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LPV-ARX representations for LPV State-Space Representations with Affine Dependence

In this paper we show that an input-output function can be realized by an LPV state-space representation with affine and static dependence on the scheduling parameters, if and only if this input-output function satisfies certain LPV autoregressive input-output equations. The latter class of equations is linear in the derivatives (for continuous-time) or time-shifts (for discrete-time) of the outputs and control inputs, while the coefficients are polynomials of the shifts of the scheduling variable in discrete-time, or of the high-order derivatives of the scheduling variable in continuous-time. This result is a generalization of the well-known equivalence between linear state-space representations and autoregressive input-output models. Moreover, this result extends the results of [1] on LPV state-space representations with a dynamic and meromorphic dependence on the scheduling parameters to LPV state-space representations with a static and affine dependence on the scheduling parameters.

Introduction

Linear parameter-varying (LPV) systems are usually defined as linear timevarying systems, where the time varying coefficients are functions of a certain time-varying signal, the so-called scheduling variable or scheduling variable [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF], [START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF]. Practical use of LPV systems is stimulated by the fact that LPV control design [START_REF] Rugh | Research on gain scheduling[END_REF][START_REF] Packard | Gain scheduling via linear fractional transformations[END_REF][START_REF] Apkarian | A convex characterization of gain-scheduled H ∞ controllers[END_REF][START_REF] Scherer | Mixed H 2 /H ∞ control for time-varying and linear parametrically-varying systems[END_REF][START_REF] Lu | Switching LPV control designs using multiple parameterdependent Lyapunov functions[END_REF][START_REF] Wu | Gain-scheduling control of LFT systems using parameterdependent Lyapunov functions[END_REF][START_REF] Scherer | Robust controller synthesis is convex for systems without control channel uncertainties[END_REF] and identification [START_REF] Tóth | Pediction error identification of LPV systems: present and beyond[END_REF][START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF][START_REF] Bamieh | Identification of linear parameter varying models[END_REF][START_REF] Butcher | On the consistency of certain identification methods for linear parameter varying systems[END_REF][START_REF] Hsu | Nonparametric methods for the identification of linear parameter varying systems[END_REF][START_REF] Vizer | Linear fractional LPV model identification from local experiments: an H ∞ -based optimization technique[END_REF][START_REF] Vizer | Linear fractional LPV model identification from local experiments using an H ∞ -based local approach[END_REF][START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for open-and closed-loop data[END_REF][START_REF] Santos | Identification of LPV systems using successive approximations[END_REF][START_REF] Sznaier | An LMI approach to the identification and (in)validation of LPV systems[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF] are well developed. Despite these advances, there are important gaps in systems theory for LPV systems.

One such a gap is the relationship between input-output representations and state-space representations for LPV systems. This question was addressed by [START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF][START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF], but [START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF][START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] considered LPV systems (both state-space representation and input-output representations) with nonlinear and dynamic dependence on the scheduling variable. More precisely, the system parameters were meromorphic functions of the scheduling variables and its derivatives (continuous-times), or of the current and future values of the scheduling variable (discrete-time). However, from a practical point of view, LPV state-space representations with static and affine dependence (affine dependence on the instantaneous value of the scheduling variable) are preferable [START_REF] Scherer | Robust controller synthesis is convex for systems without control channel uncertainties[END_REF][START_REF] Tóth | Pediction error identification of LPV systems: present and beyond[END_REF][START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF][START_REF] Bamieh | Identification of linear parameter varying models[END_REF][START_REF] Butcher | On the consistency of certain identification methods for linear parameter varying systems[END_REF][START_REF] Hsu | Nonparametric methods for the identification of linear parameter varying systems[END_REF][START_REF] Vizer | Linear fractional LPV model identification from local experiments: an H ∞ -based optimization technique[END_REF][START_REF] Vizer | Linear fractional LPV model identification from local experiments using an H ∞ -based local approach[END_REF][START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for open-and closed-loop data[END_REF][START_REF] Santos | Identification of LPV systems using successive approximations[END_REF][START_REF] Sznaier | An LMI approach to the identification and (in)validation of LPV systems[END_REF][START_REF] Verdult | Subspace identification of multivariable linear parameter-varying systems[END_REF] We will use the abbreviation LPV-SSA for the latter class of state-space representations.

Motivation The motivation for the contribution of this paper is as follows: the transformation from [START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF][START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] may yield an input-output representation with a dynamic nonlinear dependence, even if it is applied to an LPV-SSA representation. Conversely, even if we know that an input-output representation arises from an LPV-SSA representation, the transformation of [START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF][START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] needs not to yield an LPV-SSA representation. That is, [START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF][START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] does not tell us which class of input-output representations corresponds exactly to the class of LPV-SSA representations. Answering this question is especially useful for system identification. Indeed, in general, identification of input-output representations is easier than that of state-space representations. However, for control design LPV-SSA representations are needed. Hence, for the identification of inputoutput representations to be meaningful, we need to know which input-output representations correspond to LPV-SSA representations, and how to transform an identified input-output representation to an LPV-SSA representation.

Contribution The current paper is an attempt to close this gap. We consider both the discrete-time (DT) and the continuous-time (CT) cases. We show that an input-output function can be realized by a LPV-SSA representation, if if and only if the input-output function satisfies a so called linear parametervarying autoregressive (LPV-ARX) representation. The latter means that any input, output and scheduling signal which are consistent with the input-output function satisfy an equation, which is linear in the derivatives (CT) or timeshifts (DT) of inputs and outputs. Moreover, the coefficients with which the derivatives or time-shifts of the outputs or inputs are multiplied are functions of the scheduling signal. More precisely, these coefficients are polynomials of the shifted scheduling variables (DT) or of high-order derivatives of the scheduling variables (CT).

Related work and novelty For the DT case, the result was already announced in [START_REF] Petreczky | Affine LPV systems: realization theory, inputoutput equations and relationship with linear switched systems[END_REF], but without proofs. The technical report [START_REF] Petreczky | Affine LPV systems: realization theory, input-output equations and relationship with linear switched systems[END_REF] sketches some of the proofs for the DT case. For the CT case, which is much more challenging that the DT case, the result of this paper are completely new. For the proof of our results, we use [START_REF] Sontag | Polynomial response maps[END_REF][START_REF] Sontag | Realization theory of discrete-time nonlinear systems: Part ithe bounded case[END_REF][START_REF] Sontag | Bilinear realizability is equivalent to existence of a singular affine differential i/o equation[END_REF][START_REF] Wang | On two definitions of observation spaces[END_REF], where the correspondence between bilinear state-space representations and polynomial input-output equations was shown. In contrast to [START_REF] Sontag | Polynomial response maps[END_REF][START_REF] Sontag | Realization theory of discrete-time nonlinear systems: Part ithe bounded case[END_REF][START_REF] Sontag | Bilinear realizability is equivalent to existence of a singular affine differential i/o equation[END_REF][START_REF] Wang | On two definitions of observation spaces[END_REF], we deal with LPV models. Hence, the adaptation of the results of [START_REF] Sontag | Polynomial response maps[END_REF][START_REF] Sontag | Realization theory of discrete-time nonlinear systems: Part ithe bounded case[END_REF][START_REF] Sontag | Bilinear realizability is equivalent to existence of a singular affine differential i/o equation[END_REF][START_REF] Wang | On two definitions of observation spaces[END_REF] to LPV models is not trivial. In [START_REF] Belikov | Comparison of {LPV} and nonlinear system theory: A realization problem[END_REF] a characterization is presented of those LPV input-output representation which correspond to LPV state-space representations with a nonlinear (hence not necessarily affine) and static dependence. For this reason, the results of [START_REF] Belikov | Comparison of {LPV} and nonlinear system theory: A realization problem[END_REF] do not imply those of this paper.

As it was mentioned above, [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] addressed the equivalence between a class of LPV state-space representations. However, in [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] the matrices of the LPV statespace representation were assumed to be meromorphic functions of the scheduling parameter and its derivatives (in CT) or time-shifts (in DT). Similarly, in [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] the coefficients of input-output equations were assumed to be meromorphic functions of the scheduling parameter and its derivatives (in CT) or time-shifts (in DT). In contrast, in this paper we consider only LPV state-space representations matrices of which are affine functions of the scheduling variable, and they do not depend on the derivatives or time-shifts of the scheduling variable. In addition, in this paper we consider input-output equations coefficients of which are polynomial functions of the scheduling variables and their derivatives (in CT) or time-shifts (in DT). The results of [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] only tell us that if an input-output behavior can be realized by an LPV-SSA, then it will satisfy a input-output equation coefficients of which depend dynamically and meromorphically on the scheduling parameters. However, [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] does not imply that these coefficients can be polynomial. More importantly, [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] does not characterize those input-output equations which correspond to LPV-SSA. That is, [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] does not answer the question which input-output equations should an input-output behavior satisfy in order to be realizable by an LPV-SSA.

Outline The paper is organized as follows. In Section 2, basic notions and concepts are introduced, which is followed, by the definition of LPV-SSA representations, input-output functions and LPV-ARX representations. In Section 3, the main results of the paper are stated. In Section 4 we present the proof of the main results.

Preliminaries

Notation. For a set X, denote by S(X) the set of finite sequences generated from X, i.e., each s ∈ S(X) is of the form

s = ζ 1 ζ 2 • • • ζ k with ζ 1 , ζ 2 , . . . , ζ k ∈ X, k ∈ N.
|s| denotes the length of the sequence s, while for s, r ∈ S(X), sr ∈ S(X) corresponds the concatenation operation. The symbol ε is used for the empty sequence and |ε| = 0 with sε = εs = s. Furthermore, X N denotes the set of all functions of the form f : N → X. For each j = 1, . . . , m, e j is the j th standard basis in R m . Furthermore, let

I s2 s1 = {s ∈ Z | s 1 ≤ s ≤ s 2 } be an index set for s 1 , s 2 ∈ Z.
Let T = R + 0 = [0, +∞) be the time axis in CT case, and T = N in the DT case. Denote by ξ the differentiation operator d dt (in CT) and the forward time-shift operator q (in DT), i.e., if z : S → R n , S ⊆ T then ξz is a function on S, such that for T = R + 0 , (ξz)(t) = d dt z(t) for all t ∈ S, and for T = N, (ξz)(t) = z(t + 1) for all t ∈ S. Note that in DT, we will apply ξ only when for every t ∈ S, t + 1 ∈ S. As usual, denote by ξ k the k-fold application of ξ, i.e. for any z : T → R n , ξ 0 z = z, and ξ k+1 z = ξ(ξ k z) for all k ∈ N.

A function f : R + 0 → R n is called piecewise-continuous, if f has finitely many points of discontinuity on any compact subinterval of R + 0 and, at any point of discontinuity, the left-hand and right-hand side limits of f exist and are finite. We denote by C p (R + 0 , R n ) the set of all piecewise-continuous functions of the above form. We denote by C a (R + 0 , R n ) the set of all n-dimensional absolutely continuous functions [START_REF] Lang | Real Analysis[END_REF].

LPV-SSA representations. Below we follow the presentation of [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]. An LPV state-space (SS) representations with affine linear dependence on the scheduling variable (abbreviated by LPV-SSA) is of the form

Σ ξx(t) = A(p(t))x(t) + B(p(t))u(t), y(t) = C(p(t))x(t) + D(p(t))u(t), (1) 
where x(t) ∈ X = R nx is the state variable, y(t) ∈ Y = R ny is the (measured) output, u(t) ∈ U = R nu represents the input signal and p(t) ∈ P ⊆ R np is the so called scheduling variable of the system represented by Σ, where the matrix functions A(•), . . . , D(•) defining the SS representation (1) are considered to be affine and static functions of p in the form

A(p) = A 0 + np i=1 A i p i , B(p) = B 0 + np i=1 B i p i , C(p) = C 0 + np i=1 C i p i , D(p) = D 0 + np i=1 D i p i , (2) 
for every p = [ p 1 . . . p np ] ∈ P, with constant matrices

A i ∈ R nx×nx , B i ∈ R nx×nu , C i ∈ R ny×nx and D i ∈ R ny×nu for all i ∈ I np 0 .
The signal p corresponds to varying-operating conditions, nonlinear/time-varying dynamical aspects and /or external effects influencing the plant behavior and it is allowed to vary in the set P, see [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] for details.

Remark 1. In the sequel, for the sake of simplicity, we assume that P = R np .

By a solution of Σ we mean a tuple of trajectories (x, y, u, p) ∈ (X , Y, U, P) satisfying [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF], where

• in CT, X = C a (R + 0 , X), Y = C p (R + 0 , Y), U = C p (R + 0 , U), P = C p (R + 0 , P), • in DT X = X N , Y = Y N , U = U N , P = P N .
Note that in CT, (x, u, y, p) is assumed to (1) to satisfy for almost all t ∈ R + .

Note that for any input and scheduling signal (u, p) ∈ U × P and any initial state x o and any initial time t o , there exists a unique pair (y, x) ∈ Y × X such that (x, y, u, p) is a solution of (1) and x(t o ) = x o . That is, the dynamics of Σ are thus driven by the inputs u ∈ U as well as the scheduling variables p ∈ P. Remark 2 (Zero initial time). Notice that without loss of generality, we can take initial time t o = 0, see [START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF]. if and only if there exists a state trajectory x ∈ X such that (x, y, u, p) is a solution of (1) and x(0) = x o .

In other words, Y Σ,xo (u, p) is the output trajectory of Σ which corresponds to the input u, scheduling signal p and a state trajectory x of Σ such that

x(0) = x o
We formalize potential input-output behavior of LPV-SSA representations as functions of the form

Y : U × P → Y. (3) 
The LPV-SSA representation Σ is called a realization of the function Y of the form (3) from the initial state

x o , if Y = Y Σ,xo .
If the initial state is not relevant, then we will say that the LPV-SSA Σ is a realization of Y, if there exist an initial state x o of Σ, such that Σ is a realization of Y from x o . We refer the reader to [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF] for necessary and sufficient conditions for existence of an LPV-SSA which is a realization of an input-output function Y. Note that we can assume that D(•) ≡ 0 without any loss of generality regarding the concepts of realizability. Therefore, in the sequel, we will assume that D i = 0 for all i ∈ I np 0 , and we will often use the shorthand notation

Σ = (P, {A i , B i , C i } np i=0 )
to denote an LPV-SSA representation of the form (1).

Impulse response representation (IRR).

Next, we recall from [START_REF] Petreczky | Affine LPV systems: realization theory, input-output equations and relationship with linear switched systems[END_REF][START_REF] Petreczky | Affine LPV systems: realization theory, inputoutput equations and relationship with linear switched systems[END_REF][START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF] the notion of an impulse response representation (IRR) of an input-output function both in CT and DT. Note that in [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF] (in CT) and in [START_REF] Petreczky | Affine LPV systems: realization theory, inputoutput equations and relationship with linear switched systems[END_REF][START_REF] Petreczky | Affine LPV systems: realization theory, input-output equations and relationship with linear switched systems[END_REF] (in DT) it was shown that all input-output functions which are realizable as an LPV-SSA admit such a representation, so for the purposes of this paper we will restrict attention to input-output functions which admit an IRR.

In order to define IRR, we need the following notation and terminology.

Notation 1. To this end, let p q denote the q th entry of the vector p ∈ R np if q ∈ I np 1 and let p 0 = 1. That is, for any p ∈ P, p 0 (t) = 1 and p q (t) is the q th entry of p(t). Definition 1. For any sequence s ∈ S(I np 0 ), time moments t, τ ∈ T, τ ≤ t, and any scheduling trajectories p ∈ C p (R + 0 , R np ) (in CT) or p ∈ (R np ) N (in DT), define the so-called sub-Markov dependence (w s p)(t, τ ) as follows:

• Continuous-time:

If s = is the empty sequence, then let (w p)(t, τ ) = 1. If s = s 1 s 2 • • • s n for some n > 0, s 1 , . . . , s n ∈ I np 0 , then (w s p)(t, τ ) = t τ p sn (δ) • (w s1s2•••sn-1 p)(δ, τ ) dδ. • Discrete-time: If s = , then (w p)(τ -1, τ ) = 1, if s is of the form s = s 1 s 2 • • • s n , for n = t -τ + 1 and for some s 1 , . . . , s n ∈ I np 0 , then (w s p)(t, τ ) = p s1 (τ )p s2 (τ + 1) • • • p sn (t),
and otherwise (w s p)(t, τ ) = 0.

Definition 2 (Impulse response representation, [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF]). Let Y be a function of the form (3). Y has a impulse response representation (IRR) if there exist functions

θ i,j,Y : S(I np 0 ) → R ny×nu , η i,Y : S(I np 0 ) → R ny , i, j ∈ I np 0 , such that 1. {θ i,j,Y } np i,j=0 , {η i,Y } np i=0 satisfy an exponential growth condition, i.e., there exist constants K, R > 0 such that ∀s ∈ S(I np 0 ) with |s| ≥ 1, θ i,j,Y (s) F ≤ KR |s| , η i,Y (s) F ≤ KR |s| ,
for all i, j ∈ I np 0 , where . F denotes the Frobenius norm; 2. for each (u, p) ∈ U × P, t ∈ T,

Y(u, p)(t) = (g Y p)(t) + t 0 (h Y p)(δ, t)u(δ) dδ, in CT (g Y p)(t) + t-1 δ=0 (h Y p)(δ, t)u(δ) in DT where g Y p : T → R ny and h Y p : {(τ, t) ∈ T × T | τ ≤ t} → R ny×nu are defined as follows. In CT case, (g Y p)(t) = i∈I np 0 s∈S(I np 0 ) η i,Y (s)p i (t) × (w s p)(t, 0), (h Y p)(δ, t) = i,j∈I np 0 s∈S(I np 0 ) θ i,j,Y (s)p i (t)p j (δ) × (w s p)(t, δ),
and in DT case

(g Y p)(t) = i∈I np 0 s∈S(I np 0 ) η i,Y (s)p i (t) × (w s p)(t -1, 0), (h Y p)(δ, t) = i,j∈I np 0 s∈S(I np 0 ) θ i,j,Y (s)p i (t)p j (δ) × (w s p)(t -1, δ + 1).
The functions {θ i,j,Y , η i,Y } np i,j=0 will be referred to as sub-Markov parameters of Y.

From [29, Lemma 2] it follows that if Y has an IRR, then the sub-Markov parameters are uniquely defined by Y. Conversely, from [29, Lemma 2] it follows that if two input-output functions both have an IRR and their sub-Markov parameters are equal, then these two functions are equal too.

In order to give intuition on the notion of IRR, recall from [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF] the following result: if Y can be realized by an LPV-SSA representation Σ of the form (1) from the initial state x o , then Y has an IRR representation, and for all τ ≤ t ∈ T, p ∈ P,

(g Y p)(t) = C(p(t))Φ p (t -1, 0)x o in DT C(p(t))Φ p (t, 0)x o in CT (h Y p)(τ, t) = C(p(t))Φ p (t -1, τ + 1)B(p(τ )) in DT C(p(t))Φ p (t, τ )B(p(τ )) in CT (5) 
Here Φ p (t, τ ) is the fundamental matrix of the time-varying linear system

ξx(t) = A(p(t))x(t), Φ p (τ, τ ) = I nx
and for all τ ≤ t ∈ T, 

d dt Φ p (t, τ ) = A(p(t))Φ p (t,
) : η i,Y (s) = C i A s x o , θ i,j,Y (s) = C i A s B j (6) 
where for s = , A s denotes the identity matrix, and for s =

s 1 s 2 • • • s n and s 1 , s 2 , . . . , s n ∈ I np 0 , n > 0, A s = A sn A sn-1 • • • A s1 .
Existence of an IRR of Y implies that Y is affine in u and can be represented as a convergent infinite sum of iterated integrals in CT, while, in DT, Y is a polynomial in p In [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF] it was shown that the sub-Markov parameters determines the input-output function uniquely. Moreover, in [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF] it was shown that the input-output functions of an LPV-SSA representations admit an IRR, and the corresponding sub-Markov parameters can be expressed as products of the system matrices of the LPV-SSA representation.

To illustrate Definition 2, we recall from [START_REF] Petreczky | Realization theory for LPV state-space representations with affine dependence[END_REF] the following example.

Example 1. Assume that P = R, n u = n y = 1 and let Y be an input-output function of the form (3) and assume it has an IRR. Then in DT, using that p 0 (t) = 1 for all t ∈ T,

(h Y p)(2, 5) = θ 0,0,Y (00) + p(4)θ 0,0,Y (01) + p(3)θ 0,0,Y (10)+ + p(3)p(4)θ 0,0,Y (11) + • • • + p(2)p(5)θ 1,1,Y (00) + p(2)p(5)p(4)θ 1,1,Y (01)+ p(2)p(5)p(3)θ 1,1,Y (10) + p(2)p(5)p(3)p(4)θ 1,1,Y (11) 
(g Y p)(2) = η 0,Y (00) + p(1)η 0,Y (01) + p(0)η 0,Y (10) + p(0)p(1)η 0,Y (11)+ p(2)η 1,Y (00) + p(2)p(1)η 1,Y (01) + p(2)p(0)p(1)η 1,Y (11) 
.

For CT,

(h Y p)(2, 5) = θ 0,0,Y ( ) + 3θ 0,0,Y (0) + θ 0,0,Y (1) 5 2 
p(s)ds+

+ • • • + θ 0,0,Y (101) 5 2 p(s 1 ) s1 2 s2 2 p(s 3 )ds 3 ds 2 ds 1 + • • • + p(2)[θ 0,1,Y ( ) + 3θ 0,1,Y (0) + θ 0,1,Y (1)] 5 2 
p(s)ds

+ p(2)θ 0,1,Y (101) 5 2 
p(s 1 )

s1 2 s2 2 p(s 3 )ds 3 ds 2 ds 1 + • • • (g Y p)(2) = η 0,Y ( ) + 2η 0,Y (0) + η 0,Y (1) 2 0 
p(s)ds+

+ • • • + η 0,Y (101) 3 0 p(s 1 ) s1 0 s2 0 p(s 3 )ds 3 ds 2 ds 1 + • • • + p(2)η 1,Y ( ) + 2p(2)η 1,Y (0) + p(2)η 1,Y (1) 
2 0 p(s)ds+

• • • + p(2)η 1,Y (101) 2 0 p(s 1 ) s1 0 s2 0 p(s 3 )ds 3 ds 2 ds 1 + • • • That is, in DT, (h Y p)(2, 5) is a polynomial of p(2), p (3) 
, p(4), p(5), and the degree of p(2), p(3), p(4), p(5) in each monomial is at most one. Moreover, θ i,j,Y (s), for each i, j ∈ {0, 1}, s being a sequence of elements {0, 1} of length at most 2, are the coefficients of this polynomial. In particular, only the components of the sub-Markov parameters the form θ Y (s), with s being of length 2, occur in

(h Y p)(2, 5). In contrast, in CT, (h Y p)(2, 5
) is an infinite sum of iterated integrals of p, all the components of the form θ i,j,Y (s), i, j = 0, 1, with s being a sequence of arbitrary length, occur in (h Y p) [START_REF] Tóth | The behavioral approach to linear parameter-varying systems[END_REF][START_REF] Apkarian | A convex characterization of gain-scheduled H ∞ controllers[END_REF]. The picture for (g Y p)(2) is analogous.

Example 2. Assume that P = R, n u = n y = 1 and let Y be an input-output function of the form (3) and assume it has an IRR, and θ i,j,Y ( ) = 0,

θ 1,j,Y (l) = 0, θ i,0,Y (l) = 0, η 1,Y (l) = 0
for all i, j, l ∈ I 1 0 = {0, 1}, and

θ 0,1,Y (0) = 0, θ 0,1,Y (1) = 1, η 0,Y ( ) = 1, η 0,Y (0) = 0, η 0,Y (1) = 1
and for all w ∈ S(I np 0 ), |w| ≤ 2, θ i,j,Y (w), η i,Y (w) are defined recursively on the length of w as follows:

• if w = v00 or w = v01 for some v ∈ S(I np 0 ), i.e., w terminates with the sequence 00 or 01, then θ i,j,Y (w) = η i,Y (w) = 0;

• if w = v11 for some v ∈ S(I np 0 ), i.e., w terminates with the sequence 11,

then θ i,j,Y (w) = θ i,j,Y (v), η i,Y (w) = η i,Y (v);
• if w = v01, for some v ∈ S(I np 0 ), i.e., w terminates with the sequence 01,

then θ i,j,Y (w) = θ i,j,Y (v1) + θ i,j,Y (v) and η i,Y (w) = η i,Y (v1) + η i,Y (v).
Then it is easy to see that θ i,j,Y , η i,Y satisfy (6) with

A 0 = 0 0 1 1 , A 1 = 0 1 1 0 , B 1 = 0 1 , B 0 = 0 0 C 0 = 1 0 , C 1 = 0 0 , x 0 = 1 1 T and as the result Σ = (P, {A i , B i , C i } 1 i=0
) is a realization of Y, both in DT and CT.

Main results

In this section, we present the main result of the paper. We start with the following result, proof of which can be found in Subsection 4.2.

Lemma 2. In CT, if a given input-output function Y of the form (3) admits an IRR, then for all (p, u) ∈ P × U such that p and u are smooth, Y(u, p) is smooth.

Next, we define the class of input-output representations which correspond to LPV-SSA representations. To this end, we will use the following terminology: a function f : R m → R k×l will be said to be polynomial, if its coordinate functions are polynomial, i.e. if f i,j : R m x → (f (x)) i,j ∈ R is a polynomial function for all i ∈ {1, . . . , k}, j ∈ {1, . . . , l}.

Definition 3 (LPV-ARX representation

). An LPV input-output autoregressive (abbreviated by LPV-ARX) representation is a collection

({A i,j } i∈I ny 1 ,j∈I n 0 , {B i,j } i∈I ny 1 ,j∈I n-1 0 ), (7) 
of polynomial functions of the form A i,j : R np

(n+1) → R, i ∈ I ny 1 , j ∈ I n 0 and B i,j : R np(n+1) → R 1×nu , i ∈ I ny 1 , j ∈ I n-1 0 , such that for all i ∈ I ny 1 , {A i,j } i∈I n 1
is not all zero, i.e. A i,j = 0 for some j ∈ I i . 

n p = 2, n y = 1, n u = 1, n = 2, A 1,2 (p, d dt p) = p, A 1,1 (p, d dt p) = -(p + d dt p ), A 1,0 (p, d dt p) = -(1 + p)p 2 , B 1,0 (p, d dt p) = p 3 , B 1,1 (p, d dt p) = 0. Then ({A 1,j } 2 j=0 , (B 1,j } 1 j=0 ) (9) 
is an LPV-ARX representation of Y, if for all y = Y(u, p), were u and p are smooth, the following holds:

ÿ(t)p(t) -ẏ(t)(p(t) + ṗ(t)) -(1 + p(t))p 2 (t)y(t) = p 3 (t)u(t)
where

ÿ(t) = d 2 dt 2 y(t), ẏ(t) = d dt y(t), ṗ(t) = d dt p(t). Example 4 (DT). Consider the following LPV-ARX representation DT: n p = 2, n y = 1, n u = 1, n = 2, A 1,2 (p, ξp) = p, A 1,1 (p, ξp) = -ξp, A 1,0 (p, ξp) = -(1 + p)pξp, B 1,0 (p, ξp) = p 2 ξp, B 1,1 (p, ξp) = 0. Then ({A 1,j } 2 j=0 , (B 1,j } 1 j=0 ) ( 10 
)
is an LPV-ARX representation of Y, if for all y = Y(u, p) , the following holds:

y(t + 2)p(t) -y(t + 1)p(t + 1) -(1 + p(t))p(t)p(t + 1)y(t) = p 2 (t)p(t + 1)u(t).
Lemma 2 ensures that the right-hand side of. ( 8) is well defined. We can now state the following theorem. 

A 0 = 0 0 1 1 , A 1 = 0 1 1 0 , B 1 = 0 1 , B 0 = 0 0 C 0 = 1 0 , C 1 = 0 0 is realization of Y.
Conversely, the proof of Theorem 1 implies that if Σ is a realization of an input-output map Y, then in CT ( 9) is an LPV-ARX representation of Y, and in DT (10) is an LPV-ARX representation of Y.

The main contribution of Theorem 1 is that it gives an exact characterization of those LPV-ARX representations which correspond to LPV-SSA realization. In [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF], a more general form of LPV-ARX representations was considered. There, the coefficients of the input-output equations were assumed to be meromorphic functions of the future values of the scheduling parameters (DT) or of the current derivatives of the scheduling parameters (CT), and it was shown that an input-output map admits such a general LPV-ARX representation, if and only if it arises as an input-output map of a LPV state-space representation whose matrices depend on the scheduling parameter in a meromorphic and dynamical manner. However, the results of [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] do not tell us which LPV-ARX representations correspond to LPV-SSA representations. In fact, even if the construction of [START_REF] Tóth | Modeling and Identification of Linear Parameter-Varying Systems[END_REF] is appliled to an LPV-SSA, and the resulting LPV-ARX representation is of the type defined in Definition 3, the application of the algorithm from [1, Section 4.3] will not in general yield a LPV-SSA.

Theorem 1 implies that if we want to represent the input-output behavior of an LPV-SSA representation by an LPV-ARX, then in general, the coefficients of the LPV-ARX representation will still depend on scheduling variable in a dynamical way.

We prove Theorem 1 by using known results on the relationship between input-output equations and bilinear state-space representations. Note that bilinear systems can be viewed as a subclass of LPV-SSA without control inputs, if we view scheduling signals as inputs, so the use of bilinear systems theory is quite natural.

We have not formulated explicit algorithms for converting LPV-ARX to LPV-SSA or vice versa. The reason for this is that such algorithms would have to solve, as a special case, the problem of converting an input-output equation to a bilinear state-space representation and vice versa. However, despite the existence of a rich literature on systems theory of bilinear systems, we have not found such algorithms in the literature. This problem remains a topic of future research.

Proof of the main result

Below we present the proof of the main result. Note that it is enough to prove Theorem 1 for the single output case, i.e., when n y = 1, the general case follows from the single output one. Indeed, consider any input-output function Y of the form (3), and let Y i = e T i Y, i = 1, . . . , n y be the coordinate functions of Y, i.e., ∀u ∈ U, p ∈ P, t ∈ T,

Y(u, p)(t) = (Y 1 (u, p)(t), . . . , Y ny (u, p)(t)) T .
It is easy to see that Y has a realization by an LPV-SSA if and only if for each i = 1, . . . , n y , Y i has a realization by an LPV-SSA. Furthermore, if

({A i,j } i∈I ny 1 ,j∈I n 0 , {B i,j } i∈I ny 1 ,j∈I n-1 0 ) 11
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({A i,j } j∈I n 0 , {B i,j } j∈I n-1 0 ) is an LPV-ARX representation of Y i , i ∈ I ny 1 .
Conversely, assume that

({A i j } j∈I n i 0 , {B i j } j∈I n i -1 0 ) is an LPV-ARX representation of Y i for all i ∈ I ny 1 . The by taking n = max{n i | i ∈ I ny 1 } and defining A i,j = A i j i ≤ n i 0 otherwise , and 
B i,j = B i j i ≤ n i -1 0 otherwise ,
we obtain an LPV-ARX representation

({A i,j } i∈I ny 1 ,j∈I n 0 , {B i,j } i∈I ny 1 ,j∈I n-1 0 ) of Y.
For this reason, in the rest of the paper, we will assume that n y = 1, i.e. we consider the single output case We prove Theorem 1 by using known results on the relationship between input-output equations and bilinear state-space representations. To this end, we first recall the necessary facts for bilinear state-space representations in Subsection 4.1. Then in Subsection 4.2 we present the proof of Theorem 1.

Technical results on generating series, input-output equations and bilinear

state-space representations Recall from [START_REF] Isidori | Nonlinear Control Systems[END_REF][START_REF] Sontag | Realization theory of discrete-time nonlinear systems: Part ithe bounded case[END_REF][START_REF] Isidori | Direct construction of minimal bilinear realizations from nonlinear input-output maps[END_REF]] that a bilinear state-space representation over the input-space P is a system of the form

ξz(t) = N 0 z + np i=1 (N i z(t))p i (t), z(0) = z o y(t) = Cz(t) (11) 
where 11) is a tuple (z, y, p) ∈ Z × U × P such that it satisfies [START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF]. We will identify the bilinear system [START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF] with the tuple

N i ∈ R nz×nz , i ∈ I np 0 , C ∈ R 1×nz . Let Z = C a (R + 0 , R nz ), in CT, and Z = (R nz ) N in DT. A solution of (
({N i } i∈I np 0 , C, z o ).
The bilinear system ( 11) is said to be a realization of an input-output function F : P → Y, if for every p ∈ P there exists z ∈ Z, such that (z, y, p) is a solution of [START_REF] Laurain | Refined instrumental variable methods for identification of LPV Box-Jenkins models[END_REF] with y = F (p). We recall from [START_REF] Isidori | Nonlinear Control Systems[END_REF][START_REF] Wang | Generating series and nonlinear systems: analytic aspects, local realizability and i/o representations[END_REF] some technical facts on generating series (Fliess series) and their input-output functions. These facts will be used in the proof of the main result of the paper. 

The function

F c : C p (R + 0 , R np ) → C p (R + 0 , R) generated by a generating series c is defined as F c (p)(t) = v∈S(I np 0 ) c(v)(w v p)(t, 0),
where w s p is the sub-Markov dependence defined in Definition 1 for CT. In the sequel, by abuse of notation, following the established tradition of [START_REF] Isidori | Nonlinear Control Systems[END_REF][START_REF] Wang | Generating series and nonlinear systems: analytic aspects, local realizability and i/o representations[END_REF] we will denote F c (p) by F c [p]. From [START_REF] Isidori | Nonlinear Control Systems[END_REF] it follows that F c is well defined.

Next we extend the definition of generating series to include matrix and vector valued series: we define a generating series as a function c : S(I np 0 ) → R nr×n l for some integers n l , n r > 0, such that there exist K, R > 0:

∀v ∈ S(I np 0 ) : c(v) F ≤ KR |v| .
Here, ||.|| F denotes the Frobenius norm for matrices. If n l = 1, then c is just a vector valued generating series. We define

F c : C p (R + 0 , R np ) → C p (R + 0 , R nr×n l ) as F c [u](t) = v∈S(I np 0 ) c(v)(w v p)(t, 0),
where w s p is the sub-Markov dependence defined in Definition 1 for CT, and the infinite summation is understood in the usually topology of matrices.

Clearly, if c i,j denotes the (i, j)th component of c, c i,j is a generating series in the classical sense and F ci,j [p](t) equals the (i, j)th entry of the matrix F c [p](t), i = 1, . . . , n r , j = 1, . . . , n l . Although the map F c was originally defined for CT, by an abuse of terminology, we will use them in DT too. If c : S(I np 0 ) → R nr×n l is a generating series according to the definition above, then in DT we define the function generated by c as

F c : (R np ) N → Y = (R ny ) N such that F c (p)(t) = v∈S(I np 0 ) c(v)(w v p)(t -1, 0)
where w s p is the sub-Markov dependence defined in Definition 1 for DT. Similarly to the CT case, by abuse of notation, following the established tradition of [START_REF] Isidori | Nonlinear Control Systems[END_REF][START_REF] Wang | Generating series and nonlinear systems: analytic aspects, local realizability and i/o representations[END_REF] 

we denote F c (p) by F c [p].
It turns out that existence of a realization by a bilinear state-space representation is equivalent to existence of an input-output equation.

Theorem 2 ([30, 24, 31]). A bilinear system of the form (11) is a realization of F : P → Y, if and only if there exists a convergent series c such that F = F c and ∀s ∈ S(

I np 0 ) : c(s) = CN s z o , where N = I nz and N q1•••qn = N qn N qn-1 • • • N q1 for q 1 , . . . , q n ∈ I np 0 , n ≥ 1.

13
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That is, input-output maps of bilinear systems are functions which arise from generating series. It turns out that input-output maps arising from generating series can be realized by a bilinear system if and only if they satisfy an inputoutput equation of a certain form.

Theorem 3 ([24, 25]). Let c be a generating series. There exists a bilinear system which is a realization of F c if and only if there exist an integer k ≥ 1 and polynomials E 0 , E 1 , . . . , E k such that for any p ∈ P, p is smooth in CT case,

k i=0 E i (p, ξp . . . , ξ k-1 p)ξ i (F c [p]). (12) 
Moreover, if F c has a realization by a bilinear system ({N i } np i=0 , C, z o ), then the polynomials E i which satisfy (12) can be chosen in such a way that they depend only on the matrices ({N i } np i=0 , C) and not on z o . Note that by [32, Eq. ( 6) and Lemma 2,4], if p is smooth then so is F c [p], so for smooth p, ξ k F c [p] in ( 12) is well posed. Note that in Theorem 3, the assumption that F arises from a generating series is essential. If this assumption is omitted, then there exist counter-examples of F which satisfy an input-output equation of the form [START_REF] Bamieh | Identification of linear parameter varying models[END_REF], but which cannot be realized by a bilinear system, see [START_REF] Sontag | Bilinear realizability is equivalent to existence of a singular affine differential i/o equation[END_REF].

Unfortunately, we have not found in the literature a constructive procedure for computing a bilinear state-space representation from input-output equations, or vice-versa. Finding an effective procedure for transforming an input-output equation to a bilinear state-space representation remains a topic of future research.

For the proof of Theorem 1 we will need the following technical results. 

(ξF c [p])(t) = q∈I np 0 p q (t)F q•c [p](t), (13) 
for all p ∈ P in DT, and for all smooth p ∈ P in CT.

Recall that for CT, (ξF c (p))(t) = d dt F c (p)(t), and for DT, (ξF c (p))(t) = F c (p)(t + 1).

Proof of Lemma 3. For CT, the statement of the lemma follows from [26, Eq. ( 13)]. For DT, it can be seen by a simple calculation. Indeed, (ξF c [p])(t) = F c [p](t + 1) and by definition F c [p](t + 1) = s∈S(I np 0 ),|s|=t+1 c(s)(w s p)(t, 0), since in DT, (w s p)(t-1, 0) = 0 of |s| = t for all s ∈ S(I np 0 ). Since (w s p)(t, 0) = 14 Electronic copy available at: https://ssrn.com/abstract=4124078

p q (t)(w s p)(t -1, 0) if s = s q, q ∈ I np 0 , s, s ∈ S(I np 0 ), |s| = t + 1, |s | = t, it follows that F c [p](t + 1) = s∈S(I np 0 ),|s|=t+1 c(v)(w s p)(t, 0) = = q∈I np 0 p q (t) s ∈S(I np 0 ),|s |=t c(s q) =(q•c)(s ) (w s p)(t -1, 0) =Fq•c[p](t)
.

By repeated application of ( 13), it follows that for any k and v ∈ S(I np 0 ), 0 < |v| ≤ k, there exists a polynomial α k,v in variables T k = {T i,j } j=1,...,np,i=1,...,k such that for any generating series c,

ξ k F c [p](t) = v∈S(I np 0 ),0<|v|≤k α k,v (p(t), . . . , ξ k-1 p(t))F v•c [p](t). ( 14 
)
Note that the polynomials α k,v are the same for any generating series c. However they depend on whether DT or CT is chosen. For example, for n p = 1, α 

Proof of Lemma 2 and Theorem 1

We will use Theorem 2 and Theorem 3 from the previous section to prove the main result of the paper. To this end, we have to introduce a number of definitions and prove some technical results. 

N i = A i 0 C i 0 , i ∈ I np 0 , C = 0 0 . . . 0 1 T .
Then the bilinear system

({N i } np i=0 , C, z o,0
) is a realization of F c Y , and the bilinear system

({N i }, C, z r,i ) is a realization of F c Y r,i
for all r ∈ I np 0 and j ∈ I nu 1 .

Proof of Lemma 5. Notice that

Cz o = Cz r,j = 0, CN sq = C q A s 0 , for all s ∈ S(I np 0 ) * , q ∈ I np 0 . c Y ( ) = Cz o = 0, c Yr,j ( ) = Cz r,j = 0.
Moreover, for any s ∈ S(I np 0 ) * , using [START_REF] Scherer | Mixed H 2 /H ∞ control for time-varying and linear parametrically-varying systems[END_REF],

c Y (sq) = η q,Y (s) = C q A s x o = CN sq z o , and c Y r (sq) = θ q,r,Y (s)e j = C q A s B r . Since c Y r,j (sq) is the jth column of c Y r (sq),
c Y r,j (sq) = C q A s B r,j = CN sq z r,j . The statement of the lemma follows now from Theorem 2. Lemma 6. Assume that the bilinear system ({N i } np i=0 , C, z o ) is a realization of Y c Y and assume that the bilinear system ({F r,j i } np i=0 , H r,j , z r,j o ) a realization of Y c Y r,j . Define the integer n x ≥ 1 and the matrices

A i ∈ R nx×nx , B i ∈ R nx×nu , C i ∈ R 1×nx , i ∈ I np 0 , and vector x o ∈ R nx such that A i = diag(N i , F 0 i , . . . , F np i ), C i = C, H 0 , . . . , H np T A i , B 1 . . . B np = diag(z o,1 , . . . , z o,np ), x o = z T o 0 • • • 0 T , z o,r = diag(z r,1 o , . . . , z r,nu o ), F r i = diag(F r,1 i , . . . , F r,nu i ), H r = H r,1 . . . H r,nu .
Then the LPV-SSA (P,

{A i , B i , C i , 0} np i=0
) is a realization of Y from x o . Proof of Lemma 6. Notice that for all s ∈ S(I np 0 ), q ∈ I np 0 , C q A s x o = CN sq z o and the jth column of C q A s B r equals H r,j F r,j sq z r,j o . From Theorem 2 and the definition of c Y , c Y r,j it follows that CN sq z o = c Y (sq) = η q,Y (s) and it follows that H r,j F r,j sq z r,j o = c Y r,j (sq) and the latter equals the jth column of θ q,r,Y (s). Hence, (P, {A i , B i , C i , 0} np i=0 ) satisfies [START_REF] Scherer | Mixed H 2 /H ∞ control for time-varying and linear parametrically-varying systems[END_REF] and by Lemma 1 it is a realization of Y.

Next, we show that there is a correspondence between LPV-ARX representations of Y and input-output equations of the form [START_REF] Bamieh | Identification of linear parameter varying models[END_REF] for F c Y and {F c Y r,j } j=1,...,nu,r∈I np 0 . Lemma 7. Let p ∈ P, and in CT, assume in addition that p is smooth. Then,

(g Y p)(t) = (ξυ)(t), υ(t) = F c Y [p](t), (h Y p)(τ, t) = r∈I np 0 p r (τ )ξυ τ,r (t), υ τ,r (t) = F c Y r [σ τs (p)](t -τ s ), r ∈ I np 0 .
where τ s = τ in CT and τ s = τ + 1 in DT, and σ τs (p)(h) = p(h + τ s ) for all h ∈ T, and in DT we assume that t > τ .

That is, the functions (g Y p)(t), (h Y p)(τ, t) can be expressed via derivatives (in CT) or time shifts (in DT) of F c Y and {F c Y r,j } j=1,...,nu,r∈I np 0 .

Proof of Lemma 7. Notice that q • c Y equals η q,Y and q • c Y r,j equals the jth column of θ q,r,Y for all q ∈ I np 0 . From the definition of the functions (g Y p)(t), (h Y p)(τ, t) it follows that for all p ∈ P, τ, t ∈ T, τ ≤ t, j = 1, . . . , n u ,

(g Y p)(t) = q∈I np 0 p q (t)F q•c Y [p](t), (h Y p) j (τ, t) = q,r∈I np 0 p r (τ )p q (t)F q•c Y r [σ τ (p)])(t -τ )) in CT, q,r∈I np 0 p r (τ )p q (t)F q•c Y r [σ τ +1 (p)])(t -τ ) in DT, if t > τ ,
where (h Y p) j (τ, t) is the jth column of (h Y p)(t, τ ). Combining this with (13), we get the statement of the lemma. 

(ξ k y)(t) = ξ k (g Y p)(t) + ν k (p, u, t)+ + t 0 d k dt k (h Y p)(δ, t)u(δ)dδ in CT t-1 δ=0 (h Y p)(δ, t + k)u(δ) in DT, ν k (p, u, t) =        k-1 j=0 d k-j-1 dt k-j-1 (( d j dt j (h Y p)(δ, t))| δ=t u(t)) in CT t+k-1 δ=t (h Y p)(δ, t + k)u(δ) in DT. (15) 
In CT we used the equality d dt 

p q (δ) d l+1 dt l+1 F q•c Y r,j [σ δ (p)](t -δ) | δ=t , l = 1, . . . , k, and 
np q=0 p q (δ)F q•c Y r,j
[σ δ+1 (p)](t + l), l = 1, . . . , k, in CT and DT respectively, and by ( 14), both expressions are polynomials in p(t), ξp(t), . . . , ξ k p(t), where ξ = d dt in CT and ξ is the forward shift operator in DT. Hence, we can state the following simple result. Lemma 8. For all i ∈ N there exist polynomials {R i,l,j } l=0,...,i-1,j=1,...,nu in (i + 1) variables such that for any p ∈ P, u ∈ U, p, u smooth in CT, i-1 l=0 nu j=1 R i,l,j (p(t), . . . , ξ i p(t))ξ l u j (t) = ν i (p, u, t).

Moreover, for each i ∈ N, l = 0, . . . , i-1, there exist polynomials

{β i,l,v,r } v∈S(I np 0 ),|v|≤l,r∈I np 0 which do not depend on {c Y r,j } r∈I np 0 ,j∈I nu 1 , such that for all p ∈ R i•np , R i,l,j (p) = v∈S(I np 0 ),|v|≤i,r∈I np 0 c Y r,j (v)β l,i,v,r (p). ( 16 
)
The polynomials can easily be computed {β i,v,r } v∈S(I np 0 ),|v|≤i,r∈I np 0

, even without knowing Y, by using ( 14) and the fact that 

F v•c Y r,j [σ t (p)](0) = c Y r,j ( 
i = 0, . . . , k. Let us apply ξ to both sides of [START_REF] Sontag | Bilinear realizability is equivalent to existence of a singular affine differential i/o equation[END_REF]. It then follows that 

By applying ξ to both sides of (25), and multiplying both sides by E 0 (p, ξp, . . . , ξ k-1 p), and using [START_REF] Belikov | Comparison of {LPV} and nonlinear system theory: A realization problem[END_REF] follows that Electronic copy available at: https://ssrn.com/abstract=4124078

for unique polynomial {A 1,i } k i=0 such that for all p, p smooth in CT, 

for all i = 0, . . . , k -1. Hence, [START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for open-and closed-loop data[END_REF] indeed holds. According to Lemma 9, then there exists an LPV-ARX representation of Y.

Conclusions

In this paper we have studied the relationship between input-output equations and LPV-SSA representations. More precisely, we have shown that an input-output function can be realized by an LPV-SSA if and only if it has a so called LPV-ARX representation, i.e., it satisfies certain input-output equations. This relationship is expected to be useful for system identification, as in principle it allows us to replace identification of LPV-SSA by LPV-ARX representations. The latter is in general simpler to achieve. In order to pursue this path, we will need algorithms for transforming an LPV-SSA representation to an LPV-ARX representation, and vice versa. Finding such algorithms will be a topic of future research. As it was mentioned before, finding such algorithms even for the special case of bilinear systems remains an open topic.

  Let x o ∈ R nx be an initial state of Σ. Then the input-to-output function of Σ induced by x o is the function Y Σ,xo : U × P → Y, such that for any (u, p, y) ∈ U × P × Y, y = Y Σ,xo (u, p)

Definition 4 ( 8 ) 1 .
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 15 Main result: LPV-ARX and LPV-SSA). Consider an input-output function Y which admits an IRR. Then Y has an LPV-SSA realization if and only if there exists an LPV-ARX representation of Y. Assume that Y admits an IRR and that (3) (in CT) or (4) (in DT) is a LPV-ARX representation of Y. Then the proof of Theorem 1 implies that the LPV-SSA Σ = (P, {A i , B i , C i } 1 i=0 ), where

A

  generating series over I np 0 is a function c : S(I np 0 ) → R such that there exist K, R > 0 which satisfies ∀s ∈ S(I np 0 ) : |c(s)| ≤ KR |s| .

Notation 2 (

 2 Shift of a generating series). If c : S(I np 0 ) → R n l ×nr is a generating series, then for every v ∈ S(I np 0 ), we define the shift of c by v as v • c : S(I np 0 ) → R n l ×nr by v • c(w) = c(wv), w ∈ S(I np 0 ). Lemma 3 (Derivative of functions generated by generating series). Let c be a generating series. Then

Definition 5 (

 5 Generating series c Y and c Y r,i , c Y r ). Assume that Y has an IRR and define the convergent series c Y r , r ∈ I np 0 as follows:c Y ( ) = 0, c Y r ( ) = 0, and c Y (vq) = η q,Y (v), c Y r (vq) = θ q,r,Y (v).Finally let c Y r,i be the generating series formed by the ith column of c Y r , for i = 1, . . . , n u . It turns out that every LPV-SSA yields bilinear systems realizing F c Y , F c Y r,i and vice versa.

Lemma 4 .Lemma 5 .

 45 There exists an LPV-SSA representation which realizes Y, if and only if input-output maps F c Y and {F c Y r,j } r∈I np 0 ,j∈I nu 1 can be realized by bilinear systems. Lemma 4 follows from the following two lemmas. Assume that the LPV-SSA of the form (1) is a realization of Y. Define z o,0 = (x T o , 0 T ) T and for all r ∈ I np 0 and j ∈ I nu 1 . z r,j = (B T r,i , 0 T ) T , where B r,i is the ith column of B r and let

  v). This implies that we can replace ξ k y by ξ k+1 F c Y [p] and ξ k+1 F c Y r,j[p] in inputoutput equations. More precisely, the following technical lemma holds. and with p being replaced by pn,r , it follows that[START_REF] Petreczky | Affine LPV systems: realization theory, inputoutput equations and relationship with linear switched systems[END_REF] holds for p and ν = ξ k F v•c Y r [p] for all t > 0. Finally, as p and F v•c Y r [p](t) are smooth in p, by letting t go to 0, it follows that (21) holds for all ν= ξ k F v•c Y r [p],all smooth p and all t ≥ 0.Note that (17) is a special case of the input-output equation[START_REF] Bamieh | Identification of linear parameter varying models[END_REF] described in Theorem 3. This then allows us to use Theorem 3 to relate realizability of{F c Y [p], F c Y r,i | r ∈ I np 0 , i ∈ I nu 1 }by a bilinear state-space representation with existence of an LPV-ARX representation of Y. Exploiting this relationship is the basic idea of the proof of Theorem 1 presented below. Proof of Theorem 1. LPV-ARX =⇒ LPV-SSA Assume Y has an LPV-ARX representation. From Lemma 9 and Lemma 10 it then follows that c ∈ {c Y , c Y r,i | r ∈ I np 0 , i ∈ I nu 1 } satisfies (12) with E 0 = 0 and E k = A 1,k-1 , k = 0, . . . , n. Hence, by Theorem 3, F c has a realization by a bilinear system. By Lemma 4, this implies that Y has a realization by an LPV-SSA.LPV-SSA =⇒ LPV-ARX Conversely, assume that Y has an LPV-SSA realization. From Lemma 5 it then implies that there exist matrices{N i } np i=0 , C such that the bilinear system ({N i } np i=0 , C, z o,0 ) is a realization of F c Y , and the bilinear system ({N i } np i=0 , C, z r,i ) is a realization of F c Y r,ifor all r ∈ I np 0 and j ∈ I nu 1 , for suitable initial states z o,0 , z r,i . From the second statement of Theorem 3, it then follows that there exists polynomials E 0 , . . . , E k of kn p variables, such that E k = 0 and k i=0 E i (p, ξp, . . . , ξ k-1 p)ξ i y = 0 (25) for all (in CT case, smooth) p ∈ P and y ∈ Y such that y = F c Y [p] or y = F c Y r,j [, j = 1, . . . , n u . For the DT case define n = k and let A 1,i (p, ξp, . . . , ξ n p) = E i (ξp, . . . , ξ n p),

n+1 i=1 A 1

 1 ,i-1 (p, ξp, . . . , ξ n p)ξ i y = 0 for anyy = F c Y [p] or y = F c Y r,j[p], j = 1, . . . , n u . Hence, (17) indeed holds.For the CT case, we distinguish two cases: E 0 = 0 and E 0 = 0. If E 0 = 0, then from Corollary 7 it follows that[START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for open-and closed-loop data[END_REF] holds with n = k -1, andA 1,i = E i+1 , i = 0, . . . , n. If E 0 = 0, then (25) implies E 0 (p, ξp, . . . , ξ k-1 p)y = -k i=1E i (p, ξp, . . . , ξ k-1 p)ξ i y.

A 1

 1 ,k (p, ξp, . . . , ξ k p)ξ i+1 y = 0 22

A 1 ,

 1 k (p, . . . , ξ k p) = E 0 (p, ξp, . . . , ξ k-1 p)E k-1 (p, ξp, . . . , ξ k-1 p), A 1,i (p, . . . , ξ k p) = E 0 (p, ξp, . . . , ξ k-1 p)× × -ξE 0 (p, . . . , ξ k p)E i+1 (p, ξp, . . . , ξ k-1 p) + ξ(E i+1 (p, ξp, . . . ξ k p))+ E i (p, . . . , ξ k p) ,

  3,11 = 0 and α 2,11 (p(t), ξp(t)) = p 1 (t + 1)p 1 (t) in DT and α 3,11 (p(t), ξp(t), ξ 2 p(t)) = 3p 1 (t) ṗ1 (t), α 2,11 (p(t), ξp(t)) = (p 1 (t)) 2 in CT.

  are smooth functions. From [Eq. (6) andLemma 2,[START_REF] Packard | Gain scheduling via linear fractional transformations[END_REF][32] it follows that F c Y [p](t) and F c Y r [σ τ p)](t -τ ) are smooth in t, for all i, j ∈ I np 0 , if p is smooth. From Lemma 7 it then follows that g Y p, (h Y p)(τ, .) are smooth, if p is smooth.Next, note that for any p ∈ P and u ∈ U, y = Y(u, p), such that p and u are smooth if CT is considered,

Now we are ready to present the proof of Lemma 2.

Proof of Lemma 2. Since Y admits a IRR, it is enough to show that if p and u are smooth, then g Y p, (h Y p)(τ, .) : [τ, +∞)

t → (h Y p)(τ, t)

  Note that by Lemma 7 the entries of ν k (u, p, t) are sums of products of ξ l1 u(δ), l 1 = 1, . . . , k with expressions of the form

	continuously differentiable function h. np	t 0	d dt	h(τ, t)dt for any
	q=0			

t 0 h(τ, t)dτ = h(t, t) +

Electronic copy available at: https://ssrn.com/abstract=4124078

 Lemma 9.Assume that Y has an IRR. Denote by h Y p)(τ, .) the function {t ∈ T | τ ≤ t} t → h Y p)(τ, t).

(I) If Y has an LPV-ARX representation [START_REF] Lu | Switching LPV control designs using multiple parameterdependent Lyapunov functions[END_REF], then for all p ∈ P, with p being smooth in the CT case, for all υ ∈ {g Y p)} ∪ {h Y p)(τ, .) | τ ∈ T}, n i=0 A 1,i (p, ξp, . . . , ξ k p)ξ i υ = 0.

(

(II) Conversely, assume there exist polynomials {A 1,i } n i=0 , such that for all for all p ∈ P, with p being smooth in the CT case, and for all υ ∈ {g Y p)} ∪ {h Y p)(τ, .) | τ ∈ T}, [START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for open-and closed-loop data[END_REF] holds. Define the polynomials {B 1,j } n-1 j=0 as

where the polynomials {R i,l,j } l=0,...,i-1,j=1,...,nu are as in Lemma 8. Then

Note that Part (II) of Lemma 9 is a rather straightforward consequence of (15), while the proof of Part (I) is more involved.

Proof of Lemma 9. Part (I) Assume that ( 7) is an LPV-ARX representation of Y. Set Q i = A 1,i , i = 0, . . . , n. If we take u = 0, it then follows that ξ i Y(u, p)(t) = ξ i (g Y p)(t), and hence

i.e. [START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for open-and closed-loop data[END_REF] holds for υ = (g Y p) If we evaluate [START_REF] Wu | Gain-scheduling control of LFT systems using parameterdependent Lyapunov functions[END_REF] for y = Y(u, p) at t ∈ T such that ξ i u(t) = 0, i = 0, 1, . . . , n -1 and we use [START_REF] Vizer | Linear fractional LPV model identification from local experiments: an H ∞ -based optimization technique[END_REF] and [START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for open-and closed-loop data[END_REF] for υ = g Y p proven above, then we get

where

For DT case, by choosing an u ∈ U such that u(s) = e j , u(δ) = 0, δ = s for s = 0, . . . , t -1, j = 1, . . . , m, we get that implies that [START_REF] Petreczky | Affine LPV systems: realization theory, input-output equations and relationship with linear switched systems[END_REF]. For the CT case, [28, Chapter 11, §11, Lemma 9.4] implies that that for any open interval I = [0, t ) ⊆ [0, t), t < t, and any n ∈ N, we can choose a smooth function φ n such that φ n is zero outside I (hence d j dt j φ n (t) = 0 for all j ∈ N), φ n converges to χ I in L 1 ([0, t]), where χ I denotes the indicator function of I. By taking u n = φ n e j , [START_REF] Sznaier | An LMI approach to the identification and (in)validation of LPV systems[END_REF] Electronic copy available at: https://ssrn.com/abstract=4124078 and using the first equation of ( 20), I ψ(δ)e j dδ = lim n→∞ t 0 ψ(δ)u n (δ)dδ = 0, from which by [28, Chapter 11, §6,Collorary 6.4] and continuity of ψ it follows that ψ(δ) = 0 for all δ ∈ [0, t], i.e. υ = (h Y p)(τ, .) satisfies [START_REF] Petreczky | Affine LPV systems: realization theory, input-output equations and relationship with linear switched systems[END_REF].

If part Assume that ( 17) is satisfied. Recall [START_REF] Vizer | Linear fractional LPV model identification from local experiments: an H ∞ -based optimization technique[END_REF]. From Lemma 8 and (15) it follows that that for y = Y(u, p),

. Then from the discussion above and ( 17), it follows that (8) holds, i.e. ({A i } i∈I ny

Proof of Lemma 10. Since by Lemma 7, if υ = F c Y [p], then ξυ = (g Y p)(t), and as (g Y p) satisfies [START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for open-and closed-loop data[END_REF], it follows that υ = F c Y [p] satisfies [START_REF] Petreczky | Affine LPV systems: realization theory, inputoutput equations and relationship with linear switched systems[END_REF]. If [START_REF] Van Wingerden | Subspace identification of bilinear and LPV systems for open-and closed-loop data[END_REF] holds, it follows that for all p ∈ P, τ ≥ 0, ν τ,p :

for all τ and p, such that p is smooth in case of CT. Assume ( 22) is true for all p ∈ P (such that p is smooth in case of CT) and t ≥ τ . We argue that then 
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does not depend on p(τ ). Hence, by replacing p by pr such that pr coincides with p on (0, t] ∩ T and p0 (0) = 0, pr (0) = e r , r = 1, . . . , n p , it follows that

, ν 0, pr (t) = ξν(t -1), and hence ν satisfies

for all t ≥ 1. Let p = δ 1 (p), then ξ r p(t -1) = p(t + r -1) = p(t + r) = ξ r p(t). It then follows that [START_REF] Sontag | Polynomial response maps[END_REF] can be rewritten as

where υ = F c Y r [p]. Since p and t are arbitrary, and for any scheduling can be represented as δ 1 (p) = p for a suitable p, it follows that ( 21) holds for all ν = ξF c Y r [p](t) for all p and t. In CT, for any t > 0 and any r = 0, . . . , n p , we can choose 0 < < t, and a sequence of smooth functions pn,r such that lim n→∞ t 0 p(s) -pn,i (s) ds = 0, and pn,r (0) = e r , where e 0 = 0, and pn,r coincides with p on [ , +∞). Since ν 0, pn,r = ξF c Y r [p n,r ] and by assumption [START_REF] Petreczky | Affine LPV systems: realization theory, input-output equations and relationship with linear switched systems[END_REF] holds with p being replaced by pn,r , it follows that 

for all k ≥ 0. Moreover, clearly A 1,i (p n,r (t), . . . , ξ k pn,r (t)) = A 1,i ((p(t), ξp(t), . . . , ξ k p(t))

as pn,r coincides with p around t. By taking limits of (21) when applied to ν := ν n,r = F c Y r [p n,r ](t)