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Transport of deformable particles in a honeycomb network is studied numerically. It is shown that the par-
ticle deformability has a strong impact on their distribution in the network. For sufficiently soft particles, we
observe a short memory behavior from one bifurcation to the next, and the overall behavior consists in a random
partition of particles, exhibiting a diffusion-like transport. On the contrary, stiff enough particles undergo a
biased distribution whereby they follow a deterministic partition at bifurcations, leading to a lateral drift in the
network. An increase of concentration enhances particle-particle interactions which shorten the memory effect,
turning the particle lateral drift into an effective diffusion. We expect the drifting/diffusive regime transition to
be generic for deformable particles.

Introduction.— Transport and nutrient delivery convected
by fluid flow in networks is ubiquitous in living systems, such
as fungal mycelia, plant, human tissues, etc. [1, 2].

At microcirculation scale, Red Blood Cells (RBCs) have
comparable size to vessel sizes, so that the discrete nature
of the blood comes to the fore [3–11] sometimes leading to
margination of stiffer RBC [12]. Besides vascular trees, the
nontrivial discrete nature of the suspended elements is also
omnipresent in microfluidics, raising challenging issues in
terms of effective description of particle transport even in sim-
ple geometries [13–17]. Typical examples are the occurrence
of disruption of the particle train via long range hydrodynamic
interactions [16], as well as the emergence of large scale oscil-
lations of droplets in a simple loop [17]. A more specific topic
of interest exhibited in various micro-fluidic configurations is
lateral-cell-migration : depending on their size and deforma-
bility soft deformable cells display distinct hydrodynamical
interactions with obstacles or boundaries producing co-curent
sorting [18, 19]. Such mecanical based sorting is of interest
since most circulating cells lies into a narrow range of size
and shapes [19]. Furthermore, being of hydrodynamic origin
lateral-cell-migration permits fast, low-cost, high-throughput
sorting [20].

Motivated by a basic understanding of the sorting effect for
red blood cells (RBCs) we study numerically the flow of a
simple model of RBC, namely a 2D vesicle (also see simu-
lations of 3D RBC in [21]), in a periodic network, and an-
alyze their transport properties depending on their mechan-
ical parameters, relevant in several diseases, such as sickle
cell anemia or malaria. Real microvascular networks con-
sist of many short vessel segments having lengths and widths
in the hundreds and few micrometers ranges, respectively
[3, 11, 22, 23]. These vessel lengths are not long enough to al-
low RBCs to achieve a permanent regime regarding their spa-
tial organization, especially in the dilute case. In other words,
RBCs spatial pattern in a given vessel depends on upstream
history. The corpuscular nature of RBCs, together with the
non-fully developed flow in short vessels, make the problem
challenging, leading to large deviations from the classically

adopted pictures [24–26].
A systematic study, based on numerical simulations, reveals

that the configurations (such as lateral position and shape)
of a deformable particle in the downstream position depends
on the previous states of the particle in the upstream po-
sition. This results in various particle configurations from
one bifurcation to the next. We find that particles both in
2D and 3D [21] adopt an erratic-like dynamics when their
membrane is soft enough, whereas a deterministic and later-
ally drifting trajectory prevails for particles with stiffer mem-
brane. We closely inspect individual particle dynamics and
reveal that their specific trajectories impact the overall lateral
transport of suspension in the network. At low concentration
the suspension exhibits both ballistic (drift) and diffusion-like
regimes depending on particle mechanical properties. Increas-
ing the concentration further enhances particle-particle inter-
actions, resulting in a breakdown of the deterministic drift into
a diffusion-like transport.

Model.— The suspension is injected at upper feeding ves-
sels [vertical arrows at top surface of Fig. 1(a)] and spreads
out laterally to feed the network. We consider an ordered
network with hexagonal loops [Fig. 1(a)]. This is inspired
by microvascular patterns, such as those encountered in mu-
cosal capillary networks [27]. On the other hand, a regular
geometry allows us to reduce the complexity and concentrate
on the impact of particle mechanical properties only. A con-
stant body force (in−Y direction) is applied to drive the fluid,
with periodic boundary conditions in X and Y directions. The
fluid flow is obtained from solving Navier Stokes equations
using lattice Boltzmann method [28]. The RBC-like parti-
cle is modeled as a vesicle with a biconcave shape using a
two dimensional spring model [28]. The reduced area is de-
fined as ν = (A/π)/[P/(2π)]2 , where A and P are the area
and perimeter of the particle respectively , and the particle ra-
dius R is defined as

√
A/π . The fluid-structure interaction is

achieved by adopting the immersed boundary method [28–
30].

Particle deformation is characterized by capillary number,
defined as Ca = ηR3γ̇/κ , where κ is the bending modulus



2

(a)

WL

X
Y

(b)

(c)

FIG. 1. (a) A snapshot showing the simulation system. The particles
flow in a hexagonal network, where each segment of the channel has
length L and width W . The hollow arrows show the flow directions
in the channels. (b) Schematic trajectories of a rigid sphere (black),
a rigid non-spherical particle (magenta) and a soft particle (blue) in
the network. (c) Trajectories of a single particle in the network for
different reduced area and capillary numbers. The particle shapes in
the center of the feeding channel are plotted for the corresponding
parameters.

of particle membrane and γ̇ is a typical shear rate of the im-
posed flow. In absence of particles, a steady-state Poiseuille
flow, with a profile u= um[1−4(r/W )2] in feeding channels is
designated, where um is the maximum velocity, r is the lateral
position in the channel and W is the channel’s width. The fluid
incompressibility also imposes a u/2 velocity in branches. We
define γ̇ = 2um/W as the mean shear rate in the feeding chan-
nel. Each vessel segment has a length 40R (∼ 100µm) and a
width 4R (∼ 10µm) in this study (the effect of different widths
is also considered in [21]), which is consistent with microcir-
culation context [3, 11, 22]. We examine the effect of mul-
tistage bifurcations on the motion of particles with different
membrane stiffness (different Ca’s).

Dynamics of a single particle.— First, we consider a sin-
gle particle in the whole network and analyze its trajectory.
This provides an interesting basis for the understanding of
the many particle behavior. In order to highlight the effect
of particle shape adaptation, we first consider the behavior of
a fully rigid circular particle (undeformable). The particle fol-
lows the fluid streamlines and shows a zigzag-like trajectory
without global lateral migration within the network [Fig.1 (b),
black particle]. Our simulation for a high enough reduced
area (close to a circular shape and wear deformation) agrees
with this prediction, showing again a zigzag-like trajectory
[ν = 0.96 in Fig. 1 (c)].

In view of the above results one might naively be tempted
to expect that a non circular but rigid particle will have a
closer behavior to the circular particle. Surprisingly, a rigid
enough particle but far from a circular shape (i.e. ν = 0.7)
does not follow the trend of a circular particle, while in con-
trast a softer particle displays a closer behavior to the circular
one [Fig. 1(c)]. The results show that a softer particle ex-
hibits an erratic trajectory [ν = 0.7, Ca = 25 in Fig. 1(c)],
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FIG. 2. (a) Deviation of the particle mass center from channel cen-
terline (∆X) versus deformation a/b measured at the mid place of the
feeding channel for different Ca. The bifurcation of ∆X shows that
the single particle starts to erratically enter the branch when Ca is
approximately larger than 12.5. (b-c) The time series of particle con-
figurations at a bifurcation are given for (b) Ca= 2.5 and (c) Ca= 25.

whereas a rigid enough particle reveals a deterministic side-
ways drift[ν = 0.7, Ca = 2.5 in Fig. 1(c)]. The same behavior
is also observed in 3D [21].

The understanding of this behavior is quite subtle. For a
small reduced area, a rigid particle assumes a constant tank-
treading inclination angle [ ν = 0.88,0.8,0.7 and Ca = 2.5 in
Fig. 1(c)]. If the particle is initially close to its right wall [top
of Fig.1 (b), magenta particle], when it approaches the bifur-
cation, its orientation points towards its left branch, conferring
it a higher probability to enter that branch. Once it enters the
branch, the particle stays again close to its right wall of the
new branch, and finds itself in the same configuration as in
the previous feeding channel, and so on, giving rise to a side-
ways drift [see e.g. ν = 0.7, Ca = 2.5 in Fig. 1(c)]. We refer
to this case as a long memory behavior. This behavior is asso-
ciated with a significant particle shape deviation from a circle,
and a strong enough rigidity.

The situation is different for a soft particle. The particle is
deformed into a parachute shape instead of the slipper shape in
the rigid situation. Due to its quasi-symmetrical shape when
the particle hits the bifurcation, it has approximately equal
probabilities to select either branch at the bifurcation [Fig.1
(b), blue particle]. A systematic analysis reveals that when
Ca increases, we observe a distribution of deformations a/b
[the size ratio defined in Fig. 2(c)] and lateral positions ∆X
[Fig. 2(c)] at the mid place of the successive feeding chan-
nels [Fig. 2(a)]. The variability broadens upon increasing Ca
and the sideway preference of entering a definite branch (left
or right) is lost when Ca is approximately larger than 12.5
[Fig. 2(a)]. We refer to this case as a short memory behavior.

In summary, for a shape significantly far away from a circle,
a soft enough particle undergoes a random walk at bifurcation
and adopts a diffusion-like spreading (the mean squared dis-
placement (MSD) behaves as ∼ t) along the lateral direction
in the network. A more rigid particle shows a determinis-
tic drift and exhibits a ballistic behavior, with a MSD behav-
ing as ∼ t2. The observations for a single particle, lead us
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FIG. 3. (a-b) The time evolution of particle positions under a condi-
tion of (a) Ca = 20 and (b) Ca = 2. (c-d) The concentration profile
along the lateral direction (X) at different time, corresponding to the
configurations shown in (a-b).

FIG. 4. (a) Lateral mean squared displacement (in X direction) of the
particles for two capillary numbers (Ca = 2 and Ca = 20) with five
implementations (shown by different symbols). (b) Lateral MSD for
various Ca. The inset shows the scaling exponent α as a function of
Ca.

to expect similar phenomena for the many-particle systems,
at low concentrations (where particle-particle interactions are
not dominant).

Lateral transport.— Next, we focus on how an initially
centered suspension spreads out laterally (in X direction)
throughout the network. First, we consider the propagation of
a suspension front in a network with lateral size about 2000R
(corresponding to 28 unit network hexagonal cells). The par-
ticles are initially positioned randomly in the middle of the
network (within a range of 160R) with a high local concen-
tration (around 40%, with N = 600 particles). A typical pas-
sage time t0 = L

um
+ L

0.5um
= 3L

um
is defined as the convection

time through a feeding channel and a branch (L is the length
of the branch [Fig. 1(a)]). We then use a normalized time as
t∗ = t/t0. The particles are advected by the flow, while at the
bifurcation, they interact with the boundaries and among each
other, ultimately entering a branch (left or right).

For a large Ca (corresponding to soft particles), the front
of the particle distribution spreads out laterally (along X) with
a diffusion-like behaviour [Fig. 3(a) and (c) for Ca = 20]. In
contrast, when Ca is small (corresponding to rigid particles), a
systematic drift of the particle front is observed [Fig. 3(b) and
(d) for Ca = 2]. We refer to the last regime as a drift regime.

The dynamics of particles is quantified by measuring the
MSD in the lateral direction (MSD=

〈
|X(t)−X0|2

〉
), where

X(t) is the actual particle position. The measurements are
carried out for two values of Ca = 20 and Ca = 2 correspond-
ing to soft and rigid particles in Fig. 3(a) and (b), respectively.
For each capillary number, we examine five cases with dif-
ferent values of the imposed velocities. More precisely, we
keep Ca fixed whilst selecting 5 different imposed speeds and
5 different bending modulus. Different parametric curves are
presented with different symbols in Fig. 4(a). The selected
velocities yield particle Reynolds numbers from 0.1 to 1. The
data collapse obtained in Fig. 4(a) demonstrates that the ob-
served behaviors are dominated by the particle deformability,
and suggests a minor impact of the inertia effects. For Ca= 20
(soft particles) the MSD shows a t1.4 scaling [Fig. 4(a)], while
for Ca = 2 (rigid particles), it behaves as t2.7 [Fig. 4(a)]. We
have explored a wide range of Ca’s, from 1 to 20, identify-
ing a continuous evolution of the scaling exponent α , from a
high value 2.7 (for Ca < 4) to a low value 1.4 (for Ca > 10)

FIG. 5. (a-b) Lateral MSD for various φ with (a) Ca = 2 and (b)
Ca = 16. (c)The scaling exponent of MSD as a function of φ .

[Fig. 4(b)]. The observed many particle dynamics shows
agreement with the prediction based on the individual particle
dynamics. The exponents 1.4 and 2.7 of the MSD correspond
to super-diffusive and super-ballistic values, instead of diffu-
sive (exponent equal to 1) and ballistic (exponent equal to 2)
regimes. These large values of the exponents are understood
as follows: The local concentration in the central feeding ves-
sels becomes weaker with time. Since the driving pressure is
fixed, the flow rate increases with time in the feeding vessels
due to the local concentration decline (see quantification of
this effect in Fig.S2 in [21]). This time-dependent speed nat-
urally amplifies the front speed, explaining the apparent ten-
dency of a super-diffusive and super-ballistic nature shown in
Fig. 4. We show below that by enforcing a homogeneous con-
centration in the network true diffusive and ballistic behaviors
are recovered [dilute regime in Fig. 5(c)].

Particle-particle collision-induced diffusion.— Here, in-
stead of initializing a suspension in the central part of the net-
work, we consider an initially homogeneous distribution in
the whole network. This configuration can be encountered, for
example, in microcirculation, the RBCs are expected (on aver-
age) to explore uniformly the network, instead of having a free
front spreading laterally throughout the network. We consider
a smaller size 146.6R×127R (2 unit network hexagonal cells
in the lateral direction) with periodic boundary conditions. We
analyze the trajectory of each particle and measure the MSD,
which is averaged over all particles [Fig. 5]. We identify vari-
ous regimes, going continuously from drift to diffusion, when
particle mechanical properties and concentrations are varied.

The particles are evenly and randomly initialized in the
whole network. When concentration increases,the particle-
particle interaction becomes relevant, leading to random par-
tition at bifurcations [31]. This suppresses the deterministic
drifting for rigid particles. Note that the diffusion-like trans-
port for soft particle is unaffected [Ca = 16 in Fig. 5(b) and
(c)]. For rigid particles [Ca = 2 in Fig. 5(a) and (c)], in the
dilute regime, as expected, we find a ballistic regime. How-
ever, the scaling exponent of the lateral MSD decreases when
the concentration increases [Fig. 5(a) and (c)] and the lateral
transport shows a diffusive behavior, similar to that exhibited
by the soft particles. This drift-diffusion transition occurs for
a critical volume fraction φc ' 15% [Fig. 5(c)]. Interestingly,
this concentration lies in the range of typical hematocrits in
human microcirculation (10− 26% [32]). Particle-particle
interaction may thus help partially achieving an efficient ran-
dom exploration of vascular networks by RBCs, even when
RBCs suffer enhanced rigidity due to blood diseases, such as
sickle cell and malaria diseases.

Conclusions.— We have studied the influence of de-
formability on the lateral transport of deformable particles in a
honeycomb network. We find that the individual dynamics of
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the particle in the downstream position is history-dependent.
This results in a rich behavior when the particle meets a bifur-
cation. Overall, the softer particles explore different shapes
from one bifurcation to the next, resulting in an erratic dis-
placement in the network. The more rigid particles are found
to drift indefinitely sideways either to the left part or the right
part of the network, depending on initial conditions. Simi-
lar mechanism was found for monocytes passing a network
where the more rigid cells are observed to follow a periodic
zigzag motion without global lateral displacement [33]. This
opposite behavior may be attributed to the strong confine-
ment in the monocyte experiment. Our simulations for smaller
channel widths agree with experimental observations [33] (see
Fig.S3 in [21]). We have considered here an ideal honeycomb
network to reduce the complexity and focus only on mechan-
ical properties. Real vascular networks are quite disordered
[6], for which our LBM can straightforwardly be adapted in
the future. Besides helping understand blood flow under phys-
iological and pathological conditions in microcirculation, this
study may also shed light on biomedical applications such as
the design of appropriate networks for cell sorting and the
conception of tailored microparticles for a targeted drug de-
livery.
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