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a b s t r a c t 

The human brain varies across individuals in its morphology, function, and cognitive capacities. Variability is 

particularly high in phylogenetically modern regions associated with higher order cognitive abilities, but its re- 

lationship to the layout and strength of functional networks is poorly understood. In this study we disentangled 

the variability of two key aspects of functional connectivity: strength and topography. We then compared the 

genetic and environmental influences on these two features. Genetic contribution is heterogeneously distributed 

across the cortex and differs for strength and topography. In heteromodal areas genes predominantly affect the 

topography of networks, while their connectivity strength is shaped primarily by random environmental influ- 

ence such as learning. We identified peak areas of genetic control of topography overlapping with parts of the 

processing stream from primary areas to network hubs in the default mode network, suggesting the coordina- 

tion of spatial configurations across those processing pathways. These findings provide a detailed map of the 

diverse contribution of heritability and individual experience to the strength and topography of functional brain 

architecture. 
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. Introduction 

Evolution has shaped the cortical layout of the human brain through

oth scaling and reorganization ( Smaers and Soligo, 2013 ). The typical

lobular shape of the brain evolved gradually within Homo sapiens in

he last 300,000 years ( Neubauer et al., 2018 ) and has been linked to

enes associated with neurogenesis and myelination ( Gunz et al., 2019 ).

his is related to the evolution of a developmental globularization of
Abbreviations: aFC, variability of functional connectivity before disentanglement; S

f functional connectivity strength of corresponding functional regions; AaFC, ASP, AF

nvironmental contribution to indicated type of variability. 
∗ Corresponding author at: Department of Biomedical Imaging and Image-guided 

ienna 1090, Austria. 

E-mail address: georg.langs@meduniwien.ac.at (G. Langs). 

ttps://doi.org/10.1016/j.neuroimage.2021.118770 . 

eceived 4 August 2021; Received in revised form 10 November 2021; Accepted 29 

vailable online 30 November 2021. 

053-8119/© 2021 Published by Elsevier Inc. This is an open access article under th
he brain in the first year of life, which does not occur in our closest

iving relatives, the chimpanzees ( Neubauer et al., 2010 ), nor in our

losest extinct relatives, the Neanderthals ( Gunz et al., 2010 ). It is dur-

ng this developmental period that the human brain is more suscepti-

le to environmental influence. Modern humans have more neurocra-

ial shape variation than Neanderthals and other archaic Homo groups

 Gunz et al., 2009 ). A remarkable feature of the brain is that evolu-

ionary selection and adaptation result not in a static organ, but in the
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apability to adapt to the environment during the life-long process of de-

elopment and learning ( Krubitzer and Prescott, 2018 ). The increased

ariability of functional brain architecture across individuals is associ-

ted with both differences in genetic programming and individual ex-

erience. 

This variability is not evenly distributed across the brain. For in-

tance, areas in the prefrontal cortex and association areas exhibit

articularly high inter-individual differences in functional architecture

 Mueller et al., 2013 ; Nenning et al., 2017 ). These areas are notable for

xhibiting a predominance of long-range connectivity ( Sepulcre et al.,

010 ) as well as evolutionarily recent expansion ( Mueller et al., 2013 ).

he link between these observations is subject to different hypotheses

 Mueller et al., 2013 ; Buckner and Krienen, 2013 ). Inter-subject vari-

bility might be associated with the potential for architectural alter-

atives at different locations but with comparable capacity. It appears

o be linked with plasticity and the corresponding recovery of patients

uffering from focal brain damage ( Seghier and Price, 2018 ). Differ-

nces in individual experience may contribute to measurable diversity

s well. Inter-subject variability in preterm neonates and healthy adults

xhibit overall similar patterns ( Stoecklein et al., 2020 ), but variability

ncreases for parts of the fronto-parietal and dorsal attention network

uring maturation. At the same time, genes contribute significantly to

he variability of functional ( Colclough et al., 2017 ; Reineberg et al.,

019 ), and structural ( Shen et al., 2014 ; Xie et al., 2018 ) cortical net-

orks. 

Despite the evidence for both genetic and environmental influences

n brain variability, their specific contributions to variability of two

ey features of functional organization — strength and topography —

emain poorly understood. Both, variability of topography or spatial lay-

ut and connectivity strength is present across subjects ( Nenning et al.,

017 ). Therefore we only observe a mixture of both when variability in

natomically aligned subjects is measured ( Mueller et al., 2013 ). 

In this study, we disentangled variability of the connectivity strength

etween components of functional networks and the spatial cortical lay-

ut of these nodes - their topography - to study independent contributions

f genetics and environment (e.g., learning, experience) to variability of

hese two features. We analysed resting state functional magnetic res-

nance imaging (rs-fMRI) data of twins. To disentangle strength and

opography, we first performed cortical registration based on anatomi-

al features, and then identified variability of topography by subsequent

unctional registration. We found that the cortical landscapes of genetic

nfluence on variability of these two features diverge along an axis from

rimary to higher order association areas. In primary areas variability of

onnectivity strength exhibits high heritability compared to topography,

hile this relationship is reversed in parts belonging to association ar-

as. Distinguishing the role of individual experience in shaping variation

f connectivity strength from the role of heritability in shaping its topo-

raphical variability may provide crucial insights into the mechanisms

nabling the flexible, yet stable nature of brain organization supporting

he human cognitive repertoire. 

. Material & methods 

.1. Dataset and preprocessing 

We use the data of 231 participants labeled either as monozygotic

r dizygotic twin taken from the HCP S1200 ICA-FIX denoised dataset.

nly twins with 4 rsfMRI runs available are chosen. Although not

ntended on purpose, there were then only same-sex dizygotic twin

airs included in the study. Further details on exclusion criteria and

ata acquisition are described elsewhere ( Van Essen et al., 2012 , 2013 ;

ubois et al., 2018 ; U ğurbil et al., 2013 ). 112 subjects out of 231 are

abeled as monozygotic twin. The mean age in this group is 30.02 years

nd 74% are female. The group of monozygotic twins consists of 2

ubjects denoted as “Asian/Nat. Hawaiian/Other Pacific ”, 12 denoted

s “Black or African Am ”, 1 as “Unknown or Not Reported and 97 as
2 
White ”. The other 119 subjects labeled as dizygotic are 62% female an

he mean age in this group is 29.82 years. 4 are denoted as “Asian/Nat.

awaiian/Other Pacific ”, 21 as “Black or African Am ”, 1 as “Unknown

r Not Reported and 93 as “White ”. Participants provided verbal consent

n accordance with guidelines set by the Wu-Minn HCP Consortium. 

The preprocessing consists of the HCP-pipelines ( Glasser et al.,

013 ), which include processing of the volume data and bringing the

articipant’s surface into a standard space (fs_LR). For the ICA-FIX

ataset independent component analysis is used to decompose the data

et into “good ” and “bad ” components based on the volume data. Bad

omponents are then removed from the surface data ( Griffanti et al.,

014 ; Salimi-Khorshidi et al., 2014 ). Global signal regression and band-

ass filtering (range 0.01 Hz–0.08 Hz) are applied in addition to

he HCP-pipelines. Furthermore, the fMRI time-series are mapped to

reesurfer’s ( Fischl et al., 1999 ) fsaverage4 (version 5.3) surface using

onnectome Workbench v1.3 ( Marcus et al., 2013 ). In the following

ections, we explain the methodology used to disentangle functional

onnectivity strength and topography and estimate genetic and envi-

onmental influence on their variability. Supplementary Figure 1 gives

n overview of the processing flow. 

.2. Decoupling function from anatomy 

To independently investigate the genetic- and environmental contri-

ution to variability of functional connectivity and its spatial topog-

aphy across the cortex, we first disentangle these two components

 Fig. 1 a). After anatomical alignment of cortical surfaces of all individu-

ls ( Glasser et al., 2013 ), we embed the cortical functional connectivity

tructure into a representational space, and align functional networks

n this space ( Margulies et al., 2016 ; Langs et al., 2014 ). To obtain the

mbedding, diffusion maps are used ( Nenning et al., 2017 ; Coifman and

afon, 2006 ). For our study we focused on functional intersubject vari-

bility in resting state fMRI, therefore we used only functional resting

tate features given through the gradients for alignment instead of the

ultimodal approach ( Glasser et al., 2016 ; Robinson et al., 2014 ). For

ach twin a correlation matrix including all vertices of the left and right

emisphere is calculated. As in Margulies et al. ( Margulies et al., 2016 )

he cosine similarity metric is applied to each pair of rows of an in-

ividual’s correlation matrix and based on the obtained values, a new

ymmetric similarity W is constructed for the participant in which the

ntries correspond to the cosine similarity value of the row pairs of the

ndividual’s correlation matrix. Since the cosine similarity gives values

etween -1 and 1, the range of the entries of W is shifted so that the

argest value is 2 and all entries are larger than 0. The matrix W of each

ndividual then represents the edge weights of a similarity graph. Com-

ared to Margulies et al. (2016) who first calculated a correlation matrix

ased on fMRI time series and thresholded it before applying the cosine

imilarity, we did not want to discard information through threshold-

ng. To obtain non-negative affinity matrix entries for diffusion map

alculation we shifted all values into the range 0–2, to represent the re-

ationships among node pairs. We interpreted the decreasing values of

he cosine similarity or the correspondingly increasing angle between

wo nodes as an increase in difference between those nodes. A shift of

alues into the range 0–2 therefore still represents a valid relationship

mong nodes. 

The next step is obtaining a spectral representation of the connectiv-

ty structure via eigendecomposition of the matrix L = Č− 1 ( D 

− 1/2 WD 

− 1 2 ),

here D is the diagonal matrix of node degrees d i =Σj ( W i,j ) and Č is

he diagonal matrix of node degrees či =Σj ( D 

− 1/2 WD 

− 1 2 ) i,j . We basically

pply graph laplacian normalization to D 

− 1/2 WD 

− 1 2 ( Coifman and La-

on, 2006 ). Embedding coordinates Ψi of vertex i are derived from the

ight eigenvectors of L multiplied with 𝜆k /(1- 𝜆k ), where 𝜆k denotes the

igenvalue of the k th eigenvector 𝜓 k , as 

𝑖 = 

(
𝜓 1 ( 𝑖 ) , 𝜓 2 ( 𝑖 ) , … , 𝜓 𝑁 ( 𝑖 ) 

)𝑇 
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Fig. 1. Overview. (a) Disentangling functional 

connectivity and topography of functionally 

corresponding units on the cortex enables the 

independent analysis of genetic contributions 

to these different features of variability. (b) 

After disentanglement, FC captures variability 

of connectivity strength of corresponding net- 

work nodes regardless of their spatial variabil- 

ity. In each of the four exemplary brains, the 

strength of connections is represented by the 

thickness of connecting lines. (c) SP is the vari- 

ability of the spatial position (topography) of 

functionally corresponding vertices. When sub- 

jects are anatomically aligned, functional cor- 

responding units or vertices (the blue vertex in 

the bottom right panel) differ in spatial position 

(coordinates). To know which units are func- 

tionally corresponding across subjects we per- 

form functional alignment. (For interpretation 

of the references to color in this figure legend, 

the reader is referred to the web version of this 

article.) 
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 1 (i) is the i th entry of the first eigenvector. 

In order to reach functional correspondence across participants the

mbedding of each twin ΨS = ( 𝜓 1 
S , 𝜓 2 

S , …, 𝜓 N 
S ) is aligned to the em-

edding ΨR = ( 𝜓 1 
R , 𝜓 2 

R , …, 𝜓 N 
R ) of a reference participant (ID: 101915)

ot part of the twin dataset by calculating a rotation matrix Q S,R , that

as the form 

 𝐒 , 𝐑 = 𝐕 𝐔 

𝑇 , 

ith V and U constructed via singular value decomposition, 

Σ𝑉 𝑇 = 

(
Ψ𝑅 

)𝑇 Ψ𝑆 . 

A publically available implementation is used to obtain and align

iffusion maps (mapalign: https://github.com/satra/mapalign ). Our ob-

ained gradients 1, 2 and 3 are comparable to Margulies’ gradients 1, 3,

nd 4, separating visual/somatomotor and default mode network, fron-

oparietal/attention networks and default mode networks, and visual

ortex and regions belonging to task positive networks, respectively. Af-

er having obtained the embedding coordinates the first three are used

s features for surface registration with MSM v2 ( Robinson et al., 2014 ,

018 ; Ishikawa, 2014 ), where each twin’s surface is aligned to the refer-

nce surface. We used only the first 3 components for alignment because

fter the third embedding coordinate the eigenvalues of the remaining

oordinates decreased more continuously, indicating a worse separation

rom each other. Beside, we also followed Nenning et al. (2015) who

sed diffusion maps for multi-subject functional registration and found

hat using the first 3 components gave the best results. Box plots sum-

arizing the distribution of eigenvalues across subjects for the first 7

omponents are shown in Supplementary Fig. 2. Deformation fields for

iscovery and robustness analysis are shown in Supplementary Fig. 3.

fter alignment a vertex of the twin is assigned to each vertex of the

eference participant, using nearest neighbor to reach functional corre-

pondence of vertices across all individuals in the twin dataset. W can

e constructed in different ways from the signal correlation data. To in-

estigate the stability of the gradients dependent on the construction of

 , we also calculated gradients by (1) thresholding W at 0 and (2) tak-

ng the absolute values W instead of shifting the range. Supplementary

ig. 4 shows the first 3 gradients for shifted, thresholded and absolute

 . For the first two variants, gradients are qualitatively similar despite

ifferent constructions of W . 
3 
This functional alignment allows us to observe variability in the spa-

ial position - topography - of corresponding functional regions (SP) and

ariability of functional connectivity strength of these corresponding

unctional regions (FC) independently ( Fig. 1 b). More details on quan-

ification of variability of connectivity strength or topography are found

n the next section. Calculations in this manuscript are performed with

ython 3.6, if not stated otherwise. 

.3. Parcellation and quantification of inter-subject variability 

After preprocessing the cortex is parceled into 600 parts, 300

er hemisphere, using the Schaefer – 600 parcellation scheme

 Schaefer et al., 2018 ). The advantage of this scheme is the possibil-

ty to assign each region of interest (ROI) to one of the 7 Yeo-networks

 Yeo et al., 2011 ). In this study the networks are split into a left and

 right part yielding 14 networks. For each of the 14 networks a rep-

esentative ROI is chosen by correlating first each ROI time series of a

etwork with all the other time series of the same network. The ROI with

he highest mean correlation value is then chosen as the representative

OI for each of the 14 networks. For this purpose the concatenated LR-

uns 1 and 2 are used. The choice of the representative ROIs is done

ased on the reference subject and then taken over for all participants. 

Using the representative ROIs we construct connectivity profiles of

ize 1 × 13 for each vertex of the cortex and subject by calculating the

earson correlation coefficients between the time series of the current

ertex under investigation and the 13 representative ROIs of the net-

orks to which the current vertex does not belong. This is done for

natomically aligned subjects, as well as, after functional alignment. The

onnectivity profiles for each vertex describe the corresponding variabil-

ty across subjects of entangled functional connectivity and disentangled

onnectivity strength, respectively, and serve as phenotype description

or the twin model. A Fisher’s z transformation is applied afterwards

nd gender as well as the mean relative root mean squared motion dif-

erence of Run 1 and 2 are regressed out. Age was not included as a

egressor since all subjects are young adults with age raging from 22 to

6, similar as in Reineberg et al. (2019) . The regression is done using R

ersion 3.4. 

To describe the phenotype or variation of spatial layout, each func-

ionally corresponding vertex of each participant is described by its orig-

https://github.com/satra/mapalign
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nal position in 3-dimensional space before functional alignment. This

aptures the variability of the observed cortical positions of nodes in

he functional networks that were brought into correspondence by func-

ional alignment, since their connectivity profiles were similar. Then the

win model used is the same as for connectivity strength, the only dif-

erence is that the phenotype of each participant is described by 3 traits

nstead of 13. 

.4. ACE twin model 

To obtain estimates for the genetic and environmental influences on

he variability of connectivity strength or position of each vertex, we

se multivariate twin models ( Neale and Maes, 2021 ). We analyze addi-

ive genetic (A), common environmental (C), and random environmen-

al (E) factors on these two types of variability. To enable comparison

f results with prior work, we also analyze these factors for functional

onnectivity before disentanglement (aFC). This reflects the combined

ariability of topography and connectivity strength at any cortical posi-

ion. In the model for connectivity strength the phenotype of each vertex

nd individual is described by 13 character traits, namely the correla-

ion with the representative ROIs. For variability of position 3 character

raits are used for description, namely the 3-dimensional original (prior

o functional alignment) coordinates of functionally corresponding ver-

ices. The model is applied to each vertex separately and the relation

etween these character traits is summarized in the expected population

ovariance matrix V p. It can be split into three covariances representing

he additive genetic influence A , the common environmental influence

 and the random environmental influence E , i.e. 

 𝑝 = 𝐀 + 𝐂 + 𝐄 . 

 p , A, C and E are of dimension 13 × 13 or 3 × 3, respectively. Addi-

ive genetic control refers to the additive effects of the two variants of

 gene (allele) present in a human being. The two alleles can interact

ith each other leading to non-additive interaction effects. The typically

arger additive genetic contribution together with non-additive interac-

ion effects comprise the total genetic contribution ( Bürger, 2000 ). The

ommon environment C makes members of the same family more simi-

ar to each other than to members of different families. The random envi-

onment E causes the differences between members of the same family.

o ensure that the estimated matrices A, C and E are symmetric and pos-

tive definite, they are written as a Cholesky decomposition, A = T A T A 
T ,

 = T C T C 
T , E = T E T E 

T , with lower triangular matrices T A , T C and T E . 

To obtain estimates for T A , T C and T E the expected trait covariance

tructure of monozygotic and dizygotic twin pairs is used. It can be

hown that the covariance matrices for monozygotic V MZ and dizygotic

wins V DZ are given by the block matrices, 

 MZ = 

( 

𝐀 + 𝐂 + 𝐄 𝐀 + 𝐂 

𝐀 + 𝐂 𝐀 + 𝐂 + 𝐄 

) 

, 

𝐕 DZ = 

( 

𝐀 + 𝐂 + 𝐄 0 . 5 𝐀 + 𝐂 

0 . 5 𝐀 + 𝐂 𝐀 + 𝐂 + 𝐄 

) 

. 

V MZ and V DZ are of dimensions 26 × 26 for connectivity strength and

 × 6 for position variability. This means that the trait covariance of a

win (monozygotic, as well as dizygotic) with himself is A + C + E = V p .

he trait covariance of monozygotic Twin 1 with Twin 2 is A + C,
hereas for dizygotic twin pairs it is 0.5 A + C , since they share on aver-

ge only half of their genes, whereas the genes of monozygotic twins are

dentical. For parameter estimation the expected trait population covari-

nce matrix V p , as well as the expected covariances of Twin 1 with Twin

 (mono- and dizygotic) are then equated with the corresponding values

alculated from the dataset. The twin model is implemented using R’s

ackage OpenMx version 2.11.5 ( Neale et al., 2016 ; Hunter, 2018 ). 
4 
.5. Analysis 

After estimation, genetic, common environmental and random en-

ironmental contribution maps are available for variability of connec-

ivity strength after anatomical and functional alignment and for the

patial layout. Note that values for A, C and E are only considered for

ertices with corresponding fMRI signal and which can be assigned to

ne of the 600 ROIs (2339/2562 vertices on the left and 2341/2562

n the right hemisphere). This excludes mainly vertices from the me-

ial wall. Several comparisons are made. First, the genetic contribu-

ions to variability in connectivity strength after anatomical and func-

ional alignment are compared to each other by comparing the mean

enetic contribution on the surface using a paired t -test. The normal-

ty assumption for the differences of paired values is verified using

 histogram (Supplementary Fig. 5). Additionally, the genetic contri-

utions to variability of connectivity strength before and after func-

ional alignment and to spatial layout are correlated with each other

sing Pearson’s correlation coefficient. Furthermore, the genetic con-

ributions to variability of the spatial layout are correlated with vari-

bility in spatial layout, distance to primary area and cortex expansion.

ncorrected and corrected p -values are provided for the correlation co-

fficients and the t -test, whereas the uncorrected p -values for correla-

ion coefficients are calculated with a spin test using 10,000 spins in

atlab ( Alexander-Bloch et al., 2018 ). The level of significance is set

o 0.05 and obtained p -values are adjusted through Holm-Bonferroni-

orrection. Holm-Bonferroni correction is done for each hemisphere sep-

rately and covers the t -test and correlation of heritability of SP with

ariability in spatial layout, distance to primary area and cortex expan-

ion as well as correlations between genetic contributions to variabil-

ty of connectivity strength before and after functional alignment and

o spatial layout with each other. Correlations between heritability of

P and FC with corresponding test-retest maps are also included in the

ulti-comparisons correction procedure (compare Limitations section).

We also investigated the relation between function and heritability

s presented in Figs. 4 and 5 . In Fig. 4 we find the vertices with heri-

ability estimates as estimated by the twin model belonging to the top

0% and bottom 20%. Then we get the density of points for bottom

nd top 20% in functional gradient space ( Margulies et al., 2016 ) sepa-

ately. Finally we take the difference of densities and plot it with blue

ndicating bottom 20% dominance and red indicating top 20% domi-

ance. In Fig. 5 values of genetic contribution to FC (A FC ) and SP (A SP )

re divided into 10 bins based on percentiles ( x -axis). Within each bin

ormalized activation probabilities are summed given one of 12 com-

onents related to function (i.e. language) ( Yeo et al., 2016 ). The 12

omponents (rows) are ordered based on the difference of activation

robabilities between A FC and A PS summed over bins and weighted by

he log of percentile. The sequence visualizes the gradient from high

 SP and low A FC on top, towards low A SP and high A FC on the bottom.

he 12 activation probability maps and the maps for A FC and A SP are in

he same space, therefore activation probabilities of voxels lieing in one

 SP /A FC -bin can be summed. 

Additionally we performed robustness analysis using 2 RL fMRI runs,

hich have also been available for each participant additionally to the

 LR runs used for the discovery analysis. In addition to performing the

ame steps as described in the first paragraph of this section, we also cor-

elated maps based on the discovery dataset with maps obtained based

n the RL runs. Note that for each category either aFC, FC or SP there

ere some vertices for which an optimal solution for the estimates of

he twin model could not be found. This holds for the robustness as

ell as the discovery analysis. However there were never more than 12

ertices per category for which a solution was not found. Vertices were

nly excluded from analyses in situations where they clearly appeared

s outliers, i.e. their presence changed the appearance of the contribu-

ion maps visualized on the surface. This was only the case for maps of

he variability explained by the twin model. One vertex each was re-

oved from the discovery SP and aFC variability map as well as from



B. Burger, K.-H. Nenning, E. Schwartz et al. NeuroImage 247 (2022) 118770 

Fig. 2. Additive genetic and random environ- 

mental contribution to functional variability 

of the cortex. (a) After disentangling variabil- 

ity of spatial topography (SP) and connectivity 

strength (FC), SP exhibits pronounced peaks of 

genetic contribution of at least 30%, whereas 

the genetic contribution to FC mainly decreases 

compared to entangled functional variability 

(aFC). All values are positive and color maps 

are chosen to differentiate regions with high or 

low contribution. (b) For two regions of inter- 

est indicated in the aFC map, quantitative val- 

ues are shown. Compared to aFC, genetic con- 

tribution is lower for FC and higher for SP. The 

contribution of random environment is highest 

for disentangled connectivity strength FC. 
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he FC variability map of the robustness analysis. As suggested by re-

iewers, a sensibility analysis by restricting the subjects to those with

aucasian ancestry and using equal fractions of females for monozygotic

nd dizygotic twins was also performed. 

. Results 

.1. Divergent roles of genes and random environment in shaping strength 

nd topography of networks 

Genetic and common environmental contributions to aFC (A aFC and

 aFC ) were consistent with previous findings ( Reineberg et al., 2019 ).

or aFC, areas with low random contributions include the rostral mid-

le frontal cortex, the pericalcarine cortex and the boundaries between

emporal middle frontal inferior parietal cortex and superior temporal

anks on both hemispheres, as well as two spots in the superior frontal

ortex on the left hemisphere and one spot on the right hemisphere.

he transverse temporal cortex, isthmus and several region boundary

reas on the medial surface exhibit highest values of random contribu-

ion ( Fig. 2 ). Surface maps for both hemispheres are provided in Sup-

lementary Fig. 6. Genetic contribution ranges from 5.25 to 45.3% of

he variance explained by the twin model. 

After disentangling variability of function and spatial topography,

enetic contributions to SP and FC diverge, and reveal a heterogeneous

andscape across the cortex. In Fig. 2 two example regions at peaks of

 aFC illustrate this divergence, since A FC decreases compared to A aFC in

oth regions and A SP increases. Random environmental contributions

 SP and E FC show opposite behavour at least in region B. On average,

enetic contribution to FC is lower compared to aFC (left hem: 19.3%

A aFC ) vs 16.5% (A FC ) of variance explained by genes, corrected p -value

 0.00001; right hem: 19% (A aFC ) vs 16.1% (A FC ) of variance explained

y genes, corrected p -value < 0.00001, Fig. 3 a). This decrease of genetic

ontrol is also apparent in Regions A and B in Fig. 2 . The central sul-

us is one of the few areas where local estimates of genetic contribution

ncreased from A aFC to A FC . Random environment is the strongest in-

uence on FC throughout the cortex with a lowest value of 45%, while

enetic contribution ranges from 2.92 to 42%. In contrast to that, A SP 

xhibits pronounced regional heterogeneity with genetic contribution

ccounting from 0% to 67% of the variance explained by the twin model,

iving a mean genetic contribution of 15.53% of the variance explained

n the left and 14.78% on the right hemisphere. In Region A and B in
5 
ig. 2 the decrease from A aFC to A FC is mirrored by an increase from

 aFC to A SP . 

.2. Two different gradients of genetic- and environmental influence on 

etwork strength and topography 

We observed two different gradients in the genetic contribution to

ariability of connectivity strength and topography along an axis from

rimary areas to heteromodal networks. Fig. 3 b shows the difference be-

ween A SP and A FC across the cortex. In primary areas, including visual-

nd somatomotor networks genetic contribution to functional connec-

ivity strength variability A FC dominates, while its contribution to topo-

raphical variability A SP is comparably low. The opposite is the case in

ome regions belonging to higher-order areas, such as in frontoparietal

reas, attention- and default mode networks ( Yeo et al., 2011 ) where

enetic contribution to A SP is higher than A FC . This coincides with a

articularly high divergence between A SP and A FC, and A SP being at

ts peaks higher than E SP (Supplementary Fig. 7). Those areas include

arts of the rostral middle frontal, middle temporal and inferior pari-

tal cortex on the left hemisphere, as well as at the boundary between

he superior frontal and the precentral cortex. On the right hemisphere

hose areas include a part of the middle temporal cortex and an area

long the boundary between superior frontal and caudal middle frontal

ortex, reaching in the rostral middle frontal cortex. For 7 Yeo networks,

isual- and somatomotor cortex exhibit predominantly areas with high

 FC / low A SP paired with low E FC / high E SP ( Fig. 3 c). This divergence

s reduced in dorsal- and ventral attention networks, and vanishes in

ronto-parietal- and default mode networks. A robustness experiment

hows that this observation is highly stable (Supplementary Fig. 8). 

.3. High genetic contribution to topography in more variable, and 

hylogenetically modern areas 

We investigated the relationship of A SP to network position vari-

bility ( Nenning et al., 2017 ), the distance to primary areas and the

mount of cortical expansion between macaque and human ( Hill et al.,

010 ). A SP correlates with variability (left hemi: r = 0.3, corrected p -

alue = 0.0054; right hemi: r = 0.41, corrected p -value = 0.0054 and

ortical expansion from macaque to human (left: r = 0.18, corrected p -

alue 0.1044; right: r = 0.099, corrected p -value = 0.3650). The relation-

hip between A SP and the distance to primary area follows an inverted
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Fig. 3. Divergent roles of heritability for variability disentangled connectivity strength (FC) and spatial topography (SP) of function along a gradient from primary- 

to heteromodal areas. (a) Global distribution of additive genetic influence A for aFC, FC and SP. Compared to aFC, genetic contribution is smaller for FC, and exhibits 

a more heterogeneous landscape for SP. (b) Comparing genetic contribution to FC and SP across the cortex reveals areas of dominant influence on FC (visual- and 

somatomotor cortex) and areas of dominant influence on SP (attention-, fronto-parietal-, and default mode network) in 7 networks (Yeo et al. 2011). (c) Heritability 

of connectivity strength variability is most dominant in primary areas (visual, somatomotor) decreasing to a minimum in integration areas (frontoparietal, default 

mode). On the right, for each network, the distribution of location variability and genetic contribution is plotted. 
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 shape. It increases with distance to primary areas in somatomotor-,

omatosensory-, visual cortex, dorsal and lateral attention network (left:

 = 0.206, corrected p -value = 0.2076; right: r = 0.286, corrected p -

alue = 0.1196), then decreases in limbic, fronto-parietal and default

ode network (left: r = -0.275, corrected p -value = 0.1598; right: r = -

.01, corrected p -value = 0.5644). Supplementary Table 1 summarizes

he values, and corrected as well as uncorrected p -values. Except vari-

bility, none of the correlations were significant after multi-comparisons

orrection. Fig. 4 a shows the dominant high (red) or low (blue) A SP in

he space of location variance and the distance to the primary areas.

his analysis reveals two bands : In low to medium areas there is a band

f cortical regions exhibiting predominantly low A SP . At the same time a

iagonal band from areas with low variance close to the primary areas,

o higher variance, and intermediate distance to primary areas exhibits

redominantly high A SP . Those areas include the middle temporal and

he rostral middle frontal cortex on both hemispheres as well as parts of

he superior frontal and inferior parietal cortex. 

.4. High genetic contribution to topography in areas in-between primary 

ortex and brain hubs 

To further examine A SP in the space of functional gradients spanning

ni- to heteromodal, and task negative- to task positive networks, we

lot high (red) or low (blue) A SP dominance in the space spanned by
6 
he first, second and third functional gradients ( Margulies et al., 2016 )

 Fig. 4 b). In regions corresponding to association areas (high gradient

), around visual processing (high gradient 2), and task positive activity

high gradient 3) high A SP (red clusters) dominates locally, while in

omatosensory and somatomotor areas (low gradient 1 and 2) low A SP 

blue cluster) dominates. Task negative areas (low gradient 3) exhibit

 mixed composition without a clear dominant behavior with regard to

 SP (red and blue clusters). A stream of high (red) A SP is situated along

he edge from somatosensory/somatomotor to association areas through

ask positive regions. High genetic contributions modestly dominate the

parse central area of intermediate gradient 1 and 2. 

.5. Distinct strength and topography both contribute to overall variability 

The overall variability as measured by the variance of connectivity

trength before and after disentanglement estimated by the twin model

s similar in magnitude (range aFC: 0.102 to 0.8, range FC: 0.105 to

.76), and the genetic contributions A aFC and A FC moderately correlated

n both hemispheres (left: r = 0.298, corrected p -value < 0.00001; right:

 = 0.273, corrected p -value < 0.00001). The correlation between A aFC 

nd A SP was 0.128 on the left and 0.198 on the right hemisphere (cor-

ected p -value = 0. 0630 and corrected p -value = 0.005). Disentangle-

ent of functional connectivity and topography reduces the correlation

f genetic contributions to 0.05 (A FC to A SP ) on the left- and 0.091 on the
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Fig. 4. Relationship of spatial variability and functional gradients to genetic contribution to spatial layout. (a) Areas where high- (top 20%) and low- (bottom 20%) 

A SP dominate are plotted in a coordinate frame spanned by the variance of the spatial position of network areas and the distance to primary areas. (b) Analogously, 

A SP dominance maps are visualized in the functional gradient space for gradients 1, 2, and 3 (Margulies et al. 2016). (For interpretation of the references to color in 

this figure, the reader is referred to the web version of this article.) 
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Fig. 5. Relation of genetic contribution to topographical variability and cogni- 

tive function. Values of A FC and A PS are divided into 10 bins based on percentiles 

( x -axis). Within each bin normalized activation probabilities are summed given 

one of 12 components ( Yeo et al., 2016 ). The 12 components (rows) are ordered 

based on the difference of activation probabilities between A FC and A PS summed 

over bins and weighted by the log of percentile. The sequence visualizes the gra- 

dient from high A SP and low A FC on top, towards low A SP and high A FC on the 

bottom. (For interpretation of the references to color in this figure, the reader 

is referred to the web version of this article.). 

4

 

n  

h  
ight hemisphere (corrected p -value = 0.1336 and p -value = 0.1056). The

ariability explained by the twin model for SP ranges from 7.98 mm 

2 

o 137 mm 

2 when described as variance. This corresponds to a standard

eviation ranging from 2.82 mm to 11.7 mm. Supplementary Table 2

ummarizes correlations and their p -values. The hemispheres show sim-

lar patterns. 

To gain a more detailed picture of the influence of FC and SP, we re-

ated their genetic contribution maps to cognitive functions, using a 12

omponent task activation model ( Yeo et al., 2016 ) ( Fig. 5 ). We were

specially interested in comparing A SP and A FC in regions and corre-

ponding functions, where both are high. Regions with high A FC espe-

ially dominating over high A SP are associated with visual processing

nd hand movements, whereas A SP strongly dominates over A FC in re-

ions associated with inhibition and auditory processing. 

.6. Robustness and sensitivity analysis 

We performed robustness analysis using 2 RL fMRI runs, available

or each participant in addition to the 2 LR runs used for the main dis-

overy analysis. In contrast to the LR runs, the phase encoding direction

or the RL runs is from right to left ( WU-Minn Consortium of the NIH

uman Connectome Project, 2017 ), which might be a source of variance

etween runs of the same subject, in addition to the general intra-subject

ariance ( Mueller et al., 2013 ; Cho et al., 2021 ). Disentangling resulted

n comparable deformation fields of function and topography (Supple-

entary Fig. 3). SP, FC and aFC estimated by the twin model at each

ertex correlate in the discovery- and robustness analysis (Supplemen-

ary Fig. 9). (aFC: left hemisphere: 0.98, right hemisphere: 0.98; FC:

eft: 0.93, right: 0.91; SP: left: 0.57, right: 0.65). The relationship be-

ween genetic and environmental influence, variability, as well as their

istribution in the functional gradient space is highly replicable (Sup-

lementary Fig. 10). Their respective dominance in 7 Yeo networks on

he replication data, reflects those observed in the discovery data (Sup-

lementary Fig. 8). 

As suggested by the reviewers, we also conducted a sensibility anal-

sis to rule out ancestry and gender as a potential confounder. We re-

tricted our data to subjects with caucasian ancestry only and used the

ame fraction of females for monozygotic and dizygotic twins. Supple-

entary Fig. 11 shows the results of the sensibility analysis. Patterns

enerally stayed the same including heritability estimates of at least 0.3

or topographical variability at the temporal lobe and prefrontal cortex.
7 
. Discussion 

In this study we disentangled strength and topography of functional

etworks across the cortex. We applied a method to study the role of

eritability and individual experience shaping these two key features
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ndependently. Disentanglement revealed that their influence on vari-

bility of strength and topography diverges across the cortex. While in

rimary areas, variability of strength is more heritable compared to to-

ography, the opposite is the case in areas belonging to intermediate and

igher order association areas. There, genetic factors primarily shape

ariability of topography, while variability of connectivity strength is

redominantly determined by individual experience. Our results may

nform our understanding of the mechanisms of emergence and contin-

ed adaptation of brain areas unique to humans. 

.1. Variable and heritable topography in intermediate and higher order 

ssociation areas 

In evolutionary older parts of the cortex, functional connectivity is

elated to proximity ( Sepulcre et al., 2010 ). The modern human associ-

tion cortex does not follow this rule anymore. The tethering hypothesis

 Buckner and Krienen, 2013 ) posits that regions that form modern as-

ociation cortex became untethered from strong patterning signals of

halamic input in the past due to cortical expansion. This fostered a less

ierarchical connectivity landscape in these regions. Together with an

ncrease in cortico-cortical connectivity and their position between sig-

al gradients from distributed primary areas, this may have paved the

ay for being subsequently co-opted for high-level integrative cognitive

apabilities. In light of this, the rapid evolutionary expansion of associa-

ion cortex may also have led to a dissociation between the roles of func-

ional components and their spatial layout, contributing to the high vari-

bility these networks exhibit compared to primary areas ( Mueller et al.,

013 ; Sepulcre et al., 2010 ; Buckner and Krienen, 2013 ). The precise

ole of this variability is, however, not clear. 

We did observe dissociation of genetic influences on the variability

f strength and topography in association cortex. While here, topog-

aphy and connectivity strength are highly variable, the variability of

he first is heritable to a much higher degree than the latter. There-

ore the development of a less hierarchical connectivity landscape may

ave gone along with an increase in genetic variability encoding topo-

raphical variability. Since the genetic variability is still present today,

ifferent genotypes may have formed the basis of equally fit phenotypes

n the past. At the same time, genetic influence may enable improving

 coordinated - and eventually possibly even canonical - layout of pro-

essing pathways in the future, as heritability renders topographic vari-

bility visible to selection and adaptation, enabling the emergence of

eplicable organization. At the same time, the strength of the intercon-

ectedness among the components anchored in a diverse, but heritable

andscape is shaped by individual experience and the environment. 

The observation that highly variable, and heritable topography over-

aps in association cortex, is initially counterintuitive, but may have ben-

fits on the individual-, and the population level. It may afford connec-

ivity strength’s variability and susceptibility to random environmental

nfluence on top of an underlying coordinated framework of network

opography, necessary for the acquisition of higher-order human cogni-

ive abilities. At the same time, on the population level, simultaneous

ariability and heritability of topography may not only be a transient

tate while organization is optimizing, but instead a means to sustain

opulation level diversity and fitness ( Amy and Bauernfeind, 2019 ). For

ither point, the separation of variability explained by heritable traits

ersus random environmental influence and their independent link to

opography and connectivity strength are important. 

.2. Coordinated processing pathways from primary to heteromodal areas 

An increase of heritable topographical variability from visual and so-

atomotor cortex to default and fronto-pariental networks ( Fig. 3 c) sup-

orts the two hypotheses regarding different but coordinated heritable

ntegration pathways. Task positive areas of high genetic contribution

re in close proximity of early to intermediate processing areas found in

 study of pathways from primary areas to network hubs ( Sepulcre et al.,
8 
012 ). When taking into account areas whose variability is influenced

y common environment, low random contribution areas are next to the

orsolateral prefrontal cortex (DLPFC), the frontal eye fields (FEF) and

 stream following the borders of the visual cortex to the lateral occip-

totemporal junction (LOTJ) and then reaching into task-negative areas

f the temporal lobe. Early integration areas of the visual processing

tream form a cluster of high genetic contribution to SP present in the

isual cortex in Fig. 4 b. The visual cortex’ connectivity follows three

athways ( Sepulcre et al., 2012 ), a feature not present for the other

rimary cortices. Genetic coding of network position variability in the

isual cortex may be needed to robustly sustain a more intricate path-

ay structure. The low genetic contribution to topographical variability

 SP in somatosensory and somatomotor areas might be a consequence

f the low variability SP in these areas which can be seen in Fig. 4 a.

t suggests that the topography of these regions is already quite settled

nd therefore under tight genetic control, while this is not the case for

he remaining observed topographical variability. 

Low to intermediate integration areas exhibit comparably high her-

tability of functional connectivity strength variability (FC), though to

 lesser extent. Peak areas are close to LOTJ and DLPFC, two regions

elonging to integration areas not directly adjacent to the somatomo-

or and somatosensory cortex, and in case of the DLPFC not adjacent to

he visual cortex ( Sepulcre et al., 2012 ). The stronger genetic encoding

f connectivity strength variability in these areas might be necessary to

ffectively bridge the larger distance compared to areas located directly

ext to primary areas. 

.3. Disentanglement sheds new light on heritability of entangled functional

onnectivity strength 

The entire cortex shows moderate genetic influence on connectivity

trength variability before disentanglement (aFC). Disentangling FC and

P reveals a predominantly decreased A FC compared to A aFC and a loca-

ion dependent increase of A SP . This suggests that genetic influence on

FC to a relevant extent actually reflects A SP . Further evidence on that is

rovided in a recent study distinguishing connectivity profiles of sibling

airs from pairs of unrelated individuals ( Miranda-Dominguez et al.,

018 ). Although the study did not investigate heritability of topogra-

hy directly, the authors used a parcellation to obtain regions of interest

ROIs) and described the time series of each ROI by the time series of all

ther ROIs through regression. They then used the obtained coefficients

s a connectivity profile of a ROI. Most areas of low random environ-

ental contribution to spatial topography overlap with cortical regions

mong the top 20 to distinguish sibling pairs from pairs of unrelated

ndividuals ( Miranda-Dominguez et al., 2018 ) (Supplementary Fig. 12),

uggesting that part of aFC and the corresponding additive genetic con-

ribution is actually due to variability of the spatial layout of functional

nits on the cortex. 

This complements our emerging understanding of the role of vari-

bility of brain networks. As found in a recent study, variability in over-

ll functional connectivity is actually reflected in the variability of to-

ographical organization and the spatial arrangement of functional re-

ions strongly predicts behavior ( Bijsterbosch et al., 2018 ). In another

ecent study ( Kong et al., 2019 ) the entire cortical parcellation based on

etwork topography was able to predict measures of cognition, person-

lity and emotion. Together with our findings this suggests that different

ehavioral traits might be genetically determined through topography

nd have been either equally advantageous under similar conditions or

lternatingly advantageous under changing conditions during human

volution. 

Even though A SP seems to determine A aFC for some parts of the cor-

ex, A FC also has its role when looking at specific cognitive functions.

hereas genetic influence on most cognitive functions can be attributed

o a mixture of A SP and A FC without a clear dominance of one of the two,

here are also some exceptions as indicated by differences in ranking

n Fig. 5 . Dorsal attention and language seem to be influenced geneti-
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ally mainly through SP, since those functions are ranked at the bottom.

isual and hand movement related processing, on the other hand, are

nfluenced genetically mainly through FC. 

.4. Related work 

A range of papers has investigated genetic determination of mor-

hology ( White et al., 2002 ; Chen et al., 2011 ) as well as structural

 Shen et al., 2014 ; Xie et al., 2018 ) and functional features of the brain

 Glahn et al., 2010 ; Reineberg et al., 2019 ; Colclough et al., 2017 ;

iranda-Dominguez et al., 2018 ). In a study of White et al. (2002 ) cere-

ral brain volumes of twins, including whole brain volume as well as

ivisions into lobes and tissue types, showed correlations above 0.90, ex-

ept the frontal white matter and occipital gray matter volume. Genetic

orrelations for surface area with different seed locations have been ex-

lored in Chen et al. (2011 ) and showed an anterior-posterior division

nd a lack of long distance correlations. Similar to surface area, corti-

al thickness exhibited local genetic correlation with additional strong

enetic correlation to homologs on the opposite hemisphere in another

tudy ( Alexander-Bloch et al., 2019 ). Glahn et al. (2010 ) explored heri-

ability of anatomical morphology and functional aspects of the default

ode network, revealing an independent genetic influence on anatomi-

al morphology and functional variability. Some other previous studies

ased on fMRI data used a univariate twin model to investigate the con-

ectivity of single edges between regions distributed across the cortex

 Reineberg et al., 2019 ; Colclough et al., 2017 ). Observed genetic con-

ributions are higher than common environmental influences in both

apers. A multivariate machine learning based approach was used in

iranda-Dominguez et al. (2018 ) to distinguish sibling pairs from pairs

f unrelated individuals. Useful regions for pair classification belonged

o higher order systems, such as the fronto-parietal, dorsal attention and

efault mode network. Measures of structural connectivity were found

o be especially heritable for connections within the default mode net-

ork, visual circuits and connections between default mode and fronto-

arietal or ventral attention network ( Shen et al., 2014 ; Xie et al., 2018 ).

.5. Limitations 

This study has several limitations. One limitation is the way how

he genetic, common environmental and random environmental con-

ributions to connectivity strength at each vertex are estimated. Since

he brain is a network, describing the connectivity strength or profile of

ach vertex should preferably be done by including the connections to

ll nodes in the brain. However, due to the large number of parameters

hich had to be estimated for the twin model, this option is compu-

ationally infeasible. Therefore we describe the connectivity profile of

ach vertex by its connectivity to predefined regions of interest, an ap-

roach consistent with prior work ( Yeo et al., 2011 ). A limitation of

he twin model used is that it only models contributions that act addi-

ively on the inter-subject variability. Including interactions of genetic

nd environmental influences in the model could give additional in-

ights. Further limitations are that the power to separate A from C is

ower than for separating A from E, which can lead to the partial at-

ribution of common environmental influence to genetic influence or

ice-versa. We also found significant correlations between test-retest re-

iability and heritability for FC (left corr = 0.3024, corrected p -value <

.00001; right corr = 0.3000, corrected p -value < 0.00001) and SP (left

orr = 0.3674, corrected p -value = 0.0046; right corr = 0.4545, corrected

 -value = 0.0049). However, heritability is not completely explained by

est-retest reliability. This is also suggested by a much higher correla-

ion of test-retest reliability of SP and FC (0.532, both hemispheres)

ompared to the correlation between heritability of FC and SP (0.072,

oth hemispheres). We also show brain maps where we regressed out 1-

est-retest variability in Supplementary Fig. 14. Concerns of reliability

ave also been addressed through robustness analysis, which showed
9 
hat the main findings are stable across runs and suggests that the pro-

essing stream from unimodal to heteromodal areas shows an interplay

f rather genetically determined topography and functional connectiv-

ty strength determined rather by random environment, which deserves

ore investigation in the future. 
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