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ARTICLE INFO ABSTRACT

Keywords: The human brain varies across individuals in its morphology, function, and cognitive capacities. Variability is
inter-subject variability particularly high in phylogenetically modern regions associated with higher order cognitive abilities, but its re-
heritability lationship to the layout and strength of functional networks is poorly understood. In this study we disentangled

functional magnetic resonance imaging
functional connectivity
topography

the variability of two key aspects of functional connectivity: strength and topography. We then compared the
genetic and environmental influences on these two features. Genetic contribution is heterogeneously distributed
across the cortex and differs for strength and topography. In heteromodal areas genes predominantly affect the
topography of networks, while their connectivity strength is shaped primarily by random environmental influ-
ence such as learning. We identified peak areas of genetic control of topography overlapping with parts of the
processing stream from primary areas to network hubs in the default mode network, suggesting the coordina-
tion of spatial configurations across those processing pathways. These findings provide a detailed map of the
diverse contribution of heritability and individual experience to the strength and topography of functional brain
architecture.

the brain in the first year of life, which does not occur in our closest
living relatives, the chimpanzees (Neubauer et al., 2010), nor in our

1. Introduction

Evolution has shaped the cortical layout of the human brain through
both scaling and reorganization (Smaers and Soligo, 2013). The typical
globular shape of the brain evolved gradually within Homo sapiens in
the last 300,000 years (Neubauer et al., 2018) and has been linked to
genes associated with neurogenesis and myelination (Gunz et al., 2019).
This is related to the evolution of a developmental globularization of

closest extinct relatives, the Neanderthals (Gunz et al., 2010). It is dur-
ing this developmental period that the human brain is more suscepti-
ble to environmental influence. Modern humans have more neurocra-
nial shape variation than Neanderthals and other archaic Homo groups
(Gunz et al., 2009). A remarkable feature of the brain is that evolu-
tionary selection and adaptation result not in a static organ, but in the

Abbreviations: aFC, variability of functional connectivity before disentanglement; SP, variability of topography of corresponding functional regions; FC, variability
of functional connectivity strength of corresponding functional regions; AaFC, ASP, AFC, genetic contribution to indicated type of variability; EaFC, ESP, EFC, random

environmental contribution to indicated type of variability.
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capability to adapt to the environment during the life-long process of de-
velopment and learning (Krubitzer and Prescott, 2018). The increased
variability of functional brain architecture across individuals is associ-
ated with both differences in genetic programming and individual ex-
perience.

This variability is not evenly distributed across the brain. For in-
stance, areas in the prefrontal cortex and association areas exhibit
particularly high inter-individual differences in functional architecture
(Mueller et al., 2013; Nenning et al., 2017). These areas are notable for
exhibiting a predominance of long-range connectivity (Sepulcre et al.,
2010) as well as evolutionarily recent expansion (Mueller et al., 2013).
The link between these observations is subject to different hypotheses
(Mueller et al., 2013; Buckner and Krienen, 2013). Inter-subject vari-
ability might be associated with the potential for architectural alter-
natives at different locations but with comparable capacity. It appears
to be linked with plasticity and the corresponding recovery of patients
suffering from focal brain damage (Seghier and Price, 2018). Differ-
ences in individual experience may contribute to measurable diversity
as well. Inter-subject variability in preterm neonates and healthy adults
exhibit overall similar patterns (Stoecklein et al., 2020), but variability
increases for parts of the fronto-parietal and dorsal attention network
during maturation. At the same time, genes contribute significantly to
the variability of functional (Colclough et al., 2017; Reineberg et al.,
2019), and structural (Shen et al., 2014; Xie et al., 2018) cortical net-
works.

Despite the evidence for both genetic and environmental influences
on brain variability, their specific contributions to variability of two
key features of functional organization — strength and topography —
remain poorly understood. Both, variability of topography or spatial lay-
out and connectivity strength is present across subjects (Nenning et al.,
2017). Therefore we only observe a mixture of both when variability in
anatomically aligned subjects is measured (Mueller et al., 2013).

In this study, we disentangled variability of the connectivity strength
between components of functional networks and the spatial cortical lay-
out of these nodes - their topography - to study independent contributions
of genetics and environment (e.g., learning, experience) to variability of
these two features. We analysed resting state functional magnetic res-
onance imaging (rs-fMRI) data of twins. To disentangle strength and
topography, we first performed cortical registration based on anatomi-
cal features, and then identified variability of topography by subsequent
functional registration. We found that the cortical landscapes of genetic
influence on variability of these two features diverge along an axis from
primary to higher order association areas. In primary areas variability of
connectivity strength exhibits high heritability compared to topography,
while this relationship is reversed in parts belonging to association ar-
eas. Distinguishing the role of individual experience in shaping variation
of connectivity strength from the role of heritability in shaping its topo-
graphical variability may provide crucial insights into the mechanisms
enabling the flexible, yet stable nature of brain organization supporting
the human cognitive repertoire.

2. Material & methods
2.1. Dataset and preprocessing

We use the data of 231 participants labeled either as monozygotic
or dizygotic twin taken from the HCP S1200 ICA-FIX denoised dataset.
Only twins with 4 rsfMRI runs available are chosen. Although not
intended on purpose, there were then only same-sex dizygotic twin
pairs included in the study. Further details on exclusion criteria and
data acquisition are described elsewhere (Van Essen et al., 2012, 2013;
Dubois et al., 2018; Ugurbil et al., 2013). 112 subjects out of 231 are
labeled as monozygotic twin. The mean age in this group is 30.02 years
and 74% are female. The group of monozygotic twins consists of 2
subjects denoted as “Asian/Nat. Hawaiian/Other Pacific”, 12 denoted
as “Black or African Am”, 1 as “Unknown or Not Reported and 97 as
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“White”. The other 119 subjects labeled as dizygotic are 62% female an
the mean age in this group is 29.82 years. 4 are denoted as “Asian/Nat.
Hawaiian/Other Pacific”, 21 as “Black or African Am”, 1 as “Unknown
or Not Reported and 93 as “White”. Participants provided verbal consent
in accordance with guidelines set by the Wu-Minn HCP Consortium.

The preprocessing consists of the HCP-pipelines (Glasser et al.,
2013), which include processing of the volume data and bringing the
participant’s surface into a standard space (fs_LR). For the ICA-FIX
dataset independent component analysis is used to decompose the data
set into “good” and “bad” components based on the volume data. Bad
components are then removed from the surface data (Griffanti et al.,
2014; Salimi-Khorshidi et al., 2014). Global signal regression and band-
pass filtering (range 0.01 Hz-0.08 Hz) are applied in addition to
the HCP-pipelines. Furthermore, the fMRI time-series are mapped to
Freesurfer’s (Fischl et al., 1999) fsaverage4 (version 5.3) surface using
Connectome Workbench v1.3 (Marcus et al., 2013). In the following
sections, we explain the methodology used to disentangle functional
connectivity strength and topography and estimate genetic and envi-
ronmental influence on their variability. Supplementary Figure 1 gives
an overview of the processing flow.

2.2. Decoupling function from anatomy

To independently investigate the genetic- and environmental contri-
bution to variability of functional connectivity and its spatial topog-
raphy across the cortex, we first disentangle these two components
(Fig. 1a). After anatomical alignment of cortical surfaces of all individu-
als (Glasser et al., 2013), we embed the cortical functional connectivity
structure into a representational space, and align functional networks
in this space (Margulies et al., 2016; Langs et al., 2014). To obtain the
embedding, diffusion maps are used (Nenning et al., 2017; Coifman and
Lafon, 2006). For our study we focused on functional intersubject vari-
ability in resting state fMRI, therefore we used only functional resting
state features given through the gradients for alignment instead of the
multimodal approach (Glasser et al., 2016; Robinson et al., 2014). For
each twin a correlation matrix including all vertices of the left and right
hemisphere is calculated. As in Margulies et al. (Margulies et al., 2016)
the cosine similarity metric is applied to each pair of rows of an in-
dividual’s correlation matrix and based on the obtained values, a new
symmetric similarity W is constructed for the participant in which the
entries correspond to the cosine similarity value of the row pairs of the
individual’s correlation matrix. Since the cosine similarity gives values
between -1 and 1, the range of the entries of W is shifted so that the
largest value is 2 and all entries are larger than 0. The matrix W of each
individual then represents the edge weights of a similarity graph. Com-
pared to Margulies et al. (2016) who first calculated a correlation matrix
based on fMRI time series and thresholded it before applying the cosine
similarity, we did not want to discard information through threshold-
ing. To obtain non-negative affinity matrix entries for diffusion map
calculation we shifted all values into the range 0-2, to represent the re-
lationships among node pairs. We interpreted the decreasing values of
the cosine similarity or the correspondingly increasing angle between
two nodes as an increase in difference between those nodes. A shift of
values into the range 0-2 therefore still represents a valid relationship
among nodes.

The next step is obtaining a spectral representation of the connectiv-

v 1
ity structure via eigendecomposition of the matrix L=C~1(D~1/2WD"2),
where D is the diagonal matrix of node degrees d;=X;(W;;) and Cis

1
the diagonal matrix of node degrees &=2;(D~/2WD~2), ;. We basically

1
apply graph laplacian normalization to D-2WD~2 (Coifman and La-

fon, 2006). Embedding coordinates ¥; of vertex i are derived from the
right eigenvectors of L multiplied with 4, /(1- 4;), where 4, denotes the
eigenvalue of the k™ eigenvector v, as

¥, = (v Dy () ey ()
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Entangled variability (aFC) of functional networks is a mixture
of differences in connectivity strength and spatial topography

Different FC, same SP - Disentangled variability of functional
connectivity strength (FC) between © and other vertices @ .

w1 (i) is the i entry of the first eigenvector.

In order to reach functional correspondence across participants the
embedding of each twin WS= (45, w,5, ...,w\5) is aligned to the em-
bedding PR= (w1 ’, wok, ...,w\}) of a reference participant (ID: 101915)
not part of the twin dataset by calculating a rotation matrix Qg g, that
has the form

Qsr = VU,
with V and U constructed via singular value decomposition,
usyT = (wR) S,

A publically available implementation is used to obtain and align
diffusion maps (mapalign: https://github.com/satra/mapalign). Our ob-
tained gradients 1, 2 and 3 are comparable to Margulies’ gradients 1, 3,
and 4, separating visual/somatomotor and default mode network, fron-
toparietal/attention networks and default mode networks, and visual
cortex and regions belonging to task positive networks, respectively. Af-
ter having obtained the embedding coordinates the first three are used
as features for surface registration with MSM v2 (Robinson et al., 2014,
2018; Ishikawa, 2014), where each twin’s surface is aligned to the refer-
ence surface. We used only the first 3 components for alignment because
after the third embedding coordinate the eigenvalues of the remaining
coordinates decreased more continuously, indicating a worse separation
from each other. Beside, we also followed Nenning et al. (2015) who
used diffusion maps for multi-subject functional registration and found
that using the first 3 components gave the best results. Box plots sum-
marizing the distribution of eigenvalues across subjects for the first 7
components are shown in Supplementary Fig. 2. Deformation fields for
discovery and robustness analysis are shown in Supplementary Fig. 3.
After alignment a vertex of the twin is assigned to each vertex of the
reference participant, using nearest neighbor to reach functional corre-
spondence of vertices across all individuals in the twin dataset. W can
be constructed in different ways from the signal correlation data. To in-
vestigate the stability of the gradients dependent on the construction of
W, we also calculated gradients by (1) thresholding W at 0 and (2) tak-
ing the absolute values W instead of shifting the range. Supplementary
Fig. 4 shows the first 3 gradients for shifted, thresholded and absolute
W. For the first two variants, gradients are qualitatively similar despite
different constructions of W.

Additive genetic contribution ) (‘/
to entangled variability

Additive genetic contributions to
disentangled spatial and functional variability
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Fig. 1. Overview. (a) Disentangling functional
connectivity and topography of functionally
corresponding units on the cortex enables the
independent analysis of genetic contributions
to these different features of variability. (b)
After disentanglement, FC captures variability
of connectivity strength of corresponding net-
work nodes regardless of their spatial variabil-
ity. In each of the four exemplary brains, the
strength of connections is represented by the
thickness of connecting lines. (c) SP is the vari-
ability of the spatial position (topography) of
functionally corresponding vertices. When sub-
jects are anatomically aligned, functional cor-
responding units or vertices (the blue vertex in
the bottom right panel) differ in spatial position
(coordinates). To know which units are func-
tionally corresponding across subjects we per-
form functional alignment. (For interpretation
of the references to color in this figure legend,
the reader is referred to the web version of this
article.)

Different SP, same FC - Disentangled variability of spatial
topgraphy (SP) of the vertices in the same functional network.

This functional alignment allows us to observe variability in the spa-
tial position - topography - of corresponding functional regions (SP) and
variability of functional connectivity strength of these corresponding
functional regions (FC) independently (Fig. 1b). More details on quan-
tification of variability of connectivity strength or topography are found
in the next section. Calculations in this manuscript are performed with
Python 3.6, if not stated otherwise.

2.3. Parcellation and quantification of inter-subject variability

After preprocessing the cortex is parceled into 600 parts, 300
per hemisphere, using the Schaefer — 600 parcellation scheme
(Schaefer et al., 2018). The advantage of this scheme is the possibil-
ity to assign each region of interest (ROI) to one of the 7 Yeo-networks
(Yeo et al., 2011). In this study the networks are split into a left and
a right part yielding 14 networks. For each of the 14 networks a rep-
resentative ROI is chosen by correlating first each ROI time series of a
network with all the other time series of the same network. The ROI with
the highest mean correlation value is then chosen as the representative
ROI for each of the 14 networks. For this purpose the concatenated LR-
Runs 1 and 2 are used. The choice of the representative ROIs is done
based on the reference subject and then taken over for all participants.

Using the representative ROIs we construct connectivity profiles of
size 1 x 13 for each vertex of the cortex and subject by calculating the
Pearson correlation coefficients between the time series of the current
vertex under investigation and the 13 representative ROIs of the net-
works to which the current vertex does not belong. This is done for
anatomically aligned subjects, as well as, after functional alignment. The
connectivity profiles for each vertex describe the corresponding variabil-
ity across subjects of entangled functional connectivity and disentangled
connectivity strength, respectively, and serve as phenotype description
for the twin model. A Fisher’s z transformation is applied afterwards
and gender as well as the mean relative root mean squared motion dif-
ference of Run 1 and 2 are regressed out. Age was not included as a
regressor since all subjects are young adults with age raging from 22 to
36, similar as in Reineberg et al. (2019). The regression is done using R
version 3.4.

To describe the phenotype or variation of spatial layout, each func-
tionally corresponding vertex of each participant is described by its orig-
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inal position in 3-dimensional space before functional alignment. This
captures the variability of the observed cortical positions of nodes in
the functional networks that were brought into correspondence by func-
tional alignment, since their connectivity profiles were similar. Then the
twin model used is the same as for connectivity strength, the only dif-
ference is that the phenotype of each participant is described by 3 traits
instead of 13.

2.4. ACE twin model

To obtain estimates for the genetic and environmental influences on
the variability of connectivity strength or position of each vertex, we
use multivariate twin models (Neale and Maes, 2021). We analyze addi-
tive genetic (A), common environmental (C), and random environmen-
tal (E) factors on these two types of variability. To enable comparison
of results with prior work, we also analyze these factors for functional
connectivity before disentanglement (aFC). This reflects the combined
variability of topography and connectivity strength at any cortical posi-
tion. In the model for connectivity strength the phenotype of each vertex
and individual is described by 13 character traits, namely the correla-
tion with the representative ROIs. For variability of position 3 character
traits are used for description, namely the 3-dimensional original (prior
to functional alignment) coordinates of functionally corresponding ver-
tices. The model is applied to each vertex separately and the relation
between these character traits is summarized in the expected population
covariance matrix V,, It can be split into three covariances representing
the additive genetic influence A, the common environmental influence
C and the random environmental influence E, i.e.

V,=A+C+E.

Vs A, C and E are of dimension 13 X 13 or 3 X 3, respectively. Addi-
tive genetic control refers to the additive effects of the two variants of
a gene (allele) present in a human being. The two alleles can interact
with each other leading to non-additive interaction effects. The typically
larger additive genetic contribution together with non-additive interac-
tion effects comprise the total genetic contribution (Biirger, 2000). The
common environment C makes members of the same family more simi-
lar to each other than to members of different families. The random envi-
ronment E causes the differences between members of the same family.
To ensure that the estimated matrices A, C and E are symmetric and pos-
itive definite, they are written as a Cholesky decomposition, A=T,T,T,
C=TT.", E=T;T", with lower triangular matrices T,,T; and Tg.

To obtain estimates for T,,T; and Ty the expected trait covariance
structure of monozygotic and dizygotic twin pairs is used. It can be
shown that the covariance matrices for monozygotic Vy;; and dizygotic
twins Vp; are given by the block matrices,

v —(A+C+E A+C
MZ=\ A+C A+C+E)/)’
Vi = A+C+E 05A+C
DZ=\ 05A+C A+C+E/)

Vuz and Vi are of dimensions 26 x 26 for connectivity strength and
6 x 6 for position variability. This means that the trait covariance of a
twin (monozygotic, as well as dizygotic) with himself is A + C + E=V,.
The trait covariance of monozygotic Twin 1 with Twin 2 is A + C,
whereas for dizygotic twin pairs it is 0.5A+C, since they share on aver-
age only half of their genes, whereas the genes of monozygotic twins are
identical. For parameter estimation the expected trait population covari-
ance matrix V,,, as well as the expected covariances of Twin 1 with Twin
2 (mono- and dizygotic) are then equated with the corresponding values
calculated from the dataset. The twin model is implemented using R’s
package OpenMx version 2.11.5 (Neale et al., 2016; Hunter, 2018).
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2.5. Analysis

After estimation, genetic, common environmental and random en-
vironmental contribution maps are available for variability of connec-
tivity strength after anatomical and functional alignment and for the
spatial layout. Note that values for A, C and E are only considered for
vertices with corresponding fMRI signal and which can be assigned to
one of the 600 ROIs (2339/2562 vertices on the left and 2341/2562
on the right hemisphere). This excludes mainly vertices from the me-
dial wall. Several comparisons are made. First, the genetic contribu-
tions to variability in connectivity strength after anatomical and func-
tional alignment are compared to each other by comparing the mean
genetic contribution on the surface using a paired t-test. The normal-
ity assumption for the differences of paired values is verified using
a histogram (Supplementary Fig. 5). Additionally, the genetic contri-
butions to variability of connectivity strength before and after func-
tional alignment and to spatial layout are correlated with each other
using Pearson’s correlation coefficient. Furthermore, the genetic con-
tributions to variability of the spatial layout are correlated with vari-
ability in spatial layout, distance to primary area and cortex expansion.
Uncorrected and corrected p-values are provided for the correlation co-
efficients and the t-test, whereas the uncorrected p-values for correla-
tion coefficients are calculated with a spin test using 10,000 spins in
Matlab (Alexander-Bloch et al., 2018). The level of significance is set
to 0.05 and obtained p-values are adjusted through Holm-Bonferroni-
correction. Holm-Bonferroni correction is done for each hemisphere sep-
arately and covers the t-test and correlation of heritability of SP with
variability in spatial layout, distance to primary area and cortex expan-
sion as well as correlations between genetic contributions to variabil-
ity of connectivity strength before and after functional alignment and
to spatial layout with each other. Correlations between heritability of
SP and FC with corresponding test-retest maps are also included in the
multi-comparisons correction procedure (compare Limitations section).

We also investigated the relation between function and heritability
as presented in Figs. 4 and 5. In Fig. 4 we find the vertices with heri-
tability estimates as estimated by the twin model belonging to the top
20% and bottom 20%. Then we get the density of points for bottom
and top 20% in functional gradient space (Margulies et al., 2016) sepa-
rately. Finally we take the difference of densities and plot it with blue
indicating bottom 20% dominance and red indicating top 20% domi-
nance. In Fig. 5 values of genetic contribution to FC (Agc) and SP (Agp)
are divided into 10 bins based on percentiles (x-axis). Within each bin
normalized activation probabilities are summed given one of 12 com-
ponents related to function (i.e. language) (Yeo et al., 2016). The 12
components (rows) are ordered based on the difference of activation
probabilities between Ag: and Apg summed over bins and weighted by
the log of percentile. The sequence visualizes the gradient from high
Agp and low Ag¢ on top, towards low Agp and high Ag; on the bottom.
The 12 activation probability maps and the maps for Agc and Agp are in
the same space, therefore activation probabilities of voxels lieing in one
Agp/Agc -bin can be summed.

Additionally we performed robustness analysis using 2 RL fMRI runs,
which have also been available for each participant additionally to the
2 LR runs used for the discovery analysis. In addition to performing the
same steps as described in the first paragraph of this section, we also cor-
related maps based on the discovery dataset with maps obtained based
on the RL runs. Note that for each category either aFC, FC or SP there
were some vertices for which an optimal solution for the estimates of
the twin model could not be found. This holds for the robustness as
well as the discovery analysis. However there were never more than 12
vertices per category for which a solution was not found. Vertices were
only excluded from analyses in situations where they clearly appeared
as outliers, i.e. their presence changed the appearance of the contribu-
tion maps visualized on the surface. This was only the case for maps of
the variability explained by the twin model. One vertex each was re-
moved from the discovery SP and aFC variability map as well as from
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aFC

a 0 0.75 1 b
the FC variability map of the robustness analysis. As suggested by re-
viewers, a sensibility analysis by restricting the subjects to those with
caucasian ancestry and using equal fractions of females for monozygotic
and dizygotic twins was also performed.

3. Results

3.1. Divergent roles of genes and random environment in shaping strength
and topography of networks

Genetic and common environmental contributions to aFC (A,gc and
E,rc) were consistent with previous findings (Reineberg et al., 2019).
For aFC, areas with low random contributions include the rostral mid-
dle frontal cortex, the pericalcarine cortex and the boundaries between
temporal middle frontal inferior parietal cortex and superior temporal
banks on both hemispheres, as well as two spots in the superior frontal
cortex on the left hemisphere and one spot on the right hemisphere.
The transverse temporal cortex, isthmus and several region boundary
areas on the medial surface exhibit highest values of random contribu-
tion (Fig. 2). Surface maps for both hemispheres are provided in Sup-
plementary Fig. 6. Genetic contribution ranges from 5.25 to 45.3% of
the variance explained by the twin model.

After disentangling variability of function and spatial topography,
genetic contributions to SP and FC diverge, and reveal a heterogeneous
landscape across the cortex. In Fig. 2 two example regions at peaks of
A, ¢ illustrate this divergence, since A decreases compared to A,gc in
both regions and Agp increases. Random environmental contributions
Egp and Epc show opposite behavour at least in region B. On average,
genetic contribution to FC is lower compared to aFC (left hem: 19.3%
(Aurc) Vs 16.5% (Agc) of variance explained by genes, corrected p-value
< 0.00001; right hem: 19% (A,rc) vs 16.1% (Agc) of variance explained
by genes, corrected p-value < 0.00001, Fig. 3a). This decrease of genetic
control is also apparent in Regions A and B in Fig. 2. The central sul-
cus is one of the few areas where local estimates of genetic contribution
increased from A,pc to Apc. Random environment is the strongest in-
fluence on FC throughout the cortex with a lowest value of 45%, while
genetic contribution ranges from 2.92 to 42%. In contrast to that, Agp
exhibits pronounced regional heterogeneity with genetic contribution
accounting from 0% to 67% of the variance explained by the twin model,
giving a mean genetic contribution of 15.53% of the variance explained
on the left and 14.78% on the right hemisphere. In Region A and B in

Region A
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0244 0.289 0.199 Fig. 2. Additive genetic and random environ-
mental contribution to functional variability
of the cortex. (a) After disentangling variabil-
ity of spatial topography (SP) and connectivity
strength (FC), SP exhibits pronounced peaks of
genetic contribution of at least 30%, whereas
the genetic contribution to FC mainly decreases
compared to entangled functional variability
(aFC). All values are positive and color maps
are chosen to differentiate regions with high or
low contribution. (b) For two regions of inter-
est indicated in the aFC map, quantitative val-
ues are shown. Compared to aFC, genetic con-
tribution is lower for FC and higher for SP. The
contribution of random environment is highest
for disentangled connectivity strength FC.

Additive
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Region B

Fig. 2 the decrease from A,pc to Agc is mirrored by an increase from
A pc to Agp.

3.2. Two different gradients of genetic- and environmental influence on
network strength and topography

We observed two different gradients in the genetic contribution to
variability of connectivity strength and topography along an axis from
primary areas to heteromodal networks. Fig. 3b shows the difference be-
tween Agp and A across the cortex. In primary areas, including visual-
and somatomotor networks genetic contribution to functional connec-
tivity strength variability A dominates, while its contribution to topo-
graphical variability Agp is comparably low. The opposite is the case in
some regions belonging to higher-order areas, such as in frontoparietal
areas, attention- and default mode networks (Yeo et al., 2011) where
genetic contribution to Agp is higher than Agc. This coincides with a
particularly high divergence between Agp and Apc and Agp being at
its peaks higher than Egp (Supplementary Fig. 7). Those areas include
parts of the rostral middle frontal, middle temporal and inferior pari-
etal cortex on the left hemisphere, as well as at the boundary between
the superior frontal and the precentral cortex. On the right hemisphere
those areas include a part of the middle temporal cortex and an area
along the boundary between superior frontal and caudal middle frontal
cortex, reaching in the rostral middle frontal cortex. For 7 Yeo networks,
visual- and somatomotor cortex exhibit predominantly areas with high
Agc / low Agp paired with low Egc / high Egp (Fig. 3c). This divergence
is reduced in dorsal- and ventral attention networks, and vanishes in
fronto-parietal- and default mode networks. A robustness experiment
shows that this observation is highly stable (Supplementary Fig. 8).

3.3. High genetic contribution to topography in more variable, and
phylogenetically modern areas

We investigated the relationship of Agp to network position vari-
ability (Nenning et al., 2017), the distance to primary areas and the
amount of cortical expansion between macaque and human (Hill et al.,
2010). Agp correlates with variability (left hemi: r = 0.3, corrected p-
value =0.0054; right hemi: r = 0.41, corrected p-value =0.0054 and
cortical expansion from macaque to human (left: r = 0.18, corrected p-
value 0.1044; right: r = 0.099, corrected p-value = 0.3650). The relation-
ship between Agp and the distance to primary area follows an inverted
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Fig. 3. Divergent roles of heritability for variability disentangled connectivity strength (FC) and spatial topography (SP) of function along a gradient from primary-
to heteromodal areas. (a) Global distribution of additive genetic influence A for aFC, FC and SP. Compared to aFC, genetic contribution is smaller for FC, and exhibits
a more heterogeneous landscape for SP. (b) Comparing genetic contribution to FC and SP across the cortex reveals areas of dominant influence on FC (visual- and
somatomotor cortex) and areas of dominant influence on SP (attention-, fronto-parietal-, and default mode network) in 7 networks (Yeo et al. 2011). (c) Heritability
of connectivity strength variability is most dominant in primary areas (visual, somatomotor) decreasing to a minimum in integration areas (frontoparietal, default
mode). On the right, for each network, the distribution of location variability and genetic contribution is plotted.

U shape. It increases with distance to primary areas in somatomotor-,
somatosensory-, visual cortex, dorsal and lateral attention network (left:
r = 0.206, corrected p-value =0.2076; right: r = 0.286, corrected p-
value = 0.1196), then decreases in limbic, fronto-parietal and default
mode network (left: r = -0.275, corrected p-value = 0.1598; right: r = -
0.01, corrected p-value = 0.5644). Supplementary Table 1 summarizes
the values, and corrected as well as uncorrected p-values. Except vari-
ability, none of the correlations were significant after multi-comparisons
correction. Fig. 4a shows the dominant high (red) or low (blue) Agp in
the space of location variance and the distance to the primary areas.
This analysis reveals two bands: In low to medium areas there is a band
of cortical regions exhibiting predominantly low Agp. At the same time a
diagonal band from areas with low variance close to the primary areas,
to higher variance, and intermediate distance to primary areas exhibits
predominantly high Agp. Those areas include the middle temporal and
the rostral middle frontal cortex on both hemispheres as well as parts of
the superior frontal and inferior parietal cortex.

3.4. High genetic contribution to topography in areas in-between primary
cortex and brain hubs

To further examine Agp in the space of functional gradients spanning
uni- to heteromodal, and task negative- to task positive networks, we
plot high (red) or low (blue) Agp dominance in the space spanned by

the first, second and third functional gradients (Margulies et al., 2016)
(Fig. 4b). In regions corresponding to association areas (high gradient
1), around visual processing (high gradient 2), and task positive activity
(high gradient 3) high Agp (red clusters) dominates locally, while in
somatosensory and somatomotor areas (low gradient 1 and 2) low Agp
(blue cluster) dominates. Task negative areas (low gradient 3) exhibit
a mixed composition without a clear dominant behavior with regard to
Agp (red and blue clusters). A stream of high (red) Agp is situated along
the edge from somatosensory/somatomotor to association areas through
task positive regions. High genetic contributions modestly dominate the
sparse central area of intermediate gradient 1 and 2.

3.5. Distinct strength and topography both contribute to overall variability

The overall variability as measured by the variance of connectivity
strength before and after disentanglement estimated by the twin model
is similar in magnitude (range aFC: 0.102 to 0.8, range FC: 0.105 to
0.76), and the genetic contributions A, and Agc moderately correlated
on both hemispheres (left: r = 0.298, corrected p-value<0.00001; right:
r = 0.273, corrected p-value<0.00001). The correlation between A,gc
and Agp was 0.128 on the left and 0.198 on the right hemisphere (cor-
rected p-value = 0. 0630 and corrected p-value = 0.005). Disentangle-
ment of functional connectivity and topography reduces the correlation
of genetic contributions to 0.05 (Agc to Agp) on the left- and 0.091 on the
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right hemisphere (corrected p-value=0.1336 and p-value=0.1056). The
variability explained by the twin model for SP ranges from 7.98 mm?
to 137 mm? when described as variance. This corresponds to a standard
deviation ranging from 2.82 mm to 11.7 mm. Supplementary Table 2
summarizes correlations and their p-values. The hemispheres show sim-
ilar patterns.

To gain a more detailed picture of the influence of FC and SP, we re-
lated their genetic contribution maps to cognitive functions, using a 12
component task activation model (Yeo et al., 2016) (Fig. 5). We were
especially interested in comparing Agp and Agc in regions and corre-
sponding functions, where both are high. Regions with high Ag. espe-
cially dominating over high Agp are associated with visual processing
and hand movements, whereas Agp strongly dominates over Agc in re-
gions associated with inhibition and auditory processing.

3.6. Robustness and sensitivity analysis

We performed robustness analysis using 2 RL fMRI runs, available
for each participant in addition to the 2 LR runs used for the main dis-
covery analysis. In contrast to the LR runs, the phase encoding direction
for the RL runs is from right to left (WU-Minn Consortium of the NIH
Human Connectome Project, 2017), which might be a source of variance
between runs of the same subject, in addition to the general intra-subject
variance (Mueller et al., 2013;Cho et al., 2021). Disentangling resulted
in comparable deformation fields of function and topography (Supple-
mentary Fig. 3). SP, FC and aFC estimated by the twin model at each
vertex correlate in the discovery- and robustness analysis (Supplemen-
tary Fig. 9). (aFC: left hemisphere: 0.98, right hemisphere: 0.98; FC:
left: 0.93, right: 0.91; SP: left: 0.57, right: 0.65). The relationship be-
tween genetic and environmental influence, variability, as well as their
distribution in the functional gradient space is highly replicable (Sup-
plementary Fig. 10). Their respective dominance in 7 Yeo networks on
the replication data, reflects those observed in the discovery data (Sup-
plementary Fig. 8).

As suggested by the reviewers, we also conducted a sensibility anal-
ysis to rule out ancestry and gender as a potential confounder. We re-
stricted our data to subjects with caucasian ancestry only and used the
same fraction of females for monozygotic and dizygotic twins. Supple-
mentary Fig. 11 shows the results of the sensibility analysis. Patterns
generally stayed the same including heritability estimates of at least 0.3
for topographical variability at the temporal lobe and prefrontal cortex.
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Fig. 5. Relation of genetic contribution to topographical variability and cogni-
tive function. Values of Ay and A are divided into 10 bins based on percentiles
(x-axis). Within each bin normalized activation probabilities are summed given
one of 12 components (Yeo et al., 2016). The 12 components (rows) are ordered
based on the difference of activation probabilities between Ay and Apg summed
over bins and weighted by the log of percentile. The sequence visualizes the gra-
dient from high Ag, and low Ag on top, towards low Agp and high Ay on the
bottom. (For interpretation of the references to color in this figure, the reader
is referred to the web version of this article.).

4. Discussion

In this study we disentangled strength and topography of functional
networks across the cortex. We applied a method to study the role of
heritability and individual experience shaping these two key features
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independently. Disentanglement revealed that their influence on vari-
ability of strength and topography diverges across the cortex. While in
primary areas, variability of strength is more heritable compared to to-
pography, the opposite is the case in areas belonging to intermediate and
higher order association areas. There, genetic factors primarily shape
variability of topography, while variability of connectivity strength is
predominantly determined by individual experience. Our results may
inform our understanding of the mechanisms of emergence and contin-
ued adaptation of brain areas unique to humans.

4.1. Variable and heritable topography in intermediate and higher order
association areas

In evolutionary older parts of the cortex, functional connectivity is
related to proximity (Sepulcre et al., 2010). The modern human associ-
ation cortex does not follow this rule anymore. The tethering hypothesis
(Buckner and Krienen, 2013) posits that regions that form modern as-
sociation cortex became untethered from strong patterning signals of
thalamic input in the past due to cortical expansion. This fostered a less
hierarchical connectivity landscape in these regions. Together with an
increase in cortico-cortical connectivity and their position between sig-
nal gradients from distributed primary areas, this may have paved the
way for being subsequently co-opted for high-level integrative cognitive
capabilities. In light of this, the rapid evolutionary expansion of associa-
tion cortex may also have led to a dissociation between the roles of func-
tional components and their spatial layout, contributing to the high vari-
ability these networks exhibit compared to primary areas (Mueller et al.,
2013; Sepulcre et al., 2010; Buckner and Krienen, 2013). The precise
role of this variability is, however, not clear.

We did observe dissociation of genetic influences on the variability
of strength and topography in association cortex. While here, topog-
raphy and connectivity strength are highly variable, the variability of
the first is heritable to a much higher degree than the latter. There-
fore the development of a less hierarchical connectivity landscape may
have gone along with an increase in genetic variability encoding topo-
graphical variability. Since the genetic variability is still present today,
different genotypes may have formed the basis of equally fit phenotypes
in the past. At the same time, genetic influence may enable improving
a coordinated - and eventually possibly even canonical - layout of pro-
cessing pathways in the future, as heritability renders topographic vari-
ability visible to selection and adaptation, enabling the emergence of
replicable organization. At the same time, the strength of the intercon-
nectedness among the components anchored in a diverse, but heritable
landscape is shaped by individual experience and the environment.

The observation that highly variable, and heritable topography over-
laps in association cortex, is initially counterintuitive, but may have ben-
efits on the individual-, and the population level. It may afford connec-
tivity strength’s variability and susceptibility to random environmental
influence on top of an underlying coordinated framework of network
topography, necessary for the acquisition of higher-order human cogni-
tive abilities. At the same time, on the population level, simultaneous
variability and heritability of topography may not only be a transient
state while organization is optimizing, but instead a means to sustain
population level diversity and fitness (Amy and Bauernfeind, 2019). For
either point, the separation of variability explained by heritable traits
versus random environmental influence and their independent link to
topography and connectivity strength are important.

4.2. Coordinated processing pathways from primary to heteromodal areas

An increase of heritable topographical variability from visual and so-
matomotor cortex to default and fronto-pariental networks (Fig. 3c) sup-
ports the two hypotheses regarding different but coordinated heritable
integration pathways. Task positive areas of high genetic contribution
are in close proximity of early to intermediate processing areas found in
a study of pathways from primary areas to network hubs (Sepulcre et al.,
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2012). When taking into account areas whose variability is influenced
by common environment, low random contribution areas are next to the
dorsolateral prefrontal cortex (DLPFC), the frontal eye fields (FEF) and
a stream following the borders of the visual cortex to the lateral occip-
itotemporal junction (LOTJ) and then reaching into task-negative areas
of the temporal lobe. Early integration areas of the visual processing
stream form a cluster of high genetic contribution to SP present in the
visual cortex in Fig. 4b. The visual cortex’ connectivity follows three
pathways (Sepulcre et al., 2012), a feature not present for the other
primary cortices. Genetic coding of network position variability in the
visual cortex may be needed to robustly sustain a more intricate path-
way structure. The low genetic contribution to topographical variability
Agp in somatosensory and somatomotor areas might be a consequence
of the low variability SP in these areas which can be seen in Fig. 4a.
It suggests that the topography of these regions is already quite settled
and therefore under tight genetic control, while this is not the case for
the remaining observed topographical variability.

Low to intermediate integration areas exhibit comparably high her-
itability of functional connectivity strength variability (FC), though to
a lesser extent. Peak areas are close to LOTJ and DLPFC, two regions
belonging to integration areas not directly adjacent to the somatomo-
tor and somatosensory cortex, and in case of the DLPFC not adjacent to
the visual cortex (Sepulcre et al., 2012). The stronger genetic encoding
of connectivity strength variability in these areas might be necessary to
effectively bridge the larger distance compared to areas located directly
next to primary areas.

4.3. Disentanglement sheds new light on heritability of entangled functional
connectivity strength

The entire cortex shows moderate genetic influence on connectivity
strength variability before disentanglement (aFC). Disentangling FC and
SP reveals a predominantly decreased Apc compared to A, and a loca-
tion dependent increase of Agp. This suggests that genetic influence on
aFC to a relevant extent actually reflects Agp. Further evidence on that is
provided in a recent study distinguishing connectivity profiles of sibling
pairs from pairs of unrelated individuals (Miranda-Dominguez et al.,
2018). Although the study did not investigate heritability of topogra-
phy directly, the authors used a parcellation to obtain regions of interest
(ROIs) and described the time series of each ROI by the time series of all
other ROIs through regression. They then used the obtained coefficients
as a connectivity profile of a ROI. Most areas of low random environ-
mental contribution to spatial topography overlap with cortical regions
among the top 20 to distinguish sibling pairs from pairs of unrelated
individuals (Miranda-Dominguez et al., 2018) (Supplementary Fig. 12),
suggesting that part of aFC and the corresponding additive genetic con-
tribution is actually due to variability of the spatial layout of functional
units on the cortex.

This complements our emerging understanding of the role of vari-
ability of brain networks. As found in a recent study, variability in over-
all functional connectivity is actually reflected in the variability of to-
pographical organization and the spatial arrangement of functional re-
gions strongly predicts behavior (Bijsterbosch et al., 2018). In another
recent study (Kong et al., 2019) the entire cortical parcellation based on
network topography was able to predict measures of cognition, person-
ality and emotion. Together with our findings this suggests that different
behavioral traits might be genetically determined through topography
and have been either equally advantageous under similar conditions or
alternatingly advantageous under changing conditions during human
evolution.

Even though Agp seems to determine A,g¢ for some parts of the cor-
tex, Agc also has its role when looking at specific cognitive functions.
Whereas genetic influence on most cognitive functions can be attributed
to a mixture of Agp and Ag¢ without a clear dominance of one of the two,
there are also some exceptions as indicated by differences in ranking
in Fig. 5. Dorsal attention and language seem to be influenced geneti-
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cally mainly through SP, since those functions are ranked at the bottom.
Visual and hand movement related processing, on the other hand, are
influenced genetically mainly through FC.

4.4. Related work

A range of papers has investigated genetic determination of mor-
phology (White et al., 2002; Chen et al., 2011) as well as structural
(Shen et al., 2014; Xie et al., 2018) and functional features of the brain
(Glahn et al., 2010; Reineberg et al., 2019; Colclough et al., 2017;
Miranda-Dominguez et al., 2018). In a study of White et al. (2002) cere-
bral brain volumes of twins, including whole brain volume as well as
divisions into lobes and tissue types, showed correlations above 0.90, ex-
cept the frontal white matter and occipital gray matter volume. Genetic
correlations for surface area with different seed locations have been ex-
plored in Chen et al. (2011) and showed an anterior-posterior division
and a lack of long distance correlations. Similar to surface area, corti-
cal thickness exhibited local genetic correlation with additional strong
genetic correlation to homologs on the opposite hemisphere in another
study (Alexander-Bloch et al., 2019). Glahn et al. (2010) explored heri-
tability of anatomical morphology and functional aspects of the default
mode network, revealing an independent genetic influence on anatomi-
cal morphology and functional variability. Some other previous studies
based on fMRI data used a univariate twin model to investigate the con-
nectivity of single edges between regions distributed across the cortex
(Reineberg et al., 2019; Colclough et al., 2017). Observed genetic con-
tributions are higher than common environmental influences in both
papers. A multivariate machine learning based approach was used in
Miranda-Dominguez et al. (2018) to distinguish sibling pairs from pairs
of unrelated individuals. Useful regions for pair classification belonged
to higher order systems, such as the fronto-parietal, dorsal attention and
default mode network. Measures of structural connectivity were found
to be especially heritable for connections within the default mode net-
work, visual circuits and connections between default mode and fronto-
parietal or ventral attention network (Shen et al., 2014; Xie et al., 2018).

4.5. Limitations

This study has several limitations. One limitation is the way how
the genetic, common environmental and random environmental con-
tributions to connectivity strength at each vertex are estimated. Since
the brain is a network, describing the connectivity strength or profile of
each vertex should preferably be done by including the connections to
all nodes in the brain. However, due to the large number of parameters
which had to be estimated for the twin model, this option is compu-
tationally infeasible. Therefore we describe the connectivity profile of
each vertex by its connectivity to predefined regions of interest, an ap-
proach consistent with prior work (Yeo et al., 2011). A limitation of
the twin model used is that it only models contributions that act addi-
tively on the inter-subject variability. Including interactions of genetic
and environmental influences in the model could give additional in-
sights. Further limitations are that the power to separate A from C is
lower than for separating A from E, which can lead to the partial at-
tribution of common environmental influence to genetic influence or
vice-versa. We also found significant correlations between test-retest re-
liability and heritability for FC (left corr=0.3024, corrected p-value <
0.00001; right corr=0.3000, corrected p-value < 0.00001) and SP (left
corr =0.3674, corrected p-value = 0.0046; right corr= 0.4545, corrected
p-value=0.0049). However, heritability is not completely explained by
test-retest reliability. This is also suggested by a much higher correla-
tion of test-retest reliability of SP and FC (0.532, both hemispheres)
compared to the correlation between heritability of FC and SP (0.072,
both hemispheres). We also show brain maps where we regressed out 1-
test-retest variability in Supplementary Fig. 14. Concerns of reliability
have also been addressed through robustness analysis, which showed
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that the main findings are stable across runs and suggests that the pro-
cessing stream from unimodal to heteromodal areas shows an interplay
of rather genetically determined topography and functional connectiv-
ity strength determined rather by random environment, which deserves
more investigation in the future.
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