.2236


(1)

2 THEORETICAL ANALYSIS

This section details Caputo et al. [1] results in 2.1 the
extension of which for an arbitrary number of sensors is
detailed in 2.2. Furthermore, the extension of Theorem 1 for
uniqueness of BC-events identification is given in 2.3.
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2.1 Detailed presentation of [1]
2.1.1 Evaluation of X.
The wave amplitude at time t ∈ [0, Te] at each vertex of
graph G(V,E), with card(V ) = N , is represented by vector
X

X(t) = (X1(t), X2(t), . . . , XN (t))> (2)

With Te the final recording time. ∆G is the Laplacian matrix
of non-oriented graph G. The governing equation of X(t) is
given by the d’Alembert operator{

Ẍ−∆GX = λ(t)S for t ∈ [0, Te]

X(0) = a ∈ RN and Ẋ(0) = b ∈ RN
(3)

where a et b are the initial state and velocity of the system.
λ is the time-variation of a single source localized in single
node (vertex) s ∈ V , with Si = δis. Model (3) represents
forced harmonic vibrations into a network resembling cou-
pled vibrating strings, with a time-varying force imposed at
node s.

It is assumed that (λ(t),S) are chosen in admissible
event sets defined by

As :=


∃T 0 ∈ [0, T ]/λ(t) = 0 ∀t ∈ [T 0, T ]
S = (s1, s2, . . . , sN )>

with sk ∈ {0, 1} k ∈ V, &
∑N
k=1 sk = 1

(4)

This admissible set provides the condition for vector source
S to represent only one node among all possible ones, and
the need for the forcing term to have compact support
so that it disappears after finite time T 0. The observation
operator is defined in [1] as an application from the event
space to observation space :

M(λ(t),S) = {D(t) with t ∈ [0,T]} (5)

where the detection vector D, is chosen at two sensors
locations (i, j) ∈ V [1]. This abstract observation operator is
useful to consider since it provides the formal link between
the event, i.e the source node where some transient forcing
occurs, and the later observation of the resulting distur-
bances within the network at some pre-defined locations
provided by D. It is assumed that the eigenvalue of ∆G are
distinct and ordered

0 = −ω1
2 > −ω2

2 > · · · > −ωN 2 (6)

Since ∆G is a symmetric matrix of a non-oriented graph, its
eigenvectors {v1, v2, .., vN} produce an orthogonal base of
RN , so that

X(t) =
N∑
n=1

yn(t)vn with yn(t) = 〈X(t), vn〉 ∀n ∈ [1, N ]

(7)
Lemma 1. For T ? ∈ (T0, T ), and X solution of

{
Ẍ(t)−∆GX(t) = 0 ∀t ∈ (T ?, T )

X(T ) ∈ RN et Ẋ(T ) ∈ RN
(8)

ξ = (k1, k2, . . . , kNs) a strategic set. Then,

xk1(t) = · · · = xkNs
(t) = 0,∀t ∈ (T ?, T )⇒ X(T ) = Ẋ(T ) = 0

(9)
This lemma states that, if the restriction of the wave am-
plitude at strategic set (Cf definition 6 and figure 2 for

illustration) location X|ξ(t) is zero at any time after the
event to occur, then, the wave amplitude and velocity are
zero everywhere at final time. Using lemma 1 [1] have
shown that

Theorem 1. If (λ,S) is part of admissible events set, i.e
(λ,S) ∈ As, X(t) solution of (3) given at nodes of
strategic set ξ, i.e X|ξ(t), permit to find a unique X(T ).

The symmetric Laplacian matrix ∆G admit an orthogonal
base of eigenvectors. Considering the linear homogeneous
differential problem Ẍ−∆GX = 0, it is possible to find the
general solution projected in the ∆G eigenvector base V

X(t) = (y1(T ) + (t− T )ẏ1(T )) v1+
N∑
n=2

(
yn(T ) cos(ωn(t− T )) +

ẏn(T )

ωn
sin(ωn(t− T ))

)
vn

(10)

This projection permits to infer the signal everywhere in the
network, from recording it in a limited number of sensors
located in ξ ⊂ V . Components yn(T ) for n ∈ [1, N ] permits
to built the mode amplitude vector y(T ) ∈ RN which
gives, for each mode, the oscillation amplitude. Sensors at
positions ξ indeed permit to evaluate the mode amplitude
vector y(T ) and its time derivative ẏ(T ), encapsulated into
2N-vector Y(T ) ≡ [y(T ), ẏ(T )]— as in [18]— from linear
regression with observations. This linear regression uses the
detection vector D ≡ Xk(t), k ∈ ξ with card(ξ) = Ns,
sampled at discrete value tm = m∆t, with m = 0, . . . ,M

D =
(
Xk1(T0), . . . Xk1(tm), . . . , Xk1(tM ),

Xk2(T0), . . . Xk2(tm), . . . , Xk2(tM ),

XkNs
(T0), . . . XkNs

(tm), . . . , XkNs
(tM )

)> (11)

The regression aims minimizing ‖X|ξ −D‖2, the difference
between detection and the wave amplitude prediction at
sensor location ξ, which is a function of unknown wave
amplitudes Y(t). Since X fulfills a linear dependence with
Y(t), a matrix R can be built such that, X|ξ = RY with
regression matrix R equals to

v1
1 (T0 − T )v1

1 cos (ω2(T0 − T ))v2
1

sin (ω2(T0−T ))
ω2

v2
1 . . . cos

(
ωN (T0 − T )

)
vN
1

sin
(
ωN (T0−T )

)
ωN

vN
1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

v1
1 (tM − T )v1

1 cos
(
ω2(tM − T )

)
v2
1

sin
(
ω2(tM−T )

)
ωN

v2
1 . . . cos

(
ωN (tM − T )

)
vN
1

sin
(
ωN (tM−T )

)
ωN

vN
1

v1
2 (T0 − T )v1

2 cos (ω2(T0 − T ))v2
2

sin (ω2(T0−T ))
ω2

v2
2 . . . cos

(
ωN (T0 − T )

)
vN
2

sin
(
ωN (T0−T )

)
ωN

vN
2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

v1
2 (tM − T )v1

2 cos
(
ω2(tM − T )

)
v2
2

sin
(
ω2(tM−T )

)
ωN

v2
2 . . . cos

(
ωN (tM − T )

)
vN
2

sin
(
ωN (tM−T )

)
ωN

vN
2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

v1
Ns

(T0 − T )v1
kNs

cos (ω2(T0 − T ))v2
Ns

sin (ω2(T0−T ))
ω2

v2
Ns

. . . cos
(
ωN (t0 − T )

)
vN
Ns

sin
(
ωN (t0−T )

)
ωN

vN
Ns

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

v1
Ns

(tM − T )v1
Ns

cos
(
ω2(tM − T )

)
v2
Ns

sin
(
ω2(tM−T )

)
ωN

v2
Ns

. . . cos
(
ωN (tM − T )

)
vN
Ns

sin
(
ωN (tM−T )

)
ωN

vN
Ns


.

(12)
Then, the linear regression permits to find unknown wave
amplitudes Y from

Y = [R> ·R]−1R>D (13)

and then X(t) is found from using (13) in (10).

2.1.2 Source location detection:

in order to find the source location, the first step consists
in simplifying the temporal ordinary differential equation
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from projecting it into a suitable base. Since this temporal
problem fulfills a Sturm-Liouville problem{

ϕ̈m(t) = µmϕm(t) ∀t ∈ [0, T ]
ϕm(0) = ϕ(T ) = 0

(14)

with eigenfunctions ϕm associated with eigenmodes µm

ϕm(t) =

√
2

T
sin
(mπ
T
t
)

et µm =
(mπ
T

)2
(15)

Functions {ϕm} form a complete orthogonal set
of L2(0, T ) equiped with scalar product 〈f, g〉 =∫ T
0 f(t)g(t)dt. This base is then used to simplify the tem-

poral o.d.e problems of the wave amplitude (3). Multipling
(3) by ϕm and integrating twice by part leads to

−(∆G + µmI)Xm = λmS + Pm, (16)

Where Xm ≡ 〈X, ϕm〉, resp. λm ≡ 〈λ, ϕm〉, are the pro-
jection of X, resp. λ, over ϕm, and Pm = ϕ̇m(T )X(T ) −
ϕ̇m(0)X(0). Defining matrix

Am ≡ ∆G − µmI, (17)

(16) reads
−AmXm = λmS + Pm. (18)

(18) thus represents the second step of the source location
strategy for providing a necessary linear algebraic problem
for projected mode m. In this formulation of the amplitude
projection dynamic, the right-hand-side term Pm takes care
of the influence of initial and final conditions of both base-
function velocity ϕ̇m and amplitude vector X. Then [1]
search for (18) at every nodes expect those where sensors
are located. Denoting (i, j) the set of the two sensors ( [1]
consider the case of two sensors only), and removing the
corresponding components on the right-hand-side leads to

−A(i,j)
m X

(i,j)

m = λmS + P(i,j)
m (19)

A
(i,j)
m is thus aN×N−2 matrix obtained from removing the

two columns corresponding to the sensors located at nodes
(i, j). X

(i,j)

m is vector Xm without components i & j. Finally

P(i,j)
m = ϕ̇m(T )X(T )− ϕ̇m(0)X(0) + Am. îXi + Am. ĵXj

(20)
where î & ĵ are the unit vectors having components îk = δki
& ĵk = δkj with δki the Kronecker symbol. Theorem 2 estab-
lished in [1] states the unicity of the source :
Theorem 2. For m ∈ N?, N ×N matrix Am defined in (17),

and ξ = {i, j}, if

• ξ is strategic
• 〈λ, ϕm〉 6= 0
• AllN−2×N−2 sub-matrix obtained from extracting

the two columns i et j and any two lines s?1 & s?2 of
Am denoted A

(i,j)
s?1 ,s

?
2

are invertible.

The data collected in ξ = {i, j} permit to uniquely identify
S and λ.

Considering (19), let us describe how obtaining S. First,
it is important to mention that this is an over-determined
problem having N equations for N − 2 unknown. Source
identification is obtained from using

−A(i,j)
m X

(i,j)

m = P(i,j)
m (21)

This system is tested many times, by each time removing
any couple of distinct lines s?1 and s?2 and solving (from
invertibility condition of A(ij)

s?1 ,s
?
2
)

−A(i,j)
s?1 ,s

?
2
X

(i,j)

m = P
(i,j)
s1?,s?2

(22)

If two distinct coupled of lines (s?1, s2?) and (s
′?
1 , s

′?
2 ) give

the same X(i,j)
m , then problem (19) is equivalent to (22), so

that, it means that the source term is absent from (19). The
repeated line in (s?1, s2?), (s

′?
1 , s

′?
2 ) gives the location of the

source s, i.e s is precisely the repeated line. The detailed
algorithm of the source localization proposed in [1] is given
in Algorithm 1.

Finally, we do not provide further details about the
temporal form of λ(t), since the algorithm provided in [1] is
strongly sensitive to added noise on the detector signal. It is
interesting to mention the following limits of [1] :

• Strategic set is limited to two sensors, whilst it is pos-
sible to exhibit some graph without possible strategic
set built from two sensor location only.

• The regression matrix R can be rank deficient (the
condition for regression is Ns(Te − T0)/∆T > 2N ).

• No indication are given for choosing Te the total
recorded time and which mode µm is best for pro-
jection.

• The proposed method is very sensitive to added
noise.

• The algorithmic cost is O(N4).

2.2 Extension to an arbitrary number of sensors
[1] uses the working hypothesis that every sub-matrix

A
(ij)
s?1 ,s

?
2

are invertible for every couple of line s?1, s
?
2 ∈ V sup-

pressed from A
(ij)
m . This hypothesis can be weakens so as

to provide a broader generality to the source identification
results when considering an arbitrary number of sensors
located in ξ ⊂ V for which the corresponding hypothesis
that every sub-matrix Aξ

s?1 ,s
?
2

is invertible become a strong
assumption. In fact some numerical test withNs = 3 sensors
are sufficient to exhibit non-invertible sub-matrix Aξ

s?1 ,s
?
2
.

Hence there is a need for a technical softening of Theorem
2 hypothesis. In fact, the invertibility of sub-matrix Aξ

s?1 ,s
?
2

is not strictly necessary. Let us define Xm|ξ⊥ the restriction
of Xm over the nodes where there is no sensors on V , and
Ps1?,s?2 |ξ

⊥, the similar restriction of Ps?1 ,s?2 , One needs to
find a solution for Xm|ξ⊥ for the generalization of (22) to
an arbitrary number of sensors, i.e,

−Aξ
s?1 ,s

?
2
Xm|ξ⊥ = Ps1?,s?2 |ξ

⊥. (23)

The over-constrained solution of (23) is unique when
Rank(Aξ

s?1 ,s
?
2
) = N −Ns. With this condition, one can then

compute

Xm|ξ⊥ = −[(Aξ
s?1 ,s

?
2
)> ·Aξ

s?1 ,s
?
2
]−1Aξ

s?1 ,s
?
2
Ps1?,s?2 |ξ

⊥. (24)

Otherwise, if Rank(Aξ
s?1 ,s

?
2
) 6= N − Ns several possible

solutions for Xm|ξ⊥ could lead to disregard the true source
s, resulting in non-uniqueness of the method. We now
precisely state and prove this result.
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Algorithm 1 Caputo et al. [1] algorithm for source identifi-
cation
Require: Single component Graph G(V,E) and its adja-

cency matrix AG
1: Chose two sensors location i, j ∈ V
2: if (i, j) is a strategic set then
3: Get Xi(t) and Xj(t) for t ∈ [0, T ]
4: Construct the Graph Laplacian matrix ∆G from AG
5: Compute the set of eigenvectors vn ∈ V & eigenval-

ues ωn ∈ Ω for n ∈ [1, N ] of ∆G

6: Compute the 2N-vector Y(T ) ≡ [y(T ), ẏ(T )], for
T > T0, from inversion of the linear regression matrix
R : Y = [R> ·R]−1R>D . Cf (12) for R and (60) for D

7: Then, evaluate X(T )
8: for each s? ∈ V do
9: for each q ∈ V \ {s?} do

10: Evaluate A
(i,j)
s?,q & P

(i,j)
s?,q . Cf (22) for A(i,j)

s?,q for
P

(i,j)
s?,q

11: Compute X
(i,j)

s?,q = −[A
(i,j)>
s?,q ·

A
(i,j)
s?,q ]−1A

(i,j)>
s?,q P

(i,j)
s?,q

12: end for
13: for each q, q′ ∈ V \ {s?} do
14: Compute E(i,j)

s?,q,q′ = ‖X(i,j)

s?,q −X
(i,j)

s?,q′‖2
15: end for
16: Estimate E(i,j)

s? =
∑
q,q′∈V \{s?}E

(i,j)
s?,q,q′

17: end for
18: for each s? ∈ V do
19: Find s?sol such that mins?∈V E

(i,j)
s? = E

(i,j)
s?sol

20: end for
21: return s?sol
22: end if

Lemma 2. (Extension of theorem 2) Let us define S?⊥ the set
of nodes identified as free of source. Noting S? = V \S?⊥
the set of candidate nodes for source, If ∀(s?1, s?2) ∈ S?,
Rank(Aξ

s?1 ,s
?
2
) = N − card(ξ), then a single observation

M(λ,S) uniquely identifies the source node s.

Proof
Let (λ(1),S(1)) & (λ(2),S(2)) be two possible events asso-
ciated with two sources candidates s?1 & s?2 ∈ S?. These
events leads to solutions X(1) & X(2). Let us define Z =
X(2)−X(1). Using definition (5) of the observation operator,

M(λ(1),S(1)) = M(λ(2),S(2))⇒ ∀k ∈ ξ, ∀t ∈ (0, T ), Zk(t) = 0.
(25)

Using lemma 2.2 of [1] leads to Z(T ) = Ż(T ) = 0. Fur-
thermore, from a unique observation D at ξ nodes, then the
projection of mode decomposition Zm of Z on ξ is zero, i.e,
∀k ∈ ξ, Zk = 0, so that

Aξ
mZ|ξ⊥ = λ(2)

m S(2) − λ(1)
m S(1). (26)

Removing lines s?1 & s?2 from Aξ
m leads to

Aξ
s?1 ,s

?
2
Z|ξ⊥ = 0. (27)

Since s?1&s?2 ∈ S?, Rank
(
Aξ

s?1 ,s
?
2

)
= N − Ns ,

Rank
(
(Aξ

s?1 ,s
?
2
)> ·Aξ

s?1 ,s
?
2

)
= N−Ns and one gets

Z|ξ⊥ = 0. (28)

Hence,
(λ(2)
m ,S(2)) = (λ(1)

m ,S(1)), (29)

so that, in particular,

S(2) = S(1), (30)

and uniqueness follows.

2.3 Extension to boundary condition sources (BC-
events)

2.3.1 New definitions
Let us now consider the conditions needed for BC-events
to be identified. We need to define the generalization of
strategic set for BC-events, that we name BC-strategic set.
In this case, we need to enlarge the frame so as to consider
all possible s-directed graphs Gs ∈ GBC obtained from un-
directed graph G. This first necessitates the direct gener-
alization of the previous notion of strategic set, although,
insufficient in this case, that we thus name Component-
discriminant set for BC-event, and define as
Definition 7. (Component-discriminant set) A set K1 ⊂ V

is component-discriminant if ∀Gv ∈ GBC ,∀ω ∈ Ω,∃k ∈
K1 / v

ω|Gv

k 6= 0.

Furthermore, we need to define a vector-discriminant set
Definition 8. (vector-discriminant set) A set K2 ⊂ V is

vector-discriminant if ∀Gv1&Gv2 ∈ GBC ,∀ω ∈ Ωv1 ∩
Ωv2 ,

vω|Gv1 6= vω|Gv2 ⇒ ∃k 6= k′ ∈ K2 /
v
ω|Gv1
k

v
ω|Gv1
k′

6= v
ω|Gv2
k

v
ω|Gv2
k′

.

so that a BC-strategic set can be defined
Definition 9. (BC-strategic set) A set K ⊂ V is BC-

strategic if it is both component-discriminant and vector-
discriminant.

2.3.2 BC-event uniqueness conditions
For BC-events at candidate node s?, the corresponding
Laplacian matrix ∆Gs?

associated with Gs? is distinct from
∆G which is associated with the graph G. Let us denote
∆G\s? the N − 1×N − 1 sub-matrix built from the N ×N
matrix ∆G by removing its s?th column and its s?th line.
Let us define C∆G

\s? as being the s?th column of ∆G without
its component s?. Then, we define ∆Gs?

built from ∆G\s?
as

∆Gs?
=


∆G\s? C∆G

\s?

0 0

 , (31)

where, on the last line, 0 denotes the N − 1 component zero
vector. This choice is made so as to permit the directed-
graph forcing of BC-event from dynamic system

Ẍ\s?

Ẍs?

+


∆G\s? C∆

s?

0 . . . 0 0




X\s?

Xs?

 =


0
...

0

λ(t)

 , (32)
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so that the s?-neighbor nodes have no influence on the
forced node, which, on the contrary, can propagate the
forcing wave into the graph. This is why the event forcing
λ(t) drives the source node acceleration term Ẍs? in (32).
Unicity is secured by initial conditions X(0) et Ẋ(0). Let
us now consider the eigenvalues and eigenvectors of matrix
∆G?

s
.

First, let us consider the RN unit-vector 1N =
1√
N

[1, 1, . . . , 1]>. From the structure of ∆Gs?
given in

(31), one can easily find that 1N is a zero-eigenvector of
∆Gs?

since the unit-vector 1N−1 in RN−1 is also the zero-
eigenvector of ∆G\s? . So that (the first) zero-eigenvector of
∆Gs?

is v1|Gs? = 1√
N

[1, 1, . . . , 1]>.
Then, let us consider the sub-matrix ∆G\s? of ∆Gs?

hav-
ing an orthogonal eigenvectors base (since it is symmetric)
denoted vn

′|G\s? with n′ ∈ [1, N − 1]. Let us then built a
new base for ∆G?

s
denoted vn|Gs? = [vn

′+1|G\s?>, 0]> with
n = n′ + 1∀n′ ∈ [1, N − 1]. vn|Gs? form an orthogonal
base of RN−1. They also are eigenvectors of ∆Gs

? . Moreover
v1|Gs? is linearly dependant with vn|Gs? with n ∈ [2, N ],
so that Im(v2|Gs? , .., vN|Gs? ) spans RN−1. Hence, the (non-
orthogonal) eigenvector base of ∆G?

s
is known.

Lemma 3. (Extension of theorem 1) If (λ,S) is part of
admissible BC-events set, i.e (λ,S) ∈ As, X(t) solution
of (3) given at nodes of BC-strategic set ξ, i.e X|ξ(t),
permit to find a unique X(T ).

Proof
Let us consider two solutions Xs?1 (t) & Xs?2 (t) associated
with two source candidates s?1 & s?2. From (10) the
differences between these solutions, reads

(33)

If those solutions provide de same detected signal on ξ, ∀k ∈
ξ, we have

0 =
(
y
s?2
1 (T ) + (t− T )ẏ

s?2
1 (T )

)
v

1|Gs?2

k (34)

−
(
y
s?1
1 (T ) + (t− T )ẏ

s?1
1 (T )

)
v

1|Gs?1

k (35)

+
N∑
n=2

ys
?
2
n (T ) cos

(
ω
Gs?2
n (t− T )

)
v
n|Gs?2

k (36)

−
N∑
n=2

ys
?
1
n (T ) cos

(
ω
Gs?1
n (t− T )

)
v
n|Gs?1

k (37)

+
N∑
n=2

y
s?2
n (T )

ω
Gs?2
n

sin

(
ω
Gs?2
n (t− T )

)
v
n|Gs?2

k (38)

−
N∑
n=2

y
s?1
n (T )

ω
Gs?1
n

sin

(
ω
Gs?1
n (t− T )

)
v
n|Gs?1

k (39)

For τ ∈ R+ integrating (39) over [T, T + τ ], and dividing by
τ2 whilst taking the limit τ →∞, one gets

ẏ
s?1
1 (T )v

1|Gs?1

k = ẏ
s?2
1 (T )v

1|Gs?2

k (40)

But yet, in every case, the eigenvector associated to the
nul eigenvalue is (1, 1, · · · , 1)>1/

√
N , so that v

1|Gs?1 =

v
1|Gs?1 = (1, 1, · · · , 1)>1/

√
N , and thus ẏs

?
1

1 (T ) = ẏ
s?2
1 (T ).

Furthermore, integrating (39) in interval [T, T + τ ], whilst
later on dividing by τ in the limit τ →∞, one gets

y
s?1
1 (T )v

1|Gs?1

k = y
s?2
1 (T )v

1|Gs?2

k (41)

Thus we have, ys
?
1

1 (T ) = y
s?2
1 (T ).

So that, from (39), one is leaft with ∀k ∈ ξ

0 =
N∑
n=2

ys
?
2
n (T ) cos

(
ω
Gs?2
n (t− T )

)
v
n|Gs?2

k (42)

−
N∑
n=2

ys
?
1
n (T ) cos

(
ω
Gs?1
n (t− T )

)
v
n|Gs?1

k (43)

+
N∑
n=2

y
s?2
n (T )

ω
Gs?2
n

sin

(
ω
Gs?2
n (t− T )

)
v
n|Gs?2

k (44)

−
N∑
n=2

y
s?1
n (T )

ω
Gs?1
n

sin

(
ω
Gs?1
n (t− T )

)
v
n|Gs?1

k (45)

So be it n′ ∈ [2, N ], let us project over ω
Gs?1

n′ mode from

multiplying (45) by cos

(
ω
Gs?1

n′ (t− T )

)
. Then, integrating

over [T, T + τ ], whilst, later-on dividing by τ and taking the
limit τ →∞, two distinct cases are possible

∀k ∈ ξ, y
s?1
n′ (T )v

n′|Gs?1

k = 0 if ω
Gs?1

n′ /∈ Λ(Gs?2 )

∀k ∈ ξ, ys
?
1

n′ (T )v
n′|Gs?1

k = y
s?2
n′ (T )v

n′|Gs?2

k if ω
Gs?1
n ∈ Λ(G2)

(46)
The first case imply that yn′(T )s

?
1 = 0 because k ∈ ξ

which is composant-discriminant, i.e ∃k such that v
n′|Gs?1

k 6=
0. Furthermore, since ω

Gs?2

n′ /∈ Λ(Gs?1 ), one also finds that
yn′(T )

Gs?2 = 0.
The second case implies that ∃k 6= k′ ∈ ξ such that

v
ω|Gs?1
k

v
ω|Gs?1
k′

=
v
ω|Gs?2
k

v
ω|Gs?2
k′

. But yet, if one supposes that v
ω|Gs?1 6=

v
ω|Gs?2 this implies ∃k 6= k′ ∈ ξ, being vector-discriminant,

so that v
ω|Gs?1
k

v
ω|Gs?1
k′

6= v
ω|Gs?2
k

v
ω|Gs?2
k′

. Thus, reductio ad impossibile,

v
ω|Gs?1 = v

ω|Gs?2 . We thus conclude that ys
?
1

n′ (T ) = y
s?2
n′ (T ).

Thus, finaly since for all n ∈ [1, N ] one gets
y
s?1
n (T ) = y

s?2
n (T ) = 0,

or

y
s?1
n (T ) = y

s?2
n (T ) & v

n|Gs?1 = v
n|Gs?2 .

(47)

Unicity follows, i.e

Xs?2 (T )−Xs?1 (T ) =
N∑
n=1

yn(T )
(
v
n|Gs?2 − v

n|Gs?1

)
= 0.

(48)

3 ALGORITHMS FOR GENERAL SOURCE IDENTIFI-
CATION

3.1 Building general strategic sets

Here we describe the algorithm for finding a robust strategic
set, both including the one defined in [1] for intern-type
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events, and BC-strategic sets (Cf Def 9) associated with BC-
events. Algorithm 2 details a general method to built this
strategic set.

Algorithm 2 Find Strategic set ξ for general sources and
boundary conditions
Require: Single component Graph G(V,E) and its adja-

cency matrix AG
Construct the Graph Laplacian matrix ∆G from AG

2: for each v ∈ V do
Construct the matrix ∆Gv

4: Compute eigenvectors vnv ∈ Vv & eigenvalues ωnv ∈
Ωv for n ∈ [1, N ] of ∆Gv

end for
6: for each v1, v2 ∈ V do

if Ωv1 ∩ Ωv2 6= {∅} then
8: if @(k, k′) ∈ ξ such that

vn
v1,k

vn
v1,k′

6= vn
v2,k

vn
v2,k′

then

Find k 6= k′ ∈ V such that
vn
v1,k

vn
v1,k′

=
vn
v2,k

vn
v2,k′

10: ξ = ξ ∪ {k, k′}
end if

12: end if
end for

3.2 General intern-source or BC-source identification

We now describe how the identification of general source
of unknown type (intern or BC type) can be done. The
identification method proceed from two main steps. A pre-
computational one associated with

• Graph properties evaluation (Adjacency matrix,
Laplacian eigenvectors)

• Regression computation to find modes amplitudes
[Y(T ), Ẏ(T )] in (7).

Then, a the source term identification step is performed
where the prediction over the state X(t) from various source
candidates is compared with the one observed on detectors
locations. Algorithm 3 provides the details of the source
identification implementation for unknown type source to
be detected. This algorithm branch into the previous algo-
rithm 1 of [1], in the special case of an identified intern type
source. It also necessitates the computation of all possible
Laplacian ∆Gs?

of every possible s?-directed graphs Gs? .

4 EXTENSIONS AND IMPROVMENT FOR SOURCE
IDENTIFICATION EFFICIENCY

4.1 Noise sensitivity

This section specifically consider the noise sensitivity of the
source detection method.

4.1.1 Noise sensitivity of linear regression
As previously explained in §3.2, the detection method pro-
ceed from two main steps. The (pre-computational) regres-
sion step, and later on, the source term identification step.
Let us first analyse the noise sensitivity of the regression
step. We consider that the detector signal decomposes into

Algorithm 3 General internal source or Boundary Condition
(BC) identification
Require: Single component Graph G(V,E) and its adja-

cency matrix AG
Construct the Graph Laplacian matrix ∆G from AG

2: Pre-sectorise V to get candidates set S? ⊂ V . Cf Alg. 4
for pre-sectorisation
for each candidate s? ∈ S? do

4: Construct matrix ∆Gs?
. Cf (4) for ∆Gs?

Compute eigenvectors vnv ∈ Vv & eigenvalues ωnv ∈
Ωv for n ∈ [1, N ] of ∆Gv

6: Estimate Rs?

Compute Ys? = [Rs?
> · Rs? ]−1Rs?

>D with 2N-
vector Ys? ≡ [ys?(T ), ẏs?(T )]

8: Estimate ‖Rs? ·Ys? −D‖2 = rs?
end for

10: Find s?sol such that mins?∈S? rs? = rs?sol
Compute Y = [R> · R]−1R>D with 2N-vector Y ≡
[y(T ), ẏ(T )]

12: Estimate ‖R ·Y −D‖2 = r
if r < rs?sol then

14: pertub_type_id=intern source type
Apply steps 8 to 21 of Alg. 1 for s? ∈ S?

16: else
pertub_type_id =BC

18: return s?sol, pertub_type_id
end if
Even if this computation is much more costly than the
single graph Laplacian computation ∆G needed for intern-
type source, it only represents a pre-treatment cost of the
algorithm, which might also possibly be stored, so that
it is not needed each time an identification is performed.
Furthermore, s? source candidates do not need to span
the entire set V , but only a part of it, i.e S? ⊂ V , a pre-
sectorisation issue later-on discussed in §4.3.

the true signal DT plus some random noise vector η (asso-
ciated with the discrete sampling of a continuous random
process η(t)

D = DT + η (49)

Using the linearity of relation (13) leads to

Y = YT +δY = [R> ·R]−1R>DT +[R> ·R]−1R>η (50)

i.e

δY = [R> ·R]−1R>η (51)

This extra-term δY is then responsible for an extra-
prediction δX, which, from the linearity of X with Y in
(10) reads

δX(t) =
(
δy1(T ) + (t− T )δẏ1(T )

)
v1+ (52)

N∑
n=2

(
δyn(T ) cos(ωn(t− T )) +

δẏn(T )

ωn
sin(ωn(t− T ))

)
vn

We now examine how the extra-term δX(t) affects the
second identification step of the algorithm.
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4.1.2 Noise impact of source identification
The next step involves the projection of the state vector
X(t) into the chosen mode m, denoted Xm. Considering
(19) associated with the restriction of Xm over non-detector
nodes denoted Xm|ξ⊥,

−Aξ
mXm|ξ⊥ = λmS + Pm|ξ⊥, (53)

One can realize that the right-hand-side term Pm|ξ⊥ also
fulfills an extra-noise term that we now wish to evaluate.
From using the generalization of (20) to an arbitrary number
of sensors

Pm|ξ⊥ = ϕ̇m(T )X(T )− ϕ̇m(0)X(0) +
∑
k∈ξ

Am. k̂Xk, (54)

one is able to compute the extra-noise contribution of
Pm|ξ⊥

δPm|ξ⊥ = ϕ̇m(T )δX(T )− ϕ̇m(0)δX(0) +
∑
k∈ξ

Am. k̂ δXk,

(55)
where obviously, δXm ≡ 〈δX, ϕm〉 with δXk the kth com-
ponent of δXm. Hence during the identification procedure
associated with the inversion of the linear problem (53), this
extra term in δP leads, from (24) to an extra-prediction given
by :

δXm|ξ⊥ = −[(Aξ
s?1 ,s

?
2
)> ·Aξ

s?1 ,s
?
2
]−1Aξ

s?1 ,s
?
2
δPs1?,s?2 |ξ

⊥ (56)

This extra-prediction is responsible for the noise sensitivity
of the detection algorithm. (56) and (55) combined with (52)
and finally (51) provide the linear relationship between this
extra-prediction δXm|ξ⊥ and the noise vector η, i. e. the
sensitivity matrix of the state prediction over noise. Since,
this sensitivity matrix involves the Xk, we now study how
its sensitivity can be attenuated when increasing the time-
projection support T , or conversely increasing the recording
frequency.

4.2 Sampling frequency and detectors number effect
on Xk and δXk(T )

4.2.1 Sampling frequency effect
First, let us note that the noise is weaken by the scalar
product for

δXk =

∫ T

0
φm(t)δXk(t)dt, (57)

with, as mentioned just above, δXk(t) linearly related to
vector η(t). For a centered, normalized, decorrelated ran-
dom noise process ηk(t), i.e

Cov(ηk(t)ηk(t′)) = E(ηk(t)ηk(t′)) = σ2
Nδ(t− t′), (58)

the central limit theorem provides an asymptotic limit for
the behaviour of δXk as T → ∞ such as E(δXk

2
) ∼ 1/T .

Similarly, for fixed T when increasing the recording fre-
quency f , one expects E(δXk

2
) ∼ 1/f . We numerically

test this prediction using numerical computations on a
card(V ) = N = 10 nodes random graph, having maximum
vertex degree ∆(G) = 3, minimum vertex degree δ(G) = 2,
with two, randomly located, detectors in figure 3a (for
k = 1). It is interesting to observed how well the expected

Fig. 3: Root mean square of the variance estimator of X1,

i.e
√
E(δX

2
1) and δX(T ), i.e

√
E(δX2

1 (T )) versus the sam-
pling frequency f for fixed σN = 10−2, T0 = 80s, T = 100s,
Te = 120s, and N = 10. Dots are numerical results. Contin-
uous line are the expected ∼ 1/

√
f asymptotic behavior.

asymptotic rapidly settles for finite sampling rate as small
as f = 20 Hz for a finite time-support T = 100s and a
final time detector recording Te = 120s, and a fixed noise
r.m.s amplitude σN = 10−2. We furthermore analyze the
sensitivity of δXk(T ) on the sampling frequency which is
similarly ruled by a similar central-limit asymptotic behav-
ior as shown in figure 3b.

4.2.2 Noise sensitivity versus detector number

For a fixed σN = 10−2 the increase of detector number leads
to an increase of sampling data in the regression steps. This
leads to a decrease of the apparent noise of δX(T ). Never-
theless, this decrease falls short after the detector number
reaches a (small) fraction of the total node number N ,
where after the benefits of increasing their number almost
saturates. This effect is illustrated in Figure 4. Our numerical

Ns

√ E
(δ
X

2 1
(T

))

Ns

√ E
(δ
X

2 1
(T

))

Fig. 4: Impact of sensor number Ns on the noise of X(T ),
i.e the square root of the variance of δX(T ) for fixed σN =
10−2, T0 = 80s, T = 100s, Te = 120s, f = 100Hz and
N = 100. (a) shows the sharp transition nearby Ns = 8
in semi-log representation. (b) Same data as in (a) but in
normal plot within Ns range between 10 to 95.

tests on randomly generated graphs indicates that, after the
detector number has reached a small fraction of N , there is
a a very modest interest for increasing further their number.
More precisely we numerically found a sharp transition
observed in Figure 4a nearby Ns ' N/12 for which the
decrease of the induced noise becomes very weakly sensi-
tive to a further increase in detector number. We believe this
can be understood as a statistical effect associated with a
partial correlation of observed signals when detector spatial
density increases. Since recorded signal are used in the
regression process if observations are correlated, their noise
becomes weakly sensitive to time averaging.
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σN

f
(H
z
)

Ns = 10
Ns = 15
Ns = 20

Fig. 5: Frequency sampling f providing a 95% success for
source identification versus r.m.s noise σN for randomly
generated graphs having maximum vertex degree ∆(G) =
3, minimum vertex degree δ(G) = 2, N = 100 nodes and
randomly chosen sources.Dotted lines are quadratic fit of
the results to help delineate the upper region for which the
f − σSN values offer a 95% confidence for source detection.

(a) (b)

(c) (d) (e)

Fig. 6: Principle of pre-sectorisation from a graph (graph
nodes are in blue) triangulation analysis from each sensor
(black) for finding the source (red). From a guess of the ini-
tial time t0, one can compute the iso-time sector (represented
by arc of a circle in red) from a retrograde wave-front travel
along the graph from each sensor in black. (a) The source is
capture if t0 is correctly prescribed. (b) If t0 is too late, pre-
sectorisation does not reach the source, and the intersection
between each detector’s pre-sectorisation can possibly be
null. (c) If t0 is too soon, pre-sectorisation does reach the
source, but also possibly other nodes, resulting in many
possible candidates (only one is represented here). (d-e) If
the source does not fit inside the –topological– convex hull
encapsulating detector’s nodes in the graph, depending on
the chosen t0, the pre-sectorisation can either pick a wrong
external candidate (purple circle in (d)), or the good one (red
circle in (e).

This effect is reminiscent of the cut-off phenomenon
arising in Markov chains shuffling [19] and might be directly
connected with it. If so, the detector cut-off should scale
logarithmically with N . In any case, we believe this cut-off
in detector de-noising efficiency to happen in any graph, for
any detector distribution. This is an important finding for
the design of optimal strategies for detector number choice

in a given network. This now leads us to explore the effect
of noise r.m.s on the algorithmic efficiency.

4.2.3 Designing detector number versus noise amplitude
At finite sampling rate f , for finite time-support T = 100s
and final time detector recording Te = 120s, we analyze
the effect of the noise r.m.s σN on the success rate of the
detection algorithm. Indeed, when the noise r.m.s increases,
the source detection is not always possible since the signal is
degraded. Furthermore, in real applications the noise r.m.s
is rarely smaller than 10−2 so that it is relevant to analyze
how the method performs when increasing noise. Figure 5
provides this analysis for a sampling rate lower than 50Hz
(chosen as the relevant maximal sampling rate) for three
detector relative number Ns/N = 10%, 15% and 20%. The
chosen initial condition is λ(t) = 2∂2

t tanh((t − 40)/10)
where 40s is the chosen trigered time for the event, having
a typical time variation of 0.1s. This figure showcase an
abacus of practical significance, since for a given noise
amplitude, providing the number of sensors (and the other
sampling and averaging parameters T & Te) one can design
the sampling frequency for which 95% of success identifi-
cation is reached. It is interesting to note that the progress
obtained from having Ns = 15 to Ns = 20 is rather poor.
The propagating time is then used backward to evaluate a
distance on the graph We believe this observation related
to the effect previously illustrated in figure 4, i.e a sharp
transition in sampling efficiency when the detector relative
number is larger than 8%. Figure 5 confirms that there is
a cutt-off density efficiency for detector’s noise reduction
improvement.

4.3 Presectorisation
4.3.1 General principle
The general idea of pre-sectorisation is to transpose tri-
angulation methods used in Euclidian space into graphs.
This suppose that the propagating wave inside the network
indeed spend physical time along each edge traveling from
one node to reach its neighbor. This propagating time is
used to set a distance to each edge of the graph enforcing
a metric onto the graph. as proposed in [9]. From each
detected signal at any given detector, and provided the
time origin of the unknown event, one is able to evaluate a
wave-front of possible source positions. The intersection of
these wave-fronts obtained from several detectors able the
source pre-sectorisation (Cf Figure 6a). Nevertheless since
the time origin t0 of each event is unknown, one needs
to set t0 as an unknown parameter of the pre-sectorisation
method. This result in possible difficulties exemplified in
Figure 6b,c,d. Since the traveling time permits to define a
metric into the graph, one can built the convex-hull of the
detectors set inside the graph. Considering this convex-hull,
two possibilities arise. Either, the event appears inside this
convex-hull (Cf Figure 6a,b,c), or outside it (Cf Figure 6d,e).
In the first case, the retrograde wave-fronts intersection,
emergent from each detectors, are spreading along a limited
area, resulting in a moderate number of source candidates.
In the second case, if the convex hull only represent a
moderate fraction of the graph, the source being outside
it, almost any node outside the convex hull can provide a
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possible source, resulting in a large number of candidates.
Hence, for an efficient and robust pre-sectorisation, it is
important that the convex-hull of the detector set covers a
large portion of the entire graph. This is a supplementary
and practical constraint on the detector set, additional to
the mathematical requirement that is should also be BC-
strategic. This is why considering a detector number larger
than two is a relevant practical issue.

We now describe in more details the chosen pre-
sectorisation method.

4.3.2 Method and algorithm
As previously mentioned, the event’s time origin t0 is
unknown when the first arrival signal is detected. Let us
define t0g for this time origin guess. Let us call S? as the
set of all possible candidates, and S?(t0g) the set of all
possible candidates obtained from pre-sectorisation whilst
supposing the time origin is t0g . Then, one has

S? =
tmax⋃
t0g=0

S?(t0g). (59)

To find S?(t0g), a retrograde wave-fronts propagation is
computed from every detector in ξ. Let us define dk(t0g)
the distance between the source and each detector k ∈ ξ and
the distance matrix D between any node v and detector k.
If the graph is embedded in space (such as a pipe network
for which the vertex to vertex distance along the graph is
a ’natural’ feature of the graph), this distance is the ”Eu-
clidian/topological” distance: i.e the sum of the Euclidian
distances from every successive couple of adjacent nodes
along the shortest path into the graph between node n and
detector k. If the graph is not embedded in space it can be
defined as the traveling wave distance define over the (or-
dered) shortest path Sp joining every successive vertex pairs
v′, v′′ along itself and associated with a traveling velocity
cv′,v′′ at each edge (in most of the formulation provided
in this paper we have supposed an homogeneous traveling
wave velocity c, i.e cv′,v′′ = c, as well as an homogeneous
edges, i.e a non-weighted graphs, but the generalization to
weighted graph is direct, this is why, we mention it here)
and time traveling ∆Tv′,v′′ along each edges from vertex v′

to v′′

D ≡ Dkv =
∑

v′,v′′∈Sp(k→v)

cv′,v′′∆Tv′,v′′ . (60)

Then one can define S?(t0g)

S?(t0g) =
⋂
k∈ξ
{v ∈ V \

(
Dkv = dk(t0g)} (61)

Albeit theoretically sound, this expression does not include
some tolerance on the signal detection due to signal noise or
detector sensitivity. Including an extra parameter ε, one can
define a more physically relevant version of (61)

S?(t0g) =
⋂
v∈ξ
{v ∈ V \

(
|Dkv − dk(t0g)| < ε)} (62)

So that, (59) with (62) provide a robust and fairly general
(independent of specific graph features) formulation so as
to locate the source into a pre-sectorised region. Other
more dedicated, specific and more effective methods could

possibly be set-up to achieve a similar pre-sectorisation.
Nevertheless, the one presented here, already provide a
drastic improvement over a systematic exploration algo-
rithm, since it is easy to show that it permits a O(N) gain
in complexity on the source detection algorithm over the
systematic exploration proposed in [1]. First let us summary
the complexity of a systematic exploration when the pre-
sectorisation set is the entire graph, in algorithm 3. In this
case in step 2, the subset of source candidates spans the
entire vertex set, i.e S? = V so that the loop over each
candidates is O(N). The subsequent steps of algorithm 3,
inside this loop, require

Step 4. Construction of matrix ∆Gs?
: O(N2),

Step 5. Eigenvectors vnv computation : O(N3),
Step 6. Building matrix Rs? : O(N.Ns),
Step 7. Compute Ys? = [Rs?

> ·Rs? ]−1Rs?
>D : O(N3),

Step 8. Estimate ‖Rs? ·Ys? −D‖2 = rs? : O(N.Ns),
Step 10. Find s?sol such that mins?∈S? rs? : O(N),
Step 11. Compute Y = [R> ·R]−1R>D : O(N3),
Step 12. Estimate ‖R ·Y −D‖2 = r : O(N.Ns).

Thus the overall complexity from Step 4 to Step 12 is
O(N3). Including Step 4 to Step 12 in a O(N) loop re-
sults in a O(N4) cost associated with a systematic source
candidates exploration, as found in [1]. Furthermore, since
the pre-sectorisation restrict the source candidate to a finite
number of nodes the size of which being independent of
N , the external loop complexity over pre-sectorised can-
didates is O(1) leading to an overall O(N3) cost of the
pre-sectorisation algorithm. To be exhaustive, one should
add the complexity of the pre-sectorisation computation
being a pre-requisite of algorithm 3. The algorithm for pre-
sectorisation is hereby given in algorithm 4.

Algorithm 4 Pre-sectorisation to obtain candidate node set
S?

Require: Single component Graph G(V,E) and its adja-
cency matrix AG

Require: Parameter Ns-vector trig_time, BC-strategic
NS-vector set ξ, εtol
Evaluate Ns ×N matrix D = Di,j for i ∈ ξ, j ∈ V . Cf
(60) for definition of D
Initialization S? = NULL,S?t0 = NULL

3: for t0 ∈ [min trig_time−maxD/c,min trig_time]
by ∆t0 do

S?t0 = ∩k∈ξ{v ∈ V/Dkv − c(trig_time[k] − t0) <
εtol}

S? = S? ∪ S?t0
6: end for

The complexity of algorithm 4 is as follows :

Step 2. Evaluation of Ns ×N matrix D : O(Ns.N)
Step 3. Back propagation loop over sensors set : O(Ns.N),

resulting in an overallO(Ns.N) cost of this pre-computation
step. Hence, as expected, the pre-sectorisation has a benign
consequence on computational complexity.

4.3.3 Numerical results and illustrations on graph models
This section examines the algorithmic cost and efficiency
on various graph models. The effect of pre-sectorisation
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on the computational time for source detection is illus-
trated in figure 7 for poorly connected random graphs. This

Fig. 7: Log-log plot of computational time versus nodes
number N . Continuous curves display the ∼ N4 (purple)
and ∼ N3 (red) behaviors. Square symbols represent the
average results over 10 random sources distributed within
a random graph, with maximum vertex degree ∆(G) = 3,
minimum vertex degree δ(G) = 2, with σN = 5.10−4 hav-
ing N nodes for the pre-sectorisation method (error bar here
indicate the min and max time over ten simulations). Bullets
symbols represent the result of the systematic exploration
algorithm of [1].

figure compares a systematic exploration of the network
for finding the source used in [1] to the pre-sectorisation
method proposed in the previous section. A significant
number of randomly chosen source location are explored
so as to provide an average numerical cost. Figure 7 con-
vincingly illustrates that a O(N3) computation cost can
be achieved for large N (here the maximal value of N
was 2000), as opposed to the systematic exploration cost
being O(N4). More precisely, we found that, for the chosen
weakly connected graphs (having in mind pipe networks
applications) the observed efficiency is somehow better than
these theoretical predictions. Furthermore the success rate
of the method is analyzed when varying the sensor density
choosing an homogeneous random distribution of sensors
within random graphs tested in [9] : Erdös-Rényi (ER) and
a Watts-Strogatz (WS). It is found that the success rate of
location events display a very similar behavior in both cases.
More precisely, when varying the average node degree 〈k〉
(average edge per node) (using a probability p = 0.1 for
WS graphs), Figure 8a indicates more than 80% of success
for sensor density being larger than 15%. For sensor density
smaller that 15% we found a rather sharp degradation of
the success rate. However this conclusion is tempered by
the observation of the ”almost-found” (one degree distant
along the graph) sources identification rate. The later is
more robust to sensor density, being larger than 90% for
sensor density equal to 10%. A similar sharp transition at
lower sensor density is also observed for ”almost-found”
success rate. A similar conclusion can be reached for the
Erdös-Rényi graph family in Figure 8b, for which sensor

(a) (b)

Fig. 8: Success rate of source detection with sensors having
r.m.s noise σN = 1.5 10−2 versus sensor density within
model networks used in [9]. Continuous curves provide the
success for exact source location. Dotted curves the success
rate for one degree distance of source location. N = 100
nodes have been chosen as in [9], and N = 100 test events
have been considered. (a) Watts-Strogatz (WS) graphs with
average node degree 〈k〉 (using a probability p = 0.1 for
supplementary random connections). (b) Same conventions
as (a) for Erdös-Rényi (ER) graphs.

density equal to 10% permits 80% of success in most cases
for ”almost-found” sources, whereas a 15% sensor density is
needed to reach this achievement for exact findings. These
performances of our method are close to the ones reported
in [9] for the same test cases.

5 APPLICATION TO REAL GRAPHS

The ability of the presented method to identify randomly
chosen events within real graphs is illustrated in this section.

Concerning real graphs, power networks as well as river
basin networks (as in [17]) taken from open data bases
[20], have been specifically chosen so as to analyze two
complementary class of graphs : a first class with a high
density of circuits (power-network graphs) and a second
one almost free of circuits having three-like structure (river
basin networks). For every case, a sensor r.m.s noise equal
to σN = 1.5 10−2 is chosen in order to compare the
method’s performances in distinct networks having similar
noise level. These two classes of graphs also illustrate two
possible classes of applications of the method. The ability
to detect BC-events is evaluated here. Figures 9a,b,c,d thus
illustrate three power-network distribution and one urban
connectivity network (more details on graphs are given
table 1) whereby the BC-event detection method with pre-
sectorisation has been applied. In each case, 0.15×N sensor
node number (a sensor density of 15%) have been used.
The node number of the chosen real graph varies between
N = 47 to N = 443 (as compared with N = 287 examined
in [17]).

In almost every cases, the source is exactly recovered,
(100% success in Figure 9b,c,d,e,f). Moreover, location fail-
ure, if any, are always found very close to the exact source,
as found in Figure 9a where only one degree distance is
observed between the source and its false prediction. The
dependence of success-rate with sensor density is more
accurately investigated in Fig. 10, averaging each rate over
N/2 randomly seeded sources.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9: Illustration of real graphs distribution networks from
public data bases. Each exactly detected source is depicted
in red whereas wrongly detected ones are represented in
purple with a link to the exact (red) source –Cf (a)–. Sensor
positions are randomly chosen with a sensor node density
equal to 15% and r.m.s noise level σN = 1.5 10−2. (a,b,c) are
three power distribution networks. (d) is a urban connec-
tivity network. Total node number N and graph origin are
indicated in each case. (a) [21]N = 118 (b) [22] N = 274
(c) [23] N = 443 (d) [24] N = 209 (e) Garonne river basin
(South of France) [25] mapped with Geo-spatial coordinates
[26] N = 293 (f) same as (e), Garonne river, in Toulouse
town. [27] N = 47.

Fig. 10 shows that 10% sensor density already permits
more than 90% success rate in every case.

6 CONCLUSION

This paper presents various extensions of event identifi-
cation for non-dissipative wave propagation in networks
described by graphs. Having defined intern events and BC-
events we found that in both cases, for an arbitrary number
of detectors

1) Source identification of intern-type events (resp. BC-
event) are possible (and unique) if the detector set is
strategic (resp. BC-strategic). This result extents the

analysis of [1] dedicated to intern-type events only
recorded by two sensors only.

2) We found that the noise sensitivity of the source
identification detection can be improved in var-
ious ways. Increasing the time-averaging of the
projection support, the time-recording of the detec-
tors, or the frequency acquisition are all beneficial,
with central-limit asymptotic behavior extending
the analysis of [1]. We also estimate the sensitivity
matrix response of noisy signals over an arbitrary
set of detectors, an analysis not provided in [1].
Another original result obtained in this study has
shown that increasing the detector number im-
proves the noise robustness of the detection, up to a
cut-off detector density being a small fraction of N
(possibly scaling as ln(N)).

3) We analyze a pre-sectorisation strategy so as to
improve the computational cost of source identifi-
cation. We have stressed the interest of a uniform
coverage of detectors over the network.

4) Finally, using pre-sectorisation we found that it is
possible to improve the source detection algorithm
within a card(V ) = N network to an O(N3) com-
putation cost, as previously obtained in the context
of diffusive processes in graphs [9], [17].

Fig. 10: Detection success rate versus sensor density within
real networks using the same conventions as Fig. 8 tested
over N/2 events. N = 188 corresponds to power network
of Fig. 9a, N = 209 to urban network of Fig. 9d, N = 293 to
river basin network Fig. 9e.

The proposed method has been tested in real-world net-
works for which the applicability of the method on noisy
data has been illustrated. Finally it is important to mention
that, since the presented method lies upon a time projection
upon a discrete base decomposition it necessitates the choice
of a particular projection mode. The choice of this mode can
affect the efficiency of the method.
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Symbol’s Nomenclature
Am ≡ ∆G − µmI Matrix derived from the graph Laplacian matrix acting on

V -space so that card(Im(Am)) = N

Aξ
m (N −Ns)×N sub-matrix of Am removing all collums in ξ

Aξ
s?1 ,s

?
2

(N −Ns)× (N − 2) sub-matrix of Aξ
m formed by

suppressing two distinct lines s?1, s
?
2 ∈ S?

A
(i,j)
m N × (N − 2) sub-matrix of Am supressing columns i, j

A
(i,j)
s?1 ,s

?
2

(N − 2)× (N − 2) sub-matrix of A(i,j)
m suppressing s?1, s

?
2

G(V,E) Un-directed Graph defined by Vertex and Edges sets V & E
Gv(V,E) v − directed Graph obtained from G by BC-event on v ∈ V
∆G Graph Laplacien matrix of G
∆Gv Graph Laplacien matrix of Gv
∆
′
v symmetric sub-matrix of Graph Laplacien matrix ∆Gv

λ(t) Compact support source perturbation temporal variation
GBC Set of all BC-Graphs Gv , i.e, GBC = ∪v∈V Gv
E Edge set
µm ≡ (mπ

T
)2 mode of the temporal adjoint base

M M + 1 is the number of time steps
V Vertex set with card(V ) = N
Ω Discrete Spectrum of Graph Laplacien matrix ∆G

−ω2 Eigenvalue of Ω
−ω2

n nth eigenvalue of ordered set Ω = {−ω2
1 ,−ω2

2 , ..,−ω2
N}

V eigenvector set of the Grah Laplacien matrix ∆G

Vv eigenvector set of the Graph Laplacien matrix ∆Gv

Ωv Spectrum of the Graph Laplacien matrix ∆Gv

v eigenvector of V having kth component vk
vn nth eigenvector of ordered set V = {v1, v2, .., vN}
R Ns ×Nt regression matrix for Ns sensors & Nt time-steps
Rv Ns ×Nt regression matrix for Ns sensors in Gv
S N -vector source location in V , i.e, Sk = δsk
S? set of source candidates S? ⊂ V ,
s source location, s ∈ V
s? nodes candidates for sources, s? ∈ S? ⊂ V
T0 Final Time of source perturbation λ(t), λ(t) = 0 for t > T0
Te Ending Time of the sensor recording
∆T Time step increment
T End-time of time-projection support defined in 〈, 〉
ξ Strategic nodes set where signal is detected, card(ξ) = Ns
ξ⊥ ⊥ of strategic node set, i.e ξ⊥ ∩ ξ = {∅}, ξ⊥ ∪ ξ = V
X(t) N-component vector of network’s unknowns Xk(t), k ∈ V
X|ξ Restriction of X(t) at sensor’s location ξ ⊂ V , dim(X|ξ) = Ns

X|ξ⊥ Restriction of X(t) out of sensor’s location ξ⊥ = V \ ξ
X(i,j) Restriction of X(t) out of sensor’s location (i, j)
y(t) Mode projection vector of X(t) on V, yn(t) ≡ 〈X(t), vn〉
φm Temporal adjoint orthogonal base, i.e, 〈φm′ , φm〉 = δm,m′
Y(T ) ≡ [y(T ), ẏ(T )] : 2N-vector of mode projection at t = T

Ẋ(t) ≡ dX(t)
dt

Time derivative of unknown vector X
〈f, g〉 ≡

∫ T
0 f(t)g(t)dt : Time projection scalar product

X = 〈X, φm〉 Projection of X on mth temporal mode
λ = 〈λ, φm〉 Projection of λ on mth temporal mode

TABLE 1: Real networks structural properties

Ref. Nodes Edges Aver. Deg. Deg. Std Deg. max Deg. min
a 118 179 3.0339 1.5740 9 1
b 274 669 4.8832 3.3052 15 1
c 443 590 2.6637 1.5768 9 1
d 209 767 7.3397 2.2584 16 3
e 293 319 2.1775 1.0898 4 1
f 47 51 2.1702 0.9628 4 1


