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Abstract— In this paper, deterministic and robust design 

optimizations of a permanent magnet assisted synchronous 

reluctance machine were performed to increase its mean 

torque while reducing torque ripple.  These optimizations were 

carried out using a surrogate model based on 2-D finite 

element simulations. The results of the robust optimizations, 

which considered manufacturing uncertainties, were compared 

to the deterministic optimization. The robust designs have 

shown not only good mean torque and torque ripple 

performances, but they have also shown improved robustness 

against design parameters uncertainties.   

Keywords— Synchronous Machines, Robust Design 

Optimization, Manufacturing uncertainties, Surrogate model, 

Finite elements analysis. 

I. INTRODUCTION  

 With the increasing concerns over climate change, many 
measures have been adopted to reduce greenhouse gas 
emissions. For transportation systems, in order to replace 
internal combustion engine vehicles, electric and hybrid 
vehicles (EV, HEV) have been intensively developed. In 
these vehicles, the electrical machine is one of their main 
components.  

Among the different types of electrical machines used in 
electric vehicles, Permanent Magnet assisted Synchronous 
Reluctance Machines (PMaSRMs) are one of the most used 
machines nowadays thanks to their good performances and 
their relatively low cost [1]. Unlike Surface-Mounted 
Permanent Magnet Synchronous Machines (SMPMSM), 
PMaSRMs exploit two types of torque: the hybrid torque 
generated using permanent magnets and, the reluctance 
torque which makes profit of the machine’s saliency. Since 
SMPMSMs only generate hybrid torque, they need more 
permanent magnets to achieve the same torque density and 
tend therefore to be more expensive. However, PMaSRMs 
have the disadvantage of having higher torque ripple partly 
due to the inhomogeneous reluctance in their rotors. The 
design optimization phase of PMaSRMs is therefore critical 
to get the right balance between performances and an 
acceptable level of torque ripple.  

Many studies have dealt with reducing torque ripple in 
PMaSRMs [2][3]. The optimization methodologies used in 
such studies can be described as deterministic since they do 
not consider any uncertainties on the input parameters. 
However, in practice, there are many discrepancies between 
the theoretical and real (measured) values of these 

parameters. These differences can be caused by 
manufacturing and assembly tolerances in the prototype as 
well as by the lack of precision on the magnetic properties of 
the used materials. These variabilities impact the measured 
performances which can diverge from those simulated in the 
design phase. To reduce such deviations, the parameter 
uncertainties should be considered in the optimization 
procedure. 

In opposition to the deterministic optimization, robust 
optimization considers two types of input parameters: certain 
parameters also known as controllable parameters, and 
uncertain parameters. Controllable parameters are the same 
ones used in a deterministic optimization whereas uncertain 
parameters are specific to robust optimization techniques. 
This type of parameter can take varying values due to the 
associated uncertainties: it is then modelled by a random 
variable and an associated probability distribution. The 
presence of random input variables for the simulator leads to 
random output variables and then, random objective and 
constraint functions. Various formulations of the resulting 
optimization problem are proposed in the literature [4][5][6]  
based on expectation, probability, or quantiles of these 
random variables.  

Reliability Based Design Optimization (RBDO) is a 
method used to obtain optimal and safe designs in the sense 
that the outputs of certain functions are inside a security 
domain, described by constraints. A robust or reliable design 
has therefore a high probability to respect these constraints. 
Examples of this approach can be found in [7].   

Worst-case optimization considers the extreme values as 
objective functions and/or constraints i.e., the maximum or 
minimum value of the outputs at the controllable inputs 
caused by the uncertainty propagation [8] .   

There is another very common formulation which was 
also adopted in this work: Robust Design Optimization 
(RDO). In this methodology, the expectation (average) of the 
objective function is optimized. To limit extreme values, a 
second objective based of the variances of the objective 
function can be added [9].  

Computing these quantities requires a large sample of the 
uncertain input variables and thus a large number of 
simulations. To limit this high computational cost especially 
with the use of finite element simulations, meta-modelling 
techniques coupled with design of experiments are used to 



replace the costly simulations by predictions using the 
resulting surrogate model [10].  

In this work, the results of a deterministic and two robust 
optimizations on a 3-phases 10-poles 60-slots PMaSRM 
were compared. To do so, techniques like Design Of 
Experiments (DOE), Finite Element Method (FEM) 
surrogate modelling, sensitivity analysis, quasi Monte Carlo 
methods and optimization algorithms were used. All the 
steps followed in this work will be detailed in the next 
sections. 

II. MACHINE TOPOLOGY AND DESIGN PARAMETERS 

The machine studied in this paper is shown in Fig. 1 – 

a). It is a 3-phases 10-poles 60-slots PMaSRM with a 

Machaon rotor structure. This machine was initially 

designed for an EV application having a maximum torque of 

430 N.m. It has an outer stator diameter of 220 mm and an 

active length of 200 mm. Each pole has 3 flux barriers and 7 

PMs. Fig. 1 – b) shows the design parameters for the stator 

and for the rotor considering one layer. TABLE I lists the 

optimization variables with their lower and upper bounds.  
 

  
a) b) 

Fig. 1: a) Geometry of the PMaSRM studied in this work, b) design  

Parameters for one layer (# is the number of the layer). 

 
TABLE I. Optimization variables 

Input 

Parameter Description 
Lower 

bound 
xl 

Upper 

bound xu 

Manufacturing 

Tolerance 

Slot_angle 
Stator slot width 

opening angle  
2.47° 3.27° ±0.1° 

Beta_L1_P1 
Layer 1-Pole 1 
Opening angle 

27.03° 29.66° ±0.33° 

Beta_L1_P2 
Layer 1-Pole 2 

Opening angle 
37.03° 39.66° ±0.33° 

Beta_L2_P1 
Layer 2-Pole 1 
Opening angle 

31.03° 33.66° ±0.33° 

Beta_L2_P2 
Layer 2-Pole 2 

Opening angle 
47.03° 49.66° ±0.33° 

Beta_L3_P1 
Layer 3-Pole 1 

Opening angle 
33.7° 37° ±0.33° 

Beta_L3_P2 
Layer 3-Pole 2 
Opening angle 

59.7° 63° ±0.33° 

Airgap Airgap width 
0.55 

mm 
0.65 mm ±0.03 mm 

Bridge_L1 
Layer 1 radial bridge 
width 

2.6 mm 2.98 mm ±0.05 mm 

Bridge_L2 
Layer 2 radial bridge 

width 
0.9 mm 1.18 mm ±0.05 mm 

Bridge_L3 
Layer 3 radial bridge 

width 
0.5 mm 0.62 mm ±0.03 mm 

Bridge_tang 
Bridge between airgap 
and flux barriers. 

0.4 mm 0.6 mm ±0.05 mm 

 

III. OPTIMIZATION WORKFLOW 

We detail in this section the workflow used to carry out 

the optimizations (Fig. 2). At first, a DOE was built with the 

upper and lower bounds of the input parameters shown in 

TABLE I to fit a surrogate model for the objective 

functions: the mean torque and torque ripple. Secondly, 

these models were used to perform a global sensitivity 

analysis to detect the most impacting parameters on the 

objective functions. This will allow us to limit the number 

of parameters considered as uncertain. At last, and after 

performing the meta-model-based deterministic and robust 

optimizations, FEM simulations will be carried out to verify 

the results. 

 

 
Fig. 2: Optimization workflow. 

 

To reduce computation time, surrogate models have been 
built for each of the objective functions. To build such 
models, there are three steps to follow: build a DOE, train the 
metamodel and check its predictivity with a test set. The 
chosen DOE is a maximin Latin Hypercube Sampling (LHS) 
as it aims to cover the search space while preserving good 
projection properties [11]. This DOE was built with 234 
points using the bounds described in TABLE I. As for the 
surrogate model, it is a universal Kriging with linear trend 
function. For mean torque, a tensorized Matérn 5/2 
covariance function has given the best predictivity. As for 
Torque ripple, a tensorized absolute value exponential kernel 
was used since the latter is not that smooth. Kriging was 
chosen as metamodel since it is very good at learning 
nonlinear objective functions and has demonstrated good 
performances in electrical machines optimization [12]. 
Finally, to evaluate the accuracy of the metamodel, a 
Normalized Root Mean Square Error (NRMSE) was 
computed on a validation test set: 

                  NRSME = (||yreal −ypred||  ̸||yreal||)*100%            () 

A. Surrogate Models 



where ||∙|| represents the Euclidean norm. A value close to 

zero indicates a good model fit. The obtained NRSME of the 

kriging model for mean torque is 0.2% and for torque ripple 

is 8%. These results were obtained with a train and test sets 

composed by 175 and 59 samples, respectively. Torque 

ripple depends not only on mean torque but also on torque 

amplitude which makes this function more difficult to model 

than mean torque. We consider those metamodels 

sufficiently accurate for performing the sensitivity analysis 

and the optimization procedures.  

 

To measure the impact of each input parameter on the 

considered outputs, a sensitivity analysis can be performed 

[13]. For this work, the Sobol Indices were chosen as they 

measure the global impact of the input variables on the 

output functions. The commonly used ones are the first 

order indices (S) and the total indices (STOTAL) computed 

with the Kriging surrogate models:                                             

Si = VARXi(X~i[Y|Xi]) /VAR(Y)               ()    

STOTAL,i = X~i [VARXi (Y|X~i )] /VAR(Y)                 ()  

where X~i = X1,∙∙∙,Xi-1,Xi+1,∙∙∙,XNx and Nx is the number of 

optimization parameters. The results of the sensitivity 

analysis applied to mean torque and to torque ripple are 

presented in Fig. 2 and Fig. 3. Only the most important 

inputs are displayed for better visibility. It was found that 

the stator slot width opening angle (Slot_angle) and the flux 

barrier opening angles for barriers 1 and 2 (Beta_L1_P1, 

Beta_L1_P2, Beta_L2_P1 and Beta_L2_P2) have the 

biggest impacts on the mean torque as well as on torque 

ripple. These 5 parameters will be then considered as 

uncertain variables in the robust optimization. The 

dispersion of these variables will be then integrated in the 

robust optimizations by considering a perturbation vector U. 

 

 We will present in this section the results of different 
optimizations: a deterministic and two robust optimizations. 
For the deterministic optimization problem, we have: 

minxϵX f1(x), f2(x)                           () 

where f1 is the opposite of the mean torque (in order to 
maximize it) and f2 the torque ripple; X is the controllable 
parameters space defined in TABLE I. For the robust 
optimization problems, two formulations have been 
considered: 

- Expectations optimization:  

minxϵX Uf1(x+U)], Uf2(x+U)]             () 

 
- Worst-case optimization:  

minxϵX  maxuϵ  f1(x+u), maxuϵ  f2(x+u)             () 

 

where   = [-uu1, uu1]×∙∙∙×[-uuNx, uuNx]                                () 

 

uuj is the manufacturing tolerance of parameter number j. 

The tolerance for each geometrical parameter is given in 

TABLE I. Based on the sensitivity study in the previous 

section, only 5 parameters will be considered as uncertain. 

Their uncertainties were considered to follow uniform 

distributions, i.e., Uj ~Unif(-uuj,uuj). For parameters with no 

considered uncertainties, uu is simply equal to 0.  

 

 
Fig. 3: Mean torque Sobol’ indices 

 

 
Fig. 4: Torque ripple Sobol’ indices  

 

The goal of the first robust formulation is to optimize the 

mean torque’s and torque ripple’s expectations in a Pareto 

sense. As for the worst-case formulation, the objective is to 

optimize the worst possible value of the mean torque and 

torque ripple caused by uncertainties. The idea is then to 

limit the performance degradation. To solve these 

optimization problems, the genetic algorithm NSGA 2 was 

used [14]. This algorithm has shown good performances for 

other studies of electrical machine optimization as in [15]. 

We used a DOE maximin LHS to compute samples of x+U 

to calculate the objective functions’ expectations with a 

quasi-Monte Carlo method. When it comes to the Worst-

case formulation, we have two options: computing samples 

of x+U and take the maximum value of these samples as an 

estimator of maxuϵ  f(x+u) or obtaining the absolute 

maximum value with an optimization algorithm. In this 

work, the latter was adopted using a Particle Swarm 

Optimization (PSO) [16] algorithm for the embedded mono-

objective optimizations. 

 

Fig. 5 shows a comparison between the deterministic 

(blue) and the Expectations optimization (red) Pareto fronts. 

The expected performances of the deterministic Pareto front 

have been reevaluated (pink): The design variables were 

perturbed by adding sampled values of the uncertain 

variables. These expected values represent the average mean 

torque and average torque ripple for each machine obtained 

by the deterministic Pareto optimization considering a 

posteriori uncertainty on the input parameters. As we can 

notice, an optimal deterministic design does not guarantee 

its performances when manufacturing tolerances are 

considered: even though the front of the deterministic 

optimization (blue) shows better performances than the 

B. Sensitivity Analysis 

C. Deterministic and robust optimizations 



Expectations optimization one (red) at first glance, the 

torque ripple expectation values (pink) are larger than the 

robust front indicating that the proposed deterministic 

solution designs are more sensitive to uncertainties. 

The pareto front of the Worst-case optimization (green) 

is presented in red in  Fig. 6. As in Fig. 5, the deterministic 

pareto front was also added (blue). The worst-case 

performances of the deterministic Pareto front have been 

evaluated (light green) thanks to a posteriori uncertainty on 

the input parameters and PSO maximization. Once again, 

these results show the importance of a robust optimization 

in limiting the performance degradation that a sample of 

machines can have. 

 

 
Fig. 5: Pareto fronts obtained by deterministic optimization (blue: Mean 

Torque and Torque ripple) and robust optimization (red: Mean Torque 
expectation and Torque ripple expectation). Posterior perturbations of 

solutions of deterministic optimization (pink: Mean Torque expectation and 

Torque ripple expectation). Dark gray zones highlight points with similar 

Mean Torque expectation values (430 ± 0.1, 435 ± 0.1, 440 ± 0.1, 445 ± 0.1 

and 450 ± 0.1 N.m). 

 

 
Fig. 6: Pareto fronts obtained by deterministic optimization (blue: Mean 

Torque and Torque ripple) and robust optimization (green: Mean Torque 
worst-case and Torque ripple worst-case). Posterior perturbations of 

solutions of deterministic optimization (light green: Mean Torque worst-

case and Torque ripple worst-case). Dark gray zones highlight points with 

similar worst case Mean Torque values (430 ± 0.1, 435 ± 0.1, 440 ± 0.1, 

445 ± 0.1 and 450 ± 0.1 N.m). 

 

To go deeper into this analysis, we empirically compared 

the distribution of different designs. For this purpose, we 

show in Fig. 7 and Fig. 8 boxplots of a subset of points 

selected from the deterministic and robust Pareto fronts 

shown in Fig. 5 and Fig. 6, respectively. Each pair of 

boxplots represents a comparison of the distribution of 

torque ripple values between a determinist machine (blue) 

and a robust machine (red, green) falling in one of the zones 

(A, B, C, D and E). These boxplots show the values of q1 

(the value for which there is 25% of the samples below it), 

q2, which is the median of the sample (there is 50% of the 

sample below it) and q3 (there is 75% of the samples below 

it) as represented in Fig. 7.    

  

We can observe in this figure that for each pair of 

machines, the robust one shows better overall performance 

than the deterministic one. For example, for the machines in 

zone A, we can notice that the median of the deterministic 

machine is almost the same as the q3 value of the robust 

machine (4.5%). This means that there is a 50% chance for 

the deterministic design and 75% chance for the robust 

design of having a torque ripple value smaller than 4.5%. 

Another remarkable result is that the expectation and 

Standard Deviation (STD) of the torque ripple associated 

with the robust optimization solution (4.3%, 0.35%, 

respectively) outperform the expectation and STD obtained 

by the posterior analysis of the deterministic solution (4.6%, 

0.56%, respectively). These results stress the importance of 

robust optimizations when dealing with uncertainties.  

 

 
Fig. 7: Boxplots showing comparisons of predicted torque ripple values 

between deterministic (blue) and robust (red) machines from Fig. 5 with 

similar predicted Mean Torque Expectation values. 

 

 
Fig. 8: Boxplots showing comparisons of predicted torque ripple values 

between deterministic (blue) and robust (green) machines from Fig. 6 with 

similar predicted Mean Torque Worst-case values. 

 

Fig. 8 also shows pairs of boxplots comparing predicted 

torque ripple values between deterministic (blue) and robust 

(green) machines from Fig. 6 with similar predicted Mean 

torque worst-case values. For all the selected zones, the 

worst-case torque ripple value of a robust design is lower (or 

equal) than a deterministic one. Besides this, robust 

solutions also have lower STD values than deterministic 

solutions, especially for zones with low mean torque worst 

case. In zone A for example, the robust machine has a STD 

of 0.26% and a worst-case torque ripple of 6.7% compared 

to 0.54% and 7.2%, respectively for its deterministic 



counterpart. Both optimizations lead practically to the same 

design for high values of mean torque worst case like in 

zone E. This can also be seen in  Fig. 5 and Fig. 6, with the 

Pareto fronts of the deterministic and robust optimizations 

getting very close with increasing torque.   

 

Although the worst-case optimization has allowed to 

limit the performance degradation of the least performant 

machine in a sample, it has led to worse expectance values 

on torque ripple. Instead of using the worst-case as an 

objective function, it could be used as a constraint in a 

constrained optimization problem while still using the 

expectations as an objective. Such formulation allows to 

have good machines samples while limiting the worst 

performances we can have.  The main disadvantage of the 

robust machines through a worst-case optimization is that 

there is still a big probability of having a torque ripple value 

greater than the deterministic machine (min, q1, q2, q3). For 

instance, the deterministic design in zone A has around 75% 

chance of obtaining a torque ripple lower than 5.2%, while 

the q1 value of the robust design is 5.4%.  

 

In order to compare these two robust formulations, we 

propose in Fig. 9 new boxplots comparing designs issued 

from both optimizations and belonging to the same zones. 

This time, a zone corresponds to a mean torque expectation 

value. The robust optimization based on expectations 

provides not only better results in terms of expectations, but 

also in terms of q1, q2 and q3. For example, in zone A, a red 

machine has a 75% chance of having a torque ripple value 

outperforming any of the machines in the green sample. 

This is because the minimum value (4.6%) of the sample 

almost coincides with the q3 value of the blue machine 

(4.5%). Comparisons of worst-case values between boxplots 

from these two optimizations are inconclusive (no 

significant advantage in terms of worst-case torque ripple 

for the worst-case optimization). It can also be noticed that 

the worst-case optimization leads to lower STD torque 

ripple values. This can be explained by two reasons. First, in 

a torque ripple worst-case optimization, we are interested in 

limiting the extreme upper values which tends to bring 

closer the performances of the boxplots’ samples. Second, in 

such optimization, reducing extreme lower values is not 

contemplated. Due to that, we risk obtaining non-optimized 

extreme lower values. This has been the case in our 

optimizations where the minimum values of the green 

samples are higher than the red ones. The combination of 

these 2 facts leads to reduced STD values. 

 

All the results presented in the previous sections were 

based on the surrogate models. We will therefore verify in 

this section some results using FEM simulations. Fig. 10 

and Fig. 11  show the same boxplots in Fig. 7, Fig. 8, 

however, this time, FEM simulations were used to 

determine the performances. Only zones A and E are 

represented in these figures. The STD values were added on 

these figures.   

 
Fig. 9: Boxplots showing comparisons of predicted torque ripple values 

between machines from worst-case (green) and expectations (red) 

optimizations with similar predicted Mean Torque Expectation values. 

 

 
Fig. 10: Boxplots showing comparisons of FEM simulations’ torque ripple 
values between deterministic (blue) and robust (red) machines with similar 

predicted Mean Torque/ Mean Torque Expectation values. 

 

 
Fig. 11: Boxplots showing comparisons of FEM simulations’ torque ripple 

values between deterministic (blue) and robust (green) machines with 

similar predicted Mean Torque Worst-Case values. 

 

The results from Fig. 10 confirm what we have already 

seen in Fig. 7 using the meta-model. For both zones A and 

E, the robust optimization presents similar or better 

solutions than the deterministic optimization in terms of 

robustness. For zone A, both machines have practically the 

same mean torque ripple with a smaller STD for the robust 

design. As for zone E, the robust design presents a 

particularly lower maximum value, which means that in a 

worst-case scenario, the robust design will have a torque 

ripple of 8.4 % vs. 9.9 % for the deterministic design. The 

q3 value of the robust design is also equal to the median of 

the deterministic one (5.8 %), meaning that 75 % of the 

produced machines using the robust design would have a 

torque ripple lower than 5.8 % vs. only 50 % for the 

deterministic design. As also seen in Fig. 8, using the 

optimization formulation with the worst-case scenario tends 

D. Results verification 



to reduce the STD of the robust designs compared to the 

deterministic ones, especially at low torque. This is also 

confirmed by FEM simulations in Fig. 11. For the machines 

in zone A, the robust design has a notably lower STD 

compared to the deterministic one (0.4 % vs 0.78 %). As for 

the worst-case torque ripple value, both designs show 

similar performances.  

 

Regarding the precision of the used meta-models 

compared to FEM simulations, we can notice differences 

between the predicted performances and simulations via 

FEM. For example, the NRMSE between predicted values 

in Fig. 7 and FEM simulations in Fig. 10 is 15.1% for torque 

ripple and 0.28% for mean torque. This lack of precision, 

especially for torque ripple, is somehow expected with the 

strategy used to create fixed meta-models and the difficulty 

to fit a torque ripple meta-model as seen in section III.A. A 

vast number of simulations is needed in this case to obtain 

acceptable level of accuracy. An alternative approach could 

be to use an adaptive strategy to update the surrogate model 

with additional simulations during the optimization. By 

using this approach, additional FEM simulations are 

performed only in promising points in the search space, 

limiting computational time and increasing the precision for 

optimal designs. Finally, we note that surrogate-based 

optimizations require much less computational time 

compared to FEM-based optimizations. For example, 17 

hours were needed to finalize the DOE simulations1. The 

deterministic optimization using the meta-model took only 

13 seconds for 300 iterations and 150 particles. Doing the 

same optimization with only FEM simulations would have 

taken around 3 months to complete.  

IV. CONCLUSIONS 

We have presented in this paper a comparison between 

three different optimizations performed on a PMaSRM to 

minimize its torque ripple and maximize its mean torque.  

The first optimization used a deterministic formulation and 

the other ones used robust formulations which take input 

parameters’ uncertainties into account by setting the 

objective functions as expectations and worst-case values. In 

order to reduce computation time, surrogate models have 

been built for each of the objective functions. These 

surrogate models have been also used to perform a 

sensitivity analysis to detect the most impacting input 

parameters. Objective functions’ expectations were 

computed with a quasi-Monte Carlo scheme while worst-

cases where calculated with a PSO algorithm. It should be 

noted that while the predicted values of mean torque were 

consistent with FEM simulations, some differences were 

observed for torque ripple. This problem will be adressed in 

future projects by using an adaptive strategy to update the 

surrogate models with additionnal simulations during the 

optimization. Neverthless, the FEM simulations have 

confirmed the tendency of the predicted results using the 

meta models. The comparison of Pareto fronts has shown 

that robust solutions outperform deterministic solutions in 

terms of robustness criteria. The expectations as well as the 

STD values using robust optimizations were better that for 

the deterministic optimization. This shows the importance of 

 
1 Utilizing an Intel(R) Xeon(R) W-2195 CPU @ 2.30 GHz and 18 cores. 

developing new techniques of optimization of electrical 

machines when dealing with manufacturing uncertainties. 
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