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Abstract

We hereby develop a theoretical framework for analyzing Fluid Structure In-
teraction (FSI) waves propagation occurring in liquid filled pipes to manage
a large family set of boundary conditions (e.g. junctions coupling effects).
A self-adjoint operator theory framework leads to the analytical derivation
of a transcendental equations for operator’s spectrum. The latter provides
the system’s natural resonant frequencies as well as permit to find the dis-
crete mode orthogonal basis decomposition. This theoretical framework also
permits to demonstrate that the spectrum is uniquely composed into sim-
ple eigenvalues enabling explicit time-domain solutions from inverse-Laplace
transform. The analysis is directly conducted in the time-domain but the
obtained spectrum also applies to Fourier transformed frequency analysis.
The obtained analytical solutions are successfully confronted with numerical
simulation obtained using the Method of characteristic (MOC) for the same
four equations (FSI) model on the very same configurations. The spectrum
sensitivity matrix is also explicitly evaluated.

Keywords: Fluid Structure Interaction (FSI), Liquid filled pipes, Junction
coupling, Operator’s spectrum, Time domain solution, Method of
characteristics (MOC)

1. Introduction

Wave propagation in liquid-filled pipe systems have been investigated for
a long time [1, 2, 3, 4, 5, 6, 7] to cite only a few, possibly seminal, con-
tributers. The phenomenology is now well understood as fully discussed in
exhaustive and sagacious review papers [8, 9, 10]. Fluid Structure Interaction
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(FSI) arising between pressure/stress propagation have been recognized as
one major modeling pathway, leading to four coupled hyperbolic equations
in the case of axi-symmetric compressive planar waves modes propagation
[5, 11, 12, 7, 13]. The long wavelength approximation is a widely estab-
lished and validated framework [3, 14, 15, 7]. It permits to neglect secondary
FSI effects associated with rotatory vibration modes or radial inertia (e.g.
bending, twisting, etc..), the analysis of which needs a more complex set of
equations. Considering an averaged formulation both in solid and fluid for
mass and momentum conservation equations, [7] derive a set of four coupled
hyperbolic equations highlighting the overriding role of the Poisson’s coupling
effects, namely the axial transmission of the radial stresses and strains via the
Poisson’s modulus, on the whole dynamic. In [16] two other major coupling
mechanisms were spelled out: (i) the junction occurring at edge conditions
and, (ii) the friction coupling resulting from viscous effects in boundary lay-
ers and/or pipe’s supports. Whereas (i) is precisely analyzed in this study,
on the contrary, (ii) is not considered. Pipe’s support coupling effects has
nevertheless been thoroughly analyzed in [6, 17, 18].

Recent and active motivations to analyze the FSI vibrations in pipes lies
from the use of water-hammer waves in defect/leak detection and localiza-
tion [19, 20, 21, 22, 23]. Since in common practice “localized” pipe anomaly,
such as a leak and a discrete blockage leads to a modification of the Fourier
peaks of the signal, a spectral-based diagnostic signal processing has been
sough for [19, 21, 22, 23]. In this context, the ability to obtain an explicit
derivation of the traveling waves system spectral properties can pave the way
to elaborate spectral diagnostic signal processing strategies among which the
spectral sensitivity matrix is a central one [24, 25]. As spectral sensitivity
matrix is a time-consuming and noise-sensitive quantity, a purely numerical
estimate of this quantity, e.g. based upon finite-difference estimate, is some-
times not precise enough or too demanding (in case of high-dimensionality
of parameter space). This is why it is either interesting to lower the pa-
rameter space dimensions and/or to find analytical estimate of this spectral
sensitivity matrix, as performed here. Many contributions relying on the
Laplace/frequency-domain numerical resolution of the FSI four equations
using transfer matrix method (TMM) can be found [9, 26, 27, 28, 29, 30, 20].
Nevertheless, to our knowledge, no fully explicit time-domain solutions nor
explicit spectrum have been previously obtained except in [31], which has
ignored Poisson’s coupling and therefore (FSI) interactions. In the following,
we thereby focus on developing a new analytical framework using operator’s
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theory, for pressure/stress wave operator. We derive a straightforward real
transcendental equation for the spectrum and successfully spelled out an
orthogonal projection basis for the uncoupled diagonalized wave operator.
The separation of variables technique is used to handle the derivation of a
pressure-stress solution in time-domain (a Fourier transform may thereafter
easily be managed, if required, to find the corresponding frequency domain
solution). The paper is organized as follow. Section 2.1 describes the di-
mensionless constitutive (FSI) 4-equations model, boundary conditions sets,
parametric description, proper wave dimensional and dimensionless velocity
propagation, and the resulting diagonalized 2-waves equations reminiscent of
[28]’s solution strategy. Section 3 provides the theoretical framework defin-
ing the self-adjoint operator for the separable waves solutions decomposition.
Section 4 illustrates the comparison between the obtained analytical solutions
and previously published numerical or theoretical results for specific sets of
boundary conditions. Section 5 then provides the spectrum sensitivity matrix
for each boundary condition set.

2. Governing equations

2.1. Dimensionless constitutive model

Let us consider a cylindrical tube having inner radius R0, wall thickness e,
and length L, which defines the following aspect and geometrical parameters

α =
e

R0

, and, ε =
R0

L
. (1)

The tube is supposed to be entirely filled with a fluid having density ρf , bulk
modulus K, perturbed pressure P ∗ and velocity W ∗. Considering low-Mach
waves, the fluid density is considered as constant and equal to the reference
density ρf as in [32, 33]. The elastic solid response is associated with Young’s
modulus, E, Poisson’s modulus νs, perturbed axial stress, σ∗, perturbed axial
strain ζ∗, and density ρs supposed constant. [7] derived the classical pulse
wave speed within the fluid, cp, distinct from the elastic pulse wave speed
within the solid, cs, the ratio of which is denoted Cs

c2
p =

K
ρf

1 + 2K
αE

(
2(1−ν2s )

2+α
+ α(1 + νs)

) , c2
s =

E

ρs
, Cs =

cs
cp
. (2)
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The coupled system is furthermore described through the dimensionless
density ratio

D =
ρf
ρs
, (3)

so that the dimensionless FSI four-equations derived in [7] achieves as follows

∂τW = −∂ZP, (4)

∂τP + ∂ZW = 2ανs∂Z ζ̇ , (5)

∂τ ζ̇ =
D
α
∂Zσ, (6)

∂τσ −
αC2

s

D
∂Z ζ̇ =

2νs
α(2 + α)

∂τP. (7)

where W , P , ζ̇, σ are dimensionless quantities referring to the fluid longitu-
dinal velocity, the fluid pressure, the longitudinal solid deformation velocity
and the longitudinal stress, respectively. The physical time t is scaled on the
advective fluid pulse one, i.e. τ ≡ cp

L
t, whilst the longitudinal coordinate z is

scaled on the tube’s length, i.e. z ≡ LZ. More details on the hereby dimen-
sionless derivation is provided in Appendix B. (4)-(7) represents a set of two
coupled hyperbolic equations. While the first part (4)-(5) is associated with
the acoustic waves propagation in the fluid, the second part (6)-(7) describes
the propagation of axial compressible waves in the solid tube. Poisson’s cou-
pling is highlighted by the presence of the Poisson’s modulus in both source
terms of (5) and (7).
It is noteworthy to point-out that (4)-(7) are the leading order contributions
regarding small parameter ε [34]. [3, 35, 14] in-depth analyzed the secondary
(FSI) interactions occurring in liquid filled pipe systems, revealing their sig-
nificant impact at very high-frequencies only, the cut-off of which fKc, is
known as the Korteweg’s stop band, [36]

fKc =
Cs
ε
f0 , with, f0 =

cp
2πL

. (8)

For fKc > f > f0, the axial dynamics prevails over the radial one and
despite simplifications (4)-(7) is relevant to investigate several configurations
[37, 7, 38, 39]. This frequency cut-off fKc nevertheless stands as a frequency
limitation of the proposed analysis and will be thereafter discussed. Last but
not least, it is known from [31, 40] that viscous shear dissipation occurring
at the fluid and solid interface may have a significant impact on the coupling
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dynamic. Even though of physical interest, this issue is herein discarded but
in-depth analyzed in [41]. Considering the acoustic framework for the fluid
whilst using the linearity of the FSI-governing equations, only the perturbed
component of the physical field are investigated so that the initial conditions
are

Y(Z, 0) = ∂τY(Z, 0) = 0, (9)

with Y(Z, τ) a four column vector,

Y(Z, τ) =
(
P (Z, τ), σ(Z, τ),W (Z, τ), ζ̇(Z, τ)

)T
, (10)

where subscript T holds for the conjugate transpose.

2.2. Vectorial two-waves system of FSI four-equations

The four coupled hyperbolic (4)-(7) are hereby re-organized to bring-up
a d’Alembert operator upon the time-space dependent variable Y(

∂2
τ −C2

Y∂
2
Z

)
Y(Z, τ) = 0, (11)

where,

C2
P =

(
1 2νsD

2νs
α(2+α)

4ν2sD
α(2+α)

+ C2
s

)
, C2

W =

(
1 −2ανs

− 2νsD
α2(2+α)

4ν2sD
α(2+α)

+ C2
s

)
(12)

and

C2
Y =

(
C2

P 0
0 C2

W

)
. (13)

Eigenvalues of the C2
P and C2

W matrices correspond to coupled vibrating
modes wave speeds propagation. Both matrices have identical eigenvalues,
c2
±, the solutions of the polynomial characteristic problem

c4
± −

[
1 + C2

s +
4ν2

sD
α(2 + α)

]
c2
± + C2

s = 0, (14)

then achieves as follows

c2
± =

1 + C2
s + 4ν2sD

α(2+α)
±
√(

1 + C2
s + 4ν2sD

α(2+α)

)2

− 4C2
s

2
. (15)
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(15) stands for the dimensionless version of coupled wave speed modes derived
in [6, 7, 28]. The choice for denoting C2

P and C2
W matrices with a square

as well as its eigenvalues c2
±, now becomes clear since c± describes the wave

speed of each propagating mode, each governed by their specific D’Alembert
operator. Dimensionless wave speed, c−, has a value close to one, whilst c+ is
found close to Cs. In Appendix E a systematic asymptotic analysis provides
the Poisson coupling corrections to these quantities as νs � 1. The mode
c− is thus associated with the fluid pulse mode while, c+ is associated with
the solid elastic one. Furthermore, it is noteworthy to point-out that the
negative mode of (15) is always real in the Korteweg’s frequency range since
for real C2

s parameter(
1− C2

s

)2
> − 4ν2

sD
α(2 + α)

[
4ν2

sD
α(2 + α)

+ 2
(
1 + C2

s

)]
, (16)

is always satisfied. This property nevertheless vanishes as f > fKc, in which
case the radial contributions leads to a dispersive waves, the propagating
velocity of which can be complex [3, 36]. The D’Alembert wave propagation
operator is hereby regarded within the diagonal base of C2

Y as classically
performed in coupled hyperbolic systems [21, 28, 29]. The transition matrices
ΠY of the diagonal base change can easily be deduced from C2

P and C2
W

eigenvectors

ΠY =

(
ΠP 0
0 ΠW

)
,ΠP =

(
2νsD
c2−−1

2νsD
c2+−1

1 1

)
,ΠW =

(
2ανs
c2−−1

2ανs
c2+−1

1 1

)
, (17)

such as the transition relations

C2
Y = Π−1

Y C2
YΠY =

(
C2
P 0
0 C2

W

)
, and, Y = Π−1

Y Y, (18)

where

C2
P = Π−1

P C2
PΠP =

(
c2
− 0
0 c2

+

)
, and, C2

W = Π−1
WC2

WΠW =

(
c2
− 0
0 c2

+

)
. (19)

The dimensionless wave-equations system (11) and its initial conditions (9)
expressed in the eigenvector base finally reads(

∂2
τ − C2

Y∂
2
Z

)
Y = 0, (20)

Y(Z, 0) = ∂τY(Z, 0) = 0. (21)
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The operator (11) diagonalization has indeed simplified the mode propa-
gation now described by two independent D’Alembert propagating waves
but obviously not suppressed their coupling. The coupling is now recast
in the resulting upstream and downstream boundary conditions. Boundary
conditions for Y can be deduced from the mechanical boundary conditions
associated with Y using change-basis relations (19). For the sake of nota-
tion simplification let us introduce four 4 × 4 matrices N , M, Q, R and
S(τ) a eight-dimensional column vector. Boundary conditions can formally
be written as a rectangular 8× 16 linear system

(
N M 0 0
0 0 Q R

)
(8×16)


Y(0, τ)
∂ZY(0, τ)
Y(1, τ)
∂ZY(1, τ)


(16×1)

= S(8×1)(τ). (22)

Specifics set of boundary conditions are later on considered in section 4.
The resolution of this vector waves equation is usually handled by Laplace
transform, combined with usual transfer matrix method [28, 9, 29]. Some
analytical difficulties are sometimes nevertheless encountered when perform-
ing the inverse Laplace transform. Thereafter a new analytical derivation for
solution of (20), having initial conditions (21) and spatial boundary condi-
tions (22), relying on variable separation, spectral analysis and self-adjoint
operator theory is proposed.

3. Analytical framework

3.1. Self-adjoint operator theory

Let us define the operator H, acting on the square-integrable real four
dimensional column vector field Ψ(Z),

∀Ψ(Z) ∈ L4(R)× L4(R), Ψ(Z)→ HΨ(Z) = C2
Y · ∂2

ZΨ(Z), (23)

with the homogeneous associated set of spatial boundary conditions,

(
N M 0 0
0 0 Q R

)
(8×16)


Ψ(0)
∂ZΨ(0)
Ψ(1)
∂ZΨ(1)


(16×1)

= 0. (24)
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Let us set up the general scalar product,

∀Ψ,Ψ
′ ∈ L4(R)× L4(R), 〈Ψ′

,Ψ〉 =
4∑
j=1

ηj

∫ 1

0

Ψ
′

j(Z)Ψj(Z)dZ, (25)

with j = 1, 2, 3, 4 referring to the jth components of vector η ≡ (η1, η2, η3, η4) ∈
R4, a yet unknown real vector which is adapted to each specific problem. In-
voking the definition of H in (23), the search for self-adjoint condition for
operator H, equipped with scalar product (25), performing a double integra-
tion by parts leads to

〈HΨ,Ψ
′〉 = 〈C2

Y · ∂2
ZΨ,Ψ

′〉 = 〈Ψ,C2
Y · ∂2

ZΨ
′〉+

4∑
j=1

ηjc
2
j

([
∂ZΨj(Z)Ψ

′

j(Z)−Ψj(Z)∂ZΨ
′

j(Z)
]1

0

)
, (26)

where c2
j are the jth diagonal terms of C2

Y . Self-adjoint property 〈HΨ,Ψ
′〉 =

〈Ψ,HΨ
′〉, is thus obtained from condition

4∑
j=1

ηjc
2
j

[
∂ZΨj(Z)Ψ

′

j(Z)−Ψj(Z)∂ZΨ
′

j(Z)
]1

0
= 0. (27)

In the following, the scalar-product weight parameter η is adjusted with
given boundary conditions set so as to ensure relation eq(27), and thus self-
adjointness.

3.2. Eigenfunction base and spectrum condition

The self-adjoint operator H spectrum SP , is composed of real discrete
eigenvalues having a related discrete orthogonal basis [42]. This property
obviously remains for frequency up to the Korteweg’s band stop. Denoting
−λ2

k the kth eigenvalue, then being real negative in accordance with the
well known eigenvalues of the Laplacian , Φk its related eigen-function, the
eigenvalue problem reads

HΦk(Z) = −λ2
kΦk(Z), (28)

so that using (23), one gets

∂2
ZΦk(Z) = −λ2

kC−2
Y Φk(Z), (29)
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where we have introduced notation C−2
Y ≡ [C2

Y ]−1 for the inverse of matrix
C2
Y defined in (18). The solution of (29) then achieves as follows(

Φk(Z)
∂ZΦk(Z)

)
= Tk(Z)

(
Φk(0)
∂ZΦk(0)

)
(8×1)

, (30)

with

Tk(Z) =

(
∂ZT(Z) T(Z)
∂2
ZT(Z) ∂ZT(Z)

)
, T(Z) =

(
Ts(Z) 0

0 Ts(Z)

)
, (31)

and

Ts(Z, λk) =
1

λk

c− sin
(
λkZ
c−

)
0

0 c+ sin
(
λkZ
c+

) . (32)

This formulation is a modal time-domain version of the popular transfer
matrix method, (TMM), developed in the frequency domain for coupled hy-
perbolic problems in [9, 21, 22, 26, 27, 28, 29, 30] but for the adaption to the
need for a Laplacian operator of two boundary conditions to be specified.
Combining (30) and (32) in boundary condition set (24) provides the fol-
lowing linear condition to be fulfilled by mode amplitudes [Φk(0), ∂ZΦk(0)](

N M
Q∂ZT(1) + R∂2

ZT(1) QT(1) + R∂ZT(1)

)(
Φk(0)
∂ZΦk(0)

)
= 0. (33)

The trivial zero solution of (33) being irrelevant, the non-trivial solution
necessitates a one-dimensional non-empty kernel of (33)’s matrix, i.e. a zero
eigenvalue of the matrix acting on [Φk(0), ∂ZΦk(0)] vector. This condition is
equivalent to set a zero determinant of (33)’s matrix, i.e.∣∣∣∣ N M

Q∂ZT(1) + R∂2
ZT(1) QT(1) + R∂ZT(1)

∣∣∣∣ = 0. (34)

(34) is met for specific values of λk, providing the spectrum SP of operator
H. It leads to a transcendental equation for λk specific to each boundary
condition set, to be computed numerically, as done in section 4. The spec-
trum provides each resonant frequency of the system, which should lie in
the frequency range given in (8), i.e. λk ∈ [−fKc/f0, fKc/f0] . It remains
to determine the modal-dependent amplitudes of Φk(Z). From (34) one can
realize that the amplitude vector [Φk(0), ∂ZΦk(0)] is defined up to any ar-
bitrary multiplicative constant, as the kernel of (33)’s matrix is non-empty.
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Hence, among the eight amplitude parameters of eight-dimensional vector
[Φk(0), ∂ZΦk(0)], one can be kept to any arbitrary value, which is equivalent
to chose a unitary eigenfunction Φk(Z) such as(

Φk(Z)
∂ZΦk(Z)

)
=

1

‖Φ̃k(Z)‖

(
Φ̃k(Z)

∂ZΦ̃k(Z)

)
, (35)

where Φ̃k(Z) stands as the generator of the solution space associated with
the linear system (33).

3.3. Solution for 2D-vector homogeneous wave equation

The solution of the two-waves equations (20) associated with the initial
boundary conditions (21) are searched under decomposition

Y(Z, τ) = Yh(Z, τ) + Yp(Z, τ), (36)

where subscript h refers to homogeneous solution whilst subscript p refers to
particular one associated with non-homogeneous boundary conditions. The
latter is regarded as a separated variable time-space function. The Z behavior
is furthermore decomposed into the first order polynomial

Yp(Z, τ) = ZY1
p (τ) + Y0

p (τ). (37)

Since the previous expression should ensures the boundary condition system
spelled out in (22), it consequently results(

N M
Q Q + R

)
(8×8)

(
Y0
p (τ)

Y1
p (τ)

)
(8×1)

= S(8×1)(τ). (38)

The resolution of (38) then provides Yp. The homogeneous component, Yh,
is hereby decomposed over the eigenvector base of the self-adjoint operator
H so that

Y =
∑
Sp

ak(τ)Φk(Z) + Yp(Z, τ), (39)

or, using Φ̃k(Z) in (35)

Y(Z, τ) =
∑
Sp

ak(τ)Φ̃k(Z)

‖Φ̃k(Z)‖
+ Yp(Z, τ), (40)
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where ak(τ) is the kth mode time-dependent amplitude. Invoking the initial
rest conditions (21), with definition of Φ̃k(Z) in (35), leads to,

ak(0) = −〈Yp(Z, 0), Φ̃k(Z)〉
‖Φ̃k(Z)‖

, and, ∂τak(0) = −〈∂τYp(Z, 0), Φ̃k(Z)〉
‖Φ̃k(Z)‖

. (41)

The proposed decomposition of Y(Z, τ) in (40) must hereby satisfy the wave
equation system (20). Regarding the definition of H in (23) with the spatial
polynomial decomposition of Yp in (37) it achieves as follows

HYp = 0, (42)

so that (
∂2
τ −H

)∑
SP

ak(τ)Φ̃k(Z)

‖Φ̃k(Z)‖
= −∂2

τYp. (43)

Now projecting over Φ̃k(Z) leads to,

(
∂2
τ + λ2

k

)
ak(τ) = −∂2

τ

〈Yp, Φ̃k(Z)〉
‖Φ̃k(Z)‖

. (44)

This ordinary differential equation, having initial conditions (41), is solved
leading to (Further details provided in Appendix C)

ak(τ) = λk

∫ τ

0

〈Yp, Φ̃k(Z)〉(t)
‖Φ̃k(Z)‖

sin (λk(τ − t)) dt−
〈Yp, Φ̃k(Z)〉
‖Φ̃k(Z)‖

. (45)

Finally, combining the (45) with the Y ’s definition in (40) results in

Y(Z, τ) =
∑
SP

λk

(∫ τ

0

〈Yp, Φ̃k(Z)〉(t)
‖Φ̃k(Z)‖2 sin (λk(τ − t)) dt

)
Φ̃k(Z)

−
∑
SP

〈Yp, Φ̃k(Z)〉
‖Φ̃k(Z)‖2

Φ̃k(Z) + Yp(Z, τ). (46)

In the following, (46) is used to cross-check/validate predictions of two well-
known configurations of liquid filled pipes problem: (i) a constant pressure
tank with a fixed instantaneous closing valve (Cf Fig. 1a), (ii) a constant
pressure tank with a free instantaneous closing valve (Cf Fig. 1b). The re-
lated upstream and downstream boundary conditions are analyzed in depth
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in [32]. It is important to mention that, in the special case of boundary con-
ditions having no pressure/velocity coupling, the previous general framework
associated with four coupled waves equations boils down into two decoupled
two-waves propagation, not only sharing the same spectrum, but also the
same modes and amplitudes. In other words, in the absence of coupling
between pressure and velocity in the boundary conditions, the four-waves
equations set degenerates into a two-waves one. In the next section, we con-
sider this simplified degenerate case for two classes of boundary conditions.

4. Application to specific boundary conditions

4.1. Constant pressure tank with a fixed instantaneous closing valve

(a) First configuration : anchored valve (b) Second configuration : axially free valve

Figure 1: Boundary condition set investigated for the liquid filled pipe problem

Fluid (water) Solid (steel)
ρf = 1000 kg ·m3 ρs = 7900 kg ·m−3

K = 2.1 GPa E = 210 GPa
νf = 9.493 · 10−7 m2s−1 νs = 0.3

R0 = 0.395 m
e = 0.008 m
L = 20 m

Table 1: Physical and geometrical properties for the analysis of the reservoir-pipe-valve
system (anchored and free). The parameter values are extracted from [27].

All comparisons and analysis are based upon the parameter set introduced
in Table 1. The natural fluid-pulse frequency of both configurations is found
equal to f0 ≈ 8Hz, whereas the cutoff frequency is fKc ≈ 2060Hz. The
λk should then lie in the range λk ∈ [−247.6, 247.6] in order to fulfill the
modeling assumptions (Cf. section 2.1).
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4.1.1. Analytical solution

In the first configuration (Cf. Figure 1a), the pipe is supposed perfectly
anchored, both upstream and downstream. Thus, no solid axial movement
occurs at both pipe dead-ends which can be modeled as a Dirichlet-Dirichlet
condition on the axial solid displacement acceleration. Furthermore, the
reservoir does not impede any upstream pressure fluctuation which can be
interpreted as an homogeneous Dirichlet condition for the pressure. Finally,
an instantaneous valve closure downstream is modeled by a Dirac distribu-
tion, δ(τ) (i.e. singular perturbation), acting on the axial fluid acceleration.
The four boundary condition thereby achieves as follows

P (0, τ) = 0 , ∂τW (1, τ) = −δ(τ), ∂τ ζ̇(0, τ) = ∂τ ζ̇(1, τ) = 0, (47)

or otherwise regarding (4)&(6)

P (0, τ) = 0 , ∂ZP (1, τ) = δ(τ), ∂Zσ(0, τ) = ∂Zσ(1, τ) = 0. (48)

The initial Dirichlet conditions upon both fluid and solid acceleration quanti-
ties thus turn into Neumann conditions for the fluid pressure and solid stress
fields. Invoking base-change (17)-(19), whilst introducing

β =
c+

c−

c2
− − 1

c2
+ − 1

, (49)

the matrices introduced in (22) describing boundary conditions in the diag-
onalized basis can be found explicitly

N =

(
1 βc−

c+

0 0

)
, M =

(
0 0
1 1

)
, Q = 0, R = N + M, (50)

and,

S(τ) =

(
c2
− − 1

)
δ(τ)

2νsD
(0, 0, 1, 0)T , (51)

The determination of the scalar-product weight parameter η ≡ (η1, η2),
introduced in (27), is hereby overcame. Injecting boundary conditions (48)
within self-adjointness one (27) for the couple of two 2D unknown column
vectors (

Ψ(Z),Ψ
′
(Z)
)

=

(
(ψ1(Z), ψ2(Z))T ,

(
ψ
′

1(Z), ψ
′

2(Z)
)T)

, (52)

13



yields [
∂ZΨ1(0)Ψ

′

1(0)−Ψ1(0)∂ZΨ
′

1(0)
](

η1 + η2

c3
+

βc3
−

)
= 0, (53)

so that the relation between η1 & η2 can be found

η2 = −η1β

(
c−
c+

)3

. (54)

Scalar product (25) then results in

〈Ψ,Ψ
′〉 = η1

∫ 1

0

[
Ψ1(z)Ψ

′

1(z)− β
(
c−
c+

)3

Ψ2(z)Ψ
′

2(z)

]
dz. (55)

The λk are hence solutions of the formal relation (34). Using C2
P in (19),

boundary condition matrices (50) and Ts(Z) in (32), leads to the explicit
(and simplified) transcendental equation

β sin

(
λk
c−

)
cos

(
λk
c+

)
− sin

(
λk
c+

)
cos

(
λk
c−

)
= 0. (56)

The particular component of P(Z, τ), Pp(Z, τ), follows from the spatial poly-
nomial decomposition (37) and the resolution of the linear system (38), whilst
Φ̃k(Z) determination is found combining transfer matrix formulation (30),
linear boundary condition system (33) and the associated boundary condition
matrices (50)

Φ̃k(Z) =

 cos
(
λk
c−
Z
)

+ tan
(
λk
c−

)
sin
(
λk
c−
Z
)

− c+
βc−

[
cos
(
λk
c+
Z
)

+ tan
(
λk
c+

)
sin
(
λk
c+
Z
)] , (57)

Pp(Z, τ) =
δ(τ)Z

det (ΠP)

(
1
−1

)
. (58)

Further details on the derivation are provided in Appendix D. The combina-
tion of Φ̃k(Z) and Pp(Z, τ) vectors in (57)-(58) fulfill the expression P(Z, τ)
in (46)

P(Z, τ)−Pp(Z, τ) =
∑
SP

〈Z
(

1
−1

)
, Φ̃k(Z)〉

det (ΠP) ‖Φ̃k(Z)‖2
Φ̃k(Z) [λk sin (λkτ)− δ(τ)] , (59)
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with,

‖Φ̃k(Z)‖2 =
c+β cos2

(
λk
c+

)
− c− cos2

(
λk
c−

)
2c+β cos2

(
λk
c+

)
cos2

(
λk
c−

) , (60)

〈Z
(

1
−1

)
, Φ̃k(Z)〉 =

c2
−

(
cos
(
λk
c+

)
− cos

(
λk
c−

))
λ2
k cos

(
λk
c−

)
cos
(
λk
c+

) . (61)

4.1.2. νs parametric analysis

Since the Poisson coupling, relies on the Poisson modulus, it is relevant
to investigate the νs dependency of the previous analytical expressions. By
performing an asymptotic analysis, without considering FSI effects, [31, 43]
found the spectrum associated with the pressure waves in the fluid. It is
interesting to point out that the solution (59) converges toward the [31]’s
leading-order one, as νs → 0. The [31]’s leading-order solution is

λk = π

(
1 +

k

2

)
, ∀k ∈ N, (62)

P (Z, τ) = 2
∞∑
k=0

(−1)k
sin (λkZ) sin (λkτ)

λk
. (63)

A more detailed derivation of this result is provided in Appendix E. The
νs dependence of both spectrum and pressure waves compared with no-FSI
solutions (i.e νs = 0 case) is further illustrated in Figure 2. Figure 2b shows
that the spectrum of the first configuration can be interpreted as the union
between the fluid vibration modes (continuous blue lines) and the pure elastic
ones (red squared lines). The solid and fluid contributions to the spectrum
are easily identified from the analysis of the no-(FSI) configuration, as theo-
retically detailed in Appendix E (Cf. (E.10)). In Figure 2a the (59) solution
for νs = 0 is confronted with the [31]’s leading order one and, for comparison
with the νs = 0.3 case, all other parameters being equals. One can observed
that high-frequency pressure oscillations progressively growing in time are
revealed by the FSI coupling. These high-frequency oscillations are never-
theless expected to be damped by the viscous fluid friction or some structural
energetic losses. In the νs → 0 limit, [31]’s pointed-out that fluid viscous fric-
tion exponentially damps each resonant mode. This feature remains when

15



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time t in (s) 1e−1

−10

−5

0

5

10

15

20

Pr
es

su
re

 P
 in

 (B
ar

)

(FSI) pressure predictions at (Z= 0.5)
Mei et al. (2016)
Theory (νs = 0)
Theory

0.065 0.089
0

2

(a) Pressure response at Z = 0.5

0.0 0.1 0.2 0.3 0.4 0.5
νs

0

10

20

30

40

50

60

70

80

λ k

Spectrum deviation from no-(FSI) to (FSI) 
Solid contribution
Fluid contribution

(b) Spectrum (28 first eigenvalues) versus the Pois-
son modulus νs in the Korteweg’s frequency range.

Figure 2: Impact of the (FSI) on the expected: (a) pressure response and, (b) spectrum
for the first case configuration (Cf. Fig. 1a). In (a), the [31]’s leading order solution is
provided, in black dashed lines, as to point out the convergence of the models. In (b),
as νs vary, some eigenvalues come close one-another, but a careful inspection shows no
cross-over between the depicted eigenvalues.

considering (FSI) interactions, as analyzed in [41]. When dealing with time-
scale of the order of the advective pulse wave speed one, i.e. O (L/cp), the
energetic losses are shown [6, 31] to have a negligible impact on the overall
coupled dynamic.

4.2. Constant pressure tank with free instantaneous closing valve

A second configuration, depicted in Figure 1b, is hereby analyzed whereby
the downstream valve is free to move axially. Hence, upstream, the same
conditions as in (48) are applied, with homogeneous Neumann condition for
the axial stress and homogeneous Dirichlet condition for the pressure field
set as

P (0, τ) = 0 , and, ∂Zσ(0, τ) = 0. (64)

Downstream, the boundary condition strongly differs from the previous con-
figuration from valve longitudinal motion. Since α(2+α) is equal to the ratio
of solid surface (i.e. πeR0 (2 + α)) to the fluid one (i.e. πR2

0), the static equi-
librium of forces at valve location, in the absence of valve’s inertia, reduces
to

α(2 + α)σ(1, τ) = P (1, τ). (65)
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The axial solid and fluid acceleration matching at the valve further imposes

∂τW (1, τ)− α∂τ ζ̇(1, τ) = −δ(τ), (66)

or otherwise regarding relations (4) & (6)

∂ZP (1, τ) +D∂Zσ(1, τ) = δ(τ). (67)

The α constant in (66) arises from dimensionless arguments and can be ob-
tained regarding the Appendix B. As the valve is now free to move, the
downstream boundary condition slightly differs form the one provided in
(47). Indeed, the acceleration perturbation is now applied to the relative
acceleration of the fluid with respect to the tube motion, [32]. Considering
change-basis (17)-(18) and introducing parameters

κ± = D +
2νsD
c2
± − 1

, and,
βc−κ−
c+κ+

=
1− 2νsD

α(2+α)(c2+−1)

1− 2νsD
α(2+α)(c2−−1)

, (68)

yields

N =

(
1 βc−

c+

0 0

)
, M =

(
0 0
1 1

)
, Q =

(
0 0

1 βc−κ−
c+κ+

)
, R =

(
κ− κ+

0 0

)
,

(69)
with the forcing term

S(τ) = δ(τ) (0, 0, 1, 0)T (70)

The non-trivial parametric relation (68) is established in Appendix F. The
same footsteps are hereby applied to overcome the resolution of P(Z, τ). The
self-adjoint condition (27) leads to(

η1 +

(
c+

c−

)3
η2

β

)[
∂ZΨ1(Z)Ψ

′

1(Z)−Ψ1(Z)∂ZΨ
′

1(Z)
]1

0
= 0, (71)

so that

η2 = −η1β

(
c−
c+

)3

. (72)

Thereby, scalar product defined in (25) remains identical to (55). A combi-
nation boundary condition matrices (69), the spectrum condition (34) and
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transfer matrices (31)-(32) expressions, leads to the following (simplified)
transcendental equation(

1 +

(
κ−
κ+

)2
)

cos

(
λk
c+

)
cos

(
λk
c−

)

+
1

β

(
1 +

(
βκ−
κ+

)2
)

sin

(
λk
c+

)
sin

(
λk
c−

)
=

2κ−
κ+

. (73)

Finally, one can find Φ̃k(Z) and Pp(Z, τ) vectors fields using boundary condi-
tion system (22) and boundary condition matrices (69), leading to (detailed
derivation provided in Appendix G),

Φ̃k(Z) =

 cos
(
λk
c−
Z
)

+ ξk sin
(
λk
c−
Z
)

− c+
βc−

[
cos
(
λk
c+
Z
)

+ βξk sin
(
λk
c+
Z
)] , (74)

Pp(Z, τ) =
δ(τ)

κ− − κ+

[(
1
−1

)
Z − γ

(
1
− c+
βc−

)]
, (75)

with,

ξk =
sin
(
λk
c−

)
− κ+

βκ−
sin
(
λk
c+

)
cos
(
λk
c−

)
− κ+

κ−
cos
(
λk
c+

) , and, γ =
κ−c−β − c+κ+

c+ (κ− − κ+)
. (76)

Since, according to the scalar product (55) and (72)

‖Φ̃k(Z)‖2 = −c− + c−β
2ξ2
k − c+β (ξ2

k + 1))

2c+β
+ c−ξk

cos2
(
λk
c+

)
− cos2

(
λk
c−

)
λk

+ c−

β2ξ2k−1

β
sin
(

2λk
c+

)
− (ξ2

k − 1) sin
(

2λk
c−

)
4λk

, (77)

and

〈Pp(Z, τ), Φ̃k(Z)〉 =
c−δ(τ)

κ− − κ+

(
F− −

c−F+

c+
− γ [G+ − G−]

)
(78)

F± =
cos
(
λk
c±

)
[c± − θ±λkξk] + sin

(
λk
c±

)
[λk + c±θ±ξk]− c±

λ2k
, (79)

G± =
θ±ξk

(
cos
(
λk
c±

)
− 1
)
− sin

(
λk
c±

)
θ±λk

, (80)

θ− = 1, θ+ = β, (81)
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the expression of P(Z, τ) in (46) pursues

P(Z, τ)−Pp(Z, τ) =

c−
∑
SP

F− − c−F+

c+
− γ [G+ − G−]

(κ− − κ+) ‖Φ̃k(Z)‖2 Φ̃k(Z) [λk sin (λkτ)− δ(τ)] . (82)

The above expressions (77)-(81) have been cross-checked using formal cal-
culus softwares.

4.3. Comparisons and illustrations

We now discuss quantitative illustrations of the provided analytical solu-
tions so as to demonstrate their matching with previously published numer-
ical results. Since many previous contributions have considered Fourier rep-
resentation of test cases, our theoretical predictions for the discrete spectrum
associated with discrete frequency peaks are first analyzed. The spectrum
formally given by general relation (34) and more specifically by explicit simple
transcendent relations (56) and (73) are compared to the Fourier transform
peaks in Figure 3. The determinant’s zeros, λk, are classically related to the
natural frequencies accordingly to the following linear law, [28]

fk = λkf0, (83)

where fk is the kth natural frequency expressed in Hz and f0 is the natu-
ral acoustic fluid frequency introduced in (8). A perfect matching of the
predicted peaks (dotted lines) with the numerical one can be observed in
Figure 3 . More precisely, Figure 3a compares [44]’s results with our pre-
diction for boundary conditions (i) (Cf Fig. 1a) whereas Figure 3b consider
[28]’s prediction for boundary conditions (ii) (Cf Fig. 1b). These theoretical
predictions are matched to numerical results without any adjusted parame-
ters. More quantitative comparison between the numerical peaks and their
theoretical predictions are provided in table 2 with excellent agreement.
Temporal predictions are also compared with MOC numerical results so as
to test every details of the analytical solutions, i.e. not only the spectrum but
also the eigenmodes and their amplitudes. Figure 4 provides this comparison
with [27]’s MOC solutions for the set of parameters presented in Table 1. In
each case a nearly perfect matching between the theoretical prediction and
the numerical computation can be observed. Zoom are provided for high-
frequency fidelity check. The resulting mismatch might be attributable to
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(b) Second configuration (Cf Fig. 1b).

Figure 3: Continuous black-lines : Fourier transform of the pressure field at valve loca-
tion within the pipe versus frequency f . Blue dotted lines : spectrum eigenvalues. (a)
Comparison between [44]’s prediction at the valve location with eigenvalues obtained from
transcendental equation (56). (b) comparison between [28]’s pressure prediction at the
valve location with prediction from transcendental equation (73).

First boundary condition (i) (Cf Fig. 1a) Second boundary condition (ii) (Cf Fig. 1b)

[44] (Hz) Theorical (Hz) ∆ (%) [28] (Hz) Theorical (Hz) ∆ (%)

13.1 13.00 0.8 12 12.4 3.2

38.5 38.3 0.5 32 31.8 0.6

64.0 63.8 0.3 56 55.5 0.9

89.6 89.3 0.3 73 72.9 0.1

115.1 114.6 0.4 97 96.6 0.4

131.8 131.7 0.08 116 115.8 0.2

141.3 140.8 0.3 141 140.5 0.4

166.6 165.9 0.4 161 160.0 0.6

192.1 191.4 0.4 185 183.9 0.6

202 201.4 0.3

226 224.9 0.5

245 243.9 0.5

Table 2: Comparative analysis of natural frequencies for the two study configurations. For
each encountered frequency, the relative error ∆(%) is estimated.
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Figure 4: Comparison between pressure field analytical solution at middle pipe location
(continuous blue lines) with MOC solutions (dotted black lines). Non-FSI solutions (i.e
νs = 0) are provided for illustration in brown dotted lines. Insets provide a zoom for
careful check.

the inaccuracy of data collection from [27]. No parameter adjustment have
been used.

5. Sensitivity matrix evaluation

5.1. Wave speed, c±, deviations

From the analytical expressions of c± in (15), the respective derivation
of the dimensionless wave speeds are deduced upon dimensionless variables
describing the fluid structure interactions. The parametric dependence of
c±
(
E
K
, νs,D, α

)
is known so that any derivative ∂c±

∂X
(X being any structural

parameter embedded in parameters E
K

, νs, D in (3) and α) in (1) is possible
to compute analytically. In order to simplify the algebraic expressions the
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squared wave speeds (15) derivatives are evaluated

∂c2
±

∂α
= µc

1 + α

α (2 + α)

1 +±2ν2
s − 1 + 2νsD + µa√
(c2

+ + c2
−)

2 − 4C2
s

 , (84)

∂c2
±

∂
(
E
K

) =
D
2

1± µa + 2νsD − 1√
(c2

+ + c2
−)

2 − 4C2
s

 (85)

∂c2
±

∂νs
=

1

2

2D ±
4νs (D2 − µc) + 4D

(
µa−1

2
− 1
)√

(c2
+ + c2

−)
2 − 4C2

s

 , (86)

∂c2
±

∂
(
E
K

) =
D
2

1± µa + 2νsD − 1√
(c2

+ + c2
−)

2 − 4C2
s

 , (87)

∂c2
±

∂D
=

1

2D

µa + 2νsD ±
(1 + µa + 2νsD) (µa + 2νsD)− 2C2

s√
(c2

+ + c2
−)

2 − 4C2
s

 ,(88)

where µa = D
(

2 + E
K

+ 4
α(2+α)

)
and, µc = − 4D

α(2+α)
are defined in (E.2)-(E.4).

From (84)-(88) the velocity derivatives can easily be deduced from

∂Xc± =
1

2c±
∂Xc

2
±. (89)

5.2. Sensitivity matrix for boundary condition (i)
From (56) it is possible to find an analytical expression of the sensitivity

of the eigenvalues λk with respect to the parameters set (νsα,E/K,D). Using
(49) one gets

∂β

∂X
=

∂β

∂c−

∂c−
∂X

+
∂β

∂c+

∂c+

∂X
, (90)

∂β

∂c±
= ∓ β

c±

c2
± + 1

c2
± − 1

, (91)

whilst from (56) one gets

∂λk

∂X
=

−c−∂Xβ tan

(
λk
c−

)
+
λk
c−

(
β∂Xc− −

(
c−
c+

)2
∂Xc+ + tan

(
λk
c−

)
tan

(
λk
c+

)[
∂Xc− − β

(
c−
c+

)2
∂Xc+

])
β −

c−
c+

+ tan

(
λk
c−

)
tan

(
λk
c+

)[
1− β

c−
c+

] .

(92)
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The spectrum sensitivity of the first configuration (Cf. Fig. 1a) is depicted
in Figures 5a-5d, for the first five eigenmodes. The sensitivity analysis of
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Figure 5: Sensitivity analysis of the first five resonnant eigenmodes associated with the
spectrum equation (56). (a) ∂νsλk. (b) ∂αλk. (c) ∂(E/K)λk. (d) ∂Dλk. The numerical gra-
dients are depicted in continuous lines whereas the analytical expressions are represented
by dotted lines.

the first configuration reveals an increased parametric dependence for higher
modes. The higher the mode, the more sensitive it is to the dimensionless
parameters variation. Furthermore, this analysis highlights a high sensitivity
of the first five eigenmodes with respect to the density ratio D as depicted on
Figure 5d, whilst the system is found weakly dependent on the E/K ratio,
as illustrated in Figure 5c.

23



5.3. Sensitivity matrix for boundary condition (ii)
A similar footpath is hereby provided for the reservoir-pipe-free valve

configuration. The spectrum transcendental equation derived in (73), which
holds for the second configuration (Cf Fig. 1b), is found dependent upon a
set of four dimensionless parameters namely c±, β and

κ(c±, νs) =
κ−
κ+

≡ c+

βc−

c2
− − (1− 2νs)

c2
+ − (1− 2νs)

. (93)

The derivative of κ with respect to the dimensionless quantityX ≡ (νs, α, E/K,D)
thus achieves as follows

∂Xκ =
c+
c−β

[
∂Xκr + κr

(
1

c+
∂Xc+ −

1

c−
∂Xc− −

1

β
∂Xβ

)]
(94)

κr =
c2− − (1− 2νs)

c2+ − (1− 2νs)
, (95)

∂Xκr =
2

c2+ − (1− 2νs)

(
c−c+

(
1

c+
∂Xc− −

κr
c−
∂Xc+

)
+ ∂Xνs (1− κr)

)
, (96)

whereas from (73) one gets

∂Xλk = − 2κ∂Xκ

tan
(
λk
c+

) [
1+(βκ)2

βc−
− 1+κ2

c+

]
+ tan

(
λk
c−

) [
1+(βκ)2

βc+
− 1+κ2

c−

]
+

tan
(
λk
c+

)
tan

(
λk
c−

)(
1+(βκ)2

β2 ∂Xβ − 2κ [β∂Xκ+ κ∂Xβ]
)

tan
(
λk
c+

) [
1+(βκ)2

βc−
− 1+κ2

c+

]
+ tan

(
λk
c−

) [
1+(βκ)2

βc+
− 1+κ2

c−

]
+ 2

∂Xκ

cos
(
λk
c−

)
cos
(
λk
c+

)(
tan

(
λk
c+

) [
1+(βκ)2

βc−
− 1+κ2

c+

]
+ tan

(
λk
c−

) [
1+(βκ)2

βc+
− 1+κ2

c−

])
+λk

tan
(
λk
c+

) [
1
c−
∂Xc−

1+(βκ)2

βc−
− 1

c+
∂Xc+

1+κ2

c+

]
+ tan

(
λk
c−

) [
1
c+
∂Xc+

1+(βκ)2

βc+
− 1

c−
∂Xc−

1+κ2

c−

]
tan

(
λk
c+

) [
1+(βκ)2

βc−
− 1+κ2

c+

]
+ tan

(
λk
c−

) [
1+(βκ)2

βc+
− 1+κ2

c−

] .

(97)

The derivative of the five first eigenmodes is once again investigated and their
related variations with respect to (νs, α, E/K,D) are depicted in Figure 6a-
6d. A very same sensitivity ordering is found for the second configuration.
The density ratio variations remain the most sensitive parameter whereas
the E

K ratio has little impact on the coupled dynamic. It is interesting to
point-out that the higher eigenmodes are no longer the most sensitive in
this second case, as illustrated in Figures 6a-6b. The boundary condition
couplings, or junction couplings, occurring in the second configuration, then
reshape the eigenmode structure and their sensitivity.
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Figure 6: Same conventions as Figure 5 for spectrum equation (73). (a) ∂νsλk. (b) ∂αλk.
(c) ∂(E/K)λk. (d) ∂Dλk.The numerical gradients are depicted in continuous lines whereas
the analytical expressions are represented by dotted lines.

6. Conclusion

This contribution provide a theoretical framework for the analysis of an-
alytical solutions for FSI pulsed waves propagation inside liquid filled tubes.
This framework leads to an explicit spectrum derivation and analytical eigen-
mode decomposition. It favorably compares with previously published re-
sults. The spectrum sensitivity matrix has been computed explicitly with
respect to (dimensionless) parameter derivatives, as well as wave velocity
derivatives. The provided solutions might be used in various contexts as-
sociated with signal processing interpretation, parameter identification or
boundary condition de-convolution inside liquid filled pipes.
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Appendix A. Nomenclature

Physics Constants

ρf Fluid density kg ·m−3

K Fluid bulk modulus Pa

ρs Solid density kg ·m−3

E Young’s modulus Pa

νs Poisson’s modulus

W0 Order of magnitude of the steady velocity m · s−1

Caracteristic velocities

cp Modified Korteweg’s wave speed / Fluid pulse wave speed m·s−1

cs Solid elastic wave speed m · s−1

c± Dimensionless coupled propagative modes wave speed

Geometrical properties

R0 Inner initial tube’s radius m

e Tube’s thickness m

L Tubs’s lenght m

z Dimensionall axial coordinate m

Z Dimensionless axil coordinate

Dimensionless numbers

ε Ratio of the inner tube’s radius by the tube’s length

α Ratio of the tube’s thickness by the inner tube’s

Cs Ratio of the solid elastic wave speed by the fluid pulse wave
speed

D Ratio of fluid density by the solid density

Theorical elements

W (Z, τ) Perturbed axial fluid velocity
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P (Z, τ) Perturbed fluid pressure

σ(Z, τ) Perturbed axial fluid stress tensor

ζ̇(Z, τ) Perturbed axial solid displacement velocity

H Self auto adjoint operator

−λ2
k Eigenvalue of H

ak(τ) Temporal amplitude of Yh

fk Natural frequencies

Characteristic matrices

Y(Z, τ) Perturbed dimensionless fluid and solid pressure-velocity vector

P(Z, τ) Perturbed dimensionless pressure - stress vector

CP Speed matrix of the pressure-stress wave equation

CW Speed matrix of the velocity-displacement velocity wave equation

CY Speed matrix coupled fluid and solid pressure-velocity wave equa-
tion

Y Perturbed dimensionless fluid and solid pressure-velocity vector
within the diagonalisation basis

Yp(Z, τ) Particular part of Y

Yh(Z, τ) Homogeneous part of Y

P Perturbed dimensionless pressure - stress vector within the di-
agonalisation basis

Ph(Z, τ) Homogeneous part of P

Pp(Z, τ) Particular part of P

CP Speed matrix within the diagonalisation basis

CW Speed matrix within the diagonalisation basis

CY Speed matrix coupled fluid and solid pressure-velocity wave equa-
tion

N , M, Q, R, S Boundary condition matrices within the diagonalisation
basis
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Φk(Z) Eigenvector of H

Φ̃k(Z) Contracted form of Φk

Notations

〈·〉 Scalar product

η1, η2 Constant of the scalar product

·∗ Dimensionall field

·̂ Laplace transform

s Laplace variable

t Dimensionall time

τ Dimensionless time

β, κ±, γ, ξk Constants

κ = κ−
κ+

Constant ratio

Appendix B. Dimensionless FSI four equations

[7] provides a derivation of well-known FSI four-equations system. From
averaged mass and momentum conservation equations within fluid and solid,
[7] founds the coupled hyperbolic equations for longitudinal fluid velocity
W ∗, pressure P ∗, longitudinal solid deformation velocity ζ̇∗ and longitudinal
stress σ∗,

∂tW
∗ = − 1

ρf
∂zP

∗, (B.1)

∂zW
∗ +

1

ρfc2
p

∂tP
∗ = 2νs∂z ζ̇

∗, (B.2)

∂tζ̇
∗ =

1

ρs
∂zσ

∗, (B.3)

∂tσ
∗ − E∂z ζ̇∗ =

2νs
α (2 + α)

∂tP
∗, (B.4)

where subscript ∗ refers to dimensional quantities. The velocity perturbation
W ∗ reference amplitude is set as W0, so that as W ∗ = W0W . The pressure
perturbation P ∗, is known from [1]’s theory to match the dynamic pulse over-
pressure so that P ∗ = ρfcpW0P . From stress continuity at the tube wall, the
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axial perturbed stress, σ∗ is prescribed having the same order of magnitude
as P ∗, i.e. σ∗ = ρfcpW0σ. The axial displacement field, ζ∗, is set as ζ∗ =
αM

ε
R0ζ in order to ensure both axial velocity matching at the tube’s wall and

the small strain and small displacement hypothesis framework. Furthermore,
the physical time, t, is scaled on the advection time, t = L

cp
τ whilst axial

longitudinal scale is set as z = LZ. Using these scaling within (B.1)-(B.4),
leads to (7).

Appendix C. Resolution of the constitutive ODE in ak(τ )

Let’s consider the ODE

(
∂2
τ + λ2

k

)
ak(τ) = −〈∂

2
τYp, Φ̃k(Z)〉
‖Φ̃k‖

, (C.1)

and its initial conditions

ak(0) = −〈Yp(Z, 0), Φ̃k(Z)〉
‖Φ̃k‖

, and, ∂τak(0) = −〈∂τYp(Z, 0), Φ̃k(Z)〉
‖Φ̃k‖

. (C.2)

A Laplace transform, hereby denoted L, approach is employed to solve (C.1).
Introducing s, the conjugate variable of t and setting up hat notation for
Laplace variables yields

(
s2 + λ2

k

)
â(s)− sak(0)− ∂τak(0) = −s2 〈Ŷp, Φ̃k(Z)〉

‖Φ̃k‖

+
s〈Yp(Z, 0), Φ̃k(Z)〉+ 〈∂τYp(Z, 0), Φ̃k(Z)〉

‖Φ̃k‖
. (C.3)

Inovking (C.2) reads to

âk(s) = λ2
k

〈Ŷp, Φ̃k(Z)〉
(s2 + λ2

k) ‖Φ̃k‖
− 〈Ŷp, Φ̃k(Z)〉

‖Φ̃k‖
. (C.4)

Since L (sin (λkτ)) = λk
s2+λ2k

, the use of convolution theorem finally results in

ak(τ) = λk

∫ τ

0

〈Yp, Φ̃k(Z)〉(t) sin (λk [τ − t]) dt
‖Φ̃k‖

− 〈Yp, Φ̃k(Z)〉
‖Φ̃k‖

. (C.5)
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Appendix D. Derivation of Φ̃k(Z) in configuration (i)

Let’s focus on the first configuration boundary matrices (50) along with
the homogeneous system upon (Φk(0), ∂ZΦk(0))T in (33). Introducing the
fourth unknown column vector(

Φk(0)
∂ZΦk(0)

)
=
(
φ−k , φ

+
k , ∂Zφ

−
k , ∂Zφ

+
k

)T
(D.1)

yields
1 βc−

c+
0 0

0 0 1
c−

1
c+

−
λk sin

(
λk
c−

)
c−

−
λkβc− sin

(
λk
c+

)
c2+

cos
(
λk
c−

)
c−

βc− cos
(
λk
c+

)
c2+

−
λk sin

(
λk
c−

)
c−

−
λk sin

(
λk
c+

)
c+

cos
(
λk
c−

)
c−

cos
(
λk
c+

)
c+




φ−k
φ+
k

∂Zφ
−
k

∂Zφ
+
k

 = 0. (D.2)

A non homogeneous solution of this linear system follows from re-organizing
the last two lines of (D.2) and achieves in

 φ+
k

∂Zφ
−
k

∂Zφ
+
k

 = φ−k


− c−
βc−

λk
c−

tan
(
λk
c−

)
− c+
βc−

λk
c+

tan
(
λk
c+

)
 . (D.3)

The use of (D.3) within the equations set (30)-(32) in case of a separate
pressure - velocity boundary conditions (i.e. T ≡ Ts such as transfer matrices
order are divided by two) results in

Φk(Z) = φ−k

 cos
(
λkZ
c−

)
+ tan

(
λk
c−

)
sin
(
λkZ
c−

)
− c+
βc−

(
cos
(
λkZ
c+

)
+ tan

(
λk
c+

)
sin
(
λkZ
c+

)) , (D.4)

so that the reduced eigenfunction form Φ̃k(Z) in (35), follows

Φ̃k(Z) =

 cos
(
λkZ
c−

)
+ tan

(
λk
c−

)
sin
(
λkZ
c−

)
− c+
βc−

(
cos
(
λkZ
c+

)
+ tan

(
λk
c+

)
sin
(
λkZ
c+

)) . (D.5)
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Appendix E. νs = 0 limit of the first configuration (Cf. Fig.1a)

We hereby consider the νs = 0 limit of our solution and compare it with
the one of [31] (only its leading order).

Appendix E.1. Wave speed mode c± for νs � 1

Using c2
p, c

2
s and C2

s definitions (2), one can find

C2
s = µa + µbνs + µcν

2
s , (E.1)

with

µa = D
(

2 +
E

KT
+

4

α(2 + α)

)
, (E.2)

µb = 2D, (E.3)

µc = − 4D
α(2 + α)

. (E.4)

Furthermore, accordingly to (15), the wave speed c± reads

c2
± =

1 + µa + νsµb ± (µa − 1)
√

1 + νsµb
µa−1

+
ν2s (µ2b+4µc)

(µa−1)2

2
, (E.5)

so that Taylor expanding (E.5) in the νs � 1 results in(
c2

+ − c2
−
)

= (µa − 1) +
µb
2
νs +O(ν2

s ), (E.6)

c+ =
√
µa +

3µb
8
√
mua

νs +O(ν2
s ), (E.7)

c− = 1 +
µb
8
νs +O(ν2

s ). (E.8)

Appendix E.2. Spectrum of configuration (i) in the νs = 0 limit

Using β definition (49) and regarding (E.7)-(E.8) in the limit νs → 0, the
spectrum transcendental equation (56) reduces to,

cos (λk) sin

(
λk√
µa

)
= 0. (E.9)

The solution of which are [31]’s spectrum union pure elastic-wave eigenvalues,

λk =

{
π

(
1

2
+ k

)}
∪ {π√µa (1 + k)} . (E.10)
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Appendix E.3. Pressure solution of configuration (i) in the νs = 0 limit

The pressure field for configuration (i) is obtained combining (59) with
the change of basis (17)-(19) and achieves in

P (Z, τ) =
c2

+ − 1

(c2
+ − c2

−)

∑
SP

〈Z
(

1
−1

)
, Φ̃k(Z)〉

‖Φ̃k(Z)‖2

(
Φ̃k(Z) · e1

)
λk sin (λkτ)

+
c2
− − 1

(c2
+ − c2

−)

∑
SP

〈Z
(

1
−1

)
, Φ̃k(Z)〉

‖Φ̃k(Z)‖2

(
Φ̃k(Z) · e2

)
λk sin (λkτ) . (E.11)

Using β in (49), Φ̃k(Z) in (57), ‖Φ̃k(Z)‖2 in (60) and 〈Z
(

1
−1

)
, Φ̃k(Z)〉 in (61)

leads to

c2
± − 1

(c2
+ − c2

−)

〈Z
(

1
−1

)
, Φ̃k(Z)〉

‖Φ̃k(Z)‖2

(
Φ̃k(Z) · e 1

2

)
=

±
c2
− − 1

(c2
+ − c2

−)

2c2
+ cos

(
λk
c+

)
cos
(
λk
c−

)(
cos
(
λk
c+

)
− cos

(
λk
c−

))
λ2
k

(
c2+
c2−

c2−−1

c2+−1
cos2

(
λk
c+

)
− cos2

(
λk
c−

)) cos

(
λk
c∓
Z

)

±
c2
− − 1

(c2
+ − c2

−)

2c2
+ cos

(
λk
c±

)(
cos
(
λk
c+

)
− cos

(
λk
c−

))
λ2
k

(
c2+
c2−

c2−−1

c2+−1
cos2

(
λk
c+

)
− cos2

(
λk
c−

)) sin

(
λk
c∓

)
sin

(
λk
c∓
Z

)
,

(E.12)

where upper/lower symbols ± & ∓ are combined with upper e1 ≡
(

1
0

)
/lower

e2 ≡
(

0
1

)
symbol e 1

2
. The νs = 0 spectrum limit (E.10) is the union of

two distinct subsets, the contribution of which in (E.11) is now discussed
separately.

• Fluid spectrum contribution

When νs = 0 the fluid spectrum is λkF = π
(

1
2

+ k
)
. Furthermore, when νs �

1, using (E.8), one finds cos2
(
λkF
c−

)
∼ O (ν2

s ) and
(
c2+
c2−

c2−−1

c2+−1
cos2

(
λkF
c+

))
∼

O (νs). The νs � 1, asymptotic behaviour of (E.12) can be obtained using
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(E.6), (E.7) and (E.8) and results in

c2+ − 1(
c2+ − c2−

) 〈Z( 1
−1
)
, Φ̃k(Z)〉

‖Φ̃k(Z)‖2
(
Φ̃k(Z) · e1

)
= (−1)k

2 sin (λkFZ)

λ2kF
+O (νs) , (E.13)

c2− − 1(
c2+ − c2−

) 〈Z( 1
−1
)
, Φ̃k(Z)〉

‖Φ̃k(Z)‖2
(
Φ̃k(Z) · e2

)
= O (νs) . (E.14)

• Solid spectrum contribution

When νs = 0 the solid spectrum is λkS =
√
µaπ (1 + k). In this case, (E.12)’s

denominators do not cancel each other so that the νs � 1 behavior is trivial,

c2
± − 1

(c2
+ − c2

−)

〈Z
(

1
−1

)
, Φ̃k(Z)〉

‖Φ̃k(Z)‖2

(
Φ̃k(Z) · e 1

2

)
= O (νs) . (E.15)

Combining (E.8)-(E.15) in (E.11), finally leads to [31]’s leading order solution

lim
νs→0

(P (Z, τ)) = 2
∞∑
k=0

(−1)k
sin (λkFZ) sin (λkF τ)

λkF
. (E.16)

Appendix F. Analytical analysis of
βc−κ−
c+κ+

Let us set up

χ =
1− 2νsD

α(2+α)(c2+−1)

1− 2νsD
α(2+α)(c2−−1)

, (F.1)

so that inovking the definition of κ± in (68), it leads to

κ−
χκ+

=
1 + 2νs

c2−−1

1 + 2νs
c2+−1

1− 2νsD
α(2+α)(c2−−1)

1− 2νsD
α(2+α)(c2+−1)

. (F.2)

Reorganising (F.2) then follows

κ−
χκ+

=

(
c2

+ − 1

c2
− − 1

)2(
c2
− − 1 + 2νs
c2

+ − 1 + 2νs

)(
c2
− − 1− 2νsD

α(2+α)

c2
+ − 1− 2νsD

α(2+α)

)
. (F.3)

Developping the term(
c2
± − 1 + 2νs

)(
c2
± − 1− 2νsD

α(2 + α)

)
=

c4
± − c2

±

[
1 +

2νsD
α(2 + α)

+ 1− 2νs

]
+ 1 +

2νsD
α(2 + α)

− 2νs −
4ν2

sD
α(2 + α)

, (F.4)
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whilst using relation (14) for dimensionless wave speeds in (F.4) leads to

(
c2
± − 1 + 2νs

)
·
(
c2
± − 1− 2νsD

α(2 + α)

)
=

−
(
c2
± − 1

) [
1 +

2νsD
α(2 + α)

− 2νs − C2
s −

4ν2
sD

α(2 + α)

]
, (F.5)

so that using β definition (49) within (F.3) simplifies to

κ−
χκ+

=
c2

+ − 1

c2
− − 1

=
c+

βc−
. (F.6)

Finally, one finds

c−βκ−
c+κ+

= χ =
1− 2νsD

α(2+α)(c2+−1)

1− 2νsD
α(2+α)(c2−−1)

. (F.7)

Appendix G. Derivation of Φ̃k(Z) for second configuration (Cf.
Fig.1b)

Let’s focus on the second configuration boundary matrices (69) along
with the homogeneous system upon (Φk(0), ∂ZΦk(0))T in (33). Using (D.1),
it follows

1 βc−
c+

0 0

0 0 1
c−

1
c+

−
λkκ− sin

(
λk
c−

)
c−

−
λkκ+ sin

(
λk
c+

)
c+

κ− cos
(
λk
c−

)
κ+ cos

(
λk
c+

)
cos
(
λk
c−

)
βc−κ−
c+κ+

cos
(
λk
c+

) c− sin
(
λk
c−

)
λk

βc−κ− sin
(
λk
c+

)
κ+


 φ−k

φ+
k

∂Zφ
−
k

∂Zφ
+
k

 = 0.

(G.1)

Using the first two lines simplifies to(
−λk
c−

[
sin
(
λk
c−

)
− κ+

βκ−
sin
(
λk
c+

)]
cos
(
λk
c−

)
− κ+

κ−
cos
(
λk
c+

)
cos
(
λk
c−

)
− κ−

κ+
cos
(
λk
c+

)
c−
λk

[
sin
(
λk
c−

)
− βκ−

κ+
sin
(
λk
c+

)])( φ−k
∂Zφ

−
k

)
= 0,

(G.2)

and
φ+
k = − c+

βc−
φ−k , and, ∂Zφ

+
k = −c+

c−
∂Zφ

−
k . (G.3)
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Let’s check out the following relation

sin
(
λk
c−

)
− κ+

βκ−
sin
(
λk
c+

)
cos
(
λk
c−

)
− κ+

κ−
cos
(
λk
c+

) = −
cos
(
λk
c−

)
− κ−

κ+
cos
(
λk
c+

)
sin
(
λk
c−

)
− βκ−

κ+
sin
(
λk
c+

) . (G.4)

The (G.4) holds only if

sin2

(
λk
c−

)
−
[
βκ−
κ+

+
κ+

βκ−

]
sin

(
λk
c−

)
sin

(
λk
c+

)
+ sin2

(
λk
c+

)
=

− cos2

(
λk
c−

)
+

[
κ−
κ+

+
κ+

κ−

]
cos

(
λk
c−

)
cos

(
λk
c+

)
− cos2

(
λk
c+

)
, (G.5)

or otherwise

1

β

[
1 +

(
κ−β

κ+

)2
]

sin

(
λk
c−

)
sin

(
λk
c+

)
+

[
1 +

(
κ−
κ+

)2
]

cos

(
λk
c−

)
cos

(
λk
c+

)
=

2κ−
κ+

, (G.6)

which is the transcendent spectrum (73) satisfied by λk. Introducing ξk

ξk =
sin
(
λk
c−

)
− κ+

βκ−
sin
(
λk
c+

)
cos
(
λk
c−

)
− κ+

κ−
cos
(
λk
c+

) , (G.7)

thus leads to

∂Zφ
−
k =

λkξk
c−

φ−k . (G.8)

Finally, using the expression of φ+
k , ∂Zφ

+
k , ∂Zφ

−
k versus φ−k in (G.3)-(G.8) and

the equations set (30)-(32) in case of a separate pressure - velocity boundary
conditions (i.e T ≡ Ts such as transfer matrices order are divided by two)
results in

Φk(Z) = φ−k

 cos
(
λk
c−
Z
)

− c+
βc−

cos
(
λk
c+
Z
)+ ξk

 sin
(
λk
c−
Z
)

− c+
c−

sin
(
λk
c+
Z
) , (G.9)

so that the reduced form of Φk(Z), Φ̃k(Z) is consequently

Φ̃k(Z) =

 cos
(
λk
c−
Z
)

+ ξk sin
(
λk
c−

)
− c+
βc−

[
cos
(
λk
c+
Z
)

+ βξk sin
(
λkZ
c+

)] . (G.10)
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